code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import sys import turtle def _A ( A__ , A__ ): """simple docstring""" return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def _A ( A__ , A__ , A__ , A__ , ): """simple docstring""" my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(A__ , get_mid(A__ , A__ ) , get_mid(A__ , A__ ) , depth - 1 ) triangle(A__ , get_mid(A__ , A__ ) , get_mid(A__ , A__ ) , depth - 1 ) triangle(A__ , get_mid(A__ , A__ ) , get_mid(A__ , A__ ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) lowerCAmelCase__ = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') lowerCAmelCase__ = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
41
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ): __lowercase = [] def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : str ,**lowercase__ : Any ): self.events.append('''on_init_end''' ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : int ,**lowercase__ : Optional[int] ): self.events.append('''on_train_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ,**lowercase__ : List[str] ): self.events.append('''on_train_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,**lowercase__ : Optional[Any] ): self.events.append('''on_epoch_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : Any ,**lowercase__ : Optional[int] ): self.events.append('''on_epoch_end''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_step_begin''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : Optional[int] ,**lowercase__ : Dict ): self.events.append('''on_step_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,**lowercase__ : Any ): self.events.append('''on_evaluate''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : int ,**lowercase__ : Optional[Any] ): self.events.append('''on_predict''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,**lowercase__ : int ): self.events.append('''on_save''' ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_log''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : int ,lowercase__ : Dict ,**lowercase__ : str ): self.events.append('''on_prediction_step''' ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): shutil.rmtree(self.output_dir ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any]=0 ,lowercase__ : Any=0 ,lowercase__ : Tuple=6_4 ,lowercase__ : Optional[int]=6_4 ,lowercase__ : Optional[Any]=None ,lowercase__ : str=False ,**lowercase__ : Any ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionModelConfig(a=lowercase__ ,b=lowercase__ ) __lowercase = RegressionPreTrainedModel(lowercase__ ) __lowercase = TrainingArguments(self.output_dir ,disable_tqdm=lowercase__ ,report_to=[] ,**lowercase__ ) return Trainer( lowercase__ ,lowercase__ ,train_dataset=lowercase__ ,eval_dataset=lowercase__ ,callbacks=lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) ) # Order doesn't matter __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) for cba, cba in zip(lowercase__ ,lowercase__ ): if isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,lowercase__ ) elif isinstance(lowercase__ ,lowercase__ ) and not isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,cba.__class__ ) elif not isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(cba.__class__ ,lowercase__ ) else: self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ): __lowercase = ['''on_init_end''', '''on_train_begin'''] __lowercase = 0 __lowercase = len(trainer.get_eval_dataloader() ) __lowercase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(lowercase__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.get_trainer() __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # Callbacks passed at init are added to the default callbacks __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __lowercase = self.get_trainer(disable_tqdm=lowercase__ ) __lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __lowercase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(cb.__class__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # We can also add, pop, or remove by instance __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' ,category=lowercase__ ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # Independent log/save/eval __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='''steps''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='''epoch''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # A bit of everything __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=1_0 ,eval_steps=5 ,evaluation_strategy='''steps''' ,) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,) assert str(lowercase__ ) in warn_mock.call_args[0][0]
41
1
'''simple docstring''' def _A ( A__ , A__ ): """simple docstring""" if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) __lowercase = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(A__ ) ) return round(A__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
41
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : jnp.ndarray SCREAMING_SNAKE_CASE : jnp.ndarray class lowercase_ (nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __lowercase = [] for i in range(len(self.block_out_channels ) - 1 ): __lowercase = self.block_out_channels[i] __lowercase = self.block_out_channels[i + 1] __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = blocks __lowercase = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : List[str] ,lowercase__ : Optional[int] ): __lowercase = self.conv_in(lowercase__ ) __lowercase = nn.silu(lowercase__ ) for block in self.blocks: __lowercase = block(lowercase__ ) __lowercase = nn.silu(lowercase__ ) __lowercase = self.conv_out(lowercase__ ) return embedding @flax_register_to_config class lowercase_ (nn.Module , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 3_2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False SCREAMING_SNAKE_CASE : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) SCREAMING_SNAKE_CASE : int = 2 SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None SCREAMING_SNAKE_CASE : int = 1_2_8_0 SCREAMING_SNAKE_CASE : float = 0.0 SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = "rgb" SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : jax.random.KeyArray ): # init input tensors __lowercase = (1, self.in_channels, self.sample_size, self.sample_size) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase = jnp.ones((1,) ,dtype=jnp.intaa ) __lowercase = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa ) __lowercase = (1, 3, self.sample_size * 8, self.sample_size * 8) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase , __lowercase = jax.random.split(lowercase__ ) __lowercase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )["params"] def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.block_out_channels __lowercase = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __lowercase = self.num_attention_heads or self.attention_head_dim # input __lowercase = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time __lowercase = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift ) __lowercase = FlaxTimestepEmbedding(lowercase__ ,dtype=self.dtype ) __lowercase = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) __lowercase = self.only_cross_attention if isinstance(lowercase__ ,lowercase__ ): __lowercase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = (num_attention_heads,) * len(self.down_block_types ) # down __lowercase = [] __lowercase = [] __lowercase = block_out_channels[0] __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) for i, down_block_type in enumerate(self.down_block_types ): __lowercase = output_channel __lowercase = block_out_channels[i] __lowercase = i == len(lowercase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": __lowercase = FlaxCrossAttnDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: __lowercase = FlaxDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(lowercase__ ) for _ in range(self.layers_per_block ): __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) if not is_final_block: __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) __lowercase = down_blocks __lowercase = controlnet_down_blocks # mid __lowercase = block_out_channels[-1] __lowercase = FlaxUNetMidBlockaDCrossAttn( in_channels=lowercase__ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : float = 1.0 ,lowercase__ : bool = True ,lowercase__ : bool = False ,): __lowercase = self.controlnet_conditioning_channel_order if channel_order == "bgr": __lowercase = jnp.flip(lowercase__ ,axis=1 ) # 1. time if not isinstance(lowercase__ ,jnp.ndarray ): __lowercase = jnp.array([timesteps] ,dtype=jnp.intaa ) elif isinstance(lowercase__ ,jnp.ndarray ) and len(timesteps.shape ) == 0: __lowercase = timesteps.astype(dtype=jnp.floataa ) __lowercase = jnp.expand_dims(lowercase__ ,0 ) __lowercase = self.time_proj(lowercase__ ) __lowercase = self.time_embedding(lowercase__ ) # 2. pre-process __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.conv_in(lowercase__ ) __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.controlnet_cond_embedding(lowercase__ ) sample += controlnet_cond # 3. down __lowercase = (sample,) for down_block in self.down_blocks: if isinstance(lowercase__ ,lowercase__ ): __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) else: __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,deterministic=not train ) down_block_res_samples += res_samples # 4. mid __lowercase = self.mid_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) # 5. contronet blocks __lowercase = () for down_block_res_sample, controlnet_block in zip(lowercase__ ,self.controlnet_down_blocks ): __lowercase = controlnet_block(lowercase__ ) controlnet_down_block_res_samples += (down_block_res_sample,) __lowercase = controlnet_down_block_res_samples __lowercase = self.controlnet_mid_block(lowercase__ ) # 6. scaling __lowercase = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowercase__ ,mid_block_res_sample=lowercase__ )
41
1
'''simple docstring''' from __future__ import annotations lowerCAmelCase__ = 8.988e9 # units = N * m^s * C^-2 def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: __lowercase = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: __lowercase = abs(A__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: __lowercase = abs(A__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: __lowercase = (COULOMBS_CONSTANT * charge_product / abs(A__ )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
41
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase__ = False lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''ybelkada/fonts''' def _A ( ): """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use " '''Pix2StructImageProcessor. Please upgrade torch.''' ) def _A ( A__ , A__ , A__ ): """simple docstring""" requires_backends(A__ , ['''torch'''] ) _check_torch_version() __lowercase = image_tensor.unsqueeze(0 ) __lowercase = torch.nn.functional.unfold(A__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) __lowercase = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , A__ , A__ , -1 ) __lowercase = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def _A ( A__ , A__ = 36 , A__ = "black" , A__ = "white" , A__ = 5 , A__ = 5 , A__ = 5 , A__ = 5 , A__ = None , A__ = None , ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Add new lines so that each line is no more than 80 characters. __lowercase = textwrap.TextWrapper(width=80 ) __lowercase = wrapper.wrap(text=A__ ) __lowercase = '''\n'''.join(A__ ) if font_bytes is not None and font_path is None: __lowercase = io.BytesIO(A__ ) elif font_path is not None: __lowercase = font_path else: __lowercase = hf_hub_download(A__ , '''Arial.TTF''' ) __lowercase = ImageFont.truetype(A__ , encoding='''UTF-8''' , size=A__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. __lowercase = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , A__ ) ) __lowercase , __lowercase , __lowercase , __lowercase = temp_draw.textbbox((0, 0) , A__ , A__ ) # Create the actual image with a bit of padding around the text. __lowercase = text_width + left_padding + right_padding __lowercase = text_height + top_padding + bottom_padding __lowercase = Image.new('''RGB''' , (image_width, image_height) , A__ ) __lowercase = ImageDraw.Draw(A__ ) draw.text(xy=(left_padding, top_padding) , text=A__ , fill=A__ , font=A__ ) return image def _A ( A__ , A__ , **A__ ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Convert to PIL image if necessary __lowercase = to_pil_image(A__ ) __lowercase = render_text(A__ , **A__ ) __lowercase = max(header_image.width , image.width ) __lowercase = int(image.height * (new_width / image.width) ) __lowercase = int(header_image.height * (new_width / header_image.width) ) __lowercase = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary __lowercase = to_numpy_array(A__ ) if infer_channel_dimension_format(A__ ) == ChannelDimension.LAST: __lowercase = to_channel_dimension_format(A__ , ChannelDimension.LAST ) return new_image class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ['flattened_patches'] def __init__( self : Any ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : int = 2_0_4_8 ,lowercase__ : bool = False ,**lowercase__ : List[str] ,): super().__init__(**lowercase__ ) __lowercase = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6} __lowercase = do_normalize __lowercase = do_convert_rgb __lowercase = max_patches __lowercase = is_vqa def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : np.ndarray ,lowercase__ : int ,lowercase__ : dict ,**lowercase__ : Tuple ): requires_backends(self.extract_flattened_patches ,'''torch''' ) _check_torch_version() # convert to torch __lowercase = to_channel_dimension_format(lowercase__ ,ChannelDimension.FIRST ) __lowercase = torch.from_numpy(lowercase__ ) __lowercase , __lowercase = patch_size['''height'''], patch_size['''width'''] __lowercase , __lowercase = get_image_size(lowercase__ ) # maximize scale s.t. __lowercase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) __lowercase = max(min(math.floor(scale * image_height / patch_height ) ,lowercase__ ) ,1 ) __lowercase = max(min(math.floor(scale * image_width / patch_width ) ,lowercase__ ) ,1 ) __lowercase = max(num_feasible_rows * patch_height ,1 ) __lowercase = max(num_feasible_cols * patch_width ,1 ) __lowercase = torch.nn.functional.interpolate( image.unsqueeze(0 ) ,size=(resized_height, resized_width) ,mode='''bilinear''' ,align_corners=lowercase__ ,antialias=lowercase__ ,).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] __lowercase = torch_extract_patches(lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = patches.shape __lowercase = patches_shape[1] __lowercase = patches_shape[2] __lowercase = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] __lowercase = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] __lowercase = torch.arange(lowercase__ ).reshape([rows, 1] ).repeat(1 ,lowercase__ ).reshape([rows * columns, 1] ) __lowercase = torch.arange(lowercase__ ).reshape([1, columns] ).repeat(lowercase__ ,1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] __lowercase = row_ids.to(torch.floataa ) __lowercase = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] __lowercase = torch.cat([row_ids, col_ids, patches] ,-1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] __lowercase = torch.nn.functional.pad(lowercase__ ,[0, 0, 0, max_patches - (rows * columns)] ).float() __lowercase = to_numpy_array(lowercase__ ) return result def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : np.ndarray ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ): if image.dtype == np.uinta: __lowercase = image.astype(np.floataa ) # take mean across the whole `image` __lowercase = np.mean(lowercase__ ) __lowercase = np.std(lowercase__ ) __lowercase = max(lowercase__ ,1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : ImageInput ,lowercase__ : Optional[str] = None ,lowercase__ : bool = None ,lowercase__ : Optional[bool] = None ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[Dict[str, int]] = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : ChannelDimension = ChannelDimension.FIRST ,**lowercase__ : List[Any] ,): __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = patch_size if patch_size is not None else self.patch_size __lowercase = max_patches if max_patches is not None else self.max_patches __lowercase = self.is_vqa if kwargs.get('''data_format''' ,lowercase__ ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) __lowercase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(lowercase__ ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowercase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) __lowercase = kwargs.pop('''font_bytes''' ,lowercase__ ) __lowercase = kwargs.pop('''font_path''' ,lowercase__ ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = [header_text] * len(lowercase__ ) __lowercase = [ render_header(lowercase__ ,header_text[i] ,font_bytes=lowercase__ ,font_path=lowercase__ ) for i, image in enumerate(lowercase__ ) ] if do_normalize: __lowercase = [self.normalize(image=lowercase__ ) for image in images] # convert to torch tensor and permute __lowercase = [ self.extract_flattened_patches(image=lowercase__ ,max_patches=lowercase__ ,patch_size=lowercase__ ) for image in images ] # create attention mask in numpy __lowercase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] __lowercase = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks} ,tensor_type=lowercase__ ) return encoded_outputs
41
1
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase__ = False lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''ybelkada/fonts''' def _A ( ): """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use " '''Pix2StructImageProcessor. Please upgrade torch.''' ) def _A ( A__ , A__ , A__ ): """simple docstring""" requires_backends(A__ , ['''torch'''] ) _check_torch_version() __lowercase = image_tensor.unsqueeze(0 ) __lowercase = torch.nn.functional.unfold(A__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) __lowercase = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , A__ , A__ , -1 ) __lowercase = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def _A ( A__ , A__ = 36 , A__ = "black" , A__ = "white" , A__ = 5 , A__ = 5 , A__ = 5 , A__ = 5 , A__ = None , A__ = None , ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Add new lines so that each line is no more than 80 characters. __lowercase = textwrap.TextWrapper(width=80 ) __lowercase = wrapper.wrap(text=A__ ) __lowercase = '''\n'''.join(A__ ) if font_bytes is not None and font_path is None: __lowercase = io.BytesIO(A__ ) elif font_path is not None: __lowercase = font_path else: __lowercase = hf_hub_download(A__ , '''Arial.TTF''' ) __lowercase = ImageFont.truetype(A__ , encoding='''UTF-8''' , size=A__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. __lowercase = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , A__ ) ) __lowercase , __lowercase , __lowercase , __lowercase = temp_draw.textbbox((0, 0) , A__ , A__ ) # Create the actual image with a bit of padding around the text. __lowercase = text_width + left_padding + right_padding __lowercase = text_height + top_padding + bottom_padding __lowercase = Image.new('''RGB''' , (image_width, image_height) , A__ ) __lowercase = ImageDraw.Draw(A__ ) draw.text(xy=(left_padding, top_padding) , text=A__ , fill=A__ , font=A__ ) return image def _A ( A__ , A__ , **A__ ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Convert to PIL image if necessary __lowercase = to_pil_image(A__ ) __lowercase = render_text(A__ , **A__ ) __lowercase = max(header_image.width , image.width ) __lowercase = int(image.height * (new_width / image.width) ) __lowercase = int(header_image.height * (new_width / header_image.width) ) __lowercase = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary __lowercase = to_numpy_array(A__ ) if infer_channel_dimension_format(A__ ) == ChannelDimension.LAST: __lowercase = to_channel_dimension_format(A__ , ChannelDimension.LAST ) return new_image class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ['flattened_patches'] def __init__( self : Any ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : int = 2_0_4_8 ,lowercase__ : bool = False ,**lowercase__ : List[str] ,): super().__init__(**lowercase__ ) __lowercase = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6} __lowercase = do_normalize __lowercase = do_convert_rgb __lowercase = max_patches __lowercase = is_vqa def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : np.ndarray ,lowercase__ : int ,lowercase__ : dict ,**lowercase__ : Tuple ): requires_backends(self.extract_flattened_patches ,'''torch''' ) _check_torch_version() # convert to torch __lowercase = to_channel_dimension_format(lowercase__ ,ChannelDimension.FIRST ) __lowercase = torch.from_numpy(lowercase__ ) __lowercase , __lowercase = patch_size['''height'''], patch_size['''width'''] __lowercase , __lowercase = get_image_size(lowercase__ ) # maximize scale s.t. __lowercase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) __lowercase = max(min(math.floor(scale * image_height / patch_height ) ,lowercase__ ) ,1 ) __lowercase = max(min(math.floor(scale * image_width / patch_width ) ,lowercase__ ) ,1 ) __lowercase = max(num_feasible_rows * patch_height ,1 ) __lowercase = max(num_feasible_cols * patch_width ,1 ) __lowercase = torch.nn.functional.interpolate( image.unsqueeze(0 ) ,size=(resized_height, resized_width) ,mode='''bilinear''' ,align_corners=lowercase__ ,antialias=lowercase__ ,).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] __lowercase = torch_extract_patches(lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = patches.shape __lowercase = patches_shape[1] __lowercase = patches_shape[2] __lowercase = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] __lowercase = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] __lowercase = torch.arange(lowercase__ ).reshape([rows, 1] ).repeat(1 ,lowercase__ ).reshape([rows * columns, 1] ) __lowercase = torch.arange(lowercase__ ).reshape([1, columns] ).repeat(lowercase__ ,1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] __lowercase = row_ids.to(torch.floataa ) __lowercase = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] __lowercase = torch.cat([row_ids, col_ids, patches] ,-1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] __lowercase = torch.nn.functional.pad(lowercase__ ,[0, 0, 0, max_patches - (rows * columns)] ).float() __lowercase = to_numpy_array(lowercase__ ) return result def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : np.ndarray ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ): if image.dtype == np.uinta: __lowercase = image.astype(np.floataa ) # take mean across the whole `image` __lowercase = np.mean(lowercase__ ) __lowercase = np.std(lowercase__ ) __lowercase = max(lowercase__ ,1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : ImageInput ,lowercase__ : Optional[str] = None ,lowercase__ : bool = None ,lowercase__ : Optional[bool] = None ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[Dict[str, int]] = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : ChannelDimension = ChannelDimension.FIRST ,**lowercase__ : List[Any] ,): __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = patch_size if patch_size is not None else self.patch_size __lowercase = max_patches if max_patches is not None else self.max_patches __lowercase = self.is_vqa if kwargs.get('''data_format''' ,lowercase__ ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) __lowercase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(lowercase__ ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowercase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) __lowercase = kwargs.pop('''font_bytes''' ,lowercase__ ) __lowercase = kwargs.pop('''font_path''' ,lowercase__ ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = [header_text] * len(lowercase__ ) __lowercase = [ render_header(lowercase__ ,header_text[i] ,font_bytes=lowercase__ ,font_path=lowercase__ ) for i, image in enumerate(lowercase__ ) ] if do_normalize: __lowercase = [self.normalize(image=lowercase__ ) for image in images] # convert to torch tensor and permute __lowercase = [ self.extract_flattened_patches(image=lowercase__ ,max_patches=lowercase__ ,patch_size=lowercase__ ) for image in images ] # create attention mask in numpy __lowercase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] __lowercase = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks} ,tensor_type=lowercase__ ) return encoded_outputs
41
'''simple docstring''' import doctest from collections import deque import numpy as np class lowercase_ : """simple docstring""" def __init__( self : Optional[Any] ): __lowercase = [2, 1, 2, -1] __lowercase = [1, 2, 3, 4] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = len(self.first_signal ) __lowercase = len(self.second_signal ) __lowercase = max(lowercase__ ,lowercase__ ) # create a zero matrix of max_length x max_length __lowercase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __lowercase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __lowercase = np.matmul(np.transpose(lowercase__ ) ,np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ ,2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
41
1
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" if b == 0: return (1, 0) ((__lowercase) , (__lowercase)) = extended_euclid(A__ , a % b ) __lowercase = a // b return (y, x - k * y) def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m def _A ( A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) if b < 0: __lowercase = (b % n + n) % n return b def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase , __lowercase = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
41
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
41
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''google/switch-base-8''': '''https://huggingface.co/google/switch-base-8/blob/main/config.json''', } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 'switch_transformers' SCREAMING_SNAKE_CASE : Union[str, Any] = ['past_key_values'] SCREAMING_SNAKE_CASE : Tuple = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : Optional[Any] ,lowercase__ : Tuple=3_2_1_2_8 ,lowercase__ : str=7_6_8 ,lowercase__ : Any=6_4 ,lowercase__ : List[str]=2_0_4_8 ,lowercase__ : Union[str, Any]=6_4 ,lowercase__ : List[str]=1_2 ,lowercase__ : List[Any]=3 ,lowercase__ : str=1_2 ,lowercase__ : Optional[int]=3 ,lowercase__ : Union[str, Any]=1_2 ,lowercase__ : Any=8 ,lowercase__ : List[str]=False ,lowercase__ : Any=0.0_1 ,lowercase__ : str="float32" ,lowercase__ : List[str]=False ,lowercase__ : int=3_2 ,lowercase__ : str=1_2_8 ,lowercase__ : List[str]=0.1 ,lowercase__ : Dict=1e-6 ,lowercase__ : Dict=0.0_0_1 ,lowercase__ : Union[str, Any]=0.0_0_1 ,lowercase__ : Optional[Any]=1.0 ,lowercase__ : int="relu" ,lowercase__ : Any=True ,lowercase__ : int=False ,lowercase__ : List[Any]=True ,lowercase__ : Optional[Any]=0 ,lowercase__ : Union[str, Any]=1 ,**lowercase__ : List[Any] ,): __lowercase = vocab_size __lowercase = d_model __lowercase = d_kv __lowercase = d_ff __lowercase = num_sparse_encoder_layers __lowercase = num_layers __lowercase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowercase = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __lowercase = self.num_layers // self.num_sparse_encoder_layers else: __lowercase = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __lowercase = self.num_decoder_layers // self.num_sparse_decoder_layers else: __lowercase = self.num_decoder_layers # HACK: this will create 0 sparse layers __lowercase = num_heads __lowercase = num_experts __lowercase = expert_capacity __lowercase = router_bias __lowercase = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) __lowercase = router_dtype __lowercase = router_ignore_padding_tokens __lowercase = relative_attention_num_buckets __lowercase = relative_attention_max_distance __lowercase = dropout_rate __lowercase = layer_norm_epsilon __lowercase = initializer_factor __lowercase = feed_forward_proj __lowercase = use_cache __lowercase = add_router_probs __lowercase = router_z_loss_coef __lowercase = router_aux_loss_coef __lowercase = self.feed_forward_proj.split('''-''' ) __lowercase = act_info[-1] __lowercase = act_info[0] == '''gated''' if len(lowercase__ ) > 1 and act_info[0] != "gated" or len(lowercase__ ) > 2: raise ValueError( F"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __lowercase = '''gelu_new''' super().__init__( pad_token_id=lowercase__ ,eos_token_id=lowercase__ ,is_encoder_decoder=lowercase__ ,**lowercase__ ,)
41
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCAmelCase__ = getLogger(__name__) lowerCAmelCase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def _A ( A__ , A__ , A__ , A__ = 8 , A__ = DEFAULT_DEVICE , A__=False , A__="summarization" , A__=None , **A__ , ): """simple docstring""" __lowercase = Path(A__ ).open('''w''' , encoding='''utf-8''' ) __lowercase = str(A__ ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained(A__ ).to(A__ ) if fpaa: __lowercase = model.half() __lowercase = AutoTokenizer.from_pretrained(A__ ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __lowercase = time.time() # update config with task specific params use_task_specific_params(A__ , A__ ) if prefix is None: __lowercase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(A__ , A__ ) ) ): __lowercase = [prefix + text for text in examples_chunk] __lowercase = tokenizer(A__ , return_tensors='''pt''' , truncation=A__ , padding='''longest''' ).to(A__ ) __lowercase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **A__ , ) __lowercase = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __lowercase = int(time.time() - start_time ) # seconds __lowercase = len(A__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _A ( ): """simple docstring""" return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def _A ( A__=True ): """simple docstring""" __lowercase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=A__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=A__ , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=A__ , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=A__ , required=A__ , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=A__ , required=A__ , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=A__ , required=A__ , default=A__ , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=A__ , required=A__ , default=A__ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=A__ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=A__ , default=8 , required=A__ , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=A__ , default=-1 , required=A__ , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=A__ , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowercase , __lowercase = parser.parse_known_args() __lowercase = parse_numeric_n_bool_cl_kwargs(A__ ) if parsed_args and verbose: print(F"parsed the following generate kwargs: {parsed_args}" ) __lowercase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowercase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=A__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __lowercase = generate_summaries_or_translations( A__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **A__ , ) if args.reference_path is None: return {} # Compute scores __lowercase = calculate_bleu if '''translation''' in args.task else calculate_rouge __lowercase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowercase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(A__ )] __lowercase = score_fn(A__ , A__ ) scores.update(A__ ) if args.dump_args: scores.update(A__ ) if args.info: __lowercase = args.info if verbose: print(A__ ) if args.score_path is not None: json.dump(A__ , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
41
1
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def _A ( A__ ): """simple docstring""" return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def _A ( ): """simple docstring""" __lowercase = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=A__ ) __lowercase = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(A__ ) EnvironmentCommand.register_subcommand(A__ ) TestCommand.register_subcommand(A__ ) RunBeamCommand.register_subcommand(A__ ) DummyDataCommand.register_subcommand(A__ ) # Parse args __lowercase , __lowercase = parser.parse_known_args() if not hasattr(A__ , '''func''' ): parser.print_help() exit(1 ) __lowercase = parse_unknown_args(A__ ) # Run __lowercase = args.func(A__ , **A__ ) service.run() if __name__ == "__main__": main()
41
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(A__ ): print(F"{i}\t\t{d}" ) def _A ( A__ , A__ , A__ ): """simple docstring""" for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = [float('''inf''' )] * vertex_count __lowercase = 0.0 for _ in range(vertex_count - 1 ): for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: __lowercase = distance[u] + w __lowercase = check_negative_cycle(A__ , A__ , A__ ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = int(input('''Enter number of vertices: ''').strip()) lowerCAmelCase__ = int(input('''Enter number of edges: ''').strip()) lowerCAmelCase__ = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) lowerCAmelCase__ = {'''src''': src, '''dst''': dest, '''weight''': weight} lowerCAmelCase__ = int(input('''\nEnter shortest path source:''').strip()) lowerCAmelCase__ = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
41
1
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
41
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[Any] ,*lowercase__ : Optional[Any] ,**lowercase__ : int ): warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' ,lowercase__ ,) super().__init__(*lowercase__ ,**lowercase__ )
41
1
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase__ = ''' Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1") >>> pipe.to("cuda") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save("cat.png") ``` ''' def _A ( A__ , A__ , A__=8 ): """simple docstring""" __lowercase = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 __lowercase = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[Any] ,lowercase__ : MultilingualCLIP ,lowercase__ : XLMRobertaTokenizer ,lowercase__ : UNetaDConditionModel ,lowercase__ : Union[DDIMScheduler, DDPMScheduler] ,lowercase__ : VQModel ,): super().__init__() self.register_modules( text_encoder=lowercase__ ,tokenizer=lowercase__ ,unet=lowercase__ ,scheduler=lowercase__ ,movq=lowercase__ ,) __lowercase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : Dict ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : Dict ): if latents is None: __lowercase = randn_tensor(lowercase__ ,generator=lowercase__ ,device=lowercase__ ,dtype=lowercase__ ) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}" ) __lowercase = latents.to(lowercase__ ) __lowercase = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Any ,lowercase__ : List[Any] ,lowercase__ : Tuple=None ,): __lowercase = len(lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else 1 # get prompt text embeddings __lowercase = self.tokenizer( lowercase__ ,padding='''max_length''' ,truncation=lowercase__ ,max_length=7_7 ,return_attention_mask=lowercase__ ,add_special_tokens=lowercase__ ,return_tensors='''pt''' ,) __lowercase = text_inputs.input_ids __lowercase = self.tokenizer(lowercase__ ,padding='''longest''' ,return_tensors='''pt''' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(lowercase__ ,lowercase__ ): __lowercase = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) __lowercase = text_input_ids.to(lowercase__ ) __lowercase = text_inputs.attention_mask.to(lowercase__ ) __lowercase , __lowercase = self.text_encoder( input_ids=lowercase__ ,attention_mask=lowercase__ ) __lowercase = prompt_embeds.repeat_interleave(lowercase__ ,dim=0 ) __lowercase = text_encoder_hidden_states.repeat_interleave(lowercase__ ,dim=0 ) __lowercase = text_mask.repeat_interleave(lowercase__ ,dim=0 ) if do_classifier_free_guidance: __lowercase = 42 if negative_prompt is None: __lowercase = [''''''] * batch_size elif type(lowercase__ ) is not type(lowercase__ ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(lowercase__ )} !=" F" {type(lowercase__ )}." ) elif isinstance(lowercase__ ,lowercase__ ): __lowercase = [negative_prompt] elif batch_size != len(lowercase__ ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(lowercase__ )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ''' the batch size of `prompt`.''' ) else: __lowercase = negative_prompt __lowercase = self.tokenizer( lowercase__ ,padding='''max_length''' ,max_length=7_7 ,truncation=lowercase__ ,return_attention_mask=lowercase__ ,add_special_tokens=lowercase__ ,return_tensors='''pt''' ,) __lowercase = uncond_input.input_ids.to(lowercase__ ) __lowercase = uncond_input.attention_mask.to(lowercase__ ) __lowercase , __lowercase = self.text_encoder( input_ids=lowercase__ ,attention_mask=lowercase__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowercase = negative_prompt_embeds.shape[1] __lowercase = negative_prompt_embeds.repeat(1 ,lowercase__ ) __lowercase = negative_prompt_embeds.view(batch_size * num_images_per_prompt ,lowercase__ ) __lowercase = uncond_text_encoder_hidden_states.shape[1] __lowercase = uncond_text_encoder_hidden_states.repeat(1 ,lowercase__ ,1 ) __lowercase = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt ,lowercase__ ,-1 ) __lowercase = uncond_text_mask.repeat_interleave(lowercase__ ,dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([negative_prompt_embeds, prompt_embeds] ) __lowercase = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) __lowercase = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : List[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __lowercase = torch.device(F"cuda:{gpu_id}" ) __lowercase = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Union[str, Any]=0 ): if is_accelerate_available() and is_accelerate_version('''>=''' ,'''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) __lowercase = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('''cpu''' ,silence_dtype_warnings=lowercase__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowercase = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: __lowercase , __lowercase = cpu_offload_with_hook(lowercase__ ,lowercase__ ,prev_module_hook=lowercase__ ) if self.safety_checker is not None: __lowercase , __lowercase = cpu_offload_with_hook(self.safety_checker ,lowercase__ ,prev_module_hook=lowercase__ ) # We'll offload the last model manually. __lowercase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE ( self : Dict ): if not hasattr(self.unet ,'''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ ,'''_hf_hook''' ) and hasattr(module._hf_hook ,'''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase__ ) def __call__( self : Union[str, Any] ,lowercase__ : Union[str, List[str]] ,lowercase__ : Union[torch.FloatTensor, List[torch.FloatTensor]] ,lowercase__ : Union[torch.FloatTensor, List[torch.FloatTensor]] ,lowercase__ : Optional[Union[str, List[str]]] = None ,lowercase__ : int = 5_1_2 ,lowercase__ : int = 5_1_2 ,lowercase__ : int = 1_0_0 ,lowercase__ : float = 4.0 ,lowercase__ : int = 1 ,lowercase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,lowercase__ : Optional[torch.FloatTensor] = None ,lowercase__ : Optional[str] = "pil" ,lowercase__ : bool = True ,): if isinstance(lowercase__ ,lowercase__ ): __lowercase = 1 elif isinstance(lowercase__ ,lowercase__ ): __lowercase = len(lowercase__ ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowercase__ )}" ) __lowercase = self._execution_device __lowercase = batch_size * num_images_per_prompt __lowercase = guidance_scale > 1.0 __lowercase , __lowercase , __lowercase = self._encode_prompt( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = torch.cat(lowercase__ ,dim=0 ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = torch.cat(lowercase__ ,dim=0 ) if do_classifier_free_guidance: __lowercase = image_embeds.repeat_interleave(lowercase__ ,dim=0 ) __lowercase = negative_image_embeds.repeat_interleave(lowercase__ ,dim=0 ) __lowercase = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to( dtype=prompt_embeds.dtype ,device=lowercase__ ) self.scheduler.set_timesteps(lowercase__ ,device=lowercase__ ) __lowercase = self.scheduler.timesteps __lowercase = self.unet.config.in_channels __lowercase , __lowercase = get_new_h_w(lowercase__ ,lowercase__ ,self.movq_scale_factor ) # create initial latent __lowercase = self.prepare_latents( (batch_size, num_channels_latents, height, width) ,text_encoder_hidden_states.dtype ,lowercase__ ,lowercase__ ,lowercase__ ,self.scheduler ,) for i, t in enumerate(self.progress_bar(lowercase__ ) ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = {'''text_embeds''': prompt_embeds, '''image_embeds''': image_embeds} __lowercase = self.unet( sample=lowercase__ ,timestep=lowercase__ ,encoder_hidden_states=lowercase__ ,added_cond_kwargs=lowercase__ ,return_dict=lowercase__ ,)[0] if do_classifier_free_guidance: __lowercase , __lowercase = noise_pred.split(latents.shape[1] ,dim=1 ) __lowercase , __lowercase = noise_pred.chunk(2 ) __lowercase , __lowercase = variance_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowercase = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,'''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowercase , __lowercase = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step( lowercase__ ,lowercase__ ,lowercase__ ,generator=lowercase__ ,).prev_sample # post-processing __lowercase = self.movq.decode(lowercase__ ,force_not_quantize=lowercase__ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: __lowercase = image * 0.5 + 0.5 __lowercase = image.clamp(0 ,1 ) __lowercase = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(lowercase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__ )
41
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _A ( A__ ): """simple docstring""" __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = 0.0_1 with locka.acquire(): with pytest.raises(A__ ): __lowercase = time.time() locka.acquire(A__ ) assert time.time() - _start > timeout def _A ( A__ ): """simple docstring""" __lowercase = '''a''' * 1000 + '''.lock''' __lowercase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(A__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __lowercase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(A__ ): locka.acquire(0 )
41
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = 'distilbert' SCREAMING_SNAKE_CASE : Any = { 'hidden_size': 'dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', } def __init__( self : Union[str, Any] ,lowercase__ : List[Any]=3_0_5_2_2 ,lowercase__ : Optional[int]=5_1_2 ,lowercase__ : Optional[int]=False ,lowercase__ : Optional[Any]=6 ,lowercase__ : Optional[int]=1_2 ,lowercase__ : List[Any]=7_6_8 ,lowercase__ : Any=4 * 7_6_8 ,lowercase__ : Tuple=0.1 ,lowercase__ : Tuple=0.1 ,lowercase__ : List[str]="gelu" ,lowercase__ : List[Any]=0.0_2 ,lowercase__ : Optional[int]=0.1 ,lowercase__ : Optional[Any]=0.2 ,lowercase__ : List[str]=0 ,**lowercase__ : Tuple ,): __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = sinusoidal_pos_embds __lowercase = n_layers __lowercase = n_heads __lowercase = dim __lowercase = hidden_dim __lowercase = dropout __lowercase = attention_dropout __lowercase = activation __lowercase = initializer_range __lowercase = qa_dropout __lowercase = seq_classif_dropout super().__init__(**lowercase__ ,pad_token_id=lowercase__ ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : int ): if self.task == "multiple-choice": __lowercase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowercase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
41
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase__ = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
1
'''simple docstring''' import torch from diffusers import StableDiffusionPipeline lowerCAmelCase__ = '''path-to-your-trained-model''' lowerCAmelCase__ = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('''cuda''') lowerCAmelCase__ = '''A photo of sks dog in a bucket''' lowerCAmelCase__ = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save('''dog-bucket.png''')
41
'''simple docstring''' import argparse import os import re lowerCAmelCase__ = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(R'''\[([^\]]+)\]''') def _A ( A__ ): """simple docstring""" __lowercase = _re_indent.search(A__ ) return "" if search is None else search.groups()[0] def _A ( A__ , A__="" , A__=None , A__=None ): """simple docstring""" __lowercase = 0 __lowercase = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(A__ ): index += 1 __lowercase = ['''\n'''.join(lines[:index] )] else: __lowercase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowercase = [lines[index]] index += 1 while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(A__ ) ) if index < len(A__ ) - 1: __lowercase = [lines[index + 1]] index += 1 else: __lowercase = [] else: blocks.append('''\n'''.join(A__ ) ) __lowercase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A__ ) > 0: blocks.append('''\n'''.join(A__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def _A ( A__ ): """simple docstring""" def _inner(A__ ): return key(A__ ).lower().replace('''_''' , '''''' ) return _inner def _A ( A__ , A__=None ): """simple docstring""" def noop(A__ ): return x if key is None: __lowercase = noop # Constants are all uppercase, they go first. __lowercase = [obj for obj in objects if key(A__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowercase = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()] # Functions begin with a lowercase, they go last. __lowercase = [obj for obj in objects if not key(A__ )[0].isupper()] __lowercase = ignore_underscore(A__ ) return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) def _A ( A__ ): """simple docstring""" def _replace(A__ ): __lowercase = match.groups()[0] if "," not in imports: return F"[{imports}]" __lowercase = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) + "]" __lowercase = import_statement.split('''\n''' ) if len(A__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowercase = 2 if lines[1].strip() == '''[''' else 1 __lowercase = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowercase = sort_objects(A__ , key=lambda A__ : x[1] ) __lowercase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowercase = _re_bracket_content.sub(_replace , lines[1] ) else: __lowercase = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] __lowercase = get_indent(lines[1] ) + ''', '''.join([F"\"{k}\"" for k in sort_objects(A__ )] ) return "\n".join(A__ ) else: # Finally we have to deal with imports fitting on one line __lowercase = _re_bracket_content.sub(_replace , A__ ) return import_statement def _A ( A__ , A__=True ): """simple docstring""" with open(A__ , '''r''' ) as f: __lowercase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowercase = split_code_in_indented_blocks( A__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowercase = main_blocks[block_idx] __lowercase = block.split('''\n''' ) # Get to the start of the imports. __lowercase = 0 while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowercase = len(A__ ) else: line_idx += 1 if line_idx >= len(A__ ): continue # Ignore beginning and last line: they don't contain anything. __lowercase = '''\n'''.join(block_lines[line_idx:-1] ) __lowercase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowercase = split_code_in_indented_blocks(A__ , indent_level=A__ ) # We have two categories of import key: list or _import_structure[key].append/extend __lowercase = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowercase = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowercase = [(i, key) for i, key in enumerate(A__ ) if key is not None] __lowercase = [x[0] for x in sorted(A__ , key=lambda A__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowercase = 0 __lowercase = [] for i in range(len(A__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __lowercase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(A__ ) count += 1 # And we put our main block back together with its first and last line. __lowercase = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(A__ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(A__ , '''w''' ) as f: f.write('''\n'''.join(A__ ) ) def _A ( A__=True ): """simple docstring""" __lowercase = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: __lowercase = sort_imports(os.path.join(A__ , '''__init__.py''' ) , check_only=A__ ) if result: __lowercase = [os.path.join(A__ , '''__init__.py''' )] if len(A__ ) > 0: raise ValueError(F"Would overwrite {len(A__ )} files, run `make style`." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
41
1
'''simple docstring''' import os from pathlib import Path def _A ( ): """simple docstring""" from torch.utils.cpp_extension import load __lowercase = Path(A__ ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' __lowercase = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , A__ , with_cuda=A__ , extra_include_paths=[str(A__ )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
41
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = TextToVideoSDPipeline SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. SCREAMING_SNAKE_CASE : Optional[int] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') ,up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') ,cross_attention_dim=3_2 ,attention_head_dim=4 ,) __lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,clip_sample=lowercase__ ,set_alpha_to_one=lowercase__ ,) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=1_2_8 ,) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''gelu''' ,projection_dim=5_1_2 ,) __lowercase = CLIPTextModel(lowercase__ ) __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : List[str]=0 ): if str(lowercase__ ).startswith('''mps''' ): __lowercase = torch.manual_seed(lowercase__ ) else: __lowercase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = TextToVideoSDPipeline(**lowercase__ ) __lowercase = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs(lowercase__ ) __lowercase = '''np''' __lowercase = sd_pipe(**lowercase__ ).frames __lowercase = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) __lowercase = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def SCREAMING_SNAKE_CASE ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=1e-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass def SCREAMING_SNAKE_CASE ( self : List[str] ): return super().test_progress_bar() @slow @skip_mps class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2_5 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
41
1
'''simple docstring''' import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class lowercase_ (unittest.TestCase ): """simple docstring""" def __init__( self : str ,lowercase__ : Dict ): __lowercase = parent def SCREAMING_SNAKE_CASE ( self : List[str] ): return {} def _A ( ): """simple docstring""" __lowercase = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' __lowercase = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = MarkupLMFeatureExtractor if is_bsa_available() else None def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = MarkupLMFeatureExtractionTester(self ) @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): return self.feature_extract_tester.prepare_feat_extract_dict() def SCREAMING_SNAKE_CASE ( self : Optional[int] ): # Initialize feature_extractor __lowercase = self.feature_extraction_class() # Test not batched input __lowercase = get_html_strings()[0] __lowercase = feature_extractor(lowercase__ ) # fmt: off __lowercase = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] __lowercase = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes ,lowercase__ ) self.assertEqual(encoding.xpaths ,lowercase__ ) # Test batched __lowercase = get_html_strings() __lowercase = feature_extractor(lowercase__ ) # fmt: off __lowercase = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] __lowercase = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes ) ,2 ) self.assertEqual(len(encoding.xpaths ) ,2 ) self.assertEqual(encoding.nodes ,lowercase__ ) self.assertEqual(encoding.xpaths ,lowercase__ )
41
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _A ( A__ ): """simple docstring""" __lowercase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def _A ( A__ ): """simple docstring""" __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(A__ , A__ , bias=A__ ) __lowercase = emb.weight.data return lin_layer def _A ( A__ , A__="facebook/mbart-large-en-ro" , A__=False , A__=False ): """simple docstring""" __lowercase = torch.load(A__ , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A__ ) __lowercase = state_dict['''encoder.embed_tokens.weight'''].shape[0] __lowercase = MBartConfig.from_pretrained(A__ , vocab_size=A__ ) if mbart_aa and finetuned: __lowercase = '''relu''' __lowercase = state_dict['''decoder.embed_tokens.weight'''] __lowercase = MBartForConditionalGeneration(A__ ) model.model.load_state_dict(A__ ) if finetuned: __lowercase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
41
1
'''simple docstring''' def _A ( A__ , A__ ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
41
'''simple docstring''' import os from math import logaa def _A ( A__ = "base_exp.txt" ): """simple docstring""" __lowercase = 0 __lowercase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowercase , __lowercase = list(map(A__ , line.split(''',''' ) ) ) if x * logaa(A__ ) > largest: __lowercase = x * logaa(A__ ) __lowercase = i + 1 return result if __name__ == "__main__": print(solution())
41
1
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'time_series_transformer' SCREAMING_SNAKE_CASE : List[str] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : Union[str, Any] ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[int] = None ,lowercase__ : str = "student_t" ,lowercase__ : str = "nll" ,lowercase__ : int = 1 ,lowercase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] ,lowercase__ : Optional[Union[str, bool]] = "mean" ,lowercase__ : int = 0 ,lowercase__ : int = 0 ,lowercase__ : int = 0 ,lowercase__ : int = 0 ,lowercase__ : Optional[List[int]] = None ,lowercase__ : Optional[List[int]] = None ,lowercase__ : int = 3_2 ,lowercase__ : int = 3_2 ,lowercase__ : int = 2 ,lowercase__ : int = 2 ,lowercase__ : int = 2 ,lowercase__ : int = 2 ,lowercase__ : bool = True ,lowercase__ : str = "gelu" ,lowercase__ : int = 6_4 ,lowercase__ : float = 0.1 ,lowercase__ : float = 0.1 ,lowercase__ : float = 0.1 ,lowercase__ : float = 0.1 ,lowercase__ : float = 0.1 ,lowercase__ : int = 1_0_0 ,lowercase__ : float = 0.0_2 ,lowercase__ : Any=True ,**lowercase__ : List[str] ,): # time series specific configuration __lowercase = prediction_length __lowercase = context_length or prediction_length __lowercase = distribution_output __lowercase = loss __lowercase = input_size __lowercase = num_time_features __lowercase = lags_sequence __lowercase = scaling __lowercase = num_dynamic_real_features __lowercase = num_static_real_features __lowercase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowercase__ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) __lowercase = cardinality else: __lowercase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowercase__ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) __lowercase = embedding_dimension else: __lowercase = [min(5_0 ,(cat + 1) // 2 ) for cat in self.cardinality] __lowercase = num_parallel_samples # Transformer architecture configuration __lowercase = input_size * len(lowercase__ ) + self._number_of_features __lowercase = d_model __lowercase = encoder_attention_heads __lowercase = decoder_attention_heads __lowercase = encoder_ffn_dim __lowercase = decoder_ffn_dim __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = activation_function __lowercase = init_std __lowercase = use_cache super().__init__(is_encoder_decoder=lowercase__ ,**lowercase__ ) @property def SCREAMING_SNAKE_CASE ( self : List[str] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
41
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'blenderbot-small' SCREAMING_SNAKE_CASE : int = ['past_key_values'] SCREAMING_SNAKE_CASE : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] ,lowercase__ : List[str]=5_0_2_6_5 ,lowercase__ : Optional[Any]=5_1_2 ,lowercase__ : Optional[int]=8 ,lowercase__ : List[Any]=2_0_4_8 ,lowercase__ : List[str]=1_6 ,lowercase__ : str=8 ,lowercase__ : Any=2_0_4_8 ,lowercase__ : Tuple=1_6 ,lowercase__ : Tuple=0.0 ,lowercase__ : List[str]=0.0 ,lowercase__ : Any=True ,lowercase__ : str=True ,lowercase__ : int="gelu" ,lowercase__ : Tuple=5_1_2 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : str=0.0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : List[Any]=False ,lowercase__ : Optional[int]=0 ,lowercase__ : Optional[int]=1 ,lowercase__ : str=2 ,lowercase__ : int=2 ,**lowercase__ : List[str] ,): __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = use_cache __lowercase = encoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,is_encoder_decoder=lowercase__ ,decoder_start_token_id=lowercase__ ,forced_eos_token_id=lowercase__ ,**lowercase__ ,) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Dict ): if self.task in ["default", "seq2seq-lm"]: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase = {0: '''batch'''} __lowercase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase__ ,direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super().outputs else: __lowercase = super(lowercase__ ,self ).outputs if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) # Generate decoder inputs __lowercase = seq_length if not self.use_past else 1 __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __lowercase = dict(**lowercase__ ,**lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape __lowercase = common_inputs['''decoder_input_ids'''].shape[1] __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = decoder_seq_length + 3 __lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase__ ,lowercase__ )] ,dim=1 ) __lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase = self.num_layers __lowercase = min(lowercase__ ,lowercase__ ) __lowercase = max(lowercase__ ,lowercase__ ) - min_num_layers __lowercase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), ) ) # TODO: test this. __lowercase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase__ ,lowercase__ ): common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase , __lowercase = self.num_layers __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = common_inputs['''attention_mask'''].dtype __lowercase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase__ ,lowercase__ ,dtype=lowercase__ )] ,dim=1 ) __lowercase = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ ) ] return common_inputs def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = tokenizer.num_special_tokens_to_add(lowercase__ ) __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowercase__ ) # Generate dummy inputs according to compute batch and sequence __lowercase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase = dict(tokenizer(lowercase__ ,return_tensors=lowercase__ ) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): if self.task in ["default", "seq2seq-lm"]: __lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) elif self.task == "causal-lm": __lowercase = self._generate_dummy_inputs_for_causal_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) else: __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super()._flatten_past_key_values_(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) else: __lowercase = super(lowercase__ ,self )._flatten_past_key_values_( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
41
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''▁''' lowerCAmelCase__ = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCAmelCase__ = { '''vocab_file''': { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model''' ), } } lowerCAmelCase__ = { '''xlm-roberta-base''': 512, '''xlm-roberta-large''': 512, '''xlm-roberta-large-finetuned-conll02-dutch''': 512, '''xlm-roberta-large-finetuned-conll02-spanish''': 512, '''xlm-roberta-large-finetuned-conll03-english''': 512, '''xlm-roberta-large-finetuned-conll03-german''': 512, } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] def __init__( self : str ,lowercase__ : Dict ,lowercase__ : int="<s>" ,lowercase__ : List[Any]="</s>" ,lowercase__ : Any="</s>" ,lowercase__ : Union[str, Any]="<s>" ,lowercase__ : str="<unk>" ,lowercase__ : Optional[int]="<pad>" ,lowercase__ : Dict="<mask>" ,lowercase__ : Optional[Dict[str, Any]] = None ,**lowercase__ : Tuple ,): # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else mask_token __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase__ ,eos_token=lowercase__ ,unk_token=lowercase__ ,sep_token=lowercase__ ,cls_token=lowercase__ ,pad_token=lowercase__ ,mask_token=lowercase__ ,sp_model_kwargs=self.sp_model_kwargs ,**lowercase__ ,) __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase__ ) ) __lowercase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __lowercase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowercase = 1 __lowercase = len(self.sp_model ) + self.fairseq_offset __lowercase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Optional[Any] ): __lowercase = self.__dict__.copy() __lowercase = None __lowercase = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[Any] ,lowercase__ : Tuple ): __lowercase = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ,lowercase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ ,token_ids_a=lowercase__ ,already_has_special_tokens=lowercase__ ) if token_ids_a is None: return [1] + ([0] * len(lowercase__ )) + [1] return [1] + ([0] * len(lowercase__ )) + [1, 1] + ([0] * len(lowercase__ )) + [1] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ): __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self : str ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ): return self.sp_model.encode(lowercase__ ,out_type=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[Any] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowercase = self.sp_model.PieceToId(lowercase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Union[str, Any] ): __lowercase = ''''''.join(lowercase__ ).replace(lowercase__ ,''' ''' ).strip() return out_string def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : str ,lowercase__ : Optional[str] = None ): if not os.path.isdir(lowercase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase = os.path.join( lowercase__ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ ,'''wb''' ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,)
41
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" if b == 0: return (1, 0) ((__lowercase) , (__lowercase)) = extended_euclid(A__ , a % b ) __lowercase = a // b return (y, x - k * y) def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m def _A ( A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) if b < 0: __lowercase = (b % n + n) % n return b def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase , __lowercase = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
41
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
41
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _A ( ): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __lowercase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , A__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _A ( ): """simple docstring""" assert _test_patching.open is open __lowercase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , A__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , A__ ): pass def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , A__ ) is None with patch_submodule(_test_patching , '''len''' , A__ ): assert _test_patching.len is mock assert _test_patching.len is len def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_start_and_stop_mock__''' __lowercase = patch_submodule(_test_patching , '''open''' , A__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _A ( ): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __lowercase = '''__test_patch_submodule_successive_join__''' __lowercase = '''__test_patch_submodule_successive_dirname__''' __lowercase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , A__ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , A__ ): pass
41
1
'''simple docstring''' def _A ( A__ = 1000 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
41
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : """simple docstring""" def __init__( self : Dict ,lowercase__ : Dict ,lowercase__ : int=1_3 ,lowercase__ : List[str]=7 ,lowercase__ : int=True ,lowercase__ : int=True ,lowercase__ : Union[str, Any]=True ,lowercase__ : List[Any]=True ,lowercase__ : str=9_9 ,lowercase__ : Optional[Any]=3_2 ,lowercase__ : Union[str, Any]=5 ,lowercase__ : List[Any]=4 ,lowercase__ : str=3_7 ,lowercase__ : Tuple="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : Dict=0.1 ,lowercase__ : int=1_2_8 ,lowercase__ : Dict=3_2 ,lowercase__ : Dict=1_6 ,lowercase__ : Any=2 ,lowercase__ : int=0.0_2 ,lowercase__ : List[str]=3 ,lowercase__ : Dict=4 ,lowercase__ : Optional[int]=None ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return NezhaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.prepare_config_and_inputs() __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : str ): __lowercase = NezhaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Dict ,lowercase__ : str ,lowercase__ : Optional[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,): __lowercase = True __lowercase = NezhaModel(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,encoder_attention_mask=lowercase__ ,) __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,) __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): __lowercase = NezhaForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): __lowercase = NezhaForNextSentencePrediction(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ): __lowercase = NezhaForPreTraining(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,next_sentence_label=lowercase__ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ): __lowercase = NezhaForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,start_positions=lowercase__ ,end_positions=lowercase__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Tuple ,lowercase__ : str ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : Optional[int] ,lowercase__ : int ): __lowercase = self.num_labels __lowercase = NezhaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Any ,lowercase__ : Optional[Any] ): __lowercase = self.num_labels __lowercase = NezhaForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : str ): __lowercase = self.num_choices __lowercase = NezhaForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : List[str] = True def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : Any=False ): __lowercase = super()._prepare_for_class(lowercase__ ,lowercase__ ,return_labels=lowercase__ ) if return_labels: if model_class in get_values(lowercase__ ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowercase__ ) __lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowercase__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = NezhaModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : int ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): # This regression test was failing with PyTorch < 1.3 ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase = None self.model_tester.create_and_check_model_as_decoder( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = NezhaModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __lowercase = True __lowercase = model_class(config=lowercase__ ) __lowercase = self._prepare_for_class(lowercase__ ,lowercase__ ) __lowercase = torch.jit.trace( lowercase__ ,(inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase__ ,os.path.join(lowercase__ ,'''bert.pt''' ) ) __lowercase = torch.jit.load(os.path.join(lowercase__ ,'''bert.pt''' ) ,map_location=lowercase__ ) loaded(inputs_dict['''input_ids'''].to(lowercase__ ) ,inputs_dict['''attention_mask'''].to(lowercase__ ) ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) )
41
1
'''simple docstring''' import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def _A ( A__ , A__=False ): """simple docstring""" __lowercase = OmegaConf.load(A__ ) if display: print(yaml.dump(OmegaConf.to_container(A__ ) ) ) return config def _A ( A__ , A__=None , A__=None ): """simple docstring""" if conf_path is None: __lowercase = '''./model_checkpoints/vqgan_only.yaml''' __lowercase = load_config(A__ , display=A__ ) __lowercase = VQModel(**config.model.params ) if ckpt_path is None: __lowercase = '''./model_checkpoints/vqgan_only.pt''' __lowercase = torch.load(A__ , map_location=A__ ) if ".ckpt" in ckpt_path: __lowercase = sd['''state_dict'''] model.load_state_dict(A__ , strict=A__ ) model.to(A__ ) del sd return model def _A ( A__ , A__ ): """simple docstring""" __lowercase , __lowercase , __lowercase = model.encode(A__ ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) __lowercase = model.decode(A__ ) return xrec def _A ( A__ , A__=False ): """simple docstring""" __lowercase , __lowercase = string.rsplit('''.''' , 1 ) if reload: __lowercase = importlib.import_module(A__ ) importlib.reload(A__ ) return getattr(importlib.import_module(A__ , package=A__ ) , cls ) def _A ( A__ ): """simple docstring""" if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def _A ( A__ , A__ , A__=True , A__=True ): """simple docstring""" __lowercase = instantiate_from_config(A__ ) if sd is not None: model.load_state_dict(A__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" if ckpt: __lowercase = torch.load(A__ , map_location='''cpu''' ) __lowercase = pl_sd['''global_step'''] print(F"loaded model from global step {global_step}." ) else: __lowercase = {'''state_dict''': None} __lowercase = None __lowercase = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=A__ , eval_mode=A__ )['''model'''] return model, global_step
41
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KEY''') lowerCAmelCase__ = TypeVar('''VAL''') @dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ ) class lowercase_ (Generic[KEY, VAL] ): """simple docstring""" SCREAMING_SNAKE_CASE : KEY SCREAMING_SNAKE_CASE : VAL class lowercase_ (_Item ): """simple docstring""" def __init__( self : Optional[int] ): super().__init__(lowercase__ ,lowercase__ ) def __bool__( self : List[str] ): return False lowerCAmelCase__ = _DeletedItem() class lowercase_ (MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ): __lowercase = initial_block_size __lowercase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowercase = capacity_factor __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ): return hash(lowercase__ ) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ): return (ind + 1) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ): __lowercase = self._buckets[ind] if not stored: __lowercase = _Item(lowercase__ ,lowercase__ ) self._len += 1 return True elif stored.key == key: __lowercase = _Item(lowercase__ ,lowercase__ ) return True else: return False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False __lowercase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ): __lowercase = self._buckets __lowercase = [None] * new_size __lowercase = 0 for item in old_buckets: if item: self._add_item(item.key ,item.val ) def SCREAMING_SNAKE_CASE ( self : str ): self._resize(len(self._buckets ) * 2 ) def SCREAMING_SNAKE_CASE ( self : Tuple ): self._resize(len(self._buckets ) // 2 ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ): __lowercase = self._get_bucket_index(lowercase__ ) for _ in range(len(self._buckets ) ): yield ind __lowercase = self._get_next_ind(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): for ind in self._iterate_buckets(lowercase__ ): if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ): break def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): if self._is_full(): self._size_up() self._add_item(lowercase__ ,lowercase__ ) def __delitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: raise KeyError(lowercase__ ) if item is _deleted: continue if item.key == key: __lowercase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowercase__ ) def __len__( self : Optional[int] ): return self._len def __iter__( self : str ): yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ): __lowercase = ''' ,'''.join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
41
1
'''simple docstring''' import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCAmelCase__ = logging.get_logger(__name__) def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" def constraint_to_multiple_of(A__ , A__ , A__=0 , A__=None ): __lowercase = round(val / multiple ) * multiple if max_val is not None and x > max_val: __lowercase = math.floor(val / multiple ) * multiple if x < min_val: __lowercase = math.ceil(val / multiple ) * multiple return x __lowercase = (output_size, output_size) if isinstance(A__ , A__ ) else output_size __lowercase , __lowercase = get_image_size(A__ ) __lowercase , __lowercase = output_size # determine new height and width __lowercase = output_height / input_height __lowercase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width __lowercase = scale_width else: # fit height __lowercase = scale_height __lowercase = constraint_to_multiple_of(scale_height * input_height , multiple=A__ ) __lowercase = constraint_to_multiple_of(scale_width * input_width , multiple=A__ ) return (new_height, new_width) class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ['pixel_values'] def __init__( self : Tuple ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : PILImageResampling = PILImageResampling.BILINEAR ,lowercase__ : bool = False ,lowercase__ : int = 1 ,lowercase__ : bool = True ,lowercase__ : Union[int, float] = 1 / 2_5_5 ,lowercase__ : bool = True ,lowercase__ : Optional[Union[float, List[float]]] = None ,lowercase__ : Optional[Union[float, List[float]]] = None ,**lowercase__ : Dict ,): super().__init__(**lowercase__ ) __lowercase = size if size is not None else {'''height''': 3_8_4, '''width''': 3_8_4} __lowercase = get_size_dict(lowercase__ ) __lowercase = do_resize __lowercase = size __lowercase = keep_aspect_ratio __lowercase = ensure_multiple_of __lowercase = resample __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowercase = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : np.ndarray ,lowercase__ : Dict[str, int] ,lowercase__ : bool = False ,lowercase__ : int = 1 ,lowercase__ : PILImageResampling = PILImageResampling.BICUBIC ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : Tuple ,): __lowercase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) __lowercase = get_resize_output_image_size( lowercase__ ,output_size=(size['''height'''], size['''width''']) ,keep_aspect_ratio=lowercase__ ,multiple=lowercase__ ,) return resize(lowercase__ ,size=lowercase__ ,resample=lowercase__ ,data_format=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : np.ndarray ,lowercase__ : Union[int, float] ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : Optional[Any] ,): return rescale(lowercase__ ,scale=lowercase__ ,data_format=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : np.ndarray ,lowercase__ : Union[float, List[float]] ,lowercase__ : Union[float, List[float]] ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : Tuple ,): return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,data_format=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : ImageInput ,lowercase__ : bool = None ,lowercase__ : int = None ,lowercase__ : bool = None ,lowercase__ : int = None ,lowercase__ : PILImageResampling = None ,lowercase__ : bool = None ,lowercase__ : float = None ,lowercase__ : bool = None ,lowercase__ : Optional[Union[float, List[float]]] = None ,lowercase__ : Optional[Union[float, List[float]]] = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : ChannelDimension = ChannelDimension.FIRST ,**lowercase__ : str ,): __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = size if size is not None else self.size __lowercase = get_size_dict(lowercase__ ) __lowercase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio __lowercase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of __lowercase = resample if resample is not None else self.resample __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowercase__ ) for image in images] if do_resize: __lowercase = [self.resize(image=lowercase__ ,size=lowercase__ ,resample=lowercase__ ) for image in images] if do_rescale: __lowercase = [self.rescale(image=lowercase__ ,scale=lowercase__ ) for image in images] if do_normalize: __lowercase = [self.normalize(image=lowercase__ ,mean=lowercase__ ,std=lowercase__ ) for image in images] __lowercase = [to_channel_dimension_format(lowercase__ ,lowercase__ ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=lowercase__ ,tensor_type=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Tuple ,lowercase__ : List[Tuple] = None ): __lowercase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase__ ) != len(lowercase__ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowercase__ ): __lowercase = target_sizes.numpy() __lowercase = [] for idx in range(len(lowercase__ ) ): __lowercase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode='''bilinear''' ,align_corners=lowercase__ ) __lowercase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase__ ) else: __lowercase = logits.argmax(dim=1 ) __lowercase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
41
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ,**lowercase__ : Tuple ): super().__init__(**lowercase__ ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self ,'''vision''' ) self.check_model_type(lowercase__ ) def __call__( self : List[str] ,lowercase__ : Union[str, "Image.Image", List[Dict[str, Any]]] ,lowercase__ : Union[str, List[str]] = None ,**lowercase__ : str ,): if "text_queries" in kwargs: __lowercase = kwargs.pop('''text_queries''' ) if isinstance(lowercase__ ,(str, Image.Image) ): __lowercase = {'''image''': image, '''candidate_labels''': candidate_labels} else: __lowercase = image __lowercase = super().__call__(lowercase__ ,**lowercase__ ) return results def SCREAMING_SNAKE_CASE ( self : int ,**lowercase__ : List[Any] ): __lowercase = {} if "threshold" in kwargs: __lowercase = kwargs['''threshold'''] if "top_k" in kwargs: __lowercase = kwargs['''top_k'''] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[Any] ): __lowercase = load_image(inputs['''image'''] ) __lowercase = inputs['''candidate_labels'''] if isinstance(lowercase__ ,lowercase__ ): __lowercase = candidate_labels.split(''',''' ) __lowercase = torch.tensor([[image.height, image.width]] ,dtype=torch.intaa ) for i, candidate_label in enumerate(lowercase__ ): __lowercase = self.tokenizer(lowercase__ ,return_tensors=self.framework ) __lowercase = self.image_processor(lowercase__ ,return_tensors=self.framework ) yield { "is_last": i == len(lowercase__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ): __lowercase = model_inputs.pop('''target_size''' ) __lowercase = model_inputs.pop('''candidate_label''' ) __lowercase = model_inputs.pop('''is_last''' ) __lowercase = self.model(**lowercase__ ) __lowercase = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : List[Any]=0.1 ,lowercase__ : List[str]=None ): __lowercase = [] for model_output in model_outputs: __lowercase = model_output['''candidate_label'''] __lowercase = BaseModelOutput(lowercase__ ) __lowercase = self.image_processor.post_process_object_detection( outputs=lowercase__ ,threshold=lowercase__ ,target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): __lowercase = outputs['''scores'''][index].item() __lowercase = self._get_bounding_box(outputs['''boxes'''][index][0] ) __lowercase = {'''score''': score, '''label''': label, '''box''': box} results.append(lowercase__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : x["score"] ,reverse=lowercase__ ) if top_k: __lowercase = results[:top_k] return results def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : "torch.Tensor" ): if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) __lowercase , __lowercase , __lowercase , __lowercase = box.int().tolist() __lowercase = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
41
1
'''simple docstring''' lowerCAmelCase__ = range(2, 20 + 1) lowerCAmelCase__ = [10**k for k in range(ks[-1] + 1)] lowerCAmelCase__ = {} def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = sum(a_i[j] for j in range(A__ , len(A__ ) ) ) __lowercase = sum(a_i[j] * base[j] for j in range(min(len(A__ ) , A__ ) ) ) __lowercase , __lowercase = 0, 0 __lowercase = n - i __lowercase = memo.get(A__ ) if sub_memo is not None: __lowercase = sub_memo.get(A__ ) if jumps is not None and len(A__ ) > 0: # find and make the largest jump without going over __lowercase = -1 for _k in range(len(A__ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __lowercase = _k break if max_jump >= 0: __lowercase , __lowercase , __lowercase = jumps[max_jump] # since the difference between jumps is cached, add c __lowercase = diff + c for j in range(min(A__ , len(A__ ) ) ): __lowercase , __lowercase = divmod(A__ , 10 ) if new_c > 0: add(A__ , A__ , A__ ) else: __lowercase = [] else: __lowercase = {c: []} __lowercase = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __lowercase , __lowercase = next_term(A__ , k - 1 , i + dn , A__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __lowercase , __lowercase = compute(A__ , A__ , i + dn , A__ ) diff += _diff dn += terms_jumped __lowercase = sub_memo[c] # keep jumps sorted by # of terms skipped __lowercase = 0 while j < len(A__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(A__ , (diff, dn, k) ) return (diff, dn) def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" if i >= n: return 0, i if k > len(A__ ): a_i.extend([0 for _ in range(k - len(A__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __lowercase = i __lowercase , __lowercase , __lowercase = 0, 0, 0 for j in range(len(A__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __lowercase = ds_c + ds_b diff += addend __lowercase = 0 for j in range(A__ ): __lowercase = a_i[j] + addend __lowercase , __lowercase = divmod(A__ , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(A__ , A__ , A__ ) return diff, i - start_i def _A ( A__ , A__ , A__ ): """simple docstring""" for j in range(A__ , len(A__ ) ): __lowercase = digits[j] + addend if s >= 10: __lowercase , __lowercase = divmod(A__ , 10 ) __lowercase = addend // 10 + quotient else: __lowercase = s __lowercase = addend // 10 if addend == 0: break while addend > 0: __lowercase , __lowercase = divmod(A__ , 10 ) digits.append(A__ ) def _A ( A__ = 10**15 ): """simple docstring""" __lowercase = [1] __lowercase = 1 __lowercase = 0 while True: __lowercase , __lowercase = next_term(A__ , 20 , i + dn , A__ ) dn += terms_jumped if dn == n - i: break __lowercase = 0 for j in range(len(A__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'{solution() = }')
41
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 'facebook/bart-large-mnli' SCREAMING_SNAKE_CASE : Optional[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) SCREAMING_SNAKE_CASE : Any = 'text_classifier' SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : Tuple = ['text', ['text']] SCREAMING_SNAKE_CASE : List[str] = ['text'] def SCREAMING_SNAKE_CASE ( self : List[Any] ): super().setup() __lowercase = self.model.config __lowercase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): __lowercase = int(lowercase__ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Dict ,lowercase__ : List[Any] ): __lowercase = labels return self.pre_processor( [text] * len(lowercase__ ) ,[F"This example is {label}" for label in labels] ,return_tensors='''pt''' ,padding='''max_length''' ,) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = outputs.logits __lowercase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
41
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) __lowercase = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) sd_pipe.set_scheduler('''sample_euler''' ) __lowercase = '''A painting of a squirrel eating a burger''' __lowercase = torch.manual_seed(0 ) __lowercase = sd_pipe([prompt] ,generator=lowercase__ ,guidance_scale=9.0 ,num_inference_steps=2_0 ,output_type='''np''' ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) __lowercase = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) sd_pipe.set_scheduler('''sample_euler''' ) __lowercase = '''A painting of a squirrel eating a burger''' __lowercase = torch.manual_seed(0 ) __lowercase = sd_pipe([prompt] ,generator=lowercase__ ,guidance_scale=9.0 ,num_inference_steps=2_0 ,output_type='''np''' ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) __lowercase = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) __lowercase = '''A painting of a squirrel eating a burger''' __lowercase = torch.manual_seed(0 ) __lowercase = sd_pipe( [prompt] ,generator=lowercase__ ,guidance_scale=7.5 ,num_inference_steps=1_5 ,output_type='''np''' ,use_karras_sigmas=lowercase__ ,) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array( [0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
41
'''simple docstring''' from collections.abc import Callable class lowercase_ : """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : Callable | None = None ): # Stores actual heap items. __lowercase = [] # Stores indexes of each item for supporting updates and deletion. __lowercase = {} # Stores current size of heap. __lowercase = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __lowercase = key or (lambda lowercase__ : x) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : int ): return int((i - 1) / 2 ) if i > 0 else None def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = int(2 * i + 1 ) return left if 0 < left < self.size else None def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ): __lowercase = int(2 * i + 2 ) return right if 0 < right < self.size else None def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : int ,lowercase__ : int ): __lowercase , __lowercase = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __lowercase , __lowercase = self.arr[j], self.arr[i] def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): return self.arr[i][1] < self.arr[j][1] def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._left(lowercase__ ) __lowercase = self._right(lowercase__ ) __lowercase = i if left is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = left if right is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = right return valid_parent def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._parent(lowercase__ ) while parent is not None and not self._cmp(lowercase__ ,lowercase__ ): self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = parent, self._parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = self._get_valid_parent(lowercase__ ) while valid_parent != index: self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = valid_parent, self._get_valid_parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] __lowercase = [item, self.key(lowercase__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] del self.pos_map[item] __lowercase = self.arr[self.size - 1] __lowercase = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : int ): __lowercase = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(lowercase__ )] ) else: __lowercase = [item, self.key(lowercase__ )] __lowercase = self.size self.size += 1 self._heapify_up(self.size - 1 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): return self.arr[0] if self.size else None def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _A ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
41
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_mgp_str''': ['''MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MgpstrConfig'''], '''processing_mgp_str''': ['''MgpstrProcessor'''], '''tokenization_mgp_str''': ['''MgpstrTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MgpstrModel''', '''MgpstrPreTrainedModel''', '''MgpstrForSceneTextRecognition''', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ): __lowercase = [] def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : str ,**lowercase__ : Any ): self.events.append('''on_init_end''' ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : int ,**lowercase__ : Optional[int] ): self.events.append('''on_train_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ,**lowercase__ : List[str] ): self.events.append('''on_train_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,**lowercase__ : Optional[Any] ): self.events.append('''on_epoch_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : Any ,**lowercase__ : Optional[int] ): self.events.append('''on_epoch_end''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_step_begin''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : Optional[int] ,**lowercase__ : Dict ): self.events.append('''on_step_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,**lowercase__ : Any ): self.events.append('''on_evaluate''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : int ,**lowercase__ : Optional[Any] ): self.events.append('''on_predict''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,**lowercase__ : int ): self.events.append('''on_save''' ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_log''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : int ,lowercase__ : Dict ,**lowercase__ : str ): self.events.append('''on_prediction_step''' ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): shutil.rmtree(self.output_dir ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any]=0 ,lowercase__ : Any=0 ,lowercase__ : Tuple=6_4 ,lowercase__ : Optional[int]=6_4 ,lowercase__ : Optional[Any]=None ,lowercase__ : str=False ,**lowercase__ : Any ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionModelConfig(a=lowercase__ ,b=lowercase__ ) __lowercase = RegressionPreTrainedModel(lowercase__ ) __lowercase = TrainingArguments(self.output_dir ,disable_tqdm=lowercase__ ,report_to=[] ,**lowercase__ ) return Trainer( lowercase__ ,lowercase__ ,train_dataset=lowercase__ ,eval_dataset=lowercase__ ,callbacks=lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) ) # Order doesn't matter __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) for cba, cba in zip(lowercase__ ,lowercase__ ): if isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,lowercase__ ) elif isinstance(lowercase__ ,lowercase__ ) and not isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,cba.__class__ ) elif not isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(cba.__class__ ,lowercase__ ) else: self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ): __lowercase = ['''on_init_end''', '''on_train_begin'''] __lowercase = 0 __lowercase = len(trainer.get_eval_dataloader() ) __lowercase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(lowercase__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.get_trainer() __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # Callbacks passed at init are added to the default callbacks __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __lowercase = self.get_trainer(disable_tqdm=lowercase__ ) __lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __lowercase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(cb.__class__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # We can also add, pop, or remove by instance __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' ,category=lowercase__ ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # Independent log/save/eval __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='''steps''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='''epoch''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # A bit of everything __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=1_0 ,eval_steps=5 ,evaluation_strategy='''steps''' ,) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,) assert str(lowercase__ ) in warn_mock.call_args[0][0]
41
1
'''simple docstring''' def _A ( A__ ): """simple docstring""" __lowercase = 0 __lowercase = len(A__ ) for i in range(n - 1 ): for j in range(i + 1 , A__ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _A ( A__ ): """simple docstring""" if len(A__ ) <= 1: return arr, 0 __lowercase = len(A__ ) // 2 __lowercase = arr[0:mid] __lowercase = arr[mid:] __lowercase , __lowercase = count_inversions_recursive(A__ ) __lowercase , __lowercase = count_inversions_recursive(A__ ) __lowercase , __lowercase = _count_cross_inversions(A__ , A__ ) __lowercase = inversion_p + inversions_q + cross_inversions return c, num_inversions def _A ( A__ , A__ ): """simple docstring""" __lowercase = [] __lowercase = __lowercase = __lowercase = 0 while i < len(A__ ) and j < len(A__ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(A__ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(A__ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _A ( ): """simple docstring""" __lowercase = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __lowercase = count_inversions_bf(A__ ) __lowercase , __lowercase = count_inversions_recursive(A__ ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , A__ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __lowercase = count_inversions_bf(A__ ) __lowercase , __lowercase = count_inversions_recursive(A__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , A__ ) # an empty list should also have zero inversions __lowercase = [] __lowercase = count_inversions_bf(A__ ) __lowercase , __lowercase = count_inversions_recursive(A__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , A__ ) if __name__ == "__main__": main()
41
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : jnp.ndarray SCREAMING_SNAKE_CASE : jnp.ndarray class lowercase_ (nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __lowercase = [] for i in range(len(self.block_out_channels ) - 1 ): __lowercase = self.block_out_channels[i] __lowercase = self.block_out_channels[i + 1] __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = blocks __lowercase = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : List[str] ,lowercase__ : Optional[int] ): __lowercase = self.conv_in(lowercase__ ) __lowercase = nn.silu(lowercase__ ) for block in self.blocks: __lowercase = block(lowercase__ ) __lowercase = nn.silu(lowercase__ ) __lowercase = self.conv_out(lowercase__ ) return embedding @flax_register_to_config class lowercase_ (nn.Module , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 3_2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False SCREAMING_SNAKE_CASE : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) SCREAMING_SNAKE_CASE : int = 2 SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None SCREAMING_SNAKE_CASE : int = 1_2_8_0 SCREAMING_SNAKE_CASE : float = 0.0 SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = "rgb" SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : jax.random.KeyArray ): # init input tensors __lowercase = (1, self.in_channels, self.sample_size, self.sample_size) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase = jnp.ones((1,) ,dtype=jnp.intaa ) __lowercase = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa ) __lowercase = (1, 3, self.sample_size * 8, self.sample_size * 8) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase , __lowercase = jax.random.split(lowercase__ ) __lowercase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )["params"] def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.block_out_channels __lowercase = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __lowercase = self.num_attention_heads or self.attention_head_dim # input __lowercase = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time __lowercase = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift ) __lowercase = FlaxTimestepEmbedding(lowercase__ ,dtype=self.dtype ) __lowercase = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) __lowercase = self.only_cross_attention if isinstance(lowercase__ ,lowercase__ ): __lowercase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = (num_attention_heads,) * len(self.down_block_types ) # down __lowercase = [] __lowercase = [] __lowercase = block_out_channels[0] __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) for i, down_block_type in enumerate(self.down_block_types ): __lowercase = output_channel __lowercase = block_out_channels[i] __lowercase = i == len(lowercase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": __lowercase = FlaxCrossAttnDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: __lowercase = FlaxDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(lowercase__ ) for _ in range(self.layers_per_block ): __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) if not is_final_block: __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) __lowercase = down_blocks __lowercase = controlnet_down_blocks # mid __lowercase = block_out_channels[-1] __lowercase = FlaxUNetMidBlockaDCrossAttn( in_channels=lowercase__ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : float = 1.0 ,lowercase__ : bool = True ,lowercase__ : bool = False ,): __lowercase = self.controlnet_conditioning_channel_order if channel_order == "bgr": __lowercase = jnp.flip(lowercase__ ,axis=1 ) # 1. time if not isinstance(lowercase__ ,jnp.ndarray ): __lowercase = jnp.array([timesteps] ,dtype=jnp.intaa ) elif isinstance(lowercase__ ,jnp.ndarray ) and len(timesteps.shape ) == 0: __lowercase = timesteps.astype(dtype=jnp.floataa ) __lowercase = jnp.expand_dims(lowercase__ ,0 ) __lowercase = self.time_proj(lowercase__ ) __lowercase = self.time_embedding(lowercase__ ) # 2. pre-process __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.conv_in(lowercase__ ) __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.controlnet_cond_embedding(lowercase__ ) sample += controlnet_cond # 3. down __lowercase = (sample,) for down_block in self.down_blocks: if isinstance(lowercase__ ,lowercase__ ): __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) else: __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,deterministic=not train ) down_block_res_samples += res_samples # 4. mid __lowercase = self.mid_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) # 5. contronet blocks __lowercase = () for down_block_res_sample, controlnet_block in zip(lowercase__ ,self.controlnet_down_blocks ): __lowercase = controlnet_block(lowercase__ ) controlnet_down_block_res_samples += (down_block_res_sample,) __lowercase = controlnet_down_block_res_samples __lowercase = self.controlnet_mid_block(lowercase__ ) # 6. scaling __lowercase = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowercase__ ,mid_block_res_sample=lowercase__ )
41
1
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = XLNetTokenizer SCREAMING_SNAKE_CASE : Optional[int] = XLNetTokenizerFast SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : List[str] = True def SCREAMING_SNAKE_CASE ( self : Dict ): super().setUp() # We have a SentencePiece fixture for testing __lowercase = XLNetTokenizer(lowercase__ ,keep_accents=lowercase__ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''<s>''' __lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) ,lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''<unk>''' ) self.assertEqual(vocab_keys[1] ,'''<s>''' ) self.assertEqual(vocab_keys[-1] ,'''<eod>''' ) self.assertEqual(len(lowercase__ ) ,1_0_0_6 ) def SCREAMING_SNAKE_CASE ( self : int ): self.assertEqual(self.get_tokenizer().vocab_size ,1_0_0_0 ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = XLNetTokenizer(lowercase__ ,keep_accents=lowercase__ ) __lowercase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowercase__ ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) ,[2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] ) __lowercase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowercase__ ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] ,) __lowercase = tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual(lowercase__ ,[8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] ) __lowercase = tokenizer.convert_ids_to_tokens(lowercase__ ) self.assertListEqual( lowercase__ ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] ,) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = XLNetTokenizer(lowercase__ ,do_lower_case=lowercase__ ) __lowercase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowercase__ ,[ SPIECE_UNDERLINE + '''''', '''i''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] ,) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''▁he''', '''ll''', '''o'''] ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = XLNetTokenizer(lowercase__ ,do_lower_case=lowercase__ ) __lowercase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowercase__ ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] ,) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = XLNetTokenizer.from_pretrained('''xlnet-base-cased''' ) __lowercase = tokenizer.encode('''sequence builders''' ,add_special_tokens=lowercase__ ) __lowercase = tokenizer.encode('''multi-sequence build''' ,add_special_tokens=lowercase__ ) __lowercase = tokenizer.build_inputs_with_special_tokens(lowercase__ ) __lowercase = tokenizer.build_inputs_with_special_tokens(lowercase__ ,lowercase__ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def SCREAMING_SNAKE_CASE ( self : Any ): # fmt: off __lowercase = {'''input_ids''': [[1_7, 2_1_4_4_2, 2_7_0, 1_7, 1_0, 1_4_6_4_5, 3_1_8, 3_4, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 7_7_5_2, 2_2_0_1_8, 2_3, 2_1, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 3_3_5_2, 1_4_4_3_1, 1_3, 5_5_0_0, 1_1, 1_1_7_6, 5_8_0, 1_3, 1_6_8_1_9, 4_7_9_7, 2_3, 1_7, 1_0, 1_7_1_3_5, 6_5_8, 1_9, 4_5_7, 7_9_3_2, 1_3, 1_8_4, 1_9, 3_1_5_4, 1_7_1_3_5, 6_4_6_8, 1_9, 1_4_0_4, 1_2_2_6_9, 1_9, 4_2_2_9, 5_3_5_6, 1_6_2_6_4, 4_6, 1_9, 1_7, 2_0_5_4_5, 1_0_3_9_5, 9, 9, 9, 1_1, 2_8, 6_4_2_1, 9_5_3_1, 2_0_7_2_9, 1_7, 1_0, 3_5_3, 1_7_0_2_2, 1_1, 2_1, 6_4_2_1, 9_5_3_1, 1_6_9_4_9, 1_7, 1_0, 1_1_5_0_9, 7_5_3, 1_1, 3_3, 9_5, 2_4_2_1, 7_3_8_5, 9_5_6, 1_4_4_3_1, 2_6_2_6, 2_5, 8_4_2, 7_3_8_5, 4_8_3_6, 2_1, 1_4_2_9, 2_2_7_2, 9_8_5_5, 3_1_2_0, 1_6_1, 2_4_7_3_8, 1_9, 1_3_2_0_3, 6_5_8, 2_1_8, 7_8_7, 2_1, 4_3_0, 1_8_4_8_2, 8_4_7, 2_6_3_7, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2_2, 2_2_1_7_8, 2_7, 1_0_6_4, 2_2, 9_5_6, 1_3, 1_1_1_0_1, 1_4_2_9, 5_8_5_4, 2_4_3_1_3, 1_8_9_5_3, 4_0, 4_2_2, 2_4_3_6_6, 6_8, 1_7_5_8, 3_7, 1_0_4_8_3, 1_4_2_5_7, 3_1, 2_0_7, 2_6_3, 2_1, 2_0_3, 3_7_7_3, 2_5, 7_1, 9_7_3_5, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2, 2_0_4_9, 3_4_4_2, 1_7, 1_3_8_9_4, 3_3_8_0, 2_3, 9_5, 1_8, 1_7_6_3_4, 2_2_8_8, 9, 4, 3]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ ,model_name='''xlnet-base-cased''' ,revision='''c841166438c31ec7ca9a106dee7bb312b73ae511''' ,)
41
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase__ = False lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''ybelkada/fonts''' def _A ( ): """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use " '''Pix2StructImageProcessor. Please upgrade torch.''' ) def _A ( A__ , A__ , A__ ): """simple docstring""" requires_backends(A__ , ['''torch'''] ) _check_torch_version() __lowercase = image_tensor.unsqueeze(0 ) __lowercase = torch.nn.functional.unfold(A__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) __lowercase = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , A__ , A__ , -1 ) __lowercase = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def _A ( A__ , A__ = 36 , A__ = "black" , A__ = "white" , A__ = 5 , A__ = 5 , A__ = 5 , A__ = 5 , A__ = None , A__ = None , ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Add new lines so that each line is no more than 80 characters. __lowercase = textwrap.TextWrapper(width=80 ) __lowercase = wrapper.wrap(text=A__ ) __lowercase = '''\n'''.join(A__ ) if font_bytes is not None and font_path is None: __lowercase = io.BytesIO(A__ ) elif font_path is not None: __lowercase = font_path else: __lowercase = hf_hub_download(A__ , '''Arial.TTF''' ) __lowercase = ImageFont.truetype(A__ , encoding='''UTF-8''' , size=A__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. __lowercase = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , A__ ) ) __lowercase , __lowercase , __lowercase , __lowercase = temp_draw.textbbox((0, 0) , A__ , A__ ) # Create the actual image with a bit of padding around the text. __lowercase = text_width + left_padding + right_padding __lowercase = text_height + top_padding + bottom_padding __lowercase = Image.new('''RGB''' , (image_width, image_height) , A__ ) __lowercase = ImageDraw.Draw(A__ ) draw.text(xy=(left_padding, top_padding) , text=A__ , fill=A__ , font=A__ ) return image def _A ( A__ , A__ , **A__ ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Convert to PIL image if necessary __lowercase = to_pil_image(A__ ) __lowercase = render_text(A__ , **A__ ) __lowercase = max(header_image.width , image.width ) __lowercase = int(image.height * (new_width / image.width) ) __lowercase = int(header_image.height * (new_width / header_image.width) ) __lowercase = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary __lowercase = to_numpy_array(A__ ) if infer_channel_dimension_format(A__ ) == ChannelDimension.LAST: __lowercase = to_channel_dimension_format(A__ , ChannelDimension.LAST ) return new_image class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ['flattened_patches'] def __init__( self : Any ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : int = 2_0_4_8 ,lowercase__ : bool = False ,**lowercase__ : List[str] ,): super().__init__(**lowercase__ ) __lowercase = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6} __lowercase = do_normalize __lowercase = do_convert_rgb __lowercase = max_patches __lowercase = is_vqa def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : np.ndarray ,lowercase__ : int ,lowercase__ : dict ,**lowercase__ : Tuple ): requires_backends(self.extract_flattened_patches ,'''torch''' ) _check_torch_version() # convert to torch __lowercase = to_channel_dimension_format(lowercase__ ,ChannelDimension.FIRST ) __lowercase = torch.from_numpy(lowercase__ ) __lowercase , __lowercase = patch_size['''height'''], patch_size['''width'''] __lowercase , __lowercase = get_image_size(lowercase__ ) # maximize scale s.t. __lowercase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) __lowercase = max(min(math.floor(scale * image_height / patch_height ) ,lowercase__ ) ,1 ) __lowercase = max(min(math.floor(scale * image_width / patch_width ) ,lowercase__ ) ,1 ) __lowercase = max(num_feasible_rows * patch_height ,1 ) __lowercase = max(num_feasible_cols * patch_width ,1 ) __lowercase = torch.nn.functional.interpolate( image.unsqueeze(0 ) ,size=(resized_height, resized_width) ,mode='''bilinear''' ,align_corners=lowercase__ ,antialias=lowercase__ ,).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] __lowercase = torch_extract_patches(lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = patches.shape __lowercase = patches_shape[1] __lowercase = patches_shape[2] __lowercase = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] __lowercase = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] __lowercase = torch.arange(lowercase__ ).reshape([rows, 1] ).repeat(1 ,lowercase__ ).reshape([rows * columns, 1] ) __lowercase = torch.arange(lowercase__ ).reshape([1, columns] ).repeat(lowercase__ ,1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] __lowercase = row_ids.to(torch.floataa ) __lowercase = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] __lowercase = torch.cat([row_ids, col_ids, patches] ,-1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] __lowercase = torch.nn.functional.pad(lowercase__ ,[0, 0, 0, max_patches - (rows * columns)] ).float() __lowercase = to_numpy_array(lowercase__ ) return result def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : np.ndarray ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ): if image.dtype == np.uinta: __lowercase = image.astype(np.floataa ) # take mean across the whole `image` __lowercase = np.mean(lowercase__ ) __lowercase = np.std(lowercase__ ) __lowercase = max(lowercase__ ,1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : ImageInput ,lowercase__ : Optional[str] = None ,lowercase__ : bool = None ,lowercase__ : Optional[bool] = None ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[Dict[str, int]] = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : ChannelDimension = ChannelDimension.FIRST ,**lowercase__ : List[Any] ,): __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = patch_size if patch_size is not None else self.patch_size __lowercase = max_patches if max_patches is not None else self.max_patches __lowercase = self.is_vqa if kwargs.get('''data_format''' ,lowercase__ ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) __lowercase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(lowercase__ ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowercase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) __lowercase = kwargs.pop('''font_bytes''' ,lowercase__ ) __lowercase = kwargs.pop('''font_path''' ,lowercase__ ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = [header_text] * len(lowercase__ ) __lowercase = [ render_header(lowercase__ ,header_text[i] ,font_bytes=lowercase__ ,font_path=lowercase__ ) for i, image in enumerate(lowercase__ ) ] if do_normalize: __lowercase = [self.normalize(image=lowercase__ ) for image in images] # convert to torch tensor and permute __lowercase = [ self.extract_flattened_patches(image=lowercase__ ,max_patches=lowercase__ ,patch_size=lowercase__ ) for image in images ] # create attention mask in numpy __lowercase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] __lowercase = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks} ,tensor_type=lowercase__ ) return encoded_outputs
41
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''▁''' lowerCAmelCase__ = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCAmelCase__ = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model''' ), } } lowerCAmelCase__ = { '''facebook/nllb-200-distilled-600M''': 1024, } # fmt: off lowerCAmelCase__ = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Optional[int] = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE : List[int] = [] SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any]="<s>" ,lowercase__ : str="</s>" ,lowercase__ : Union[str, Any]="</s>" ,lowercase__ : List[Any]="<s>" ,lowercase__ : List[str]="<unk>" ,lowercase__ : Dict="<pad>" ,lowercase__ : int="<mask>" ,lowercase__ : Tuple=None ,lowercase__ : List[str]=None ,lowercase__ : Union[str, Any]=None ,lowercase__ : Optional[Dict[str, Any]] = None ,lowercase__ : Any=None ,lowercase__ : Any=False ,**lowercase__ : Optional[int] ,): # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else mask_token __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs __lowercase = legacy_behaviour super().__init__( bos_token=lowercase__ ,eos_token=lowercase__ ,unk_token=lowercase__ ,sep_token=lowercase__ ,cls_token=lowercase__ ,pad_token=lowercase__ ,mask_token=lowercase__ ,tokenizer_file=lowercase__ ,src_lang=lowercase__ ,tgt_lang=lowercase__ ,additional_special_tokens=lowercase__ ,sp_model_kwargs=self.sp_model_kwargs ,legacy_behaviour=lowercase__ ,**lowercase__ ,) __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase__ ) ) __lowercase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token __lowercase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowercase = 1 __lowercase = len(self.sp_model ) __lowercase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowercase__ ) } __lowercase = {v: k for k, v in self.lang_code_to_id.items()} __lowercase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __lowercase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __lowercase = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __lowercase = src_lang if src_lang is not None else '''eng_Latn''' __lowercase = self.lang_code_to_id[self._src_lang] __lowercase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Optional[int] ): __lowercase = self.__dict__.copy() __lowercase = None __lowercase = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict ,lowercase__ : List[str] ): __lowercase = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def SCREAMING_SNAKE_CASE ( self : Tuple ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : str ): __lowercase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ,lowercase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ ,token_ids_a=lowercase__ ,already_has_special_tokens=lowercase__ ) __lowercase = [1] * len(self.prefix_tokens ) __lowercase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowercase__ )) + suffix_ones return prefix_ones + ([0] * len(lowercase__ )) + ([0] * len(lowercase__ )) + suffix_ones def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ): __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : str ,lowercase__ : str ,lowercase__ : Optional[str] ,lowercase__ : Optional[str] ,**lowercase__ : str ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __lowercase = src_lang __lowercase = self(lowercase__ ,add_special_tokens=lowercase__ ,return_tensors=lowercase__ ,**lowercase__ ) __lowercase = self.convert_tokens_to_ids(lowercase__ ) __lowercase = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : str ): return self.sp_model.encode(lowercase__ ,out_type=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowercase = self.sp_model.PieceToId(lowercase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Tuple ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Tuple ): __lowercase = ''''''.join(lowercase__ ).replace(lowercase__ ,''' ''' ).strip() return out_string def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : Optional[str] = None ): if not os.path.isdir(lowercase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase = os.path.join( lowercase__ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ ,'''wb''' ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : str = "eng_Latn" ,lowercase__ : Optional[List[str]] = None ,lowercase__ : str = "fra_Latn" ,**lowercase__ : Union[str, Any] ,): __lowercase = src_lang __lowercase = tgt_lang return super().prepare_seqaseq_batch(lowercase__ ,lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Optional[Any] ): __lowercase = self.lang_code_to_id[src_lang] if self.legacy_behaviour: __lowercase = [] __lowercase = [self.eos_token_id, self.cur_lang_code] else: __lowercase = [self.cur_lang_code] __lowercase = [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : str ): __lowercase = self.lang_code_to_id[lang] if self.legacy_behaviour: __lowercase = [] __lowercase = [self.eos_token_id, self.cur_lang_code] else: __lowercase = [self.cur_lang_code] __lowercase = [self.eos_token_id]
41
'''simple docstring''' import doctest from collections import deque import numpy as np class lowercase_ : """simple docstring""" def __init__( self : Optional[Any] ): __lowercase = [2, 1, 2, -1] __lowercase = [1, 2, 3, 4] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = len(self.first_signal ) __lowercase = len(self.second_signal ) __lowercase = max(lowercase__ ,lowercase__ ) # create a zero matrix of max_length x max_length __lowercase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __lowercase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __lowercase = np.matmul(np.transpose(lowercase__ ) ,np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ ,2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
41
1
'''simple docstring''' def _A ( A__ , A__ , A__ , A__ , A__ ): """simple docstring""" if index == number_of_items: return 0 __lowercase = 0 __lowercase = 0 __lowercase = knapsack(A__ , A__ , A__ , A__ , index + 1 ) if weights[index] <= max_weight: __lowercase = values[index] + knapsack( A__ , A__ , A__ , max_weight - weights[index] , index + 1 ) return max(A__ , A__ ) if __name__ == "__main__": import doctest doctest.testmod()
41
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
41
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''PoolFormerFeatureExtractor'''] lowerCAmelCase__ = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
41
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCAmelCase__ = getLogger(__name__) lowerCAmelCase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def _A ( A__ , A__ , A__ , A__ = 8 , A__ = DEFAULT_DEVICE , A__=False , A__="summarization" , A__=None , **A__ , ): """simple docstring""" __lowercase = Path(A__ ).open('''w''' , encoding='''utf-8''' ) __lowercase = str(A__ ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained(A__ ).to(A__ ) if fpaa: __lowercase = model.half() __lowercase = AutoTokenizer.from_pretrained(A__ ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __lowercase = time.time() # update config with task specific params use_task_specific_params(A__ , A__ ) if prefix is None: __lowercase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(A__ , A__ ) ) ): __lowercase = [prefix + text for text in examples_chunk] __lowercase = tokenizer(A__ , return_tensors='''pt''' , truncation=A__ , padding='''longest''' ).to(A__ ) __lowercase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **A__ , ) __lowercase = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __lowercase = int(time.time() - start_time ) # seconds __lowercase = len(A__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _A ( ): """simple docstring""" return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def _A ( A__=True ): """simple docstring""" __lowercase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=A__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=A__ , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=A__ , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=A__ , required=A__ , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=A__ , required=A__ , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=A__ , required=A__ , default=A__ , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=A__ , required=A__ , default=A__ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=A__ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=A__ , default=8 , required=A__ , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=A__ , default=-1 , required=A__ , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=A__ , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowercase , __lowercase = parser.parse_known_args() __lowercase = parse_numeric_n_bool_cl_kwargs(A__ ) if parsed_args and verbose: print(F"parsed the following generate kwargs: {parsed_args}" ) __lowercase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowercase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=A__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __lowercase = generate_summaries_or_translations( A__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **A__ , ) if args.reference_path is None: return {} # Compute scores __lowercase = calculate_bleu if '''translation''' in args.task else calculate_rouge __lowercase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowercase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(A__ )] __lowercase = score_fn(A__ , A__ ) scores.update(A__ ) if args.dump_args: scores.update(A__ ) if args.info: __lowercase = args.info if verbose: print(A__ ) if args.score_path is not None: json.dump(A__ , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
41
1
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'detr' SCREAMING_SNAKE_CASE : List[str] = ['past_key_values'] SCREAMING_SNAKE_CASE : Any = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : int ,lowercase__ : Dict=True ,lowercase__ : Optional[Any]=None ,lowercase__ : str=3 ,lowercase__ : Optional[int]=1_0_0 ,lowercase__ : Optional[int]=6 ,lowercase__ : Optional[Any]=2_0_4_8 ,lowercase__ : Any=8 ,lowercase__ : int=6 ,lowercase__ : Any=2_0_4_8 ,lowercase__ : Any=8 ,lowercase__ : List[str]=0.0 ,lowercase__ : Union[str, Any]=0.0 ,lowercase__ : Union[str, Any]=True ,lowercase__ : str="relu" ,lowercase__ : int=2_5_6 ,lowercase__ : int=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : Tuple=0.0 ,lowercase__ : int=0.0_2 ,lowercase__ : Dict=1.0 ,lowercase__ : str=False ,lowercase__ : Union[str, Any]="sine" ,lowercase__ : List[str]="resnet50" ,lowercase__ : Dict=True ,lowercase__ : List[Any]=False ,lowercase__ : Union[str, Any]=1 ,lowercase__ : Union[str, Any]=5 ,lowercase__ : Tuple=2 ,lowercase__ : str=1 ,lowercase__ : List[Any]=1 ,lowercase__ : Dict=5 ,lowercase__ : Optional[Any]=2 ,lowercase__ : int=0.1 ,**lowercase__ : Dict ,): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __lowercase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(lowercase__ ,lowercase__ ): __lowercase = backbone_config.get('''model_type''' ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(lowercase__ ) # set timm attributes to None __lowercase , __lowercase , __lowercase = None, None, None __lowercase = use_timm_backbone __lowercase = backbone_config __lowercase = num_channels __lowercase = num_queries __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = init_xavier_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = encoder_layers __lowercase = auxiliary_loss __lowercase = position_embedding_type __lowercase = backbone __lowercase = use_pretrained_backbone __lowercase = dilation # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = mask_loss_coefficient __lowercase = dice_loss_coefficient __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = eos_coefficient super().__init__(is_encoder_decoder=lowercase__ ,**lowercase__ ) @property def SCREAMING_SNAKE_CASE ( self : Any ): return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return self.d_model @classmethod def SCREAMING_SNAKE_CASE ( cls : int ,lowercase__ : PretrainedConfig ,**lowercase__ : Any ): return cls(backbone_config=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE ( self : Dict ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def SCREAMING_SNAKE_CASE ( self : List[str] ): return 1e-5 @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return 1_2
41
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(A__ ): print(F"{i}\t\t{d}" ) def _A ( A__ , A__ , A__ ): """simple docstring""" for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = [float('''inf''' )] * vertex_count __lowercase = 0.0 for _ in range(vertex_count - 1 ): for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: __lowercase = distance[u] + w __lowercase = check_negative_cycle(A__ , A__ , A__ ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = int(input('''Enter number of vertices: ''').strip()) lowerCAmelCase__ = int(input('''Enter number of edges: ''').strip()) lowerCAmelCase__ = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) lowerCAmelCase__ = {'''src''': src, '''dst''': dest, '''weight''': weight} lowerCAmelCase__ = int(input('''\nEnter shortest path source:''').strip()) lowerCAmelCase__ = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
41
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class lowercase_ (lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'bit' SCREAMING_SNAKE_CASE : str = ['preactivation', 'bottleneck'] SCREAMING_SNAKE_CASE : List[Any] = ['SAME', 'VALID'] def __init__( self : int ,lowercase__ : Optional[int]=3 ,lowercase__ : List[str]=6_4 ,lowercase__ : Union[str, Any]=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] ,lowercase__ : str=[3, 4, 6, 3] ,lowercase__ : Optional[Any]="preactivation" ,lowercase__ : int="relu" ,lowercase__ : Optional[int]=None ,lowercase__ : List[str]=3_2 ,lowercase__ : Optional[int]=0.0 ,lowercase__ : int=False ,lowercase__ : Union[str, Any]=3_2 ,lowercase__ : str=1 ,lowercase__ : Tuple=None ,lowercase__ : Tuple=None ,**lowercase__ : Tuple ,): super().__init__(**lowercase__ ) if layer_type not in self.layer_types: raise ValueError(F"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: __lowercase = global_padding.upper() else: raise ValueError(F"Padding strategy {global_padding} not supported" ) __lowercase = num_channels __lowercase = embedding_size __lowercase = hidden_sizes __lowercase = depths __lowercase = layer_type __lowercase = hidden_act __lowercase = global_padding __lowercase = num_groups __lowercase = drop_path_rate __lowercase = embedding_dynamic_padding __lowercase = output_stride __lowercase = width_factor __lowercase = ['''stem'''] + [F"stage{idx}" for idx in range(1 ,len(lowercase__ ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=lowercase__ ,out_indices=lowercase__ ,stage_names=self.stage_names )
41
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[Any] ,*lowercase__ : Optional[Any] ,**lowercase__ : int ): warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' ,lowercase__ ,) super().__init__(*lowercase__ ,**lowercase__ )
41
1
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = (DDPMScheduler,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,**lowercase__ : int ): __lowercase = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**lowercase__ ) return config def SCREAMING_SNAKE_CASE ( self : Any ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] ,[0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=lowercase__ ,beta_end=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): self.check_over_configs(thresholding=lowercase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowercase__ ,prediction_type=lowercase__ ,sample_max_value=lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowercase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.0_2 ) ) < 1e-5 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowercase__ ) __lowercase = len(lowercase__ ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for t in reversed(range(lowercase__ ) ): # 1. predict noise residual __lowercase = model(lowercase__ ,lowercase__ ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(lowercase__ ,lowercase__ ,lowercase__ ,generator=lowercase__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(lowercase__ ) ) __lowercase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(prediction_type='''v_prediction''' ) __lowercase = scheduler_class(**lowercase__ ) __lowercase = len(lowercase__ ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for t in reversed(range(lowercase__ ) ): # 1. predict noise residual __lowercase = model(lowercase__ ,lowercase__ ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(lowercase__ ,lowercase__ ,lowercase__ ,generator=lowercase__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(lowercase__ ) ) __lowercase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowercase__ ) __lowercase = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowercase__ ) __lowercase = scheduler.timesteps for i, timestep in enumerate(lowercase__ ): if i == len(lowercase__ ) - 1: __lowercase = -1 else: __lowercase = timesteps[i + 1] __lowercase = scheduler.previous_timestep(lowercase__ ) __lowercase = prev_t.item() self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowercase__ ) __lowercase = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowercase__ ,msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowercase__ ) __lowercase = [1_0_0, 8_7, 5_0, 1, 0] __lowercase = len(lowercase__ ) with self.assertRaises(lowercase__ ,msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowercase__ ,timesteps=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowercase__ ) __lowercase = [scheduler.config.num_train_timesteps] with self.assertRaises( lowercase__ ,msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' ,): scheduler.set_timesteps(timesteps=lowercase__ )
41
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _A ( A__ ): """simple docstring""" __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = 0.0_1 with locka.acquire(): with pytest.raises(A__ ): __lowercase = time.time() locka.acquire(A__ ) assert time.time() - _start > timeout def _A ( A__ ): """simple docstring""" __lowercase = '''a''' * 1000 + '''.lock''' __lowercase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(A__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __lowercase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(A__ ): locka.acquire(0 )
41
1
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean lowerCAmelCase__ = 0 lowerCAmelCase__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCAmelCase__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right lowerCAmelCase__ = tuple[int, int] class lowercase_ : """simple docstring""" def __init__( self : Any ,lowercase__ : int ,lowercase__ : int ,lowercase__ : int ,lowercase__ : int ,lowercase__ : int ,lowercase__ : Node | None ,): __lowercase = pos_x __lowercase = pos_y __lowercase = (pos_y, pos_x) __lowercase = goal_x __lowercase = goal_y __lowercase = g_cost __lowercase = parent __lowercase = self.calculate_heuristic() __lowercase = self.g_cost + self.h_cost def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.pos_x - self.goal_x __lowercase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowercase__ ) + abs(lowercase__ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : Dict ,lowercase__ : Node ): return self.f_cost < other.f_cost class lowercase_ : """simple docstring""" def __init__( self : List[Any] ,lowercase__ : TPosition ,lowercase__ : TPosition ): __lowercase = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,lowercase__ ) __lowercase = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,9_9_9_9_9 ,lowercase__ ) __lowercase = [self.start] __lowercase = [] __lowercase = False def SCREAMING_SNAKE_CASE ( self : str ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowercase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowercase__ ) self.closed_nodes.append(lowercase__ ) __lowercase = self.get_successors(lowercase__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowercase__ ) else: # retrieve the best current path __lowercase = self.open_nodes.pop(self.open_nodes.index(lowercase__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowercase__ ) else: self.open_nodes.append(lowercase__ ) return [self.start.pos] def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Node ): __lowercase = [] for action in delta: __lowercase = parent.pos_x + action[1] __lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowercase__ ,lowercase__ ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,lowercase__ ,) ) return successors def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Node | None ): __lowercase = node __lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowercase = current_node.parent path.reverse() return path class lowercase_ : """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : TPosition ,lowercase__ : TPosition ): __lowercase = AStar(lowercase__ ,lowercase__ ) __lowercase = AStar(lowercase__ ,lowercase__ ) __lowercase = False def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowercase = self.fwd_astar.open_nodes.pop(0 ) __lowercase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowercase__ ,lowercase__ ) self.fwd_astar.closed_nodes.append(lowercase__ ) self.bwd_astar.closed_nodes.append(lowercase__ ) __lowercase = current_bwd_node __lowercase = current_fwd_node __lowercase = { self.fwd_astar: self.fwd_astar.get_successors(lowercase__ ), self.bwd_astar: self.bwd_astar.get_successors(lowercase__ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowercase__ ) else: # retrieve the best current path __lowercase = astar.open_nodes.pop( astar.open_nodes.index(lowercase__ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowercase__ ) else: astar.open_nodes.append(lowercase__ ) return [self.fwd_astar.start.pos] def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Node ,lowercase__ : Node ): __lowercase = self.fwd_astar.retrace_path(lowercase__ ) __lowercase = self.bwd_astar.retrace_path(lowercase__ ) bwd_path.pop() bwd_path.reverse() __lowercase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] lowerCAmelCase__ = (0, 0) lowerCAmelCase__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowerCAmelCase__ = time.time() lowerCAmelCase__ = AStar(init, goal) lowerCAmelCase__ = a_star.search() lowerCAmelCase__ = time.time() - start_time print(f'AStar execution time = {end_time:f} seconds') lowerCAmelCase__ = time.time() lowerCAmelCase__ = BidirectionalAStar(init, goal) lowerCAmelCase__ = time.time() - bd_start_time print(f'BidirectionalAStar execution time = {bd_end_time:f} seconds')
41
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase__ = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
1
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser( description=( '''Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''bert''', choices=['''bert''']) parser.add_argument('''--model_name''', default='''bert-base-uncased''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_bert-base-uncased_0247911.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') lowerCAmelCase__ = parser.parse_args() if args.model_type == "bert": lowerCAmelCase__ = BertForMaskedLM.from_pretrained(args.model_name) lowerCAmelCase__ = '''bert''' else: raise ValueError('''args.model_type should be "bert".''') lowerCAmelCase__ = model.state_dict() lowerCAmelCase__ = {} for w in ["word_embeddings", "position_embeddings"]: lowerCAmelCase__ = state_dict[f'{prefix}.embeddings.{w}.weight'] for w in ["weight", "bias"]: lowerCAmelCase__ = state_dict[f'{prefix}.embeddings.LayerNorm.{w}'] lowerCAmelCase__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: lowerCAmelCase__ = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}' ] lowerCAmelCase__ = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}' ] lowerCAmelCase__ = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}' ] lowerCAmelCase__ = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}' ] lowerCAmelCase__ = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}' ] lowerCAmelCase__ = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}' ] lowerCAmelCase__ = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}' ] lowerCAmelCase__ = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}' ] std_idx += 1 lowerCAmelCase__ = state_dict['''cls.predictions.decoder.weight'''] lowerCAmelCase__ = state_dict['''cls.predictions.bias'''] if args.vocab_transform: for w in ["weight", "bias"]: lowerCAmelCase__ = state_dict[f'cls.predictions.transform.dense.{w}'] lowerCAmelCase__ = state_dict[f'cls.predictions.transform.LayerNorm.{w}'] print(f'N layers selected for distillation: {std_idx}') print(f'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(f'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
41
'''simple docstring''' import argparse import os import re lowerCAmelCase__ = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(R'''\[([^\]]+)\]''') def _A ( A__ ): """simple docstring""" __lowercase = _re_indent.search(A__ ) return "" if search is None else search.groups()[0] def _A ( A__ , A__="" , A__=None , A__=None ): """simple docstring""" __lowercase = 0 __lowercase = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(A__ ): index += 1 __lowercase = ['''\n'''.join(lines[:index] )] else: __lowercase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowercase = [lines[index]] index += 1 while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(A__ ) ) if index < len(A__ ) - 1: __lowercase = [lines[index + 1]] index += 1 else: __lowercase = [] else: blocks.append('''\n'''.join(A__ ) ) __lowercase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A__ ) > 0: blocks.append('''\n'''.join(A__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def _A ( A__ ): """simple docstring""" def _inner(A__ ): return key(A__ ).lower().replace('''_''' , '''''' ) return _inner def _A ( A__ , A__=None ): """simple docstring""" def noop(A__ ): return x if key is None: __lowercase = noop # Constants are all uppercase, they go first. __lowercase = [obj for obj in objects if key(A__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowercase = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()] # Functions begin with a lowercase, they go last. __lowercase = [obj for obj in objects if not key(A__ )[0].isupper()] __lowercase = ignore_underscore(A__ ) return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) def _A ( A__ ): """simple docstring""" def _replace(A__ ): __lowercase = match.groups()[0] if "," not in imports: return F"[{imports}]" __lowercase = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) + "]" __lowercase = import_statement.split('''\n''' ) if len(A__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowercase = 2 if lines[1].strip() == '''[''' else 1 __lowercase = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowercase = sort_objects(A__ , key=lambda A__ : x[1] ) __lowercase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowercase = _re_bracket_content.sub(_replace , lines[1] ) else: __lowercase = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] __lowercase = get_indent(lines[1] ) + ''', '''.join([F"\"{k}\"" for k in sort_objects(A__ )] ) return "\n".join(A__ ) else: # Finally we have to deal with imports fitting on one line __lowercase = _re_bracket_content.sub(_replace , A__ ) return import_statement def _A ( A__ , A__=True ): """simple docstring""" with open(A__ , '''r''' ) as f: __lowercase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowercase = split_code_in_indented_blocks( A__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowercase = main_blocks[block_idx] __lowercase = block.split('''\n''' ) # Get to the start of the imports. __lowercase = 0 while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowercase = len(A__ ) else: line_idx += 1 if line_idx >= len(A__ ): continue # Ignore beginning and last line: they don't contain anything. __lowercase = '''\n'''.join(block_lines[line_idx:-1] ) __lowercase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowercase = split_code_in_indented_blocks(A__ , indent_level=A__ ) # We have two categories of import key: list or _import_structure[key].append/extend __lowercase = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowercase = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowercase = [(i, key) for i, key in enumerate(A__ ) if key is not None] __lowercase = [x[0] for x in sorted(A__ , key=lambda A__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowercase = 0 __lowercase = [] for i in range(len(A__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __lowercase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(A__ ) count += 1 # And we put our main block back together with its first and last line. __lowercase = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(A__ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(A__ , '''w''' ) as f: f.write('''\n'''.join(A__ ) ) def _A ( A__=True ): """simple docstring""" __lowercase = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: __lowercase = sort_imports(os.path.join(A__ , '''__init__.py''' ) , check_only=A__ ) if result: __lowercase = [os.path.join(A__ , '''__init__.py''' )] if len(A__ ) > 0: raise ValueError(F"Would overwrite {len(A__ )} files, run `make style`." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
41
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 'deberta-v2' def __init__( self : int ,lowercase__ : Optional[Any]=1_2_8_1_0_0 ,lowercase__ : str=1_5_3_6 ,lowercase__ : List[Any]=2_4 ,lowercase__ : Union[str, Any]=2_4 ,lowercase__ : Optional[Any]=6_1_4_4 ,lowercase__ : Union[str, Any]="gelu" ,lowercase__ : Union[str, Any]=0.1 ,lowercase__ : Tuple=0.1 ,lowercase__ : Dict=5_1_2 ,lowercase__ : List[str]=0 ,lowercase__ : int=0.0_2 ,lowercase__ : str=1e-7 ,lowercase__ : Any=False ,lowercase__ : Union[str, Any]=-1 ,lowercase__ : Optional[int]=0 ,lowercase__ : List[str]=True ,lowercase__ : List[str]=None ,lowercase__ : Optional[int]=0 ,lowercase__ : str="gelu" ,**lowercase__ : Optional[Any] ,): super().__init__(**lowercase__ ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = relative_attention __lowercase = max_relative_positions __lowercase = pad_token_id __lowercase = position_biased_input # Backwards compatibility if type(lowercase__ ) == str: __lowercase = [x.strip() for x in pos_att_type.lower().split('''|''' )] __lowercase = pos_att_type __lowercase = vocab_size __lowercase = layer_norm_eps __lowercase = kwargs.get('''pooler_hidden_size''' ,lowercase__ ) __lowercase = pooler_dropout __lowercase = pooler_hidden_act class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Dict ): if self.task == "multiple-choice": __lowercase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowercase = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def SCREAMING_SNAKE_CASE ( self : str ): return 1_2 def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional["TensorType"] = None ,lowercase__ : int = 3 ,lowercase__ : int = 4_0 ,lowercase__ : int = 4_0 ,lowercase__ : "PreTrainedTokenizerBase" = None ,): __lowercase = super().generate_dummy_inputs(preprocessor=lowercase__ ,framework=lowercase__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
41
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = TextToVideoSDPipeline SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. SCREAMING_SNAKE_CASE : Optional[int] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') ,up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') ,cross_attention_dim=3_2 ,attention_head_dim=4 ,) __lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,clip_sample=lowercase__ ,set_alpha_to_one=lowercase__ ,) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=1_2_8 ,) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''gelu''' ,projection_dim=5_1_2 ,) __lowercase = CLIPTextModel(lowercase__ ) __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : List[str]=0 ): if str(lowercase__ ).startswith('''mps''' ): __lowercase = torch.manual_seed(lowercase__ ) else: __lowercase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = TextToVideoSDPipeline(**lowercase__ ) __lowercase = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs(lowercase__ ) __lowercase = '''np''' __lowercase = sd_pipe(**lowercase__ ).frames __lowercase = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) __lowercase = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def SCREAMING_SNAKE_CASE ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=1e-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass def SCREAMING_SNAKE_CASE ( self : List[str] ): return super().test_progress_bar() @slow @skip_mps class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2_5 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
41
1
'''simple docstring''' from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : Tuple ,*lowercase__ : Optional[int] ,**lowercase__ : List[str] ): super().__init__(*lowercase__ ,**lowercase__ ) self.check_model_type(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : List[Any]=None ,lowercase__ : Optional[int]=None ,lowercase__ : Tuple=None ,**lowercase__ : List[str] ): __lowercase , __lowercase = {}, {} if padding is not None: __lowercase = padding if truncation is not None: __lowercase = truncation if top_k is not None: __lowercase = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[Any] ,lowercase__ : Union["Image.Image", str] ,lowercase__ : str = None ,**lowercase__ : Any ): if isinstance(lowercase__ ,(Image.Image, str) ) and isinstance(lowercase__ ,lowercase__ ): __lowercase = {'''image''': image, '''question''': question} else: __lowercase = image __lowercase = super().__call__(lowercase__ ,**lowercase__ ) return results def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Optional[int] ,lowercase__ : Optional[int]=False ,lowercase__ : List[str]=False ): __lowercase = load_image(inputs['''image'''] ) __lowercase = self.tokenizer( inputs['''question'''] ,return_tensors=self.framework ,padding=lowercase__ ,truncation=lowercase__ ) __lowercase = self.image_processor(images=lowercase__ ,return_tensors=self.framework ) model_inputs.update(lowercase__ ) return model_inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : List[str] ): __lowercase = self.model(**lowercase__ ) return model_outputs def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ,lowercase__ : Any=5 ): if top_k > self.model.config.num_labels: __lowercase = self.model.config.num_labels if self.framework == "pt": __lowercase = model_outputs.logits.sigmoid()[0] __lowercase , __lowercase = probs.topk(lowercase__ ) else: raise ValueError(F"Unsupported framework: {self.framework}" ) __lowercase = scores.tolist() __lowercase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase__ ,lowercase__ )]
41
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _A ( A__ ): """simple docstring""" __lowercase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def _A ( A__ ): """simple docstring""" __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(A__ , A__ , bias=A__ ) __lowercase = emb.weight.data return lin_layer def _A ( A__ , A__="facebook/mbart-large-en-ro" , A__=False , A__=False ): """simple docstring""" __lowercase = torch.load(A__ , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A__ ) __lowercase = state_dict['''encoder.embed_tokens.weight'''].shape[0] __lowercase = MBartConfig.from_pretrained(A__ , vocab_size=A__ ) if mbart_aa and finetuned: __lowercase = '''relu''' __lowercase = state_dict['''decoder.embed_tokens.weight'''] __lowercase = MBartForConditionalGeneration(A__ ) model.model.load_state_dict(A__ ) if finetuned: __lowercase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
41
1
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _A ( A__ ): """simple docstring""" __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = 0.0_1 with locka.acquire(): with pytest.raises(A__ ): __lowercase = time.time() locka.acquire(A__ ) assert time.time() - _start > timeout def _A ( A__ ): """simple docstring""" __lowercase = '''a''' * 1000 + '''.lock''' __lowercase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(A__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __lowercase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(A__ ): locka.acquire(0 )
41
'''simple docstring''' import os from math import logaa def _A ( A__ = "base_exp.txt" ): """simple docstring""" __lowercase = 0 __lowercase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowercase , __lowercase = list(map(A__ , line.split(''',''' ) ) ) if x * logaa(A__ ) > largest: __lowercase = x * logaa(A__ ) __lowercase = i + 1 return result if __name__ == "__main__": print(solution())
41
1
'''simple docstring''' def _A ( ): """simple docstring""" __lowercase = 0 for i in range(1 , 1001 ): total += i**i return str(A__ )[-10:] if __name__ == "__main__": print(solution())
41
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'blenderbot-small' SCREAMING_SNAKE_CASE : int = ['past_key_values'] SCREAMING_SNAKE_CASE : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] ,lowercase__ : List[str]=5_0_2_6_5 ,lowercase__ : Optional[Any]=5_1_2 ,lowercase__ : Optional[int]=8 ,lowercase__ : List[Any]=2_0_4_8 ,lowercase__ : List[str]=1_6 ,lowercase__ : str=8 ,lowercase__ : Any=2_0_4_8 ,lowercase__ : Tuple=1_6 ,lowercase__ : Tuple=0.0 ,lowercase__ : List[str]=0.0 ,lowercase__ : Any=True ,lowercase__ : str=True ,lowercase__ : int="gelu" ,lowercase__ : Tuple=5_1_2 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : str=0.0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : List[Any]=False ,lowercase__ : Optional[int]=0 ,lowercase__ : Optional[int]=1 ,lowercase__ : str=2 ,lowercase__ : int=2 ,**lowercase__ : List[str] ,): __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = use_cache __lowercase = encoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,is_encoder_decoder=lowercase__ ,decoder_start_token_id=lowercase__ ,forced_eos_token_id=lowercase__ ,**lowercase__ ,) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Dict ): if self.task in ["default", "seq2seq-lm"]: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase = {0: '''batch'''} __lowercase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase__ ,direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super().outputs else: __lowercase = super(lowercase__ ,self ).outputs if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) # Generate decoder inputs __lowercase = seq_length if not self.use_past else 1 __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __lowercase = dict(**lowercase__ ,**lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape __lowercase = common_inputs['''decoder_input_ids'''].shape[1] __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = decoder_seq_length + 3 __lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase__ ,lowercase__ )] ,dim=1 ) __lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase = self.num_layers __lowercase = min(lowercase__ ,lowercase__ ) __lowercase = max(lowercase__ ,lowercase__ ) - min_num_layers __lowercase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), ) ) # TODO: test this. __lowercase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase__ ,lowercase__ ): common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase , __lowercase = self.num_layers __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = common_inputs['''attention_mask'''].dtype __lowercase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase__ ,lowercase__ ,dtype=lowercase__ )] ,dim=1 ) __lowercase = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ ) ] return common_inputs def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = tokenizer.num_special_tokens_to_add(lowercase__ ) __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowercase__ ) # Generate dummy inputs according to compute batch and sequence __lowercase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase = dict(tokenizer(lowercase__ ,return_tensors=lowercase__ ) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): if self.task in ["default", "seq2seq-lm"]: __lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) elif self.task == "causal-lm": __lowercase = self._generate_dummy_inputs_for_causal_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) else: __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super()._flatten_past_key_values_(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) else: __lowercase = super(lowercase__ ,self )._flatten_past_key_values_( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
41
1
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def _A ( ): """simple docstring""" __lowercase , __lowercase = 9, 14 # noqa: F841 __lowercase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] __lowercase = defaultdict(A__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) __lowercase = mst(A__ ) __lowercase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: __lowercase = tuple(answer[:2] ) __lowercase = tuple(edge[::-1] ) assert edge in result or reverse in result
41
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" if b == 0: return (1, 0) ((__lowercase) , (__lowercase)) = extended_euclid(A__ , a % b ) __lowercase = a // b return (y, x - k * y) def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m def _A ( A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) if b < 0: __lowercase = (b % n + n) % n return b def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase , __lowercase = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
41
1
'''simple docstring''' from __future__ import annotations lowerCAmelCase__ = '''Muhammad Umer Farooq''' lowerCAmelCase__ = '''MIT''' lowerCAmelCase__ = '''1.0.0''' lowerCAmelCase__ = '''Muhammad Umer Farooq''' lowerCAmelCase__ = '''[email protected]''' lowerCAmelCase__ = '''Alpha''' import re from html.parser import HTMLParser from urllib import parse import requests class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : Union[str, Any] ,lowercase__ : str ): super().__init__() __lowercase = [] __lowercase = domain def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : str ,lowercase__ : list[tuple[str, str | None]] ): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __lowercase = parse.urljoin(self.domain ,lowercase__ ) self.urls.append(lowercase__ ) def _A ( A__ ): """simple docstring""" return ".".join(get_sub_domain_name(A__ ).split('''.''' )[-2:] ) def _A ( A__ ): """simple docstring""" return parse.urlparse(A__ ).netloc def _A ( A__ = "https://github.com" ): """simple docstring""" __lowercase = get_domain_name(A__ ) # Initialize the parser __lowercase = Parser(A__ ) try: # Open URL __lowercase = requests.get(A__ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __lowercase = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __lowercase = requests.get(A__ ) # Get the valid email. __lowercase = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(A__ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(A__ ) if __name__ == "__main__": lowerCAmelCase__ = emails_from_url('''https://github.com''') print(f'{len(emails)} emails found:') print('''\n'''.join(sorted(emails)))
41
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _A ( ): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __lowercase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , A__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _A ( ): """simple docstring""" assert _test_patching.open is open __lowercase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , A__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , A__ ): pass def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , A__ ) is None with patch_submodule(_test_patching , '''len''' , A__ ): assert _test_patching.len is mock assert _test_patching.len is len def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_start_and_stop_mock__''' __lowercase = patch_submodule(_test_patching , '''open''' , A__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _A ( ): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __lowercase = '''__test_patch_submodule_successive_join__''' __lowercase = '''__test_patch_submodule_successive_dirname__''' __lowercase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , A__ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , A__ ): pass
41
1
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : "DiagonalGaussianDistribution" class lowercase_ (lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = True @register_to_config def __init__( self : Optional[int] ,lowercase__ : int = 3 ,lowercase__ : int = 3 ,lowercase__ : Tuple[str] = ("DownEncoderBlock2D",) ,lowercase__ : Tuple[str] = ("UpDecoderBlock2D",) ,lowercase__ : Tuple[int] = (6_4,) ,lowercase__ : int = 1 ,lowercase__ : str = "silu" ,lowercase__ : int = 4 ,lowercase__ : int = 3_2 ,lowercase__ : int = 3_2 ,lowercase__ : float = 0.1_8_2_1_5 ,): super().__init__() # pass init params to Encoder __lowercase = Encoder( in_channels=lowercase__ ,out_channels=lowercase__ ,down_block_types=lowercase__ ,block_out_channels=lowercase__ ,layers_per_block=lowercase__ ,act_fn=lowercase__ ,norm_num_groups=lowercase__ ,double_z=lowercase__ ,) # pass init params to Decoder __lowercase = Decoder( in_channels=lowercase__ ,out_channels=lowercase__ ,up_block_types=lowercase__ ,block_out_channels=lowercase__ ,layers_per_block=lowercase__ ,norm_num_groups=lowercase__ ,act_fn=lowercase__ ,) __lowercase = nn.Convad(2 * latent_channels ,2 * latent_channels ,1 ) __lowercase = nn.Convad(lowercase__ ,lowercase__ ,1 ) __lowercase = False __lowercase = False # only relevant if vae tiling is enabled __lowercase = self.config.sample_size __lowercase = ( self.config.sample_size[0] if isinstance(self.config.sample_size ,(list, tuple) ) else self.config.sample_size ) __lowercase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __lowercase = 0.2_5 def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : str=False ): if isinstance(lowercase__ ,(Encoder, Decoder) ): __lowercase = value def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : bool = True ): __lowercase = use_tiling def SCREAMING_SNAKE_CASE ( self : int ): self.enable_tiling(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = True def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = {} def fn_recursive_add_processors(lowercase__ : str ,lowercase__ : torch.nn.Module ,lowercase__ : Dict[str, AttentionProcessor] ): if hasattr(lowercase__ ,'''set_processor''' ): __lowercase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" ,lowercase__ ,lowercase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowercase__ ,lowercase__ ,lowercase__ ) return processors def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): __lowercase = len(self.attn_processors.keys() ) if isinstance(lowercase__ ,lowercase__ ) and len(lowercase__ ) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(lowercase__ )} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(lowercase__ : str ,lowercase__ : torch.nn.Module ,lowercase__ : Tuple ): if hasattr(lowercase__ ,'''set_processor''' ): if not isinstance(lowercase__ ,lowercase__ ): module.set_processor(lowercase__ ) else: module.set_processor(processor.pop(F"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" ,lowercase__ ,lowercase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowercase__ ,lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : torch.FloatTensor ,lowercase__ : bool = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(lowercase__ ,return_dict=lowercase__ ) if self.use_slicing and x.shape[0] > 1: __lowercase = [self.encoder(lowercase__ ) for x_slice in x.split(1 )] __lowercase = torch.cat(lowercase__ ) else: __lowercase = self.encoder(lowercase__ ) __lowercase = self.quant_conv(lowercase__ ) __lowercase = DiagonalGaussianDistribution(lowercase__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : torch.FloatTensor ,lowercase__ : bool = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(lowercase__ ,return_dict=lowercase__ ) __lowercase = self.post_quant_conv(lowercase__ ) __lowercase = self.decoder(lowercase__ ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase__ ) @apply_forward_hook def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : torch.FloatTensor ,lowercase__ : bool = True ): if self.use_slicing and z.shape[0] > 1: __lowercase = [self._decode(lowercase__ ).sample for z_slice in z.split(1 )] __lowercase = torch.cat(lowercase__ ) else: __lowercase = self._decode(lowercase__ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : Tuple ): __lowercase = min(a.shape[2] ,b.shape[2] ,lowercase__ ) for y in range(lowercase__ ): __lowercase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Any ): __lowercase = min(a.shape[3] ,b.shape[3] ,lowercase__ ) for x in range(lowercase__ ): __lowercase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : torch.FloatTensor ,lowercase__ : bool = True ): __lowercase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __lowercase = int(self.tile_latent_min_size * self.tile_overlap_factor ) __lowercase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __lowercase = [] for i in range(0 ,x.shape[2] ,lowercase__ ): __lowercase = [] for j in range(0 ,x.shape[3] ,lowercase__ ): __lowercase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __lowercase = self.encoder(lowercase__ ) __lowercase = self.quant_conv(lowercase__ ) row.append(lowercase__ ) rows.append(lowercase__ ) __lowercase = [] for i, row in enumerate(lowercase__ ): __lowercase = [] for j, tile in enumerate(lowercase__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowercase = self.blend_v(rows[i - 1][j] ,lowercase__ ,lowercase__ ) if j > 0: __lowercase = self.blend_h(row[j - 1] ,lowercase__ ,lowercase__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowercase__ ,dim=3 ) ) __lowercase = torch.cat(lowercase__ ,dim=2 ) __lowercase = DiagonalGaussianDistribution(lowercase__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : torch.FloatTensor ,lowercase__ : bool = True ): __lowercase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __lowercase = int(self.tile_sample_min_size * self.tile_overlap_factor ) __lowercase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __lowercase = [] for i in range(0 ,z.shape[2] ,lowercase__ ): __lowercase = [] for j in range(0 ,z.shape[3] ,lowercase__ ): __lowercase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __lowercase = self.post_quant_conv(lowercase__ ) __lowercase = self.decoder(lowercase__ ) row.append(lowercase__ ) rows.append(lowercase__ ) __lowercase = [] for i, row in enumerate(lowercase__ ): __lowercase = [] for j, tile in enumerate(lowercase__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowercase = self.blend_v(rows[i - 1][j] ,lowercase__ ,lowercase__ ) if j > 0: __lowercase = self.blend_h(row[j - 1] ,lowercase__ ,lowercase__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowercase__ ,dim=3 ) ) __lowercase = torch.cat(lowercase__ ,dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : torch.FloatTensor ,lowercase__ : bool = False ,lowercase__ : bool = True ,lowercase__ : Optional[torch.Generator] = None ,): __lowercase = sample __lowercase = self.encode(lowercase__ ).latent_dist if sample_posterior: __lowercase = posterior.sample(generator=lowercase__ ) else: __lowercase = posterior.mode() __lowercase = self.decode(lowercase__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase__ )
41
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : """simple docstring""" def __init__( self : Dict ,lowercase__ : Dict ,lowercase__ : int=1_3 ,lowercase__ : List[str]=7 ,lowercase__ : int=True ,lowercase__ : int=True ,lowercase__ : Union[str, Any]=True ,lowercase__ : List[Any]=True ,lowercase__ : str=9_9 ,lowercase__ : Optional[Any]=3_2 ,lowercase__ : Union[str, Any]=5 ,lowercase__ : List[Any]=4 ,lowercase__ : str=3_7 ,lowercase__ : Tuple="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : Dict=0.1 ,lowercase__ : int=1_2_8 ,lowercase__ : Dict=3_2 ,lowercase__ : Dict=1_6 ,lowercase__ : Any=2 ,lowercase__ : int=0.0_2 ,lowercase__ : List[str]=3 ,lowercase__ : Dict=4 ,lowercase__ : Optional[int]=None ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return NezhaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.prepare_config_and_inputs() __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : str ): __lowercase = NezhaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Dict ,lowercase__ : str ,lowercase__ : Optional[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,): __lowercase = True __lowercase = NezhaModel(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,encoder_attention_mask=lowercase__ ,) __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,) __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): __lowercase = NezhaForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): __lowercase = NezhaForNextSentencePrediction(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ): __lowercase = NezhaForPreTraining(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,next_sentence_label=lowercase__ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ): __lowercase = NezhaForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,start_positions=lowercase__ ,end_positions=lowercase__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Tuple ,lowercase__ : str ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : Optional[int] ,lowercase__ : int ): __lowercase = self.num_labels __lowercase = NezhaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Any ,lowercase__ : Optional[Any] ): __lowercase = self.num_labels __lowercase = NezhaForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : str ): __lowercase = self.num_choices __lowercase = NezhaForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : List[str] = True def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : Any=False ): __lowercase = super()._prepare_for_class(lowercase__ ,lowercase__ ,return_labels=lowercase__ ) if return_labels: if model_class in get_values(lowercase__ ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowercase__ ) __lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowercase__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = NezhaModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : int ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): # This regression test was failing with PyTorch < 1.3 ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase = None self.model_tester.create_and_check_model_as_decoder( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = NezhaModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __lowercase = True __lowercase = model_class(config=lowercase__ ) __lowercase = self._prepare_for_class(lowercase__ ,lowercase__ ) __lowercase = torch.jit.trace( lowercase__ ,(inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase__ ,os.path.join(lowercase__ ,'''bert.pt''' ) ) __lowercase = torch.jit.load(os.path.join(lowercase__ ,'''bert.pt''' ) ,map_location=lowercase__ ) loaded(inputs_dict['''input_ids'''].to(lowercase__ ) ,inputs_dict['''attention_mask'''].to(lowercase__ ) ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) )
41
1
'''simple docstring''' from __future__ import annotations lowerCAmelCase__ = [] def _A ( A__ , A__ , A__ ): """simple docstring""" for i in range(len(A__ ) ): if board[row][i] == 1: return False for i in range(len(A__ ) ): if board[i][column] == 1: return False for i, j in zip(range(A__ , -1 , -1 ) , range(A__ , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(A__ , -1 , -1 ) , range(A__ , len(A__ ) ) ): if board[i][j] == 1: return False return True def _A ( A__ , A__ ): """simple docstring""" if row >= len(A__ ): solution.append(A__ ) printboard(A__ ) print() return True for i in range(len(A__ ) ): if is_safe(A__ , A__ , A__ ): __lowercase = 1 solve(A__ , row + 1 ) __lowercase = 0 return False def _A ( A__ ): """simple docstring""" for i in range(len(A__ ) ): for j in range(len(A__ ) ): if board[i][j] == 1: print('''Q''' , end=''' ''' ) else: print('''.''' , end=''' ''' ) print() # n=int(input("The no. of queens")) lowerCAmelCase__ = 8 lowerCAmelCase__ = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('''The total no. of solutions are :''', len(solution))
41
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KEY''') lowerCAmelCase__ = TypeVar('''VAL''') @dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ ) class lowercase_ (Generic[KEY, VAL] ): """simple docstring""" SCREAMING_SNAKE_CASE : KEY SCREAMING_SNAKE_CASE : VAL class lowercase_ (_Item ): """simple docstring""" def __init__( self : Optional[int] ): super().__init__(lowercase__ ,lowercase__ ) def __bool__( self : List[str] ): return False lowerCAmelCase__ = _DeletedItem() class lowercase_ (MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ): __lowercase = initial_block_size __lowercase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowercase = capacity_factor __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ): return hash(lowercase__ ) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ): return (ind + 1) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ): __lowercase = self._buckets[ind] if not stored: __lowercase = _Item(lowercase__ ,lowercase__ ) self._len += 1 return True elif stored.key == key: __lowercase = _Item(lowercase__ ,lowercase__ ) return True else: return False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False __lowercase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ): __lowercase = self._buckets __lowercase = [None] * new_size __lowercase = 0 for item in old_buckets: if item: self._add_item(item.key ,item.val ) def SCREAMING_SNAKE_CASE ( self : str ): self._resize(len(self._buckets ) * 2 ) def SCREAMING_SNAKE_CASE ( self : Tuple ): self._resize(len(self._buckets ) // 2 ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ): __lowercase = self._get_bucket_index(lowercase__ ) for _ in range(len(self._buckets ) ): yield ind __lowercase = self._get_next_ind(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): for ind in self._iterate_buckets(lowercase__ ): if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ): break def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): if self._is_full(): self._size_up() self._add_item(lowercase__ ,lowercase__ ) def __delitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: raise KeyError(lowercase__ ) if item is _deleted: continue if item.key == key: __lowercase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowercase__ ) def __len__( self : Optional[int] ): return self._len def __iter__( self : str ): yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ): __lowercase = ''' ,'''.join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
41
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowercase_ : """simple docstring""" @staticmethod def SCREAMING_SNAKE_CASE ( *lowercase__ : Dict ,**lowercase__ : List[str] ): pass @is_pipeline_test @require_vision @require_timm @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = MODEL_FOR_OBJECT_DETECTION_MAPPING def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : List[Any] ,lowercase__ : int ,lowercase__ : Any ): __lowercase = ObjectDetectionPipeline(model=lowercase__ ,image_processor=lowercase__ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Dict ,lowercase__ : str ): __lowercase = object_detector('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ,threshold=0.0 ) self.assertGreater(len(lowercase__ ) ,0 ) for detected_object in outputs: self.assertEqual( lowercase__ ,{ '''score''': ANY(lowercase__ ), '''label''': ANY(lowercase__ ), '''box''': {'''xmin''': ANY(lowercase__ ), '''ymin''': ANY(lowercase__ ), '''xmax''': ANY(lowercase__ ), '''ymax''': ANY(lowercase__ )}, } ,) import datasets __lowercase = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' ,'''image''' ,split='''test''' ) __lowercase = [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] __lowercase = object_detector(lowercase__ ,threshold=0.0 ) self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) ) for outputs in batch_outputs: self.assertGreater(len(lowercase__ ) ,0 ) for detected_object in outputs: self.assertEqual( lowercase__ ,{ '''score''': ANY(lowercase__ ), '''label''': ANY(lowercase__ ), '''box''': {'''xmin''': ANY(lowercase__ ), '''ymin''': ANY(lowercase__ ), '''xmax''': ANY(lowercase__ ), '''ymax''': ANY(lowercase__ )}, } ,) @require_tf @unittest.skip('''Object detection not implemented in TF''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): pass @require_torch def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''hf-internal-testing/tiny-detr-mobilenetsv3''' __lowercase = AutoModelForObjectDetection.from_pretrained(lowercase__ ) __lowercase = AutoFeatureExtractor.from_pretrained(lowercase__ ) __lowercase = ObjectDetectionPipeline(model=lowercase__ ,feature_extractor=lowercase__ ) __lowercase = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ,threshold=0.0 ) self.assertEqual( nested_simplify(lowercase__ ,decimals=4 ) ,[ {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, ] ,) __lowercase = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ,threshold=0.0 ,) self.assertEqual( nested_simplify(lowercase__ ,decimals=4 ) ,[ [ {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, ], [ {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, ], ] ,) @require_torch @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = '''facebook/detr-resnet-50''' __lowercase = AutoModelForObjectDetection.from_pretrained(lowercase__ ) __lowercase = AutoFeatureExtractor.from_pretrained(lowercase__ ) __lowercase = ObjectDetectionPipeline(model=lowercase__ ,feature_extractor=lowercase__ ) __lowercase = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(lowercase__ ,decimals=4 ) ,[ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ] ,) __lowercase = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(lowercase__ ,decimals=4 ) ,[ [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], ] ,) @require_torch @slow def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = '''facebook/detr-resnet-50''' __lowercase = pipeline('''object-detection''' ,model=lowercase__ ) __lowercase = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(lowercase__ ,decimals=4 ) ,[ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ] ,) __lowercase = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(lowercase__ ,decimals=4 ) ,[ [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], ] ,) @require_torch @slow def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = 0.9_9_8_5 __lowercase = '''facebook/detr-resnet-50''' __lowercase = pipeline('''object-detection''' ,model=lowercase__ ) __lowercase = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ,threshold=lowercase__ ) self.assertEqual( nested_simplify(lowercase__ ,decimals=4 ) ,[ {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ] ,) @require_torch @require_pytesseract @slow def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = '''Narsil/layoutlmv3-finetuned-funsd''' __lowercase = 0.9_9_9_3 __lowercase = pipeline('''object-detection''' ,model=lowercase__ ,threshold=lowercase__ ) __lowercase = object_detector( '''https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png''' ) self.assertEqual( nested_simplify(lowercase__ ,decimals=4 ) ,[ {'''score''': 0.9_9_9_3, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 2_9_4, '''ymin''': 2_5_4, '''xmax''': 3_4_3, '''ymax''': 2_6_4}}, {'''score''': 0.9_9_9_3, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 2_9_4, '''ymin''': 2_5_4, '''xmax''': 3_4_3, '''ymax''': 2_6_4}}, ] ,)
41
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ,**lowercase__ : Tuple ): super().__init__(**lowercase__ ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self ,'''vision''' ) self.check_model_type(lowercase__ ) def __call__( self : List[str] ,lowercase__ : Union[str, "Image.Image", List[Dict[str, Any]]] ,lowercase__ : Union[str, List[str]] = None ,**lowercase__ : str ,): if "text_queries" in kwargs: __lowercase = kwargs.pop('''text_queries''' ) if isinstance(lowercase__ ,(str, Image.Image) ): __lowercase = {'''image''': image, '''candidate_labels''': candidate_labels} else: __lowercase = image __lowercase = super().__call__(lowercase__ ,**lowercase__ ) return results def SCREAMING_SNAKE_CASE ( self : int ,**lowercase__ : List[Any] ): __lowercase = {} if "threshold" in kwargs: __lowercase = kwargs['''threshold'''] if "top_k" in kwargs: __lowercase = kwargs['''top_k'''] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[Any] ): __lowercase = load_image(inputs['''image'''] ) __lowercase = inputs['''candidate_labels'''] if isinstance(lowercase__ ,lowercase__ ): __lowercase = candidate_labels.split(''',''' ) __lowercase = torch.tensor([[image.height, image.width]] ,dtype=torch.intaa ) for i, candidate_label in enumerate(lowercase__ ): __lowercase = self.tokenizer(lowercase__ ,return_tensors=self.framework ) __lowercase = self.image_processor(lowercase__ ,return_tensors=self.framework ) yield { "is_last": i == len(lowercase__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ): __lowercase = model_inputs.pop('''target_size''' ) __lowercase = model_inputs.pop('''candidate_label''' ) __lowercase = model_inputs.pop('''is_last''' ) __lowercase = self.model(**lowercase__ ) __lowercase = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : List[Any]=0.1 ,lowercase__ : List[str]=None ): __lowercase = [] for model_output in model_outputs: __lowercase = model_output['''candidate_label'''] __lowercase = BaseModelOutput(lowercase__ ) __lowercase = self.image_processor.post_process_object_detection( outputs=lowercase__ ,threshold=lowercase__ ,target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): __lowercase = outputs['''scores'''][index].item() __lowercase = self._get_bounding_box(outputs['''boxes'''][index][0] ) __lowercase = {'''score''': score, '''label''': label, '''box''': box} results.append(lowercase__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : x["score"] ,reverse=lowercase__ ) if top_k: __lowercase = results[:top_k] return results def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : "torch.Tensor" ): if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) __lowercase , __lowercase , __lowercase , __lowercase = box.int().tolist() __lowercase = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
41
1
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) set_seed(770) lowerCAmelCase__ = { '''c_attn''': '''att_proj''', '''c_proj''': '''out_proj''', '''c_fc''': '''in_proj''', '''transformer.''': '''''', '''h.''': '''layers.''', '''ln_1''': '''layernorm_1''', '''ln_2''': '''layernorm_2''', '''ln_f''': '''layernorm_final''', '''wpe''': '''position_embeds_layer''', '''wte''': '''input_embeds_layer''', } lowerCAmelCase__ = { '''text_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text.pt''', }, '''coarse_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse.pt''', }, '''fine_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine.pt''', }, '''text''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text_2.pt''', }, '''coarse''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse_2.pt''', }, '''fine''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine_2.pt''', }, } lowerCAmelCase__ = os.path.dirname(os.path.abspath(__file__)) lowerCAmelCase__ = os.path.join(os.path.expanduser('''~'''), '''.cache''') lowerCAmelCase__ = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''') def _A ( A__ , A__=False ): """simple docstring""" __lowercase = model_type if use_small: key += "_small" return os.path.join(A__ , REMOTE_MODEL_PATHS[key]['''file_name'''] ) def _A ( A__ , A__ ): """simple docstring""" os.makedirs(A__ , exist_ok=A__ ) hf_hub_download(repo_id=A__ , filename=A__ , local_dir=A__ ) def _A ( A__ , A__ , A__=False , A__="text" ): """simple docstring""" if model_type == "text": __lowercase = BarkSemanticModel __lowercase = BarkSemanticConfig __lowercase = BarkSemanticGenerationConfig elif model_type == "coarse": __lowercase = BarkCoarseModel __lowercase = BarkCoarseConfig __lowercase = BarkCoarseGenerationConfig elif model_type == "fine": __lowercase = BarkFineModel __lowercase = BarkFineConfig __lowercase = BarkFineGenerationConfig else: raise NotImplementedError() __lowercase = F"{model_type}_small" if use_small else model_type __lowercase = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(A__ ): logger.info(F"{model_type} model not found, downloading into `{CACHE_DIR}`." ) _download(model_info['''repo_id'''] , model_info['''file_name'''] ) __lowercase = torch.load(A__ , map_location=A__ ) # this is a hack __lowercase = checkpoint['''model_args'''] if "input_vocab_size" not in model_args: __lowercase = model_args['''vocab_size'''] __lowercase = model_args['''vocab_size'''] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments __lowercase = model_args.pop('''n_head''' ) __lowercase = model_args.pop('''n_embd''' ) __lowercase = model_args.pop('''n_layer''' ) __lowercase = ConfigClass(**checkpoint['''model_args'''] ) __lowercase = ModelClass(config=A__ ) __lowercase = GenerationConfigClass() __lowercase = model_generation_config __lowercase = checkpoint['''model'''] # fixup checkpoint __lowercase = '''_orig_mod.''' for k, v in list(state_dict.items() ): if k.startswith(A__ ): # replace part of the key with corresponding layer name in HF implementation __lowercase = k[len(A__ ) :] for old_layer_name in new_layer_name_dict: __lowercase = new_k.replace(A__ , new_layer_name_dict[old_layer_name] ) __lowercase = state_dict.pop(A__ ) __lowercase = set(state_dict.keys() ) - set(model.state_dict().keys() ) __lowercase = {k for k in extra_keys if not k.endswith('''.attn.bias''' )} __lowercase = set(model.state_dict().keys() ) - set(state_dict.keys() ) __lowercase = {k for k in missing_keys if not k.endswith('''.attn.bias''' )} if len(A__ ) != 0: raise ValueError(F"extra keys found: {extra_keys}" ) if len(A__ ) != 0: raise ValueError(F"missing keys: {missing_keys}" ) model.load_state_dict(A__ , strict=A__ ) __lowercase = model.num_parameters(exclude_embeddings=A__ ) __lowercase = checkpoint['''best_val_loss'''].item() logger.info(F"model loaded: {round(n_params/1e6 , 1 )}M params, {round(A__ , 3 )} loss" ) model.eval() model.to(A__ ) del checkpoint, state_dict return model def _A ( A__ , A__=False , A__="text" ): """simple docstring""" if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() __lowercase = '''cpu''' # do conversion on cpu __lowercase = _get_ckpt_path(A__ , use_small=A__ ) __lowercase = _load_model(A__ , A__ , model_type=A__ , use_small=A__ ) # load bark initial model __lowercase = _bark_load_model(A__ , '''cpu''' , model_type=A__ , use_small=A__ ) if model_type == "text": __lowercase = bark_model['''model'''] if model.num_parameters(exclude_embeddings=A__ ) != bark_model.get_num_params(): raise ValueError('''initial and new models don\'t have the same number of parameters''' ) # check if same output as the bark model __lowercase = 5 __lowercase = 10 if model_type in ["text", "coarse"]: __lowercase = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) __lowercase = bark_model(A__ )[0] __lowercase = model(A__ ) # take last logits __lowercase = output_new_model_total.logits[:, [-1], :] else: __lowercase = 3 __lowercase = 8 __lowercase = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) __lowercase = model(A__ , A__ ) __lowercase = bark_model(A__ , A__ ) __lowercase = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('''initial and new outputs don\'t have the same shape''' ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError('''initial and new outputs are not equal''' ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) def _A ( A__ , A__ , A__ , A__ , A__ , A__ , ): """simple docstring""" __lowercase = os.path.join(A__ , A__ ) __lowercase = BarkSemanticConfig.from_pretrained(os.path.join(A__ , '''config.json''' ) ) __lowercase = BarkCoarseConfig.from_pretrained(os.path.join(A__ , '''config.json''' ) ) __lowercase = BarkFineConfig.from_pretrained(os.path.join(A__ , '''config.json''' ) ) __lowercase = EncodecConfig.from_pretrained('''facebook/encodec_24khz''' ) __lowercase = BarkSemanticModel.from_pretrained(A__ ) __lowercase = BarkCoarseModel.from_pretrained(A__ ) __lowercase = BarkFineModel.from_pretrained(A__ ) __lowercase = EncodecModel.from_pretrained('''facebook/encodec_24khz''' ) __lowercase = BarkConfig.from_sub_model_configs( A__ , A__ , A__ , A__ ) __lowercase = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) __lowercase = BarkModel(A__ ) __lowercase = semantic __lowercase = coarseAcoustic __lowercase = fineAcoustic __lowercase = codec __lowercase = bark_generation_config Path(A__ ).mkdir(exist_ok=A__ ) bark.save_pretrained(A__ , repo_id=A__ , push_to_hub=A__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''') lowerCAmelCase__ = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
41
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 'facebook/bart-large-mnli' SCREAMING_SNAKE_CASE : Optional[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) SCREAMING_SNAKE_CASE : Any = 'text_classifier' SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : Tuple = ['text', ['text']] SCREAMING_SNAKE_CASE : List[str] = ['text'] def SCREAMING_SNAKE_CASE ( self : List[Any] ): super().setup() __lowercase = self.model.config __lowercase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): __lowercase = int(lowercase__ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Dict ,lowercase__ : List[Any] ): __lowercase = labels return self.pre_processor( [text] * len(lowercase__ ) ,[F"This example is {label}" for label in labels] ,return_tensors='''pt''' ,padding='''max_length''' ,) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = outputs.logits __lowercase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
41
1
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __lt__( self : Any ,lowercase__ : List[Any] ): return self[-1] < other[-1] def __eq__( self : Dict ,lowercase__ : Union[str, Any] ): return self[-1] == other[-1] def _A ( A__ ): """simple docstring""" __lowercase = [] # sort into stacks for element in collection: __lowercase = Stack([element] ) __lowercase = bisect_left(A__ , A__ ) if i != len(A__ ): stacks[i].append(A__ ) else: stacks.append(A__ ) # use a heap-based merge to merge stack efficiently __lowercase = merge(*(reversed(A__ ) for stack in stacks) ) return collection if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(patience_sort(unsorted))
41
'''simple docstring''' from collections.abc import Callable class lowercase_ : """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : Callable | None = None ): # Stores actual heap items. __lowercase = [] # Stores indexes of each item for supporting updates and deletion. __lowercase = {} # Stores current size of heap. __lowercase = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __lowercase = key or (lambda lowercase__ : x) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : int ): return int((i - 1) / 2 ) if i > 0 else None def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = int(2 * i + 1 ) return left if 0 < left < self.size else None def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ): __lowercase = int(2 * i + 2 ) return right if 0 < right < self.size else None def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : int ,lowercase__ : int ): __lowercase , __lowercase = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __lowercase , __lowercase = self.arr[j], self.arr[i] def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): return self.arr[i][1] < self.arr[j][1] def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._left(lowercase__ ) __lowercase = self._right(lowercase__ ) __lowercase = i if left is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = left if right is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = right return valid_parent def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._parent(lowercase__ ) while parent is not None and not self._cmp(lowercase__ ,lowercase__ ): self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = parent, self._parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = self._get_valid_parent(lowercase__ ) while valid_parent != index: self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = valid_parent, self._get_valid_parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] __lowercase = [item, self.key(lowercase__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] del self.pos_map[item] __lowercase = self.arr[self.size - 1] __lowercase = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : int ): __lowercase = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(lowercase__ )] ) else: __lowercase = [item, self.key(lowercase__ )] __lowercase = self.size self.size += 1 self._heapify_up(self.size - 1 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): return self.arr[0] if self.size else None def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _A ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
41
1
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : jnp.ndarray SCREAMING_SNAKE_CASE : jnp.ndarray class lowercase_ (nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __lowercase = [] for i in range(len(self.block_out_channels ) - 1 ): __lowercase = self.block_out_channels[i] __lowercase = self.block_out_channels[i + 1] __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = blocks __lowercase = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : List[str] ,lowercase__ : Optional[int] ): __lowercase = self.conv_in(lowercase__ ) __lowercase = nn.silu(lowercase__ ) for block in self.blocks: __lowercase = block(lowercase__ ) __lowercase = nn.silu(lowercase__ ) __lowercase = self.conv_out(lowercase__ ) return embedding @flax_register_to_config class lowercase_ (nn.Module , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 3_2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False SCREAMING_SNAKE_CASE : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) SCREAMING_SNAKE_CASE : int = 2 SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None SCREAMING_SNAKE_CASE : int = 1_2_8_0 SCREAMING_SNAKE_CASE : float = 0.0 SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = "rgb" SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : jax.random.KeyArray ): # init input tensors __lowercase = (1, self.in_channels, self.sample_size, self.sample_size) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase = jnp.ones((1,) ,dtype=jnp.intaa ) __lowercase = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa ) __lowercase = (1, 3, self.sample_size * 8, self.sample_size * 8) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase , __lowercase = jax.random.split(lowercase__ ) __lowercase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )["params"] def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.block_out_channels __lowercase = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __lowercase = self.num_attention_heads or self.attention_head_dim # input __lowercase = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time __lowercase = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift ) __lowercase = FlaxTimestepEmbedding(lowercase__ ,dtype=self.dtype ) __lowercase = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) __lowercase = self.only_cross_attention if isinstance(lowercase__ ,lowercase__ ): __lowercase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = (num_attention_heads,) * len(self.down_block_types ) # down __lowercase = [] __lowercase = [] __lowercase = block_out_channels[0] __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) for i, down_block_type in enumerate(self.down_block_types ): __lowercase = output_channel __lowercase = block_out_channels[i] __lowercase = i == len(lowercase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": __lowercase = FlaxCrossAttnDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: __lowercase = FlaxDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(lowercase__ ) for _ in range(self.layers_per_block ): __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) if not is_final_block: __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) __lowercase = down_blocks __lowercase = controlnet_down_blocks # mid __lowercase = block_out_channels[-1] __lowercase = FlaxUNetMidBlockaDCrossAttn( in_channels=lowercase__ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : float = 1.0 ,lowercase__ : bool = True ,lowercase__ : bool = False ,): __lowercase = self.controlnet_conditioning_channel_order if channel_order == "bgr": __lowercase = jnp.flip(lowercase__ ,axis=1 ) # 1. time if not isinstance(lowercase__ ,jnp.ndarray ): __lowercase = jnp.array([timesteps] ,dtype=jnp.intaa ) elif isinstance(lowercase__ ,jnp.ndarray ) and len(timesteps.shape ) == 0: __lowercase = timesteps.astype(dtype=jnp.floataa ) __lowercase = jnp.expand_dims(lowercase__ ,0 ) __lowercase = self.time_proj(lowercase__ ) __lowercase = self.time_embedding(lowercase__ ) # 2. pre-process __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.conv_in(lowercase__ ) __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.controlnet_cond_embedding(lowercase__ ) sample += controlnet_cond # 3. down __lowercase = (sample,) for down_block in self.down_blocks: if isinstance(lowercase__ ,lowercase__ ): __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) else: __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,deterministic=not train ) down_block_res_samples += res_samples # 4. mid __lowercase = self.mid_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) # 5. contronet blocks __lowercase = () for down_block_res_sample, controlnet_block in zip(lowercase__ ,self.controlnet_down_blocks ): __lowercase = controlnet_block(lowercase__ ) controlnet_down_block_res_samples += (down_block_res_sample,) __lowercase = controlnet_down_block_res_samples __lowercase = self.controlnet_mid_block(lowercase__ ) # 6. scaling __lowercase = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowercase__ ,mid_block_res_sample=lowercase__ )
41
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ): __lowercase = [] def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : str ,**lowercase__ : Any ): self.events.append('''on_init_end''' ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : int ,**lowercase__ : Optional[int] ): self.events.append('''on_train_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ,**lowercase__ : List[str] ): self.events.append('''on_train_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,**lowercase__ : Optional[Any] ): self.events.append('''on_epoch_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : Any ,**lowercase__ : Optional[int] ): self.events.append('''on_epoch_end''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_step_begin''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : Optional[int] ,**lowercase__ : Dict ): self.events.append('''on_step_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,**lowercase__ : Any ): self.events.append('''on_evaluate''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : int ,**lowercase__ : Optional[Any] ): self.events.append('''on_predict''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,**lowercase__ : int ): self.events.append('''on_save''' ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_log''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : int ,lowercase__ : Dict ,**lowercase__ : str ): self.events.append('''on_prediction_step''' ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): shutil.rmtree(self.output_dir ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any]=0 ,lowercase__ : Any=0 ,lowercase__ : Tuple=6_4 ,lowercase__ : Optional[int]=6_4 ,lowercase__ : Optional[Any]=None ,lowercase__ : str=False ,**lowercase__ : Any ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionModelConfig(a=lowercase__ ,b=lowercase__ ) __lowercase = RegressionPreTrainedModel(lowercase__ ) __lowercase = TrainingArguments(self.output_dir ,disable_tqdm=lowercase__ ,report_to=[] ,**lowercase__ ) return Trainer( lowercase__ ,lowercase__ ,train_dataset=lowercase__ ,eval_dataset=lowercase__ ,callbacks=lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) ) # Order doesn't matter __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) for cba, cba in zip(lowercase__ ,lowercase__ ): if isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,lowercase__ ) elif isinstance(lowercase__ ,lowercase__ ) and not isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,cba.__class__ ) elif not isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(cba.__class__ ,lowercase__ ) else: self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ): __lowercase = ['''on_init_end''', '''on_train_begin'''] __lowercase = 0 __lowercase = len(trainer.get_eval_dataloader() ) __lowercase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(lowercase__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.get_trainer() __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # Callbacks passed at init are added to the default callbacks __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __lowercase = self.get_trainer(disable_tqdm=lowercase__ ) __lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __lowercase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(cb.__class__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # We can also add, pop, or remove by instance __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' ,category=lowercase__ ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # Independent log/save/eval __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='''steps''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='''epoch''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # A bit of everything __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=1_0 ,eval_steps=5 ,evaluation_strategy='''steps''' ,) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,) assert str(lowercase__ ) in warn_mock.call_args[0][0]
41
1
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Dict ): if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() ,encoding='''utf-8''' ,check=lowercase__ ,) assert hasattr(self ,'''env''' ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Optional[int] ): __lowercase = F"{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}" # distributed data settings __lowercase = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=lowercase__ ,instance_count=lowercase__ ,instance_type=self.instance_type ,debugger_hook_config=lowercase__ ,hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} ,metric_definitions=self.env.metric_definitions ,distribution=lowercase__ ,py_version='''py36''' ,) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Optional[int] ): TrainingJobAnalytics(lowercase__ ).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv" ) @parameterized.expand([(2,)] ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Tuple ): # create estimator __lowercase = self.create_estimator(lowercase__ ) # run training estimator.fit() # result dataframe __lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowercase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) __lowercase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowercase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' ,9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" ,'''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} ,lowercase__ )
41
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : jnp.ndarray SCREAMING_SNAKE_CASE : jnp.ndarray class lowercase_ (nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __lowercase = [] for i in range(len(self.block_out_channels ) - 1 ): __lowercase = self.block_out_channels[i] __lowercase = self.block_out_channels[i + 1] __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = blocks __lowercase = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : List[str] ,lowercase__ : Optional[int] ): __lowercase = self.conv_in(lowercase__ ) __lowercase = nn.silu(lowercase__ ) for block in self.blocks: __lowercase = block(lowercase__ ) __lowercase = nn.silu(lowercase__ ) __lowercase = self.conv_out(lowercase__ ) return embedding @flax_register_to_config class lowercase_ (nn.Module , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 3_2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False SCREAMING_SNAKE_CASE : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) SCREAMING_SNAKE_CASE : int = 2 SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None SCREAMING_SNAKE_CASE : int = 1_2_8_0 SCREAMING_SNAKE_CASE : float = 0.0 SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = "rgb" SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : jax.random.KeyArray ): # init input tensors __lowercase = (1, self.in_channels, self.sample_size, self.sample_size) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase = jnp.ones((1,) ,dtype=jnp.intaa ) __lowercase = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa ) __lowercase = (1, 3, self.sample_size * 8, self.sample_size * 8) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase , __lowercase = jax.random.split(lowercase__ ) __lowercase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )["params"] def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.block_out_channels __lowercase = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __lowercase = self.num_attention_heads or self.attention_head_dim # input __lowercase = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time __lowercase = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift ) __lowercase = FlaxTimestepEmbedding(lowercase__ ,dtype=self.dtype ) __lowercase = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) __lowercase = self.only_cross_attention if isinstance(lowercase__ ,lowercase__ ): __lowercase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = (num_attention_heads,) * len(self.down_block_types ) # down __lowercase = [] __lowercase = [] __lowercase = block_out_channels[0] __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) for i, down_block_type in enumerate(self.down_block_types ): __lowercase = output_channel __lowercase = block_out_channels[i] __lowercase = i == len(lowercase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": __lowercase = FlaxCrossAttnDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: __lowercase = FlaxDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(lowercase__ ) for _ in range(self.layers_per_block ): __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) if not is_final_block: __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) __lowercase = down_blocks __lowercase = controlnet_down_blocks # mid __lowercase = block_out_channels[-1] __lowercase = FlaxUNetMidBlockaDCrossAttn( in_channels=lowercase__ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : float = 1.0 ,lowercase__ : bool = True ,lowercase__ : bool = False ,): __lowercase = self.controlnet_conditioning_channel_order if channel_order == "bgr": __lowercase = jnp.flip(lowercase__ ,axis=1 ) # 1. time if not isinstance(lowercase__ ,jnp.ndarray ): __lowercase = jnp.array([timesteps] ,dtype=jnp.intaa ) elif isinstance(lowercase__ ,jnp.ndarray ) and len(timesteps.shape ) == 0: __lowercase = timesteps.astype(dtype=jnp.floataa ) __lowercase = jnp.expand_dims(lowercase__ ,0 ) __lowercase = self.time_proj(lowercase__ ) __lowercase = self.time_embedding(lowercase__ ) # 2. pre-process __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.conv_in(lowercase__ ) __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.controlnet_cond_embedding(lowercase__ ) sample += controlnet_cond # 3. down __lowercase = (sample,) for down_block in self.down_blocks: if isinstance(lowercase__ ,lowercase__ ): __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) else: __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,deterministic=not train ) down_block_res_samples += res_samples # 4. mid __lowercase = self.mid_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) # 5. contronet blocks __lowercase = () for down_block_res_sample, controlnet_block in zip(lowercase__ ,self.controlnet_down_blocks ): __lowercase = controlnet_block(lowercase__ ) controlnet_down_block_res_samples += (down_block_res_sample,) __lowercase = controlnet_down_block_res_samples __lowercase = self.controlnet_mid_block(lowercase__ ) # 6. scaling __lowercase = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowercase__ ,mid_block_res_sample=lowercase__ )
41
1
'''simple docstring''' import os from distutils.util import strtobool def _A ( A__ , A__ ): """simple docstring""" for e in env_keys: __lowercase = int(os.environ.get(A__ , -1 ) ) if val >= 0: return val return default def _A ( A__ , A__=False ): """simple docstring""" __lowercase = os.environ.get(A__ , str(A__ ) ) return strtobool(A__ ) == 1 # As its name indicates `strtobool` actually returns an int... def _A ( A__ , A__="no" ): """simple docstring""" __lowercase = os.environ.get(A__ , str(A__ ) ) return value
41
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase__ = False lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''ybelkada/fonts''' def _A ( ): """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use " '''Pix2StructImageProcessor. Please upgrade torch.''' ) def _A ( A__ , A__ , A__ ): """simple docstring""" requires_backends(A__ , ['''torch'''] ) _check_torch_version() __lowercase = image_tensor.unsqueeze(0 ) __lowercase = torch.nn.functional.unfold(A__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) __lowercase = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , A__ , A__ , -1 ) __lowercase = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def _A ( A__ , A__ = 36 , A__ = "black" , A__ = "white" , A__ = 5 , A__ = 5 , A__ = 5 , A__ = 5 , A__ = None , A__ = None , ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Add new lines so that each line is no more than 80 characters. __lowercase = textwrap.TextWrapper(width=80 ) __lowercase = wrapper.wrap(text=A__ ) __lowercase = '''\n'''.join(A__ ) if font_bytes is not None and font_path is None: __lowercase = io.BytesIO(A__ ) elif font_path is not None: __lowercase = font_path else: __lowercase = hf_hub_download(A__ , '''Arial.TTF''' ) __lowercase = ImageFont.truetype(A__ , encoding='''UTF-8''' , size=A__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. __lowercase = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , A__ ) ) __lowercase , __lowercase , __lowercase , __lowercase = temp_draw.textbbox((0, 0) , A__ , A__ ) # Create the actual image with a bit of padding around the text. __lowercase = text_width + left_padding + right_padding __lowercase = text_height + top_padding + bottom_padding __lowercase = Image.new('''RGB''' , (image_width, image_height) , A__ ) __lowercase = ImageDraw.Draw(A__ ) draw.text(xy=(left_padding, top_padding) , text=A__ , fill=A__ , font=A__ ) return image def _A ( A__ , A__ , **A__ ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Convert to PIL image if necessary __lowercase = to_pil_image(A__ ) __lowercase = render_text(A__ , **A__ ) __lowercase = max(header_image.width , image.width ) __lowercase = int(image.height * (new_width / image.width) ) __lowercase = int(header_image.height * (new_width / header_image.width) ) __lowercase = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary __lowercase = to_numpy_array(A__ ) if infer_channel_dimension_format(A__ ) == ChannelDimension.LAST: __lowercase = to_channel_dimension_format(A__ , ChannelDimension.LAST ) return new_image class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ['flattened_patches'] def __init__( self : Any ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : int = 2_0_4_8 ,lowercase__ : bool = False ,**lowercase__ : List[str] ,): super().__init__(**lowercase__ ) __lowercase = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6} __lowercase = do_normalize __lowercase = do_convert_rgb __lowercase = max_patches __lowercase = is_vqa def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : np.ndarray ,lowercase__ : int ,lowercase__ : dict ,**lowercase__ : Tuple ): requires_backends(self.extract_flattened_patches ,'''torch''' ) _check_torch_version() # convert to torch __lowercase = to_channel_dimension_format(lowercase__ ,ChannelDimension.FIRST ) __lowercase = torch.from_numpy(lowercase__ ) __lowercase , __lowercase = patch_size['''height'''], patch_size['''width'''] __lowercase , __lowercase = get_image_size(lowercase__ ) # maximize scale s.t. __lowercase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) __lowercase = max(min(math.floor(scale * image_height / patch_height ) ,lowercase__ ) ,1 ) __lowercase = max(min(math.floor(scale * image_width / patch_width ) ,lowercase__ ) ,1 ) __lowercase = max(num_feasible_rows * patch_height ,1 ) __lowercase = max(num_feasible_cols * patch_width ,1 ) __lowercase = torch.nn.functional.interpolate( image.unsqueeze(0 ) ,size=(resized_height, resized_width) ,mode='''bilinear''' ,align_corners=lowercase__ ,antialias=lowercase__ ,).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] __lowercase = torch_extract_patches(lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = patches.shape __lowercase = patches_shape[1] __lowercase = patches_shape[2] __lowercase = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] __lowercase = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] __lowercase = torch.arange(lowercase__ ).reshape([rows, 1] ).repeat(1 ,lowercase__ ).reshape([rows * columns, 1] ) __lowercase = torch.arange(lowercase__ ).reshape([1, columns] ).repeat(lowercase__ ,1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] __lowercase = row_ids.to(torch.floataa ) __lowercase = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] __lowercase = torch.cat([row_ids, col_ids, patches] ,-1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] __lowercase = torch.nn.functional.pad(lowercase__ ,[0, 0, 0, max_patches - (rows * columns)] ).float() __lowercase = to_numpy_array(lowercase__ ) return result def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : np.ndarray ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ): if image.dtype == np.uinta: __lowercase = image.astype(np.floataa ) # take mean across the whole `image` __lowercase = np.mean(lowercase__ ) __lowercase = np.std(lowercase__ ) __lowercase = max(lowercase__ ,1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : ImageInput ,lowercase__ : Optional[str] = None ,lowercase__ : bool = None ,lowercase__ : Optional[bool] = None ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[Dict[str, int]] = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : ChannelDimension = ChannelDimension.FIRST ,**lowercase__ : List[Any] ,): __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = patch_size if patch_size is not None else self.patch_size __lowercase = max_patches if max_patches is not None else self.max_patches __lowercase = self.is_vqa if kwargs.get('''data_format''' ,lowercase__ ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) __lowercase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(lowercase__ ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowercase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) __lowercase = kwargs.pop('''font_bytes''' ,lowercase__ ) __lowercase = kwargs.pop('''font_path''' ,lowercase__ ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = [header_text] * len(lowercase__ ) __lowercase = [ render_header(lowercase__ ,header_text[i] ,font_bytes=lowercase__ ,font_path=lowercase__ ) for i, image in enumerate(lowercase__ ) ] if do_normalize: __lowercase = [self.normalize(image=lowercase__ ) for image in images] # convert to torch tensor and permute __lowercase = [ self.extract_flattened_patches(image=lowercase__ ,max_patches=lowercase__ ,patch_size=lowercase__ ) for image in images ] # create attention mask in numpy __lowercase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] __lowercase = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks} ,tensor_type=lowercase__ ) return encoded_outputs
41
1
'''simple docstring''' import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _A ( A__ = 3 ): """simple docstring""" if isinstance(A__ , A__ ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(A__ ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) __lowercase = QuantumRegister(A__ , '''qr''' ) __lowercase = ClassicalRegister(A__ , '''cr''' ) __lowercase = QuantumCircuit(A__ , A__ ) __lowercase = number_of_qubits for i in range(A__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(A__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , A__ , A__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(A__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(A__ , A__ ) # simulate with 10000 shots __lowercase = Aer.get_backend('''qasm_simulator''' ) __lowercase = execute(A__ , A__ , shots=10000 ) return job.result().get_counts(A__ ) if __name__ == "__main__": print( f'Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}' )
41
'''simple docstring''' import doctest from collections import deque import numpy as np class lowercase_ : """simple docstring""" def __init__( self : Optional[Any] ): __lowercase = [2, 1, 2, -1] __lowercase = [1, 2, 3, 4] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = len(self.first_signal ) __lowercase = len(self.second_signal ) __lowercase = max(lowercase__ ,lowercase__ ) # create a zero matrix of max_length x max_length __lowercase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __lowercase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __lowercase = np.matmul(np.transpose(lowercase__ ) ,np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ ,2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
41
1
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''spiece.model'''} lowerCAmelCase__ = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', } } # TODO(PVP) - this should be removed in Transformers v5 lowerCAmelCase__ = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } lowerCAmelCase__ = '''▁''' class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[Any] = ['input_ids', 'attention_mask'] def __init__( self : List[str] ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any]="</s>" ,lowercase__ : Union[str, Any]="<unk>" ,lowercase__ : int="<pad>" ,lowercase__ : Dict=1_0_0 ,lowercase__ : Optional[int]=None ,lowercase__ : Optional[Dict[str, Any]] = None ,lowercase__ : Optional[Any]=True ,**lowercase__ : Optional[int] ,): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __lowercase = [F"<extra_id_{i}>" for i in range(lowercase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __lowercase = len(set(filter(lambda lowercase__ : bool('''extra_id''' in str(lowercase__ ) ) ,lowercase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( F"You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to" ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) __lowercase = legacy __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase__ ,unk_token=lowercase__ ,pad_token=lowercase__ ,extra_ids=lowercase__ ,additional_special_tokens=lowercase__ ,sp_model_kwargs=self.sp_model_kwargs ,legacy=lowercase__ ,**lowercase__ ,) __lowercase = vocab_file __lowercase = extra_ids __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase__ ) @staticmethod def SCREAMING_SNAKE_CASE ( lowercase__ : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: __lowercase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' F" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' F" {pretrained_model_name_or_path} automatically truncating your input to" F" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" F" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' ,lowercase__ ,) return max_model_length @property def SCREAMING_SNAKE_CASE ( self : List[str] ): return self.sp_model.get_piece_size() + self._extra_ids def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ,lowercase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ ,token_ids_a=lowercase__ ,already_has_special_tokens=lowercase__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowercase__ )) + [1] return ([0] * len(lowercase__ )) + [1] + ([0] * len(lowercase__ )) + [1] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return list( set(filter(lambda lowercase__ : bool(re.search(r'''<extra_id_\d+>''' ,lowercase__ ) ) is not None ,self.additional_special_tokens ) ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): return [self._convert_token_to_id(lowercase__ ) for token in self.get_sentinel_tokens()] def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : List[int] ): if len(lowercase__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ): __lowercase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ): __lowercase = self._add_eos_if_not_present(lowercase__ ) if token_ids_a is None: return token_ids_a else: __lowercase = self._add_eos_if_not_present(lowercase__ ) return token_ids_a + token_ids_a def __getstate__( self : List[str] ): __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__( self : List[Any] ,lowercase__ : List[Any] ): __lowercase = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : "TextInput" ,**lowercase__ : Any ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: __lowercase = SPIECE_UNDERLINE + text.replace(lowercase__ ,''' ''' ) return super().tokenize(lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,**lowercase__ : str ): if not self.legacy: __lowercase = text.startswith(lowercase__ ) if is_first: __lowercase = text[1:] __lowercase = self.sp_model.encode(lowercase__ ,out_type=lowercase__ ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(lowercase__ ): __lowercase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Tuple ): if token.startswith('''<extra_id_''' ): __lowercase = re.match(r'''<extra_id_(\d+)>''' ,lowercase__ ) __lowercase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Any ): if index < self.sp_model.get_piece_size(): __lowercase = self.sp_model.IdToPiece(lowercase__ ) else: __lowercase = F"<extra_id_{self.vocab_size - 1 - index}>" return token def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Any ): __lowercase = [] __lowercase = '''''' __lowercase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase__ ) + token __lowercase = True __lowercase = [] else: current_sub_tokens.append(lowercase__ ) __lowercase = False out_string += self.sp_model.decode(lowercase__ ) return out_string.strip() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : str ,lowercase__ : Optional[str] = None ): if not os.path.isdir(lowercase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase = os.path.join( lowercase__ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ ,'''wb''' ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,)
41
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
41
1
'''simple docstring''' def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def _A ( A__ , A__ , A__ ): """simple docstring""" if curr_ind == len(A__ ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(A__ ) ): if valid_connection(A__ , A__ , A__ , A__ ): # Insert current vertex into path as next transition __lowercase = next_ver # Validate created path if util_hamilton_cycle(A__ , A__ , curr_ind + 1 ): return True # Backtrack __lowercase = -1 return False def _A ( A__ , A__ = 0 ): """simple docstring""" __lowercase = [-1] * (len(A__ ) + 1) # initialize start and end of path with starting index __lowercase = __lowercase = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(A__ , A__ , 1 ) else []
41
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCAmelCase__ = getLogger(__name__) lowerCAmelCase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def _A ( A__ , A__ , A__ , A__ = 8 , A__ = DEFAULT_DEVICE , A__=False , A__="summarization" , A__=None , **A__ , ): """simple docstring""" __lowercase = Path(A__ ).open('''w''' , encoding='''utf-8''' ) __lowercase = str(A__ ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained(A__ ).to(A__ ) if fpaa: __lowercase = model.half() __lowercase = AutoTokenizer.from_pretrained(A__ ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __lowercase = time.time() # update config with task specific params use_task_specific_params(A__ , A__ ) if prefix is None: __lowercase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(A__ , A__ ) ) ): __lowercase = [prefix + text for text in examples_chunk] __lowercase = tokenizer(A__ , return_tensors='''pt''' , truncation=A__ , padding='''longest''' ).to(A__ ) __lowercase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **A__ , ) __lowercase = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __lowercase = int(time.time() - start_time ) # seconds __lowercase = len(A__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _A ( ): """simple docstring""" return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def _A ( A__=True ): """simple docstring""" __lowercase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=A__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=A__ , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=A__ , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=A__ , required=A__ , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=A__ , required=A__ , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=A__ , required=A__ , default=A__ , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=A__ , required=A__ , default=A__ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=A__ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=A__ , default=8 , required=A__ , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=A__ , default=-1 , required=A__ , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=A__ , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowercase , __lowercase = parser.parse_known_args() __lowercase = parse_numeric_n_bool_cl_kwargs(A__ ) if parsed_args and verbose: print(F"parsed the following generate kwargs: {parsed_args}" ) __lowercase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowercase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=A__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __lowercase = generate_summaries_or_translations( A__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **A__ , ) if args.reference_path is None: return {} # Compute scores __lowercase = calculate_bleu if '''translation''' in args.task else calculate_rouge __lowercase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowercase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(A__ )] __lowercase = score_fn(A__ , A__ ) scores.update(A__ ) if args.dump_args: scores.update(A__ ) if args.info: __lowercase = args.info if verbose: print(A__ ) if args.score_path is not None: json.dump(A__ , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
41
1
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase__ = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase__ = direct_transformers_import(PATH_TO_TRANSFORMERS) lowerCAmelCase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCAmelCase__ = re.compile(R'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') lowerCAmelCase__ = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def _A ( A__ ): """simple docstring""" __lowercase = None # source code of `config_class` __lowercase = inspect.getsource(A__ ) __lowercase = _re_checkpoint.findall(A__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('''/''' ): __lowercase = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link __lowercase = F"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: __lowercase = ckpt_name break return checkpoint def _A ( ): """simple docstring""" __lowercase = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue __lowercase = get_checkpoint_from_config_class(A__ ) __lowercase = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(A__ ) if len(A__ ) > 0: __lowercase = '''\n'''.join(sorted(A__ ) ) raise ValueError(F"The following configurations don't contain any valid checkpoint:\n{message}" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
41
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(A__ ): print(F"{i}\t\t{d}" ) def _A ( A__ , A__ , A__ ): """simple docstring""" for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = [float('''inf''' )] * vertex_count __lowercase = 0.0 for _ in range(vertex_count - 1 ): for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: __lowercase = distance[u] + w __lowercase = check_negative_cycle(A__ , A__ , A__ ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = int(input('''Enter number of vertices: ''').strip()) lowerCAmelCase__ = int(input('''Enter number of edges: ''').strip()) lowerCAmelCase__ = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) lowerCAmelCase__ = {'''src''': src, '''dst''': dest, '''weight''': weight} lowerCAmelCase__ = int(input('''\nEnter shortest path source:''').strip()) lowerCAmelCase__ = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
41
1
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = CodeGenTokenizer SCREAMING_SNAKE_CASE : List[Any] = CodeGenTokenizerFast SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Dict = {'add_prefix_space': True} SCREAMING_SNAKE_CASE : Optional[Any] = False def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] __lowercase = dict(zip(lowercase__ ,range(len(lowercase__ ) ) ) ) __lowercase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowercase = {'''unk_token''': '''<unk>'''} __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase__ ) + '''\n''' ) with open(self.merges_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase__ ) ) def SCREAMING_SNAKE_CASE ( self : str ,**lowercase__ : Optional[Any] ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,**lowercase__ : int ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[Any] ): __lowercase = '''lower newer''' __lowercase = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = CodeGenTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) __lowercase = '''lower newer''' __lowercase = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __lowercase = tokenizer.tokenize(lowercase__ ,add_prefix_space=lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) __lowercase = tokens + [tokenizer.unk_token] __lowercase = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): if not self.test_rust_tokenizer: return __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer(add_prefix_space=lowercase__ ) __lowercase = '''lower newer''' # Testing tokenization __lowercase = tokenizer.tokenize(lowercase__ ,add_prefix_space=lowercase__ ) __lowercase = rust_tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) # Testing conversion to ids without special tokens __lowercase = tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ,add_prefix_space=lowercase__ ) __lowercase = rust_tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) # Testing conversion to ids with special tokens __lowercase = self.get_rust_tokenizer(add_prefix_space=lowercase__ ) __lowercase = tokenizer.encode(lowercase__ ,add_prefix_space=lowercase__ ) __lowercase = rust_tokenizer.encode(lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) # Testing the unknown token __lowercase = tokens + [rust_tokenizer.unk_token] __lowercase = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowercase__ ) ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,*lowercase__ : str ,**lowercase__ : Optional[int] ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase = self.rust_tokenizer_class.from_pretrained(lowercase__ ,**lowercase__ ) # Simple input __lowercase = '''This is a simple input''' __lowercase = ['''This is a simple input 1''', '''This is a simple input 2'''] __lowercase = ('''This is a simple input''', '''This is a pair''') __lowercase = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(lowercase__ ,tokenizer_r.encode ,lowercase__ ,max_length=lowercase__ ,padding='''max_length''' ) # Simple input self.assertRaises(lowercase__ ,tokenizer_r.encode_plus ,lowercase__ ,max_length=lowercase__ ,padding='''max_length''' ) # Simple input self.assertRaises( lowercase__ ,tokenizer_r.batch_encode_plus ,lowercase__ ,max_length=lowercase__ ,padding='''max_length''' ,) # Pair input self.assertRaises(lowercase__ ,tokenizer_r.encode ,lowercase__ ,max_length=lowercase__ ,padding='''max_length''' ) # Pair input self.assertRaises(lowercase__ ,tokenizer_r.encode_plus ,lowercase__ ,max_length=lowercase__ ,padding='''max_length''' ) # Pair input self.assertRaises( lowercase__ ,tokenizer_r.batch_encode_plus ,lowercase__ ,max_length=lowercase__ ,padding='''max_length''' ,) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = CodeGenTokenizer.from_pretrained(self.tmpdirname ,pad_token='''<pad>''' ) # Simple input __lowercase = '''This is a simple input''' __lowercase = ['''This is a simple input looooooooong''', '''This is a simple input'''] __lowercase = ('''This is a simple input''', '''This is a pair''') __lowercase = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] __lowercase = tokenizer.pad_token_id __lowercase = tokenizer(lowercase__ ,padding='''max_length''' ,max_length=3_0 ,return_tensors='''np''' ) __lowercase = tokenizer(lowercase__ ,padding=lowercase__ ,truncate=lowercase__ ,return_tensors='''np''' ) __lowercase = tokenizer(*lowercase__ ,padding='''max_length''' ,max_length=6_0 ,return_tensors='''np''' ) __lowercase = tokenizer(lowercase__ ,padding=lowercase__ ,truncate=lowercase__ ,return_tensors='''np''' ) # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] ,3_0 ) self.assertTrue(pad_token_id in out_s['''input_ids'''] ) self.assertTrue(0 in out_s['''attention_mask'''] ) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] ,3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] ) self.assertFalse(0 in out_sa['''attention_mask'''][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] ) self.assertTrue(0 in out_sa['''attention_mask'''][1] ) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] ,6_0 ) self.assertTrue(pad_token_id in out_p['''input_ids'''] ) self.assertTrue(0 in out_p['''attention_mask'''] ) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] ,5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] ) self.assertFalse(0 in out_pa['''attention_mask'''][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] ) self.assertTrue(0 in out_pa['''attention_mask'''][1] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''$$$''' __lowercase = CodeGenTokenizer.from_pretrained(self.tmpdirname ,bos_token=lowercase__ ,add_bos_token=lowercase__ ) __lowercase = '''This is a simple input''' __lowercase = ['''This is a simple input 1''', '''This is a simple input 2'''] __lowercase = tokenizer.bos_token_id __lowercase = tokenizer(lowercase__ ) __lowercase = tokenizer(lowercase__ ) self.assertEqual(out_s.input_ids[0] ,lowercase__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) __lowercase = tokenizer.decode(out_s.input_ids ) __lowercase = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,lowercase__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = CodeGenTokenizer.from_pretrained('''Salesforce/codegen-350M-mono''' ) __lowercase = '''\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#''' __lowercase = '''\nif len_a > len_b: result = a\nelse: result = b''' __lowercase = tokenizer.encode(lowercase__ ) __lowercase = ['''^#''', re.escape('''<|endoftext|>''' ), '''^\'\'\'''', '''^"""''', '''\n\n\n'''] __lowercase = tokenizer.decode(lowercase__ ,truncate_before_pattern=lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): pass
41
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[Any] ,*lowercase__ : Optional[Any] ,**lowercase__ : int ): warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' ,lowercase__ ,) super().__init__(*lowercase__ ,**lowercase__ )
41
1
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase__ = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def _A ( A__ ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(A__ ) def _A ( A__ ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main __lowercase = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(A__ , id=A__ )
41
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _A ( A__ ): """simple docstring""" __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = 0.0_1 with locka.acquire(): with pytest.raises(A__ ): __lowercase = time.time() locka.acquire(A__ ) assert time.time() - _start > timeout def _A ( A__ ): """simple docstring""" __lowercase = '''a''' * 1000 + '''.lock''' __lowercase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(A__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __lowercase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(A__ ): locka.acquire(0 )
41
1
'''simple docstring''' import doctest from collections import deque import numpy as np class lowercase_ : """simple docstring""" def __init__( self : Optional[Any] ): __lowercase = [2, 1, 2, -1] __lowercase = [1, 2, 3, 4] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = len(self.first_signal ) __lowercase = len(self.second_signal ) __lowercase = max(lowercase__ ,lowercase__ ) # create a zero matrix of max_length x max_length __lowercase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __lowercase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __lowercase = np.matmul(np.transpose(lowercase__ ) ,np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ ,2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
41
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase__ = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
1
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys lowerCAmelCase__ = '''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
41
'''simple docstring''' import argparse import os import re lowerCAmelCase__ = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(R'''\[([^\]]+)\]''') def _A ( A__ ): """simple docstring""" __lowercase = _re_indent.search(A__ ) return "" if search is None else search.groups()[0] def _A ( A__ , A__="" , A__=None , A__=None ): """simple docstring""" __lowercase = 0 __lowercase = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(A__ ): index += 1 __lowercase = ['''\n'''.join(lines[:index] )] else: __lowercase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowercase = [lines[index]] index += 1 while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(A__ ) ) if index < len(A__ ) - 1: __lowercase = [lines[index + 1]] index += 1 else: __lowercase = [] else: blocks.append('''\n'''.join(A__ ) ) __lowercase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A__ ) > 0: blocks.append('''\n'''.join(A__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def _A ( A__ ): """simple docstring""" def _inner(A__ ): return key(A__ ).lower().replace('''_''' , '''''' ) return _inner def _A ( A__ , A__=None ): """simple docstring""" def noop(A__ ): return x if key is None: __lowercase = noop # Constants are all uppercase, they go first. __lowercase = [obj for obj in objects if key(A__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowercase = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()] # Functions begin with a lowercase, they go last. __lowercase = [obj for obj in objects if not key(A__ )[0].isupper()] __lowercase = ignore_underscore(A__ ) return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) def _A ( A__ ): """simple docstring""" def _replace(A__ ): __lowercase = match.groups()[0] if "," not in imports: return F"[{imports}]" __lowercase = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) + "]" __lowercase = import_statement.split('''\n''' ) if len(A__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowercase = 2 if lines[1].strip() == '''[''' else 1 __lowercase = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowercase = sort_objects(A__ , key=lambda A__ : x[1] ) __lowercase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowercase = _re_bracket_content.sub(_replace , lines[1] ) else: __lowercase = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] __lowercase = get_indent(lines[1] ) + ''', '''.join([F"\"{k}\"" for k in sort_objects(A__ )] ) return "\n".join(A__ ) else: # Finally we have to deal with imports fitting on one line __lowercase = _re_bracket_content.sub(_replace , A__ ) return import_statement def _A ( A__ , A__=True ): """simple docstring""" with open(A__ , '''r''' ) as f: __lowercase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowercase = split_code_in_indented_blocks( A__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowercase = main_blocks[block_idx] __lowercase = block.split('''\n''' ) # Get to the start of the imports. __lowercase = 0 while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowercase = len(A__ ) else: line_idx += 1 if line_idx >= len(A__ ): continue # Ignore beginning and last line: they don't contain anything. __lowercase = '''\n'''.join(block_lines[line_idx:-1] ) __lowercase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowercase = split_code_in_indented_blocks(A__ , indent_level=A__ ) # We have two categories of import key: list or _import_structure[key].append/extend __lowercase = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowercase = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowercase = [(i, key) for i, key in enumerate(A__ ) if key is not None] __lowercase = [x[0] for x in sorted(A__ , key=lambda A__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowercase = 0 __lowercase = [] for i in range(len(A__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __lowercase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(A__ ) count += 1 # And we put our main block back together with its first and last line. __lowercase = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(A__ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(A__ , '''w''' ) as f: f.write('''\n'''.join(A__ ) ) def _A ( A__=True ): """simple docstring""" __lowercase = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: __lowercase = sort_imports(os.path.join(A__ , '''__init__.py''' ) , check_only=A__ ) if result: __lowercase = [os.path.join(A__ , '''__init__.py''' )] if len(A__ ) > 0: raise ValueError(F"Would overwrite {len(A__ )} files, run `make style`." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
41
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class lowercase_ (unittest.TestCase ): """simple docstring""" def __init__( self : Tuple ,lowercase__ : Dict ,lowercase__ : Union[str, Any]=7 ,lowercase__ : List[Any]=3 ,lowercase__ : List[Any]=3_0 ,lowercase__ : List[Any]=4_0_0 ,lowercase__ : List[str]=True ,lowercase__ : Tuple=None ,lowercase__ : Optional[Any]=0.9 ,lowercase__ : List[str]=None ,lowercase__ : str=True ,lowercase__ : Dict=[0.5, 0.5, 0.5] ,lowercase__ : Dict=[0.5, 0.5, 0.5] ,): __lowercase = size if size is not None else {'''shortest_edge''': 3_0} __lowercase = crop_size if crop_size is not None else {'''height''': 3_0, '''width''': 3_0} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize_and_center_crop __lowercase = size __lowercase = crop_pct __lowercase = crop_size __lowercase = do_normalize __lowercase = image_mean __lowercase = image_std def SCREAMING_SNAKE_CASE ( self : str ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = PoolFormerImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = PoolFormerImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ ,'''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(lowercase__ ,'''size''' ) ) self.assertTrue(hasattr(lowercase__ ,'''crop_pct''' ) ) self.assertTrue(hasattr(lowercase__ ,'''do_normalize''' ) ) self.assertTrue(hasattr(lowercase__ ,'''image_mean''' ) ) self.assertTrue(hasattr(lowercase__ ,'''image_std''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 3_0} ) self.assertEqual(image_processor.crop_size ,{'''height''': 3_0, '''width''': 3_0} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ,size=4_2 ,crop_size=8_4 ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size ,{'''height''': 8_4, '''width''': 8_4} ) def SCREAMING_SNAKE_CASE ( self : int ): pass def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): # Initialize image_processing __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ ,Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched __lowercase = image_processing(lowercase__ ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def SCREAMING_SNAKE_CASE ( self : int ): # Initialize image_processing __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase__ ,numpify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ ,np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched __lowercase = image_processing(lowercase__ ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): # Initialize image_processing __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase__ ,torchify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ ,torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched __lowercase = image_processing(lowercase__ ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,)
41
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = TextToVideoSDPipeline SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. SCREAMING_SNAKE_CASE : Optional[int] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') ,up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') ,cross_attention_dim=3_2 ,attention_head_dim=4 ,) __lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,clip_sample=lowercase__ ,set_alpha_to_one=lowercase__ ,) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=1_2_8 ,) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''gelu''' ,projection_dim=5_1_2 ,) __lowercase = CLIPTextModel(lowercase__ ) __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : List[str]=0 ): if str(lowercase__ ).startswith('''mps''' ): __lowercase = torch.manual_seed(lowercase__ ) else: __lowercase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = TextToVideoSDPipeline(**lowercase__ ) __lowercase = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs(lowercase__ ) __lowercase = '''np''' __lowercase = sd_pipe(**lowercase__ ).frames __lowercase = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) __lowercase = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def SCREAMING_SNAKE_CASE ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=1e-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass def SCREAMING_SNAKE_CASE ( self : List[str] ): return super().test_progress_bar() @slow @skip_mps class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2_5 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
41
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase__ = logging.get_logger(__name__) class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ['pixel_values'] def __init__( self : Tuple ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : PILImageResampling = PIL.Image.BICUBIC ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : Union[int, float] = 1 / 2_5_5 ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Optional[Union[float, List[float]]] = None ,lowercase__ : Optional[Union[float, List[float]]] = None ,**lowercase__ : Optional[Any] ,): super().__init__(**lowercase__ ) __lowercase = size if size is not None else {'''height''': 2_5_6, '''width''': 2_5_6} __lowercase = get_size_dict(lowercase__ ) __lowercase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} __lowercase = get_size_dict(lowercase__ ,param_name='''crop_size''' ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_center_crop __lowercase = crop_size __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowercase = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : np.ndarray ,lowercase__ : Dict[str, int] ,lowercase__ : PILImageResampling = PIL.Image.BICUBIC ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ,): __lowercase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}" ) return resize( lowercase__ ,size=(size['''height'''], size['''width''']) ,resample=lowercase__ ,data_format=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : np.ndarray ,lowercase__ : Dict[str, int] ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : Union[str, Any] ,): __lowercase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}" ) return center_crop(lowercase__ ,size=(size['''height'''], size['''width''']) ,data_format=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : np.ndarray ,lowercase__ : Union[int, float] ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : Any ,): return rescale(lowercase__ ,scale=lowercase__ ,data_format=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : np.ndarray ,lowercase__ : Union[float, List[float]] ,lowercase__ : Union[float, List[float]] ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ,): return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,data_format=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : ImageInput ,lowercase__ : bool = None ,lowercase__ : Dict[str, int] = None ,lowercase__ : str=None ,lowercase__ : bool = None ,lowercase__ : Dict[str, int] = None ,lowercase__ : bool = None ,lowercase__ : float = None ,lowercase__ : bool = None ,lowercase__ : Optional[Union[float, List[float]]] = None ,lowercase__ : Optional[Union[float, List[float]]] = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : ChannelDimension = ChannelDimension.FIRST ,**lowercase__ : Union[str, Any] ,): __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = resample if resample is not None else self.resample __lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = size if size is not None else self.size __lowercase = get_size_dict(lowercase__ ) __lowercase = crop_size if crop_size is not None else self.crop_size __lowercase = get_size_dict(lowercase__ ,param_name='''crop_size''' ) __lowercase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowercase__ ) for image in images] if do_resize: __lowercase = [self.resize(image=lowercase__ ,size=lowercase__ ,resample=lowercase__ ) for image in images] if do_center_crop: __lowercase = [self.center_crop(image=lowercase__ ,size=lowercase__ ) for image in images] if do_rescale: __lowercase = [self.rescale(image=lowercase__ ,scale=lowercase__ ) for image in images] if do_normalize: __lowercase = [self.normalize(image=lowercase__ ,mean=lowercase__ ,std=lowercase__ ) for image in images] __lowercase = [to_channel_dimension_format(lowercase__ ,lowercase__ ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=lowercase__ ,tensor_type=lowercase__ )
41
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _A ( A__ ): """simple docstring""" __lowercase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def _A ( A__ ): """simple docstring""" __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(A__ , A__ , bias=A__ ) __lowercase = emb.weight.data return lin_layer def _A ( A__ , A__="facebook/mbart-large-en-ro" , A__=False , A__=False ): """simple docstring""" __lowercase = torch.load(A__ , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A__ ) __lowercase = state_dict['''encoder.embed_tokens.weight'''].shape[0] __lowercase = MBartConfig.from_pretrained(A__ , vocab_size=A__ ) if mbart_aa and finetuned: __lowercase = '''relu''' __lowercase = state_dict['''decoder.embed_tokens.weight'''] __lowercase = MBartForConditionalGeneration(A__ ) model.model.load_state_dict(A__ ) if finetuned: __lowercase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
41
1
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE : str = 'OwlViTImageProcessor' SCREAMING_SNAKE_CASE : List[str] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Any ,lowercase__ : str=None ,lowercase__ : Any=None ,**lowercase__ : List[Any] ): __lowercase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,lowercase__ ,) __lowercase = kwargs.pop('''feature_extractor''' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase__ ,lowercase__ ) def __call__( self : str ,lowercase__ : Tuple=None ,lowercase__ : List[Any]=None ,lowercase__ : Dict=None ,lowercase__ : List[str]="max_length" ,lowercase__ : List[Any]="np" ,**lowercase__ : Dict ): if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(lowercase__ ,lowercase__ ) or (isinstance(lowercase__ ,lowercase__ ) and not isinstance(text[0] ,lowercase__ )): __lowercase = [self.tokenizer(lowercase__ ,padding=lowercase__ ,return_tensors=lowercase__ ,**lowercase__ )] elif isinstance(lowercase__ ,lowercase__ ) and isinstance(text[0] ,lowercase__ ): __lowercase = [] # Maximum number of queries across batch __lowercase = max([len(lowercase__ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowercase__ ) != max_num_queries: __lowercase = t + [''' '''] * (max_num_queries - len(lowercase__ )) __lowercase = self.tokenizer(lowercase__ ,padding=lowercase__ ,return_tensors=lowercase__ ,**lowercase__ ) encodings.append(lowercase__ ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": __lowercase = np.concatenate([encoding['''input_ids'''] for encoding in encodings] ,axis=0 ) __lowercase = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] ,axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __lowercase = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] ,axis=0 ) __lowercase = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] ,axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __lowercase = torch.cat([encoding['''input_ids'''] for encoding in encodings] ,dim=0 ) __lowercase = torch.cat([encoding['''attention_mask'''] for encoding in encodings] ,dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __lowercase = tf.stack([encoding['''input_ids'''] for encoding in encodings] ,axis=0 ) __lowercase = tf.stack([encoding['''attention_mask'''] for encoding in encodings] ,axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) __lowercase = BatchEncoding() __lowercase = input_ids __lowercase = attention_mask if query_images is not None: __lowercase = BatchEncoding() __lowercase = self.image_processor( lowercase__ ,return_tensors=lowercase__ ,**lowercase__ ).pixel_values __lowercase = query_pixel_values if images is not None: __lowercase = self.image_processor(lowercase__ ,return_tensors=lowercase__ ,**lowercase__ ) if text is not None and images is not None: __lowercase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __lowercase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) ,tensor_type=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,*lowercase__ : Optional[int] ,**lowercase__ : Tuple ): return self.image_processor.post_process(*lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ,*lowercase__ : List[Any] ,**lowercase__ : int ): return self.image_processor.post_process_object_detection(*lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,*lowercase__ : List[str] ,**lowercase__ : Union[str, Any] ): return self.image_processor.post_process_image_guided_detection(*lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,*lowercase__ : str ,**lowercase__ : Union[str, Any] ): return self.tokenizer.batch_decode(*lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,*lowercase__ : List[Any] ,**lowercase__ : Dict ): return self.tokenizer.decode(*lowercase__ ,**lowercase__ ) @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,lowercase__ ,) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self : Dict ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' ,lowercase__ ,) return self.image_processor
41
'''simple docstring''' import os from math import logaa def _A ( A__ = "base_exp.txt" ): """simple docstring""" __lowercase = 0 __lowercase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowercase , __lowercase = list(map(A__ , line.split(''',''' ) ) ) if x * logaa(A__ ) > largest: __lowercase = x * logaa(A__ ) __lowercase = i + 1 return result if __name__ == "__main__": print(solution())
41
1
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowercase__ ) __lowercase = -1 __lowercase = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowercase__ ) __lowercase = model.generate(lowercase__ ,max_new_tokens=1_0 ,do_sample=lowercase__ ) __lowercase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __lowercase = TextStreamer(lowercase__ ) model.generate(lowercase__ ,max_new_tokens=1_0 ,do_sample=lowercase__ ,streamer=lowercase__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __lowercase = cs.out[:-1] self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowercase__ ) __lowercase = -1 __lowercase = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowercase__ ) __lowercase = model.generate(lowercase__ ,max_new_tokens=1_0 ,do_sample=lowercase__ ) __lowercase = tokenizer.decode(greedy_ids[0] ) __lowercase = TextIteratorStreamer(lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} __lowercase = Thread(target=model.generate ,kwargs=lowercase__ ) thread.start() __lowercase = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowercase__ ) __lowercase = -1 __lowercase = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowercase__ ) __lowercase = model.generate(lowercase__ ,max_new_tokens=1_0 ,do_sample=lowercase__ ) __lowercase = greedy_ids[:, input_ids.shape[1] :] __lowercase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __lowercase = TextStreamer(lowercase__ ,skip_prompt=lowercase__ ) model.generate(lowercase__ ,max_new_tokens=1_0 ,do_sample=lowercase__ ,streamer=lowercase__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __lowercase = cs.out[:-1] self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __lowercase = AutoTokenizer.from_pretrained('''distilgpt2''' ) __lowercase = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(lowercase__ ) __lowercase = -1 __lowercase = torch.ones((1, 5) ,device=lowercase__ ).long() * model.config.bos_token_id with CaptureStdout() as cs: __lowercase = TextStreamer(lowercase__ ,skip_special_tokens=lowercase__ ) model.generate(lowercase__ ,max_new_tokens=1 ,do_sample=lowercase__ ,streamer=lowercase__ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __lowercase = cs.out[:-1] # Remove the final "\n" __lowercase = tokenizer(lowercase__ ,return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape ,(1, 1) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowercase__ ) __lowercase = -1 __lowercase = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowercase__ ) __lowercase = TextIteratorStreamer(lowercase__ ,timeout=0.0_0_1 ) __lowercase = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} __lowercase = Thread(target=model.generate ,kwargs=lowercase__ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowercase__ ): __lowercase = '''''' for new_text in streamer: streamer_text += new_text
41
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'blenderbot-small' SCREAMING_SNAKE_CASE : int = ['past_key_values'] SCREAMING_SNAKE_CASE : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] ,lowercase__ : List[str]=5_0_2_6_5 ,lowercase__ : Optional[Any]=5_1_2 ,lowercase__ : Optional[int]=8 ,lowercase__ : List[Any]=2_0_4_8 ,lowercase__ : List[str]=1_6 ,lowercase__ : str=8 ,lowercase__ : Any=2_0_4_8 ,lowercase__ : Tuple=1_6 ,lowercase__ : Tuple=0.0 ,lowercase__ : List[str]=0.0 ,lowercase__ : Any=True ,lowercase__ : str=True ,lowercase__ : int="gelu" ,lowercase__ : Tuple=5_1_2 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : str=0.0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : List[Any]=False ,lowercase__ : Optional[int]=0 ,lowercase__ : Optional[int]=1 ,lowercase__ : str=2 ,lowercase__ : int=2 ,**lowercase__ : List[str] ,): __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = use_cache __lowercase = encoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,is_encoder_decoder=lowercase__ ,decoder_start_token_id=lowercase__ ,forced_eos_token_id=lowercase__ ,**lowercase__ ,) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Dict ): if self.task in ["default", "seq2seq-lm"]: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase = {0: '''batch'''} __lowercase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase__ ,direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super().outputs else: __lowercase = super(lowercase__ ,self ).outputs if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) # Generate decoder inputs __lowercase = seq_length if not self.use_past else 1 __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __lowercase = dict(**lowercase__ ,**lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape __lowercase = common_inputs['''decoder_input_ids'''].shape[1] __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = decoder_seq_length + 3 __lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase__ ,lowercase__ )] ,dim=1 ) __lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase = self.num_layers __lowercase = min(lowercase__ ,lowercase__ ) __lowercase = max(lowercase__ ,lowercase__ ) - min_num_layers __lowercase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), ) ) # TODO: test this. __lowercase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase__ ,lowercase__ ): common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase , __lowercase = self.num_layers __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = common_inputs['''attention_mask'''].dtype __lowercase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase__ ,lowercase__ ,dtype=lowercase__ )] ,dim=1 ) __lowercase = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ ) ] return common_inputs def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = tokenizer.num_special_tokens_to_add(lowercase__ ) __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowercase__ ) # Generate dummy inputs according to compute batch and sequence __lowercase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase = dict(tokenizer(lowercase__ ,return_tensors=lowercase__ ) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): if self.task in ["default", "seq2seq-lm"]: __lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) elif self.task == "causal-lm": __lowercase = self._generate_dummy_inputs_for_causal_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) else: __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super()._flatten_past_key_values_(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) else: __lowercase = super(lowercase__ ,self )._flatten_past_key_values_( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
41
1
'''simple docstring''' def _A ( A__ ): """simple docstring""" if not isinstance(A__ , A__ ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(A__ ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(A__ ) == 1: return True __lowercase = series[1] - series[0] for index in range(len(A__ ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def _A ( A__ ): """simple docstring""" if not isinstance(A__ , A__ ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(A__ ) == 0: raise ValueError('''Input list must be a non empty list''' ) __lowercase = 0 for val in series: answer += val return answer / len(A__ ) if __name__ == "__main__": import doctest doctest.testmod()
41
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" if b == 0: return (1, 0) ((__lowercase) , (__lowercase)) = extended_euclid(A__ , a % b ) __lowercase = a // b return (y, x - k * y) def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m def _A ( A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) if b < 0: __lowercase = (b % n + n) % n return b def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase , __lowercase = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
41
1
'''simple docstring''' import numpy as np import qiskit def _A ( A__ = 8 , A__ = None ): """simple docstring""" __lowercase = np.random.default_rng(seed=A__ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. __lowercase = 6 * key_len # Measurement basis for Alice's qubits. __lowercase = rng.integers(2 , size=A__ ) # The set of states Alice will prepare. __lowercase = rng.integers(2 , size=A__ ) # Measurement basis for Bob's qubits. __lowercase = rng.integers(2 , size=A__ ) # Quantum Circuit to simulate BB84 __lowercase = qiskit.QuantumCircuit(A__ , name='''BB84''' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(A__ ): if alice_state[index] == 1: bbaa_circ.x(A__ ) if alice_basis[index] == 1: bbaa_circ.h(A__ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(A__ ): if bob_basis[index] == 1: bbaa_circ.h(A__ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. __lowercase = qiskit.Aer.get_backend('''aer_simulator''' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. __lowercase = qiskit.execute(A__ , A__ , shots=1 , seed_simulator=A__ ) # Returns the result of measurement. __lowercase = job.result().get_counts(A__ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. __lowercase = ''''''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( A__ , A__ , A__ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. __lowercase = gen_key[:key_len] if len(A__ ) >= key_len else gen_key.ljust(A__ , '''0''' ) return key if __name__ == "__main__": print(f'The generated key is : {bbaa(8, seed=0)}') from doctest import testmod testmod()
41
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _A ( ): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __lowercase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , A__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _A ( ): """simple docstring""" assert _test_patching.open is open __lowercase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , A__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , A__ ): pass def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , A__ ) is None with patch_submodule(_test_patching , '''len''' , A__ ): assert _test_patching.len is mock assert _test_patching.len is len def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_start_and_stop_mock__''' __lowercase = patch_submodule(_test_patching , '''open''' , A__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _A ( ): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __lowercase = '''__test_patch_submodule_successive_join__''' __lowercase = '''__test_patch_submodule_successive_dirname__''' __lowercase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , A__ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , A__ ): pass
41
1
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowerCAmelCase__ = '''<<<<<<< This should probably be modified because it mentions: ''' lowerCAmelCase__ = '''======= >>>>>>> ''' lowerCAmelCase__ = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] lowerCAmelCase__ = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _A ( A__ ): """simple docstring""" return ConvertCommand(args.tfds_path , args.datasets_directory ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @staticmethod def SCREAMING_SNAKE_CASE ( lowercase__ : ArgumentParser ): __lowercase = parser.add_parser( '''convert''' ,help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' ,) train_parser.add_argument( '''--tfds_path''' ,type=lowercase__ ,required=lowercase__ ,help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' ,) train_parser.add_argument( '''--datasets_directory''' ,type=lowercase__ ,required=lowercase__ ,help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=lowercase__ ) def __init__( self : Optional[int] ,lowercase__ : str ,lowercase__ : str ,*lowercase__ : Optional[int] ): __lowercase = get_logger('''datasets-cli/converting''' ) __lowercase = tfds_path __lowercase = datasets_directory def SCREAMING_SNAKE_CASE ( self : List[Any] ): if os.path.isdir(self._tfds_path ): __lowercase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) __lowercase = os.path.abspath(self._datasets_directory ) self._logger.info(F"Converting datasets from {abs_tfds_path} to {abs_datasets_path}" ) __lowercase = [] __lowercase = [] __lowercase = {} if os.path.isdir(self._tfds_path ): __lowercase = os.listdir(lowercase__ ) else: __lowercase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"Looking at file {f_name}" ) __lowercase = os.path.join(lowercase__ ,lowercase__ ) __lowercase = os.path.join(lowercase__ ,lowercase__ ) if not os.path.isfile(lowercase__ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(lowercase__ ,encoding='''utf-8''' ) as f: __lowercase = f.readlines() __lowercase = [] __lowercase = False __lowercase = False __lowercase = [] for line in lines: __lowercase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here __lowercase = '''''' continue elif "from absl import logging" in out_line: __lowercase = '''from datasets import logging\n''' elif "getLogger" in out_line: __lowercase = out_line.replace('''getLogger''' ,'''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase = True __lowercase = list(filter(lambda lowercase__ : e in out_line ,lowercase__ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowercase__ ) + '''\n''' ) out_lines.append(lowercase__ ) out_lines.append(lowercase__ ) continue else: for pattern, replacement in TO_CONVERT: __lowercase = re.sub(lowercase__ ,lowercase__ ,lowercase__ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' ,lowercase__ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) __lowercase = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"Error converting {out_line.strip()}" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase = True out_lines.append(lowercase__ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase = f_name.replace('''.py''' ,'''''' ) __lowercase = os.path.join(lowercase__ ,lowercase__ ) __lowercase = os.path.join(lowercase__ ,lowercase__ ) os.makedirs(lowercase__ ,exist_ok=lowercase__ ) self._logger.info(F"Adding directory {output_dir}" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(lowercase__ ) if needs_manual_update: with_manual_update.append(lowercase__ ) with open(lowercase__ ,'''w''' ,encoding='''utf-8''' ) as f: f.writelines(lowercase__ ) self._logger.info(F"Converted in {output_file}" ) for utils_file in utils_files: try: __lowercase = os.path.basename(lowercase__ ) __lowercase = imports_to_builder_map[f_name.replace('''.py''' ,'''''' )] self._logger.info(F"Moving {dest_folder} to {utils_file}" ) shutil.copy(lowercase__ ,lowercase__ ) except KeyError: self._logger.error(F"Cannot find destination folder for {utils_file}. Please copy manually." ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
41
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : """simple docstring""" def __init__( self : Dict ,lowercase__ : Dict ,lowercase__ : int=1_3 ,lowercase__ : List[str]=7 ,lowercase__ : int=True ,lowercase__ : int=True ,lowercase__ : Union[str, Any]=True ,lowercase__ : List[Any]=True ,lowercase__ : str=9_9 ,lowercase__ : Optional[Any]=3_2 ,lowercase__ : Union[str, Any]=5 ,lowercase__ : List[Any]=4 ,lowercase__ : str=3_7 ,lowercase__ : Tuple="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : Dict=0.1 ,lowercase__ : int=1_2_8 ,lowercase__ : Dict=3_2 ,lowercase__ : Dict=1_6 ,lowercase__ : Any=2 ,lowercase__ : int=0.0_2 ,lowercase__ : List[str]=3 ,lowercase__ : Dict=4 ,lowercase__ : Optional[int]=None ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return NezhaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.prepare_config_and_inputs() __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : str ): __lowercase = NezhaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Dict ,lowercase__ : str ,lowercase__ : Optional[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,): __lowercase = True __lowercase = NezhaModel(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,encoder_attention_mask=lowercase__ ,) __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,) __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): __lowercase = NezhaForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): __lowercase = NezhaForNextSentencePrediction(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ): __lowercase = NezhaForPreTraining(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,next_sentence_label=lowercase__ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ): __lowercase = NezhaForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,start_positions=lowercase__ ,end_positions=lowercase__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Tuple ,lowercase__ : str ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : Optional[int] ,lowercase__ : int ): __lowercase = self.num_labels __lowercase = NezhaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Any ,lowercase__ : Optional[Any] ): __lowercase = self.num_labels __lowercase = NezhaForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : str ): __lowercase = self.num_choices __lowercase = NezhaForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : List[str] = True def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : Any=False ): __lowercase = super()._prepare_for_class(lowercase__ ,lowercase__ ,return_labels=lowercase__ ) if return_labels: if model_class in get_values(lowercase__ ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowercase__ ) __lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowercase__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = NezhaModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : int ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): # This regression test was failing with PyTorch < 1.3 ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase = None self.model_tester.create_and_check_model_as_decoder( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = NezhaModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __lowercase = True __lowercase = model_class(config=lowercase__ ) __lowercase = self._prepare_for_class(lowercase__ ,lowercase__ ) __lowercase = torch.jit.trace( lowercase__ ,(inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase__ ,os.path.join(lowercase__ ,'''bert.pt''' ) ) __lowercase = torch.jit.load(os.path.join(lowercase__ ,'''bert.pt''' ) ,map_location=lowercase__ ) loaded(inputs_dict['''input_ids'''].to(lowercase__ ) ,inputs_dict['''attention_mask'''].to(lowercase__ ) ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) )
41
1
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _A ( A__ , A__ , A__=None , A__=None ): """simple docstring""" if attention_mask is None: __lowercase = tf.cast(tf.math.not_equal(A__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowercase_ : """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = OPTConfig SCREAMING_SNAKE_CASE : Optional[int] = {} SCREAMING_SNAKE_CASE : Optional[int] = 'gelu' def __init__( self : int ,lowercase__ : Any ,lowercase__ : Tuple=1_3 ,lowercase__ : int=7 ,lowercase__ : str=True ,lowercase__ : Any=False ,lowercase__ : Optional[Any]=9_9 ,lowercase__ : List[Any]=1_6 ,lowercase__ : List[str]=2 ,lowercase__ : Tuple=4 ,lowercase__ : Tuple=4 ,lowercase__ : Any="gelu" ,lowercase__ : str=0.1 ,lowercase__ : str=0.1 ,lowercase__ : Union[str, Any]=2_0 ,lowercase__ : Union[str, Any]=2 ,lowercase__ : int=1 ,lowercase__ : List[Any]=0 ,lowercase__ : Optional[Any]=1_6 ,lowercase__ : Optional[int]=1_6 ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = eos_token_id __lowercase = pad_token_id __lowercase = bos_token_id __lowercase = embed_dim __lowercase = word_embed_proj_dim __lowercase = False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) __lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) __lowercase = tf.concat([input_ids, eos_tensor] ,axis=1 ) __lowercase = self.config_cls( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_id=self.eos_token_id ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,embed_dim=self.embed_dim ,word_embed_proj_dim=self.word_embed_proj_dim ,is_encoder_decoder=lowercase__ ,**self.config_updates ,) __lowercase = prepare_opt_inputs_dict(lowercase__ ,lowercase__ ) return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ): __lowercase = TFOPTModel(config=lowercase__ ) __lowercase = inputs_dict['''input_ids'''] __lowercase = input_ids[:1, :] __lowercase = inputs_dict['''attention_mask'''][:1, :] __lowercase = 1 # first forward pass __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,use_cache=lowercase__ ) __lowercase , __lowercase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowercase = ids_tensor((self.batch_size, 3) ,config.vocab_size ) __lowercase = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta ) # append to next input_ids and __lowercase = tf.concat([input_ids, next_tokens] ,axis=-1 ) __lowercase = tf.concat([attention_mask, next_attn_mask] ,axis=-1 ) __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,past_key_values=lowercase__ )[0] self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] ) # select random slice __lowercase = int(ids_tensor((1,) ,output_from_past.shape[-1] ) ) __lowercase = output_from_no_past[:, -3:, random_slice_idx] __lowercase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase__ ,lowercase__ ,rtol=1e-3 ) @require_tf class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () SCREAMING_SNAKE_CASE : List[Any] = (TFOPTForCausalLM,) if is_tf_available() else () SCREAMING_SNAKE_CASE : List[str] = ( {'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : List[Any] = 1_0 def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = TFOPTModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase__ : Optional[int] ,lowercase__ : List[str] ): if hasattr(lowercase__ ,'''weight''' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase__ ,'''weight''' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings __lowercase = model_class(config=lowercase__ ) __lowercase = _get_word_embedding_weight(lowercase__ ,model.get_input_embeddings() ) __lowercase = _get_word_embedding_weight(lowercase__ ,model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase__ ) __lowercase = _get_word_embedding_weight(lowercase__ ,model.get_input_embeddings() ) __lowercase = _get_word_embedding_weight(lowercase__ ,model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. __lowercase = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] ,lowercase__ ) # check that weights remain the same after resizing __lowercase = True for pa, pa in zip(old_input_embeddings.value() ,new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowercase = False self.assertTrue(lowercase__ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] ,lowercase__ ) __lowercase = True for pa, pa in zip(old_output_embeddings.value() ,new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowercase = False self.assertTrue(lowercase__ ) def _A ( A__ ): """simple docstring""" return tf.constant(A__ , dtype=tf.intaa ) @require_tf class lowercase_ (unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = 9_9 def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = tf.ones((4, 1) ,dtype=tf.intaa ) * 2 __lowercase = tf.concat([ids_tensor((4, 6) ,self.vocab_size - 3 ) + 3, eos_column_vector] ,axis=1 ) __lowercase = input_ids.shape[0] __lowercase = OPTConfig( vocab_size=self.vocab_size ,hidden_size=2_4 ,num_hidden_layers=2 ,num_attention_heads=2 ,ffn_dim=3_2 ,max_position_embeddings=4_8 ,eos_token_id=2 ,pad_token_id=1 ,bos_token_id=0 ,) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowercase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = TFOPTModel.from_pretrained('''facebook/opt-350m''' ) __lowercase = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) __lowercase = tf.not_equal(lowercase__ ,model.config.pad_token_id ) with tf.GradientTape(): __lowercase = model(input_ids=lowercase__ ,attention_mask=lowercase__ ).last_hidden_state __lowercase = (1, 1_1, 5_1_2) self.assertEqual(output.shape ,lowercase__ ) __lowercase = tf.constant( [[-0.2_8_7_3, -1.9_2_1_8, -0.3_0_3_3], [-1.2_7_1_0, -0.1_3_3_8, -0.1_9_0_2], [0.4_0_9_5, 0.1_2_1_4, -1.3_1_2_1]] ) self.assertTrue(np.allclose(output[:, :3, :3] ,lowercase__ ,atol=4e-3 ) ) __lowercase = tf.function(lowercase__ ,jit_compile=lowercase__ ) __lowercase = xla_generate(lowercase__ ,lowercase__ )[0] self.assertTrue(np.allclose(output[:, :3, :3] ,lowercase__ ,atol=4e-2 ) ) @require_tf @slow class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ): super().setUp() __lowercase = '''facebook/opt-350m''' def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = TFOPTForCausalLM.from_pretrained(self.path_model ) __lowercase = GPTaTokenizer.from_pretrained(self.path_model ) __lowercase = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False __lowercase = tokenizer(lowercase__ ,return_tensors='''tf''' ,padding=lowercase__ ,add_special_tokens=lowercase__ ) __lowercase = tf.math.reduce_mean(model(inputs.input_ids ,attention_mask=inputs.attention_mask )[0] ,axis=-1 ) __lowercase = tf.constant( [ [1.3_8_5_1, -1_3.8_9_2_3, -1_0.5_2_2_9, -1_0.7_5_3_3, -0.2_3_0_9, -1_0.2_3_8_4, -0.5_3_6_5, -9.0_9_4_7, -5.1_6_7_0], [-4.7_0_7_3, -1_0.6_2_7_6, -3.9_4_1_5, -2_1.5_2_4_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2], [0.6_2_4_7, -3.4_2_2_9, -8.9_1_7_9, -1.4_2_9_7, -1_4.1_6_5_0, 1.4_1_4_6, -9.0_2_1_8, -0.2_7_0_3, -0.2_7_0_3], [6.4_7_8_3, -1.9_9_1_3, -1_0.7_9_2_6, -2.3_3_3_6, 1.5_0_9_2, -0.9_9_7_4, -6.8_2_1_3, 1.3_4_7_7, 1.3_4_7_7], ] ) self.assertTrue(np.allclose(lowercase__ ,lowercase__ ,atol=1e-4 ) ) __lowercase = tf.function(lowercase__ ,jit_compile=lowercase__ ) __lowercase = tf.math.reduce_mean(xla_generate(inputs.input_ids ,attention_mask=inputs.attention_mask )[0] ,axis=-1 ) self.assertTrue(np.allclose(lowercase__ ,lowercase__ ,atol=1e-4 ) ) @require_tf @slow class lowercase_ (unittest.TestCase ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : str ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = '''facebook/opt-125m''' __lowercase = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] __lowercase = [] __lowercase = GPTaTokenizer.from_pretrained(lowercase__ ) __lowercase = TFOPTForCausalLM.from_pretrained(lowercase__ ) for prompt in self.prompts: __lowercase = tokenizer(lowercase__ ,return_tensors='''tf''' ).input_ids __lowercase = model.generate(lowercase__ ,max_length=1_0 ) __lowercase = tokenizer.batch_decode(lowercase__ ,skip_special_tokens=lowercase__ ) predicted_outputs += generated_string self.assertListEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = '''facebook/opt-350m''' __lowercase = GPTaTokenizer.from_pretrained(lowercase__ ) __lowercase = TFOPTForCausalLM.from_pretrained(lowercase__ ) __lowercase = '''left''' # use different length sentences to test batching __lowercase = [ '''Hello, my dog is a little''', '''Today, I''', ] __lowercase = tokenizer(lowercase__ ,return_tensors='''tf''' ,padding=lowercase__ ) __lowercase = inputs['''input_ids'''] __lowercase = model.generate(input_ids=lowercase__ ,attention_mask=inputs['''attention_mask'''] ) __lowercase = tokenizer(sentences[0] ,return_tensors='''tf''' ).input_ids __lowercase = model.generate(input_ids=lowercase__ ) __lowercase = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] ,tf.intaa ) ) __lowercase = tokenizer(sentences[1] ,return_tensors='''tf''' ).input_ids __lowercase = model.generate(input_ids=lowercase__ ,max_length=model.config.max_length - num_paddings ) __lowercase = tokenizer.batch_decode(lowercase__ ,skip_special_tokens=lowercase__ ) __lowercase = tokenizer.decode(output_non_padded[0] ,skip_special_tokens=lowercase__ ) __lowercase = tokenizer.decode(output_padded[0] ,skip_special_tokens=lowercase__ ) __lowercase = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(lowercase__ ,lowercase__ ) self.assertListEqual(lowercase__ ,[non_padded_sentence, padded_sentence] ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = '''facebook/opt-350m''' __lowercase = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] __lowercase = [] __lowercase = GPTaTokenizer.from_pretrained(lowercase__ ) __lowercase = TFOPTForCausalLM.from_pretrained(lowercase__ ) for prompt in self.prompts: __lowercase = tokenizer(lowercase__ ,return_tensors='''tf''' ).input_ids __lowercase = model.generate(lowercase__ ,max_length=1_0 ) __lowercase = tokenizer.batch_decode(lowercase__ ,skip_special_tokens=lowercase__ ) predicted_outputs += generated_string self.assertListEqual(lowercase__ ,lowercase__ )
41
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KEY''') lowerCAmelCase__ = TypeVar('''VAL''') @dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ ) class lowercase_ (Generic[KEY, VAL] ): """simple docstring""" SCREAMING_SNAKE_CASE : KEY SCREAMING_SNAKE_CASE : VAL class lowercase_ (_Item ): """simple docstring""" def __init__( self : Optional[int] ): super().__init__(lowercase__ ,lowercase__ ) def __bool__( self : List[str] ): return False lowerCAmelCase__ = _DeletedItem() class lowercase_ (MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ): __lowercase = initial_block_size __lowercase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowercase = capacity_factor __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ): return hash(lowercase__ ) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ): return (ind + 1) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ): __lowercase = self._buckets[ind] if not stored: __lowercase = _Item(lowercase__ ,lowercase__ ) self._len += 1 return True elif stored.key == key: __lowercase = _Item(lowercase__ ,lowercase__ ) return True else: return False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False __lowercase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ): __lowercase = self._buckets __lowercase = [None] * new_size __lowercase = 0 for item in old_buckets: if item: self._add_item(item.key ,item.val ) def SCREAMING_SNAKE_CASE ( self : str ): self._resize(len(self._buckets ) * 2 ) def SCREAMING_SNAKE_CASE ( self : Tuple ): self._resize(len(self._buckets ) // 2 ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ): __lowercase = self._get_bucket_index(lowercase__ ) for _ in range(len(self._buckets ) ): yield ind __lowercase = self._get_next_ind(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): for ind in self._iterate_buckets(lowercase__ ): if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ): break def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): if self._is_full(): self._size_up() self._add_item(lowercase__ ,lowercase__ ) def __delitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: raise KeyError(lowercase__ ) if item is _deleted: continue if item.key == key: __lowercase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowercase__ ) def __len__( self : Optional[int] ): return self._len def __iter__( self : str ): yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ): __lowercase = ''' ,'''.join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
41
1
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers lowerCAmelCase__ = '''3''' print('''Python version:''', sys.version) print('''transformers version:''', transformers.__version__) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) print('''NCCL version:''', torch.cuda.nccl.version()) except ImportError: print('''Torch version:''', None) try: import deepspeed print('''DeepSpeed version:''', deepspeed.__version__) except ImportError: print('''DeepSpeed version:''', None) try: import tensorflow as tf print('''TensorFlow version:''', tf.__version__) print('''TF GPUs available:''', bool(tf.config.list_physical_devices('''GPU'''))) print('''Number of TF GPUs available:''', len(tf.config.list_physical_devices('''GPU'''))) except ImportError: print('''TensorFlow version:''', None)
41
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ,**lowercase__ : Tuple ): super().__init__(**lowercase__ ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self ,'''vision''' ) self.check_model_type(lowercase__ ) def __call__( self : List[str] ,lowercase__ : Union[str, "Image.Image", List[Dict[str, Any]]] ,lowercase__ : Union[str, List[str]] = None ,**lowercase__ : str ,): if "text_queries" in kwargs: __lowercase = kwargs.pop('''text_queries''' ) if isinstance(lowercase__ ,(str, Image.Image) ): __lowercase = {'''image''': image, '''candidate_labels''': candidate_labels} else: __lowercase = image __lowercase = super().__call__(lowercase__ ,**lowercase__ ) return results def SCREAMING_SNAKE_CASE ( self : int ,**lowercase__ : List[Any] ): __lowercase = {} if "threshold" in kwargs: __lowercase = kwargs['''threshold'''] if "top_k" in kwargs: __lowercase = kwargs['''top_k'''] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[Any] ): __lowercase = load_image(inputs['''image'''] ) __lowercase = inputs['''candidate_labels'''] if isinstance(lowercase__ ,lowercase__ ): __lowercase = candidate_labels.split(''',''' ) __lowercase = torch.tensor([[image.height, image.width]] ,dtype=torch.intaa ) for i, candidate_label in enumerate(lowercase__ ): __lowercase = self.tokenizer(lowercase__ ,return_tensors=self.framework ) __lowercase = self.image_processor(lowercase__ ,return_tensors=self.framework ) yield { "is_last": i == len(lowercase__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ): __lowercase = model_inputs.pop('''target_size''' ) __lowercase = model_inputs.pop('''candidate_label''' ) __lowercase = model_inputs.pop('''is_last''' ) __lowercase = self.model(**lowercase__ ) __lowercase = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : List[Any]=0.1 ,lowercase__ : List[str]=None ): __lowercase = [] for model_output in model_outputs: __lowercase = model_output['''candidate_label'''] __lowercase = BaseModelOutput(lowercase__ ) __lowercase = self.image_processor.post_process_object_detection( outputs=lowercase__ ,threshold=lowercase__ ,target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): __lowercase = outputs['''scores'''][index].item() __lowercase = self._get_bounding_box(outputs['''boxes'''][index][0] ) __lowercase = {'''score''': score, '''label''': label, '''box''': box} results.append(lowercase__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : x["score"] ,reverse=lowercase__ ) if top_k: __lowercase = results[:top_k] return results def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : "torch.Tensor" ): if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) __lowercase , __lowercase , __lowercase , __lowercase = box.int().tolist() __lowercase = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
41
1
'''simple docstring''' import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowercase_ : """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : List[str] ): return self.get_dummy_input() @property def SCREAMING_SNAKE_CASE ( self : int ): if self.block_type == "down": return (4, 3_2, 1_6, 1_6) elif self.block_type == "mid": return (4, 3_2, 3_2, 3_2) elif self.block_type == "up": return (4, 3_2, 6_4, 6_4) raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any=True ,lowercase__ : Dict=False ,lowercase__ : Dict=False ,lowercase__ : Tuple=False ,): __lowercase = 4 __lowercase = 3_2 __lowercase = (3_2, 3_2) __lowercase = torch.manual_seed(0 ) __lowercase = torch.device(lowercase__ ) __lowercase = (batch_size, num_channels) + sizes __lowercase = randn_tensor(lowercase__ ,generator=lowercase__ ,device=lowercase__ ) __lowercase = {'''hidden_states''': hidden_states} if include_temb: __lowercase = 1_2_8 __lowercase = randn_tensor((batch_size, temb_channels) ,generator=lowercase__ ,device=lowercase__ ) if include_res_hidden_states_tuple: __lowercase = torch.manual_seed(1 ) __lowercase = (randn_tensor(lowercase__ ,generator=lowercase__ ,device=lowercase__ ),) if include_encoder_hidden_states: __lowercase = floats_tensor((batch_size, 3_2, 3_2) ).to(lowercase__ ) if include_skip_sample: __lowercase = randn_tensor(((batch_size, 3) + sizes) ,generator=lowercase__ ,device=lowercase__ ) return dummy_input def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = { '''in_channels''': 3_2, '''out_channels''': 3_2, '''temb_channels''': 1_2_8, } if self.block_type == "up": __lowercase = 3_2 if self.block_type == "mid": init_dict.pop('''out_channels''' ) __lowercase = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ): __lowercase , __lowercase = self.prepare_init_args_and_inputs_for_common() __lowercase = self.block_class(**lowercase__ ) unet_block.to(lowercase__ ) unet_block.eval() with torch.no_grad(): __lowercase = unet_block(**lowercase__ ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = output[0] self.assertEqual(output.shape ,self.output_shape ) __lowercase = output[0, -1, -3:, -3:] __lowercase = torch.tensor(lowercase__ ).to(lowercase__ ) assert torch_all_close(output_slice.flatten() ,lowercase__ ,atol=5e-3 ) @unittest.skipIf(torch_device == '''mps''' ,'''Training is not supported in mps''' ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase , __lowercase = self.prepare_init_args_and_inputs_for_common() __lowercase = self.block_class(**lowercase__ ) model.to(lowercase__ ) model.train() __lowercase = model(**lowercase__ ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = output[0] __lowercase = torch.device(lowercase__ ) __lowercase = randn_tensor(output.shape ,device=lowercase__ ) __lowercase = torch.nn.functional.mse_loss(lowercase__ ,lowercase__ ) loss.backward()
41
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 'facebook/bart-large-mnli' SCREAMING_SNAKE_CASE : Optional[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) SCREAMING_SNAKE_CASE : Any = 'text_classifier' SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : Tuple = ['text', ['text']] SCREAMING_SNAKE_CASE : List[str] = ['text'] def SCREAMING_SNAKE_CASE ( self : List[Any] ): super().setup() __lowercase = self.model.config __lowercase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): __lowercase = int(lowercase__ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Dict ,lowercase__ : List[Any] ): __lowercase = labels return self.pre_processor( [text] * len(lowercase__ ) ,[F"This example is {label}" for label in labels] ,return_tensors='''pt''' ,padding='''max_length''' ,) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = outputs.logits __lowercase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
41
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase__ = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
'''simple docstring''' from collections.abc import Callable class lowercase_ : """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : Callable | None = None ): # Stores actual heap items. __lowercase = [] # Stores indexes of each item for supporting updates and deletion. __lowercase = {} # Stores current size of heap. __lowercase = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __lowercase = key or (lambda lowercase__ : x) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : int ): return int((i - 1) / 2 ) if i > 0 else None def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = int(2 * i + 1 ) return left if 0 < left < self.size else None def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ): __lowercase = int(2 * i + 2 ) return right if 0 < right < self.size else None def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : int ,lowercase__ : int ): __lowercase , __lowercase = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __lowercase , __lowercase = self.arr[j], self.arr[i] def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): return self.arr[i][1] < self.arr[j][1] def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._left(lowercase__ ) __lowercase = self._right(lowercase__ ) __lowercase = i if left is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = left if right is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = right return valid_parent def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._parent(lowercase__ ) while parent is not None and not self._cmp(lowercase__ ,lowercase__ ): self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = parent, self._parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = self._get_valid_parent(lowercase__ ) while valid_parent != index: self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = valid_parent, self._get_valid_parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] __lowercase = [item, self.key(lowercase__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] del self.pos_map[item] __lowercase = self.arr[self.size - 1] __lowercase = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : int ): __lowercase = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(lowercase__ )] ) else: __lowercase = [item, self.key(lowercase__ )] __lowercase = self.size self.size += 1 self._heapify_up(self.size - 1 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): return self.arr[0] if self.size else None def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _A ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
41
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 'facebook/bart-large-mnli' SCREAMING_SNAKE_CASE : Optional[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) SCREAMING_SNAKE_CASE : Any = 'text_classifier' SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : Tuple = ['text', ['text']] SCREAMING_SNAKE_CASE : List[str] = ['text'] def SCREAMING_SNAKE_CASE ( self : List[Any] ): super().setup() __lowercase = self.model.config __lowercase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): __lowercase = int(lowercase__ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Dict ,lowercase__ : List[Any] ): __lowercase = labels return self.pre_processor( [text] * len(lowercase__ ) ,[F"This example is {label}" for label in labels] ,return_tensors='''pt''' ,padding='''max_length''' ,) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = outputs.logits __lowercase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
41
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ): __lowercase = [] def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : str ,**lowercase__ : Any ): self.events.append('''on_init_end''' ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : int ,**lowercase__ : Optional[int] ): self.events.append('''on_train_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ,**lowercase__ : List[str] ): self.events.append('''on_train_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,**lowercase__ : Optional[Any] ): self.events.append('''on_epoch_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : Any ,**lowercase__ : Optional[int] ): self.events.append('''on_epoch_end''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_step_begin''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : Optional[int] ,**lowercase__ : Dict ): self.events.append('''on_step_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,**lowercase__ : Any ): self.events.append('''on_evaluate''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : int ,**lowercase__ : Optional[Any] ): self.events.append('''on_predict''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,**lowercase__ : int ): self.events.append('''on_save''' ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_log''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : int ,lowercase__ : Dict ,**lowercase__ : str ): self.events.append('''on_prediction_step''' ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): shutil.rmtree(self.output_dir ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any]=0 ,lowercase__ : Any=0 ,lowercase__ : Tuple=6_4 ,lowercase__ : Optional[int]=6_4 ,lowercase__ : Optional[Any]=None ,lowercase__ : str=False ,**lowercase__ : Any ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionModelConfig(a=lowercase__ ,b=lowercase__ ) __lowercase = RegressionPreTrainedModel(lowercase__ ) __lowercase = TrainingArguments(self.output_dir ,disable_tqdm=lowercase__ ,report_to=[] ,**lowercase__ ) return Trainer( lowercase__ ,lowercase__ ,train_dataset=lowercase__ ,eval_dataset=lowercase__ ,callbacks=lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) ) # Order doesn't matter __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) for cba, cba in zip(lowercase__ ,lowercase__ ): if isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,lowercase__ ) elif isinstance(lowercase__ ,lowercase__ ) and not isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,cba.__class__ ) elif not isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(cba.__class__ ,lowercase__ ) else: self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ): __lowercase = ['''on_init_end''', '''on_train_begin'''] __lowercase = 0 __lowercase = len(trainer.get_eval_dataloader() ) __lowercase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(lowercase__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.get_trainer() __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # Callbacks passed at init are added to the default callbacks __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __lowercase = self.get_trainer(disable_tqdm=lowercase__ ) __lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __lowercase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(cb.__class__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # We can also add, pop, or remove by instance __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' ,category=lowercase__ ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # Independent log/save/eval __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='''steps''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='''epoch''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # A bit of everything __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=1_0 ,eval_steps=5 ,evaluation_strategy='''steps''' ,) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,) assert str(lowercase__ ) in warn_mock.call_args[0][0]
41
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = DDIMPipeline SCREAMING_SNAKE_CASE : Any = UNCONDITIONAL_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE : int = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } SCREAMING_SNAKE_CASE : Union[str, Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE : Union[str, Any] = False def SCREAMING_SNAKE_CASE ( self : Optional[int] ): torch.manual_seed(0 ) __lowercase = UNetaDModel( block_out_channels=(3_2, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=3 ,out_channels=3 ,down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') ,up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') ,) __lowercase = DDIMScheduler() __lowercase = {'''unet''': unet, '''scheduler''': scheduler} return components def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : str ,lowercase__ : int=0 ): if str(lowercase__ ).startswith('''mps''' ): __lowercase = torch.manual_seed(lowercase__ ) else: __lowercase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __lowercase = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = '''cpu''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowercase__ ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs(lowercase__ ) __lowercase = pipe(**lowercase__ ).images __lowercase = image[0, -3:, -3:, -1] self.assertEqual(image.shape ,(1, 3_2, 3_2, 3) ) __lowercase = np.array( [1.0_0_0e0_0, 5.7_1_7e-0_1, 4.7_1_7e-0_1, 1.0_0_0e0_0, 0.0_0_0e0_0, 1.0_0_0e0_0, 3.0_0_0e-0_4, 0.0_0_0e0_0, 9.0_0_0e-0_4] ) __lowercase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowercase__ ,1e-3 ) def SCREAMING_SNAKE_CASE ( self : Dict ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ): super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : int ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''google/ddpm-cifar10-32''' __lowercase = UNetaDModel.from_pretrained(lowercase__ ) __lowercase = DDIMScheduler() __lowercase = DDIMPipeline(unet=lowercase__ ,scheduler=lowercase__ ) ddim.to(lowercase__ ) ddim.set_progress_bar_config(disable=lowercase__ ) __lowercase = torch.manual_seed(0 ) __lowercase = ddim(generator=lowercase__ ,eta=0.0 ,output_type='''numpy''' ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __lowercase = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = '''google/ddpm-ema-bedroom-256''' __lowercase = UNetaDModel.from_pretrained(lowercase__ ) __lowercase = DDIMScheduler.from_pretrained(lowercase__ ) __lowercase = DDIMPipeline(unet=lowercase__ ,scheduler=lowercase__ ) ddpm.to(lowercase__ ) ddpm.set_progress_bar_config(disable=lowercase__ ) __lowercase = torch.manual_seed(0 ) __lowercase = ddpm(generator=lowercase__ ,output_type='''numpy''' ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) __lowercase = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
41
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : jnp.ndarray SCREAMING_SNAKE_CASE : jnp.ndarray class lowercase_ (nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __lowercase = [] for i in range(len(self.block_out_channels ) - 1 ): __lowercase = self.block_out_channels[i] __lowercase = self.block_out_channels[i + 1] __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = blocks __lowercase = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : List[str] ,lowercase__ : Optional[int] ): __lowercase = self.conv_in(lowercase__ ) __lowercase = nn.silu(lowercase__ ) for block in self.blocks: __lowercase = block(lowercase__ ) __lowercase = nn.silu(lowercase__ ) __lowercase = self.conv_out(lowercase__ ) return embedding @flax_register_to_config class lowercase_ (nn.Module , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 3_2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False SCREAMING_SNAKE_CASE : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) SCREAMING_SNAKE_CASE : int = 2 SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None SCREAMING_SNAKE_CASE : int = 1_2_8_0 SCREAMING_SNAKE_CASE : float = 0.0 SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = "rgb" SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : jax.random.KeyArray ): # init input tensors __lowercase = (1, self.in_channels, self.sample_size, self.sample_size) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase = jnp.ones((1,) ,dtype=jnp.intaa ) __lowercase = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa ) __lowercase = (1, 3, self.sample_size * 8, self.sample_size * 8) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase , __lowercase = jax.random.split(lowercase__ ) __lowercase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )["params"] def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.block_out_channels __lowercase = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __lowercase = self.num_attention_heads or self.attention_head_dim # input __lowercase = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time __lowercase = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift ) __lowercase = FlaxTimestepEmbedding(lowercase__ ,dtype=self.dtype ) __lowercase = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) __lowercase = self.only_cross_attention if isinstance(lowercase__ ,lowercase__ ): __lowercase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = (num_attention_heads,) * len(self.down_block_types ) # down __lowercase = [] __lowercase = [] __lowercase = block_out_channels[0] __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) for i, down_block_type in enumerate(self.down_block_types ): __lowercase = output_channel __lowercase = block_out_channels[i] __lowercase = i == len(lowercase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": __lowercase = FlaxCrossAttnDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: __lowercase = FlaxDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(lowercase__ ) for _ in range(self.layers_per_block ): __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) if not is_final_block: __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) __lowercase = down_blocks __lowercase = controlnet_down_blocks # mid __lowercase = block_out_channels[-1] __lowercase = FlaxUNetMidBlockaDCrossAttn( in_channels=lowercase__ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : float = 1.0 ,lowercase__ : bool = True ,lowercase__ : bool = False ,): __lowercase = self.controlnet_conditioning_channel_order if channel_order == "bgr": __lowercase = jnp.flip(lowercase__ ,axis=1 ) # 1. time if not isinstance(lowercase__ ,jnp.ndarray ): __lowercase = jnp.array([timesteps] ,dtype=jnp.intaa ) elif isinstance(lowercase__ ,jnp.ndarray ) and len(timesteps.shape ) == 0: __lowercase = timesteps.astype(dtype=jnp.floataa ) __lowercase = jnp.expand_dims(lowercase__ ,0 ) __lowercase = self.time_proj(lowercase__ ) __lowercase = self.time_embedding(lowercase__ ) # 2. pre-process __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.conv_in(lowercase__ ) __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.controlnet_cond_embedding(lowercase__ ) sample += controlnet_cond # 3. down __lowercase = (sample,) for down_block in self.down_blocks: if isinstance(lowercase__ ,lowercase__ ): __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) else: __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,deterministic=not train ) down_block_res_samples += res_samples # 4. mid __lowercase = self.mid_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) # 5. contronet blocks __lowercase = () for down_block_res_sample, controlnet_block in zip(lowercase__ ,self.controlnet_down_blocks ): __lowercase = controlnet_block(lowercase__ ) controlnet_down_block_res_samples += (down_block_res_sample,) __lowercase = controlnet_down_block_res_samples __lowercase = self.controlnet_mid_block(lowercase__ ) # 6. scaling __lowercase = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowercase__ ,mid_block_res_sample=lowercase__ )
41
1
'''simple docstring''' from itertools import permutations def _A ( A__ ): """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __lowercase = [7, 11, 13, 17] for i, test in enumerate(A__ ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def _A ( A__ = 10 ): """simple docstring""" return sum( int(''''''.join(map(A__ , A__ ) ) ) for num in permutations(range(A__ ) ) if is_substring_divisible(A__ ) ) if __name__ == "__main__": print(f'{solution() = }')
41
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase__ = False lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''ybelkada/fonts''' def _A ( ): """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use " '''Pix2StructImageProcessor. Please upgrade torch.''' ) def _A ( A__ , A__ , A__ ): """simple docstring""" requires_backends(A__ , ['''torch'''] ) _check_torch_version() __lowercase = image_tensor.unsqueeze(0 ) __lowercase = torch.nn.functional.unfold(A__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) __lowercase = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , A__ , A__ , -1 ) __lowercase = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def _A ( A__ , A__ = 36 , A__ = "black" , A__ = "white" , A__ = 5 , A__ = 5 , A__ = 5 , A__ = 5 , A__ = None , A__ = None , ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Add new lines so that each line is no more than 80 characters. __lowercase = textwrap.TextWrapper(width=80 ) __lowercase = wrapper.wrap(text=A__ ) __lowercase = '''\n'''.join(A__ ) if font_bytes is not None and font_path is None: __lowercase = io.BytesIO(A__ ) elif font_path is not None: __lowercase = font_path else: __lowercase = hf_hub_download(A__ , '''Arial.TTF''' ) __lowercase = ImageFont.truetype(A__ , encoding='''UTF-8''' , size=A__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. __lowercase = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , A__ ) ) __lowercase , __lowercase , __lowercase , __lowercase = temp_draw.textbbox((0, 0) , A__ , A__ ) # Create the actual image with a bit of padding around the text. __lowercase = text_width + left_padding + right_padding __lowercase = text_height + top_padding + bottom_padding __lowercase = Image.new('''RGB''' , (image_width, image_height) , A__ ) __lowercase = ImageDraw.Draw(A__ ) draw.text(xy=(left_padding, top_padding) , text=A__ , fill=A__ , font=A__ ) return image def _A ( A__ , A__ , **A__ ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Convert to PIL image if necessary __lowercase = to_pil_image(A__ ) __lowercase = render_text(A__ , **A__ ) __lowercase = max(header_image.width , image.width ) __lowercase = int(image.height * (new_width / image.width) ) __lowercase = int(header_image.height * (new_width / header_image.width) ) __lowercase = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary __lowercase = to_numpy_array(A__ ) if infer_channel_dimension_format(A__ ) == ChannelDimension.LAST: __lowercase = to_channel_dimension_format(A__ , ChannelDimension.LAST ) return new_image class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ['flattened_patches'] def __init__( self : Any ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : int = 2_0_4_8 ,lowercase__ : bool = False ,**lowercase__ : List[str] ,): super().__init__(**lowercase__ ) __lowercase = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6} __lowercase = do_normalize __lowercase = do_convert_rgb __lowercase = max_patches __lowercase = is_vqa def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : np.ndarray ,lowercase__ : int ,lowercase__ : dict ,**lowercase__ : Tuple ): requires_backends(self.extract_flattened_patches ,'''torch''' ) _check_torch_version() # convert to torch __lowercase = to_channel_dimension_format(lowercase__ ,ChannelDimension.FIRST ) __lowercase = torch.from_numpy(lowercase__ ) __lowercase , __lowercase = patch_size['''height'''], patch_size['''width'''] __lowercase , __lowercase = get_image_size(lowercase__ ) # maximize scale s.t. __lowercase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) __lowercase = max(min(math.floor(scale * image_height / patch_height ) ,lowercase__ ) ,1 ) __lowercase = max(min(math.floor(scale * image_width / patch_width ) ,lowercase__ ) ,1 ) __lowercase = max(num_feasible_rows * patch_height ,1 ) __lowercase = max(num_feasible_cols * patch_width ,1 ) __lowercase = torch.nn.functional.interpolate( image.unsqueeze(0 ) ,size=(resized_height, resized_width) ,mode='''bilinear''' ,align_corners=lowercase__ ,antialias=lowercase__ ,).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] __lowercase = torch_extract_patches(lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = patches.shape __lowercase = patches_shape[1] __lowercase = patches_shape[2] __lowercase = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] __lowercase = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] __lowercase = torch.arange(lowercase__ ).reshape([rows, 1] ).repeat(1 ,lowercase__ ).reshape([rows * columns, 1] ) __lowercase = torch.arange(lowercase__ ).reshape([1, columns] ).repeat(lowercase__ ,1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] __lowercase = row_ids.to(torch.floataa ) __lowercase = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] __lowercase = torch.cat([row_ids, col_ids, patches] ,-1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] __lowercase = torch.nn.functional.pad(lowercase__ ,[0, 0, 0, max_patches - (rows * columns)] ).float() __lowercase = to_numpy_array(lowercase__ ) return result def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : np.ndarray ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ): if image.dtype == np.uinta: __lowercase = image.astype(np.floataa ) # take mean across the whole `image` __lowercase = np.mean(lowercase__ ) __lowercase = np.std(lowercase__ ) __lowercase = max(lowercase__ ,1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : ImageInput ,lowercase__ : Optional[str] = None ,lowercase__ : bool = None ,lowercase__ : Optional[bool] = None ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[Dict[str, int]] = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : ChannelDimension = ChannelDimension.FIRST ,**lowercase__ : List[Any] ,): __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = patch_size if patch_size is not None else self.patch_size __lowercase = max_patches if max_patches is not None else self.max_patches __lowercase = self.is_vqa if kwargs.get('''data_format''' ,lowercase__ ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) __lowercase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(lowercase__ ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowercase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) __lowercase = kwargs.pop('''font_bytes''' ,lowercase__ ) __lowercase = kwargs.pop('''font_path''' ,lowercase__ ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = [header_text] * len(lowercase__ ) __lowercase = [ render_header(lowercase__ ,header_text[i] ,font_bytes=lowercase__ ,font_path=lowercase__ ) for i, image in enumerate(lowercase__ ) ] if do_normalize: __lowercase = [self.normalize(image=lowercase__ ) for image in images] # convert to torch tensor and permute __lowercase = [ self.extract_flattened_patches(image=lowercase__ ,max_patches=lowercase__ ,patch_size=lowercase__ ) for image in images ] # create attention mask in numpy __lowercase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] __lowercase = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks} ,tensor_type=lowercase__ ) return encoded_outputs
41
1
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} lowerCAmelCase__ = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } lowerCAmelCase__ = { '''abeja/gpt-neox-japanese-2.7b''': 2048, } def _A ( A__ , A__ ): """simple docstring""" with open(A__ , '''r''' , encoding='''utf-8''' ) as f: __lowercase = json.loads(f.read() ) __lowercase = collections.OrderedDict() __lowercase = collections.OrderedDict() __lowercase = collections.OrderedDict() with open(A__ , '''r''' , encoding='''utf-8''' ) as f: __lowercase = f.readlines() __lowercase = [[t.rstrip('''\n''' )] if (t == ''',''' or ''',''' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token] for idx, b in enumerate(A__ ): __lowercase = b __lowercase = idx for wd in b: __lowercase = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] def __init__( self : Tuple ,lowercase__ : Union[str, Any] ,lowercase__ : Tuple ,lowercase__ : Any="<|endoftext|>" ,lowercase__ : Optional[Any]="<|endoftext|>" ,lowercase__ : int="<|startoftext|>" ,lowercase__ : Dict="<|endoftext|>" ,lowercase__ : Tuple=False ,**lowercase__ : Dict ,): super().__init__( unk_token=lowercase__ ,pad_token=lowercase__ ,bos_token=lowercase__ ,eos_token=lowercase__ ,do_clean_text=lowercase__ ,**lowercase__ ,) if not os.path.isfile(lowercase__ ): raise ValueError( F"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" ''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) if not os.path.isfile(lowercase__ ): raise ValueError( F"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google" ''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) __lowercase = do_clean_text __lowercase , __lowercase , __lowercase , __lowercase = load_vocab_and_emoji(lowercase__ ,lowercase__ ) __lowercase = SubWordJapaneseTokenizer( vocab=self.vocab ,ids_to_tokens=self.ids_to_tokens ,emoji=self.emoji ) @property def SCREAMING_SNAKE_CASE ( self : Any ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def SCREAMING_SNAKE_CASE ( self : Any ): return dict(self.raw_vocab ,**self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ): return self.subword_tokenizer.tokenize(lowercase__ ,clean=self.do_clean_text ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ): return self.vocab.get(lowercase__ ,self.vocab.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Union[str, Any] ): return self.subword_tokenizer.convert_id_to_token(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[Any] ): __lowercase = ''''''.join(lowercase__ ).strip() return out_string def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : "Conversation" ): __lowercase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ ,add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: __lowercase = input_ids[-self.model_max_length :] return input_ids def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : Optional[str] = None ): __lowercase = 0 if os.path.isdir(lowercase__ ): __lowercase = os.path.join( lowercase__ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join( lowercase__ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file'''] ) else: __lowercase = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file'''] ) with open(lowercase__ ,'''w''' ,encoding='''utf-8''' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." ''' Please check that the vocabulary is not corrupted!''' ) __lowercase = token_index writer.write(''','''.join(lowercase__ ) + '''\n''' ) index += 1 with open(lowercase__ ,'''w''' ,encoding='''utf-8''' ) as writer: json.dump(self.emoji ,lowercase__ ) return vocab_file, emoji_file class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ,lowercase__ : Optional[int] ,lowercase__ : Optional[int] ,lowercase__ : str ): __lowercase = vocab # same as swe __lowercase = ids_to_tokens # same as bpe __lowercase = emoji __lowercase = np.max([len(lowercase__ ) for w in self.vocab.keys()] ) __lowercase = re.compile(r'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''' ) __lowercase = re.compile(r'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''' ) __lowercase = re.compile(r'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''' ) __lowercase = re.compile( r'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) __lowercase = re.compile( r'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) __lowercase = re.compile( r'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''' ) __lowercase = '''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿''' __lowercase = '''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟''' __lowercase = str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks} ) def __len__( self : Dict ): return len(self.ids_to_tokens ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ): __lowercase = self.content_repattera.sub('''<URL>''' ,lowercase__ ) __lowercase = self.content_repattera.sub('''<EMAIL>''' ,lowercase__ ) __lowercase = self.content_repattera.sub('''<TEL>''' ,lowercase__ ) __lowercase = self.content_repattera.sub('''<DATE>''' ,lowercase__ ) __lowercase = self.content_repattera.sub('''<DATE>''' ,lowercase__ ) __lowercase = self.content_repattera.sub('''<PRICE>''' ,lowercase__ ) __lowercase = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: __lowercase = content.replace('''<BLOCK><BLOCK>''' ,'''<BLOCK>''' ) return content def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[Any] ,lowercase__ : Union[str, Any]=False ): __lowercase = text.replace(''' ''' ,'''<SP>''' ) __lowercase = text.replace(''' ''' ,'''<SP>''' ) __lowercase = text.replace('''\r\n''' ,'''<BR>''' ) __lowercase = text.replace('''\n''' ,'''<BR>''' ) __lowercase = text.replace('''\r''' ,'''<BR>''' ) __lowercase = text.replace('''\t''' ,'''<TAB>''' ) __lowercase = text.replace('''—''' ,'''ー''' ) __lowercase = text.replace('''−''' ,'''ー''' ) for k, v in self.emoji["emoji"].items(): if k in text: __lowercase = text.replace(lowercase__ ,lowercase__ ) if clean: __lowercase = self.clean_text(lowercase__ ) def check_simbol(lowercase__ : str ): __lowercase = x.encode() if len(lowercase__ ) == 1 and len(lowercase__ ) == 2: __lowercase = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc_2a1 and c <= 0xc_2bf) or (c >= 0xc_780 and c <= 0xc_783) or (c >= 0xc_ab9 and c <= 0xc_bbf) or (c >= 0xc_c80 and c <= 0xc_da2) ): return True return False def checkuae(lowercase__ : Dict ): __lowercase = x.encode() if len(lowercase__ ) == 1 and len(lowercase__ ) == 3: __lowercase = (int(e[0] ) << 1_6) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe28_080 and c <= 0xe2b_07f: return True return False __lowercase = 0 __lowercase = [] while pos < len(lowercase__ ): __lowercase = min(len(lowercase__ ) ,pos + self.maxlen + 1 ) if text[pos] == '''<''' else pos + 3 __lowercase = [] # (token_id, token, pos) for e in range(lowercase__ ,lowercase__ ,-1 ): __lowercase = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(lowercase__ ) > 2: __lowercase = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(lowercase__ ) > 0: # the smallest token_id is adopted __lowercase , __lowercase , __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : x[0] )[0] result.append(lowercase__ ) __lowercase = e else: __lowercase = pos + 1 __lowercase = text[pos:end] if check_simbol(lowercase__ ): result.append('''<KIGOU>''' ) elif checkuae(lowercase__ ): result.append('''<U2000U2BFF>''' ) else: for i in wd.encode('''utf-8''' ): result.append('''<|byte%d|>''' % i ) __lowercase = end return result def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ,lowercase__ : List[Any]="\n" ): __lowercase = [] __lowercase = [] __lowercase = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(lowercase__ ) > 0: words.append(bytearray(lowercase__ ).decode('''utf-8''' ,errors='''replace''' ) ) __lowercase = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['''emoji_inv'''][word] ) elif word == "<SP>": words.append(''' ''' ) elif word == "<BR>": words.append(lowercase__ ) elif word == "<TAB>": words.append('''\t''' ) elif word == "<BLOCK>": words.append('''▀''' ) elif word == "<KIGOU>": words.append('''ǀ''' ) elif word == "<U2000U2BFF>": words.append('''‖''' ) else: words.append(lowercase__ ) if len(lowercase__ ) > 0: words.append(bytearray(lowercase__ ).decode('''utf-8''' ,errors='''replace''' ) ) __lowercase = ''''''.join(lowercase__ ) return text
41
'''simple docstring''' import doctest from collections import deque import numpy as np class lowercase_ : """simple docstring""" def __init__( self : Optional[Any] ): __lowercase = [2, 1, 2, -1] __lowercase = [1, 2, 3, 4] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = len(self.first_signal ) __lowercase = len(self.second_signal ) __lowercase = max(lowercase__ ,lowercase__ ) # create a zero matrix of max_length x max_length __lowercase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __lowercase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __lowercase = np.matmul(np.transpose(lowercase__ ) ,np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ ,2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
41
1
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') lowerCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') lowerCAmelCase__ = '''pt''' if is_torch_available() else '''tf''' @require_sentencepiece @require_tokenizers class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = CamembertTokenizer SCREAMING_SNAKE_CASE : Optional[int] = CamembertTokenizerFast SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Optional[Any] = True def SCREAMING_SNAKE_CASE ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing __lowercase = CamembertTokenizer(lowercase__ ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = '''<pad>''' __lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) ,lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''<s>NOTUSED''' ) self.assertEqual(vocab_keys[1] ,'''<pad>''' ) self.assertEqual(vocab_keys[-1] ,'''<mask>''' ) self.assertEqual(len(lowercase__ ) ,1_0_0_4 ) def SCREAMING_SNAKE_CASE ( self : List[str] ): self.assertEqual(self.get_tokenizer().vocab_size ,1_0_0_5 ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = CamembertTokenizer(lowercase__ ) tokenizer.save_pretrained(self.tmpdirname ) __lowercase = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) __lowercase = '''I was born in 92000, and this is falsé.''' __lowercase = tokenizer.encode(lowercase__ ) __lowercase = rust_tokenizer.encode(lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) __lowercase = tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ) __lowercase = rust_tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) __lowercase = tokenizer.convert_ids_to_tokens(lowercase__ ) __lowercase = rust_tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): if not self.test_rust_tokenizer: return __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer() __lowercase = '''I was born in 92000, and this is falsé.''' __lowercase = tokenizer.tokenize(lowercase__ ) __lowercase = rust_tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) __lowercase = tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ) __lowercase = rust_tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) __lowercase = self.get_rust_tokenizer() __lowercase = tokenizer.encode(lowercase__ ) __lowercase = rust_tokenizer.encode(lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ): # fmt: off __lowercase = {'''input_ids''': [[5, 5_4, 7_1_9_6, 2_9_7, 3_0, 2_3, 7_7_6, 1_8, 1_1, 3_2_1_5, 3_7_0_5, 8_2_5_2, 2_2, 3_1_6_4, 1_1_8_1, 2_1_1_6, 2_9, 1_6, 8_1_3, 2_5, 7_9_1, 3_3_1_4, 2_0, 3_4_4_6, 3_8, 2_7_5_7_5, 1_2_0, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_6_8, 1_7, 1_1, 9_0_8_8, 2_0, 1_5_1_7, 8, 2_2_8_0_4, 1_8_8_1_8, 1_0, 3_8, 6_2_9, 6_0_7, 6_0_7, 1_4_2, 1_9, 7_1_9_6, 8_6_7, 5_6, 1_0_3_2_6, 2_4, 2_2_6_7, 2_0, 4_1_6, 5_0_7_2, 1_5_6_1_2, 2_3_3, 7_3_4, 7, 2_3_9_9, 2_7, 1_6, 3_0_1_5, 1_6_4_9, 7, 2_4, 2_0, 4_3_3_8, 2_3_9_9, 2_7, 1_3, 3_4_0_0, 1_4, 1_3, 6_1_8_9, 8, 9_3_0, 9, 6]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. __lowercase = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=lowercase__ ,model_name='''camembert-base''' ,revision='''3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf''' ,sequences=lowercase__ ,)
41
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
41
1
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _A ( A__ ): """simple docstring""" __lowercase = tmp_path / '''file.csv''' __lowercase = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(A__ , '''w''' ) as f: f.write(A__ ) return str(A__ ) @pytest.fixture def _A ( A__ ): """simple docstring""" __lowercase = tmp_path / '''malformed_file.csv''' __lowercase = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(A__ , '''w''' ) as f: f.write(A__ ) return str(A__ ) @pytest.fixture def _A ( A__ , A__ ): """simple docstring""" __lowercase = tmp_path / '''csv_with_image.csv''' __lowercase = textwrap.dedent( F"\\n image\n {image_file}\n " ) with open(A__ , '''w''' ) as f: f.write(A__ ) return str(A__ ) @pytest.fixture def _A ( A__ ): """simple docstring""" __lowercase = tmp_path / '''csv_with_label.csv''' __lowercase = textwrap.dedent( '''\ label good bad good ''' ) with open(A__ , '''w''' ) as f: f.write(A__ ) return str(A__ ) @pytest.fixture def _A ( A__ ): """simple docstring""" __lowercase = tmp_path / '''csv_with_int_list.csv''' __lowercase = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(A__ , '''w''' ) as f: f.write(A__ ) return str(A__ ) def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = Csv() __lowercase = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(A__ , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(A__ ) in record.message for record in caplog.records ) @require_pil def _A ( A__ ): """simple docstring""" with open(A__ , encoding='''utf-8''' ) as f: __lowercase = f.read().splitlines()[1] __lowercase = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) __lowercase = csv._generate_tables([[csv_file_with_image]] ) __lowercase = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() __lowercase = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def _A ( A__ ): """simple docstring""" with open(A__ , encoding='''utf-8''' ) as f: __lowercase = f.read().splitlines()[1:] __lowercase = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) __lowercase = csv._generate_tables([[csv_file_with_label]] ) __lowercase = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() __lowercase = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(A__ ) for label in labels] def _A ( A__ ): """simple docstring""" __lowercase = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda A__ : [int(A__ ) for i in x.split()]} ) __lowercase = csv._generate_tables([[csv_file_with_int_list]] ) __lowercase = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) __lowercase = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
41
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCAmelCase__ = getLogger(__name__) lowerCAmelCase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def _A ( A__ , A__ , A__ , A__ = 8 , A__ = DEFAULT_DEVICE , A__=False , A__="summarization" , A__=None , **A__ , ): """simple docstring""" __lowercase = Path(A__ ).open('''w''' , encoding='''utf-8''' ) __lowercase = str(A__ ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained(A__ ).to(A__ ) if fpaa: __lowercase = model.half() __lowercase = AutoTokenizer.from_pretrained(A__ ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __lowercase = time.time() # update config with task specific params use_task_specific_params(A__ , A__ ) if prefix is None: __lowercase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(A__ , A__ ) ) ): __lowercase = [prefix + text for text in examples_chunk] __lowercase = tokenizer(A__ , return_tensors='''pt''' , truncation=A__ , padding='''longest''' ).to(A__ ) __lowercase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **A__ , ) __lowercase = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __lowercase = int(time.time() - start_time ) # seconds __lowercase = len(A__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _A ( ): """simple docstring""" return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def _A ( A__=True ): """simple docstring""" __lowercase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=A__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=A__ , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=A__ , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=A__ , required=A__ , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=A__ , required=A__ , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=A__ , required=A__ , default=A__ , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=A__ , required=A__ , default=A__ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=A__ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=A__ , default=8 , required=A__ , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=A__ , default=-1 , required=A__ , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=A__ , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowercase , __lowercase = parser.parse_known_args() __lowercase = parse_numeric_n_bool_cl_kwargs(A__ ) if parsed_args and verbose: print(F"parsed the following generate kwargs: {parsed_args}" ) __lowercase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowercase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=A__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __lowercase = generate_summaries_or_translations( A__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **A__ , ) if args.reference_path is None: return {} # Compute scores __lowercase = calculate_bleu if '''translation''' in args.task else calculate_rouge __lowercase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowercase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(A__ )] __lowercase = score_fn(A__ , A__ ) scores.update(A__ ) if args.dump_args: scores.update(A__ ) if args.info: __lowercase = args.info if verbose: print(A__ ) if args.score_path is not None: json.dump(A__ , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
41
1
'''simple docstring''' def _A ( A__ = 50 ): """simple docstring""" __lowercase = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
41
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(A__ ): print(F"{i}\t\t{d}" ) def _A ( A__ , A__ , A__ ): """simple docstring""" for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = [float('''inf''' )] * vertex_count __lowercase = 0.0 for _ in range(vertex_count - 1 ): for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: __lowercase = distance[u] + w __lowercase = check_negative_cycle(A__ , A__ , A__ ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = int(input('''Enter number of vertices: ''').strip()) lowerCAmelCase__ = int(input('''Enter number of edges: ''').strip()) lowerCAmelCase__ = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) lowerCAmelCase__ = {'''src''': src, '''dst''': dest, '''weight''': weight} lowerCAmelCase__ = int(input('''\nEnter shortest path source:''').strip()) lowerCAmelCase__ = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
41
1
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _A ( A__ ): """simple docstring""" __lowercase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def _A ( A__ ): """simple docstring""" __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(A__ , A__ , bias=A__ ) __lowercase = emb.weight.data return lin_layer def _A ( A__ , A__="facebook/mbart-large-en-ro" , A__=False , A__=False ): """simple docstring""" __lowercase = torch.load(A__ , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A__ ) __lowercase = state_dict['''encoder.embed_tokens.weight'''].shape[0] __lowercase = MBartConfig.from_pretrained(A__ , vocab_size=A__ ) if mbart_aa and finetuned: __lowercase = '''relu''' __lowercase = state_dict['''decoder.embed_tokens.weight'''] __lowercase = MBartForConditionalGeneration(A__ ) model.model.load_state_dict(A__ ) if finetuned: __lowercase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
41
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[Any] ,*lowercase__ : Optional[Any] ,**lowercase__ : int ): warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' ,lowercase__ ,) super().__init__(*lowercase__ ,**lowercase__ )
41
1
'''simple docstring''' from math import factorial, radians def _A ( A__ , A__ = 18 , A__ = 10 ): """simple docstring""" __lowercase = angle_in_degrees - ((angle_in_degrees // 3_6_0.0) * 3_6_0.0) # Converting from degrees to radians __lowercase = radians(A__ ) __lowercase = angle_in_radians __lowercase = 3 __lowercase = -1 for _ in range(A__ ): result += (b * (angle_in_radians**a)) / factorial(A__ ) __lowercase = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(A__ , A__ ) if __name__ == "__main__": __import__('''doctest''').testmod()
41
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _A ( A__ ): """simple docstring""" __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = 0.0_1 with locka.acquire(): with pytest.raises(A__ ): __lowercase = time.time() locka.acquire(A__ ) assert time.time() - _start > timeout def _A ( A__ ): """simple docstring""" __lowercase = '''a''' * 1000 + '''.lock''' __lowercase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(A__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __lowercase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(A__ ): locka.acquire(0 )
41
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'blenderbot-small' SCREAMING_SNAKE_CASE : int = ['past_key_values'] SCREAMING_SNAKE_CASE : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] ,lowercase__ : List[str]=5_0_2_6_5 ,lowercase__ : Optional[Any]=5_1_2 ,lowercase__ : Optional[int]=8 ,lowercase__ : List[Any]=2_0_4_8 ,lowercase__ : List[str]=1_6 ,lowercase__ : str=8 ,lowercase__ : Any=2_0_4_8 ,lowercase__ : Tuple=1_6 ,lowercase__ : Tuple=0.0 ,lowercase__ : List[str]=0.0 ,lowercase__ : Any=True ,lowercase__ : str=True ,lowercase__ : int="gelu" ,lowercase__ : Tuple=5_1_2 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : str=0.0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : List[Any]=False ,lowercase__ : Optional[int]=0 ,lowercase__ : Optional[int]=1 ,lowercase__ : str=2 ,lowercase__ : int=2 ,**lowercase__ : List[str] ,): __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = use_cache __lowercase = encoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,is_encoder_decoder=lowercase__ ,decoder_start_token_id=lowercase__ ,forced_eos_token_id=lowercase__ ,**lowercase__ ,) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Dict ): if self.task in ["default", "seq2seq-lm"]: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase = {0: '''batch'''} __lowercase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase__ ,direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super().outputs else: __lowercase = super(lowercase__ ,self ).outputs if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) # Generate decoder inputs __lowercase = seq_length if not self.use_past else 1 __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __lowercase = dict(**lowercase__ ,**lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape __lowercase = common_inputs['''decoder_input_ids'''].shape[1] __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = decoder_seq_length + 3 __lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase__ ,lowercase__ )] ,dim=1 ) __lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase = self.num_layers __lowercase = min(lowercase__ ,lowercase__ ) __lowercase = max(lowercase__ ,lowercase__ ) - min_num_layers __lowercase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), ) ) # TODO: test this. __lowercase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase__ ,lowercase__ ): common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase , __lowercase = self.num_layers __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = common_inputs['''attention_mask'''].dtype __lowercase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase__ ,lowercase__ ,dtype=lowercase__ )] ,dim=1 ) __lowercase = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ ) ] return common_inputs def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = tokenizer.num_special_tokens_to_add(lowercase__ ) __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowercase__ ) # Generate dummy inputs according to compute batch and sequence __lowercase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase = dict(tokenizer(lowercase__ ,return_tensors=lowercase__ ) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): if self.task in ["default", "seq2seq-lm"]: __lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) elif self.task == "causal-lm": __lowercase = self._generate_dummy_inputs_for_causal_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) else: __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super()._flatten_past_key_values_(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) else: __lowercase = super(lowercase__ ,self )._flatten_past_key_values_( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
41
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase__ = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
1
'''simple docstring''' from collections.abc import Generator def _A ( ): """simple docstring""" __lowercase , __lowercase = 0, 1 while True: __lowercase , __lowercase = b, a + b yield b def _A ( A__ = 1000 ): """simple docstring""" __lowercase = 1 __lowercase = fibonacci_generator() while len(str(next(A__ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
41
'''simple docstring''' import argparse import os import re lowerCAmelCase__ = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(R'''\[([^\]]+)\]''') def _A ( A__ ): """simple docstring""" __lowercase = _re_indent.search(A__ ) return "" if search is None else search.groups()[0] def _A ( A__ , A__="" , A__=None , A__=None ): """simple docstring""" __lowercase = 0 __lowercase = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(A__ ): index += 1 __lowercase = ['''\n'''.join(lines[:index] )] else: __lowercase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowercase = [lines[index]] index += 1 while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(A__ ) ) if index < len(A__ ) - 1: __lowercase = [lines[index + 1]] index += 1 else: __lowercase = [] else: blocks.append('''\n'''.join(A__ ) ) __lowercase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A__ ) > 0: blocks.append('''\n'''.join(A__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def _A ( A__ ): """simple docstring""" def _inner(A__ ): return key(A__ ).lower().replace('''_''' , '''''' ) return _inner def _A ( A__ , A__=None ): """simple docstring""" def noop(A__ ): return x if key is None: __lowercase = noop # Constants are all uppercase, they go first. __lowercase = [obj for obj in objects if key(A__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowercase = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()] # Functions begin with a lowercase, they go last. __lowercase = [obj for obj in objects if not key(A__ )[0].isupper()] __lowercase = ignore_underscore(A__ ) return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) def _A ( A__ ): """simple docstring""" def _replace(A__ ): __lowercase = match.groups()[0] if "," not in imports: return F"[{imports}]" __lowercase = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) + "]" __lowercase = import_statement.split('''\n''' ) if len(A__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowercase = 2 if lines[1].strip() == '''[''' else 1 __lowercase = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowercase = sort_objects(A__ , key=lambda A__ : x[1] ) __lowercase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowercase = _re_bracket_content.sub(_replace , lines[1] ) else: __lowercase = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] __lowercase = get_indent(lines[1] ) + ''', '''.join([F"\"{k}\"" for k in sort_objects(A__ )] ) return "\n".join(A__ ) else: # Finally we have to deal with imports fitting on one line __lowercase = _re_bracket_content.sub(_replace , A__ ) return import_statement def _A ( A__ , A__=True ): """simple docstring""" with open(A__ , '''r''' ) as f: __lowercase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowercase = split_code_in_indented_blocks( A__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowercase = main_blocks[block_idx] __lowercase = block.split('''\n''' ) # Get to the start of the imports. __lowercase = 0 while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowercase = len(A__ ) else: line_idx += 1 if line_idx >= len(A__ ): continue # Ignore beginning and last line: they don't contain anything. __lowercase = '''\n'''.join(block_lines[line_idx:-1] ) __lowercase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowercase = split_code_in_indented_blocks(A__ , indent_level=A__ ) # We have two categories of import key: list or _import_structure[key].append/extend __lowercase = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowercase = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowercase = [(i, key) for i, key in enumerate(A__ ) if key is not None] __lowercase = [x[0] for x in sorted(A__ , key=lambda A__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowercase = 0 __lowercase = [] for i in range(len(A__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __lowercase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(A__ ) count += 1 # And we put our main block back together with its first and last line. __lowercase = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(A__ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(A__ , '''w''' ) as f: f.write('''\n'''.join(A__ ) ) def _A ( A__=True ): """simple docstring""" __lowercase = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: __lowercase = sort_imports(os.path.join(A__ , '''__init__.py''' ) , check_only=A__ ) if result: __lowercase = [os.path.join(A__ , '''__init__.py''' )] if len(A__ ) > 0: raise ValueError(F"Would overwrite {len(A__ )} files, run `make style`." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
41
1
'''simple docstring''' def _A ( A__ , A__ , A__ ): """simple docstring""" if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(A__ , A__ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate __lowercase = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __lowercase = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
41
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = TextToVideoSDPipeline SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. SCREAMING_SNAKE_CASE : Optional[int] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') ,up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') ,cross_attention_dim=3_2 ,attention_head_dim=4 ,) __lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,clip_sample=lowercase__ ,set_alpha_to_one=lowercase__ ,) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=1_2_8 ,) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''gelu''' ,projection_dim=5_1_2 ,) __lowercase = CLIPTextModel(lowercase__ ) __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : List[str]=0 ): if str(lowercase__ ).startswith('''mps''' ): __lowercase = torch.manual_seed(lowercase__ ) else: __lowercase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = TextToVideoSDPipeline(**lowercase__ ) __lowercase = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs(lowercase__ ) __lowercase = '''np''' __lowercase = sd_pipe(**lowercase__ ).frames __lowercase = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) __lowercase = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def SCREAMING_SNAKE_CASE ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=1e-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass def SCREAMING_SNAKE_CASE ( self : List[str] ): return super().test_progress_bar() @slow @skip_mps class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2_5 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
41
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _A ( A__ ): """simple docstring""" __lowercase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def _A ( A__ ): """simple docstring""" __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(A__ , A__ , bias=A__ ) __lowercase = emb.weight.data return lin_layer def _A ( A__ , A__="facebook/mbart-large-en-ro" , A__=False , A__=False ): """simple docstring""" __lowercase = torch.load(A__ , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A__ ) __lowercase = state_dict['''encoder.embed_tokens.weight'''].shape[0] __lowercase = MBartConfig.from_pretrained(A__ , vocab_size=A__ ) if mbart_aa and finetuned: __lowercase = '''relu''' __lowercase = state_dict['''decoder.embed_tokens.weight'''] __lowercase = MBartForConditionalGeneration(A__ ) model.model.load_state_dict(A__ ) if finetuned: __lowercase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
41
1
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def _A ( A__ ): """simple docstring""" if isinstance(A__ , collections.abc.Iterable ): return x return (x, x) @require_tf class lowercase_ : """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Optional[Any] ,lowercase__ : Optional[int] ): pass def SCREAMING_SNAKE_CASE ( self : str ): pass def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): pass def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Dict ,lowercase__ : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : str ,lowercase__ : Optional[int]=None ,**lowercase__ : str ): __lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase__ ,lowercase__ ) __lowercase = TFVisionTextDualEncoderModel(lowercase__ ) __lowercase = model(input_ids=lowercase__ ,pixel_values=lowercase__ ,attention_mask=lowercase__ ) self.assertEqual(output['''text_embeds'''].shape ,(input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape ,(pixel_values.shape[0], config.projection_dim) ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : List[Any] ,lowercase__ : Optional[int]=None ,**lowercase__ : Any ): __lowercase , __lowercase = self.get_vision_text_model(lowercase__ ,lowercase__ ) __lowercase = TFVisionTextDualEncoderModel(vision_model=lowercase__ ,text_model=lowercase__ ) __lowercase = model(input_ids=lowercase__ ,pixel_values=lowercase__ ,attention_mask=lowercase__ ) self.assertEqual(output['''text_embeds'''].shape ,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape ,(pixel_values.shape[0], model.config.projection_dim) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : str ,lowercase__ : Optional[int] ,lowercase__ : int ,lowercase__ : Optional[Any] ,lowercase__ : List[str]=None ,**lowercase__ : Any ): __lowercase , __lowercase = self.get_vision_text_model(lowercase__ ,lowercase__ ) __lowercase = {'''vision_model''': vision_model, '''text_model''': text_model} __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase__ ) __lowercase = model(input_ids=lowercase__ ,pixel_values=lowercase__ ,attention_mask=lowercase__ ) self.assertEqual(output['''text_embeds'''].shape ,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape ,(pixel_values.shape[0], model.config.projection_dim) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Dict ,lowercase__ : str ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Any=None ,**lowercase__ : Dict ): __lowercase , __lowercase = self.get_vision_text_model(lowercase__ ,lowercase__ ) __lowercase = TFVisionTextDualEncoderModel(vision_model=lowercase__ ,text_model=lowercase__ ) __lowercase = model(input_ids=lowercase__ ,pixel_values=lowercase__ ,attention_mask=lowercase__ ) __lowercase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase__ ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(lowercase__ ) __lowercase = model(input_ids=lowercase__ ,pixel_values=lowercase__ ,attention_mask=lowercase__ ) __lowercase = after_output[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase__ ,1e-5 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ,lowercase__ : str ,lowercase__ : List[Any] ,lowercase__ : List[str] ,lowercase__ : List[Any]=None ,**lowercase__ : List[Any] ): __lowercase , __lowercase = self.get_vision_text_model(lowercase__ ,lowercase__ ) __lowercase = TFVisionTextDualEncoderModel(vision_model=lowercase__ ,text_model=lowercase__ ) __lowercase = model( input_ids=lowercase__ ,pixel_values=lowercase__ ,attention_mask=lowercase__ ,output_attentions=lowercase__ ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(lowercase__ ) ,vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] ,(vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(lowercase__ ) ,text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] ,(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) ,) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : np.ndarray ,lowercase__ : np.ndarray ,lowercase__ : float ): __lowercase = np.abs((a - b) ).max() self.assertLessEqual(lowercase__ ,lowercase__ ,F"Difference between torch and flax is {diff} (>= {tol})." ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.prepare_config_and_inputs() self.check_save_load(**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase , __lowercase = self.get_pretrained_model_and_inputs() __lowercase = model_a(**lowercase__ ) __lowercase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowercase__ ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(lowercase__ ) __lowercase = model_a(**lowercase__ ) __lowercase = after_outputs[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase__ ,1e-5 ) @require_tf class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' ,'''hf-internal-testing/tiny-random-bert''' ) __lowercase = 1_3 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] ,model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Optional[Any] ,lowercase__ : Union[str, Any] ): __lowercase = TFViTModel(lowercase__ ,name='''vision_model''' ) __lowercase = TFBertModel(lowercase__ ,name='''text_model''' ) return vision_model, text_model def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = TFViTModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Any ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-deit-tf''' ,'''hf-internal-testing/tiny-random-roberta''' ) __lowercase = 1_3 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] ,model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Optional[int] ,lowercase__ : Tuple ,lowercase__ : str ,lowercase__ : str ,lowercase__ : Optional[Any]=None ,**lowercase__ : str ): __lowercase , __lowercase = self.get_vision_text_model(lowercase__ ,lowercase__ ) __lowercase = TFVisionTextDualEncoderModel(vision_model=lowercase__ ,text_model=lowercase__ ) __lowercase = model( input_ids=lowercase__ ,pixel_values=lowercase__ ,attention_mask=lowercase__ ,output_attentions=lowercase__ ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(lowercase__ ) ,vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] ,(vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(lowercase__ ) ,text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] ,(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) ,) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Dict ,lowercase__ : Tuple ): __lowercase = TFDeiTModel(lowercase__ ,name='''vision_model''' ) __lowercase = TFRobertaModel(lowercase__ ,name='''text_model''' ) return vision_model, text_model def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = TFDeiTModelTester(self ) __lowercase = TFRobertaModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-clip-tf''' ,'''hf-internal-testing/tiny-random-bert''' ) __lowercase = 1_3 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] ,model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ): __lowercase = TFCLIPVisionModel(lowercase__ ,name='''vision_model''' ) __lowercase = TFBertModel(lowercase__ ,name='''text_model''' ) return vision_model, text_model def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = TFCLIPVisionModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = clip_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class lowercase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = TFVisionTextDualEncoderModel.from_pretrained( '''clip-italian/clip-italian''' ,logit_scale_init_value=1.0 ,from_pt=lowercase__ ) __lowercase = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __lowercase = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] ,images=lowercase__ ,padding=lowercase__ ,return_tensors='''np''' ) __lowercase = model(**lowercase__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape ,(inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape ,(inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) ,) __lowercase = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() ,lowercase__ ,atol=1e-3 ) )
41
'''simple docstring''' import os from math import logaa def _A ( A__ = "base_exp.txt" ): """simple docstring""" __lowercase = 0 __lowercase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowercase , __lowercase = list(map(A__ , line.split(''',''' ) ) ) if x * logaa(A__ ) > largest: __lowercase = x * logaa(A__ ) __lowercase = i + 1 return result if __name__ == "__main__": print(solution())
41
1
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness lowerCAmelCase__ = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' lowerCAmelCase__ = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' lowerCAmelCase__ = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' lowerCAmelCase__ = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' lowerCAmelCase__ = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Tuple ): return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Value('''string''' ), } ) ,homepage='''https://github.com/openai/human-eval''' ,codebase_urls=['''https://github.com/openai/human-eval'''] ,reference_urls=['''https://github.com/openai/human-eval'''] ,license=_LICENSE ,) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : str ,lowercase__ : Optional[Any] ,lowercase__ : int=[1, 1_0, 1_0_0] ,lowercase__ : Any=4 ,lowercase__ : Union[str, Any]=3.0 ): if os.getenv('''HF_ALLOW_CODE_EVAL''' ,0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('''This metric is currently not supported on Windows.''' ) with ThreadPoolExecutor(max_workers=lowercase__ ) as executor: __lowercase = [] __lowercase = Counter() __lowercase = 0 __lowercase = defaultdict(lowercase__ ) for task_id, (candidates, test_case) in enumerate(zip(lowercase__ ,lowercase__ ) ): for candidate in candidates: __lowercase = candidate + '''\n''' + test_case __lowercase = (test_program, timeout, task_id, completion_id[task_id]) __lowercase = executor.submit(lowercase__ ,*lowercase__ ) futures.append(lowercase__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowercase__ ): __lowercase = future.result() results[result["task_id"]].append((result['''completion_id'''], result) ) __lowercase , __lowercase = [], [] for result in results.values(): result.sort() __lowercase = [r[1]['''passed'''] for r in result] total.append(len(lowercase__ ) ) correct.append(sum(lowercase__ ) ) __lowercase = np.array(lowercase__ ) __lowercase = np.array(lowercase__ ) __lowercase = k __lowercase = {F"pass@{k}": estimate_pass_at_k(lowercase__ ,lowercase__ ,lowercase__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def _A ( A__ , A__ , A__ ): """simple docstring""" def estimator(A__ , A__ , A__ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(A__ , A__ ): __lowercase = itertools.repeat(A__ , len(A__ ) ) else: assert len(A__ ) == len(A__ ) __lowercase = iter(A__ ) return np.array([estimator(int(A__ ) , int(A__ ) , A__ ) for n, c in zip(A__ , A__ )] )
41
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'blenderbot-small' SCREAMING_SNAKE_CASE : int = ['past_key_values'] SCREAMING_SNAKE_CASE : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] ,lowercase__ : List[str]=5_0_2_6_5 ,lowercase__ : Optional[Any]=5_1_2 ,lowercase__ : Optional[int]=8 ,lowercase__ : List[Any]=2_0_4_8 ,lowercase__ : List[str]=1_6 ,lowercase__ : str=8 ,lowercase__ : Any=2_0_4_8 ,lowercase__ : Tuple=1_6 ,lowercase__ : Tuple=0.0 ,lowercase__ : List[str]=0.0 ,lowercase__ : Any=True ,lowercase__ : str=True ,lowercase__ : int="gelu" ,lowercase__ : Tuple=5_1_2 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : str=0.0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : List[Any]=False ,lowercase__ : Optional[int]=0 ,lowercase__ : Optional[int]=1 ,lowercase__ : str=2 ,lowercase__ : int=2 ,**lowercase__ : List[str] ,): __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = use_cache __lowercase = encoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,is_encoder_decoder=lowercase__ ,decoder_start_token_id=lowercase__ ,forced_eos_token_id=lowercase__ ,**lowercase__ ,) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Dict ): if self.task in ["default", "seq2seq-lm"]: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase = {0: '''batch'''} __lowercase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase__ ,direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super().outputs else: __lowercase = super(lowercase__ ,self ).outputs if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) # Generate decoder inputs __lowercase = seq_length if not self.use_past else 1 __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __lowercase = dict(**lowercase__ ,**lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape __lowercase = common_inputs['''decoder_input_ids'''].shape[1] __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = decoder_seq_length + 3 __lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase__ ,lowercase__ )] ,dim=1 ) __lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase = self.num_layers __lowercase = min(lowercase__ ,lowercase__ ) __lowercase = max(lowercase__ ,lowercase__ ) - min_num_layers __lowercase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), ) ) # TODO: test this. __lowercase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase__ ,lowercase__ ): common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase , __lowercase = self.num_layers __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = common_inputs['''attention_mask'''].dtype __lowercase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase__ ,lowercase__ ,dtype=lowercase__ )] ,dim=1 ) __lowercase = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ ) ] return common_inputs def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = tokenizer.num_special_tokens_to_add(lowercase__ ) __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowercase__ ) # Generate dummy inputs according to compute batch and sequence __lowercase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase = dict(tokenizer(lowercase__ ,return_tensors=lowercase__ ) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): if self.task in ["default", "seq2seq-lm"]: __lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) elif self.task == "causal-lm": __lowercase = self._generate_dummy_inputs_for_causal_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) else: __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super()._flatten_past_key_values_(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) else: __lowercase = super(lowercase__ ,self )._flatten_past_key_values_( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
41
1
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _A ( ): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __lowercase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , A__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _A ( ): """simple docstring""" assert _test_patching.open is open __lowercase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , A__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , A__ ): pass def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , A__ ) is None with patch_submodule(_test_patching , '''len''' , A__ ): assert _test_patching.len is mock assert _test_patching.len is len def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_start_and_stop_mock__''' __lowercase = patch_submodule(_test_patching , '''open''' , A__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _A ( ): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __lowercase = '''__test_patch_submodule_successive_join__''' __lowercase = '''__test_patch_submodule_successive_dirname__''' __lowercase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , A__ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , A__ ): pass
41
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" if b == 0: return (1, 0) ((__lowercase) , (__lowercase)) = extended_euclid(A__ , a % b ) __lowercase = a // b return (y, x - k * y) def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m def _A ( A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) if b < 0: __lowercase = (b % n + n) % n return b def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase , __lowercase = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
41
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCAmelCase__ = logging.get_logger(__name__) if is_vision_available(): import PIL class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = ['pixel_values'] def __init__( self : str ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : PILImageResampling = PILImageResampling.BICUBIC ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : bool = True ,lowercase__ : Union[int, float] = 1 / 2_5_5 ,lowercase__ : bool = True ,lowercase__ : Optional[Union[float, List[float]]] = None ,lowercase__ : Optional[Union[float, List[float]]] = None ,lowercase__ : bool = True ,**lowercase__ : Any ,): super().__init__(**lowercase__ ) __lowercase = size if size is not None else {'''shortest_edge''': 2_2_4} __lowercase = get_size_dict(lowercase__ ,default_to_square=lowercase__ ) __lowercase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} __lowercase = get_size_dict(lowercase__ ,default_to_square=lowercase__ ,param_name='''crop_size''' ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_center_crop __lowercase = crop_size __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase = do_convert_rgb def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : np.ndarray ,lowercase__ : Dict[str, int] ,lowercase__ : PILImageResampling = PILImageResampling.BICUBIC ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : Dict ,): __lowercase = get_size_dict(lowercase__ ,default_to_square=lowercase__ ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __lowercase = get_resize_output_image_size(lowercase__ ,size=size['''shortest_edge'''] ,default_to_square=lowercase__ ) return resize(lowercase__ ,size=lowercase__ ,resample=lowercase__ ,data_format=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : np.ndarray ,lowercase__ : Dict[str, int] ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : Optional[int] ,): __lowercase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(lowercase__ ,size=(size['''height'''], size['''width''']) ,data_format=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : np.ndarray ,lowercase__ : Union[int, float] ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : str ,): return rescale(lowercase__ ,scale=lowercase__ ,data_format=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : np.ndarray ,lowercase__ : Union[float, List[float]] ,lowercase__ : Union[float, List[float]] ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ,): return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,data_format=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : ImageInput ,lowercase__ : bool = None ,lowercase__ : Dict[str, int] = None ,lowercase__ : PILImageResampling = None ,lowercase__ : bool = None ,lowercase__ : int = None ,lowercase__ : bool = None ,lowercase__ : float = None ,lowercase__ : bool = None ,lowercase__ : Optional[Union[float, List[float]]] = None ,lowercase__ : Optional[Union[float, List[float]]] = None ,lowercase__ : bool = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : Optional[ChannelDimension] = ChannelDimension.FIRST ,**lowercase__ : Dict ,): __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = size if size is not None else self.size __lowercase = get_size_dict(lowercase__ ,param_name='''size''' ,default_to_square=lowercase__ ) __lowercase = resample if resample is not None else self.resample __lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase = crop_size if crop_size is not None else self.crop_size __lowercase = get_size_dict(lowercase__ ,param_name='''crop_size''' ,default_to_square=lowercase__ ) __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(lowercase__ ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowercase__ ) for image in images] if do_resize: __lowercase = [self.resize(image=lowercase__ ,size=lowercase__ ,resample=lowercase__ ) for image in images] if do_center_crop: __lowercase = [self.center_crop(image=lowercase__ ,size=lowercase__ ) for image in images] if do_rescale: __lowercase = [self.rescale(image=lowercase__ ,scale=lowercase__ ) for image in images] if do_normalize: __lowercase = [self.normalize(image=lowercase__ ,mean=lowercase__ ,std=lowercase__ ) for image in images] __lowercase = [to_channel_dimension_format(lowercase__ ,lowercase__ ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=lowercase__ ,tensor_type=lowercase__ )
41
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _A ( ): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __lowercase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , A__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _A ( ): """simple docstring""" assert _test_patching.open is open __lowercase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , A__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , A__ ): pass def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , A__ ) is None with patch_submodule(_test_patching , '''len''' , A__ ): assert _test_patching.len is mock assert _test_patching.len is len def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_start_and_stop_mock__''' __lowercase = patch_submodule(_test_patching , '''open''' , A__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _A ( ): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __lowercase = '''__test_patch_submodule_successive_join__''' __lowercase = '''__test_patch_submodule_successive_dirname__''' __lowercase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , A__ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , A__ ): pass
41
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[Any] ,*lowercase__ : Optional[Any] ,**lowercase__ : int ): warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' ,lowercase__ ,) super().__init__(*lowercase__ ,**lowercase__ )
41
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : """simple docstring""" def __init__( self : Dict ,lowercase__ : Dict ,lowercase__ : int=1_3 ,lowercase__ : List[str]=7 ,lowercase__ : int=True ,lowercase__ : int=True ,lowercase__ : Union[str, Any]=True ,lowercase__ : List[Any]=True ,lowercase__ : str=9_9 ,lowercase__ : Optional[Any]=3_2 ,lowercase__ : Union[str, Any]=5 ,lowercase__ : List[Any]=4 ,lowercase__ : str=3_7 ,lowercase__ : Tuple="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : Dict=0.1 ,lowercase__ : int=1_2_8 ,lowercase__ : Dict=3_2 ,lowercase__ : Dict=1_6 ,lowercase__ : Any=2 ,lowercase__ : int=0.0_2 ,lowercase__ : List[str]=3 ,lowercase__ : Dict=4 ,lowercase__ : Optional[int]=None ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return NezhaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.prepare_config_and_inputs() __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : str ): __lowercase = NezhaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Dict ,lowercase__ : str ,lowercase__ : Optional[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,): __lowercase = True __lowercase = NezhaModel(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,encoder_attention_mask=lowercase__ ,) __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,) __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): __lowercase = NezhaForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): __lowercase = NezhaForNextSentencePrediction(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ): __lowercase = NezhaForPreTraining(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,next_sentence_label=lowercase__ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ): __lowercase = NezhaForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,start_positions=lowercase__ ,end_positions=lowercase__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Tuple ,lowercase__ : str ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : Optional[int] ,lowercase__ : int ): __lowercase = self.num_labels __lowercase = NezhaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Any ,lowercase__ : Optional[Any] ): __lowercase = self.num_labels __lowercase = NezhaForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : str ): __lowercase = self.num_choices __lowercase = NezhaForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : List[str] = True def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : Any=False ): __lowercase = super()._prepare_for_class(lowercase__ ,lowercase__ ,return_labels=lowercase__ ) if return_labels: if model_class in get_values(lowercase__ ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowercase__ ) __lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowercase__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = NezhaModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : int ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): # This regression test was failing with PyTorch < 1.3 ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase = None self.model_tester.create_and_check_model_as_decoder( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = NezhaModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __lowercase = True __lowercase = model_class(config=lowercase__ ) __lowercase = self._prepare_for_class(lowercase__ ,lowercase__ ) __lowercase = torch.jit.trace( lowercase__ ,(inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase__ ,os.path.join(lowercase__ ,'''bert.pt''' ) ) __lowercase = torch.jit.load(os.path.join(lowercase__ ,'''bert.pt''' ) ,map_location=lowercase__ ) loaded(inputs_dict['''input_ids'''].to(lowercase__ ) ,inputs_dict['''attention_mask'''].to(lowercase__ ) ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) )
41
1
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _A ( ): """simple docstring""" __lowercase = HfArgumentParser(A__ ) __lowercase = parser.parse_args_into_dataclasses()[0] __lowercase = TensorFlowBenchmark(args=A__ ) try: __lowercase = parser.parse_args_into_dataclasses()[0] except ValueError as e: __lowercase = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' __lowercase = ''' '''.join(str(A__ ).split(''' ''' )[:-1] ) __lowercase = '''''' __lowercase = eval(str(A__ ).split(''' ''' )[-1] ) __lowercase = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(A__ ) if len(A__ ) > 0: __lowercase = full_error_msg + begin_error_msg + str(A__ ) raise ValueError(A__ ) benchmark.run() if __name__ == "__main__": main()
41
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KEY''') lowerCAmelCase__ = TypeVar('''VAL''') @dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ ) class lowercase_ (Generic[KEY, VAL] ): """simple docstring""" SCREAMING_SNAKE_CASE : KEY SCREAMING_SNAKE_CASE : VAL class lowercase_ (_Item ): """simple docstring""" def __init__( self : Optional[int] ): super().__init__(lowercase__ ,lowercase__ ) def __bool__( self : List[str] ): return False lowerCAmelCase__ = _DeletedItem() class lowercase_ (MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ): __lowercase = initial_block_size __lowercase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowercase = capacity_factor __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ): return hash(lowercase__ ) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ): return (ind + 1) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ): __lowercase = self._buckets[ind] if not stored: __lowercase = _Item(lowercase__ ,lowercase__ ) self._len += 1 return True elif stored.key == key: __lowercase = _Item(lowercase__ ,lowercase__ ) return True else: return False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False __lowercase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ): __lowercase = self._buckets __lowercase = [None] * new_size __lowercase = 0 for item in old_buckets: if item: self._add_item(item.key ,item.val ) def SCREAMING_SNAKE_CASE ( self : str ): self._resize(len(self._buckets ) * 2 ) def SCREAMING_SNAKE_CASE ( self : Tuple ): self._resize(len(self._buckets ) // 2 ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ): __lowercase = self._get_bucket_index(lowercase__ ) for _ in range(len(self._buckets ) ): yield ind __lowercase = self._get_next_ind(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): for ind in self._iterate_buckets(lowercase__ ): if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ): break def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): if self._is_full(): self._size_up() self._add_item(lowercase__ ,lowercase__ ) def __delitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: raise KeyError(lowercase__ ) if item is _deleted: continue if item.key == key: __lowercase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowercase__ ) def __len__( self : Optional[int] ): return self._len def __iter__( self : str ): yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ): __lowercase = ''' ,'''.join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
41
1
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Tuple ): super().__init__() __lowercase = nn.Linear(3 ,4 ) __lowercase = nn.BatchNormad(4 ) __lowercase = nn.Linear(4 ,5 ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : List[Any] ): return self.lineara(self.batchnorm(self.lineara(lowercase__ ) ) ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Dict ,*lowercase__ : List[str] ,**lowercase__ : List[str] ): return (args[0] + 1,) + args[1:], kwargs class lowercase_ (lowerCamelCase__ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : Optional[Any] ): return output + 1 class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = ModelForTest() __lowercase = ModelHook() add_hook_to_module(lowercase__ ,lowercase__ ) self.assertEqual(test_model._hf_hook ,lowercase__ ) self.assertTrue(hasattr(lowercase__ ,'''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ ,'''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) ,['''x'''] ) remove_hook_from_module(lowercase__ ) self.assertFalse(hasattr(lowercase__ ,'''_hf_hook''' ) ) self.assertFalse(hasattr(lowercase__ ,'''_old_forward''' ) ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = ModelForTest() __lowercase = ModelHook() add_hook_to_module(lowercase__ ,lowercase__ ) add_hook_to_module(lowercase__ ,lowercase__ ,append=lowercase__ ) self.assertEqual(isinstance(test_model._hf_hook ,lowercase__ ) ,lowercase__ ) self.assertEqual(len(test_model._hf_hook.hooks ) ,2 ) self.assertTrue(hasattr(lowercase__ ,'''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ ,'''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) ,['''x'''] ) remove_hook_from_module(lowercase__ ) self.assertFalse(hasattr(lowercase__ ,'''_hf_hook''' ) ) self.assertFalse(hasattr(lowercase__ ,'''_old_forward''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = ModelForTest() __lowercase = torch.randn(2 ,3 ) __lowercase = test_model(x + 1 ) __lowercase = test_model(x + 2 ) __lowercase = PreForwardHook() add_hook_to_module(lowercase__ ,lowercase__ ) __lowercase = test_model(lowercase__ ) self.assertTrue(torch.allclose(lowercase__ ,lowercase__ ,atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __lowercase = PreForwardHook() add_hook_to_module(lowercase__ ,lowercase__ ) __lowercase = test_model(lowercase__ ) self.assertTrue(torch.allclose(lowercase__ ,lowercase__ ,atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks __lowercase = SequentialHook(PreForwardHook() ,PreForwardHook() ) add_hook_to_module(lowercase__ ,lowercase__ ) __lowercase = test_model(lowercase__ ) assert torch.allclose(lowercase__ ,lowercase__ ,atol=1e-5 ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = ModelForTest() __lowercase = torch.randn(2 ,3 ) __lowercase = test_model(lowercase__ ) __lowercase = PostForwardHook() add_hook_to_module(lowercase__ ,lowercase__ ) __lowercase = test_model(lowercase__ ) self.assertTrue(torch.allclose(lowercase__ ,output + 1 ,atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __lowercase = PostForwardHook() add_hook_to_module(lowercase__ ,lowercase__ ) __lowercase = test_model(lowercase__ ) self.assertTrue(torch.allclose(lowercase__ ,output + 1 ,atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks __lowercase = SequentialHook(PostForwardHook() ,PostForwardHook() ) add_hook_to_module(lowercase__ ,lowercase__ ) __lowercase = test_model(lowercase__ ) assert torch.allclose(lowercase__ ,output + 2 ,atol=1e-5 ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = ModelForTest() __lowercase = torch.randn(2 ,3 ) __lowercase = test_model(lowercase__ ) __lowercase = PostForwardHook() add_hook_to_module(lowercase__ ,lowercase__ ) __lowercase = test_model(lowercase__ ) self.assertTrue(torch.allclose(lowercase__ ,output + 1 ) ) self.assertTrue(outputa.requires_grad ) __lowercase = True __lowercase = test_model(lowercase__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara ,AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm ,AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara ,AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device ,torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device ,torch.device(0 ) ) self.assertEqual(model.lineara.weight.device ,torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __lowercase = torch.randn(2 ,3 ) __lowercase = model(lowercase__ ) self.assertEqual(output.device ,torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(lowercase__ ,AlignDevicesHook(io_same_device=lowercase__ ) ) __lowercase = torch.randn(2 ,3 ).to(0 ) __lowercase = model(lowercase__ ) self.assertEqual(output.device ,torch.device(0 ) ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) # This will move each submodule on different devices __lowercase = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara ,AlignDevicesHook(**lowercase__ ) ) add_hook_to_module(model.batchnorm ,AlignDevicesHook(**lowercase__ ) ) add_hook_to_module(model.lineara ,AlignDevicesHook(**lowercase__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device __lowercase = torch.device(hook_kwargs['''execution_device'''] ) self.assertEqual(model.batchnorm.running_mean.device ,lowercase__ ) __lowercase = torch.randn(2 ,3 ) __lowercase = model(lowercase__ ) self.assertEqual(output.device ,lowercase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) # Now test with buffers included in the offload __lowercase = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara ,AlignDevicesHook(**lowercase__ ) ) add_hook_to_module(model.batchnorm ,AlignDevicesHook(**lowercase__ ) ) add_hook_to_module(model.lineara ,AlignDevicesHook(**lowercase__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device ,torch.device('''meta''' ) ) __lowercase = torch.randn(2 ,3 ) __lowercase = model(lowercase__ ) self.assertEqual(output.device ,lowercase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) # This will move each submodule on different devices __lowercase = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(lowercase__ ,execution_device=lowercase__ ,offload=lowercase__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device __lowercase = torch.device(lowercase__ ) self.assertEqual(model.batchnorm.running_mean.device ,lowercase__ ) __lowercase = torch.randn(2 ,3 ) __lowercase = model(lowercase__ ) self.assertEqual(output.device ,lowercase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase__ ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook(lowercase__ ,execution_device=lowercase__ ,offload=lowercase__ ,offload_buffers=lowercase__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device ,torch.device('''meta''' ) ) __lowercase = torch.randn(2 ,3 ) __lowercase = model(lowercase__ ) self.assertEqual(output.device ,lowercase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase__ ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) # This will move each submodule on different devices __lowercase = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( lowercase__ ,execution_device=lowercase__ ,offload=lowercase__ ,weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device __lowercase = torch.device(lowercase__ ) self.assertEqual(model.batchnorm.running_mean.device ,lowercase__ ) __lowercase = torch.randn(2 ,3 ) __lowercase = model(lowercase__ ) self.assertEqual(output.device ,lowercase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase__ ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook( lowercase__ ,execution_device=lowercase__ ,offload=lowercase__ ,weights_map=model.state_dict() ,offload_buffers=lowercase__ ,) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device ,torch.device('''meta''' ) ) __lowercase = torch.randn(2 ,3 ) __lowercase = model(lowercase__ ) self.assertEqual(output.device ,lowercase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowercase__ ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('''cpu''' ) )
41
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ,**lowercase__ : Tuple ): super().__init__(**lowercase__ ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self ,'''vision''' ) self.check_model_type(lowercase__ ) def __call__( self : List[str] ,lowercase__ : Union[str, "Image.Image", List[Dict[str, Any]]] ,lowercase__ : Union[str, List[str]] = None ,**lowercase__ : str ,): if "text_queries" in kwargs: __lowercase = kwargs.pop('''text_queries''' ) if isinstance(lowercase__ ,(str, Image.Image) ): __lowercase = {'''image''': image, '''candidate_labels''': candidate_labels} else: __lowercase = image __lowercase = super().__call__(lowercase__ ,**lowercase__ ) return results def SCREAMING_SNAKE_CASE ( self : int ,**lowercase__ : List[Any] ): __lowercase = {} if "threshold" in kwargs: __lowercase = kwargs['''threshold'''] if "top_k" in kwargs: __lowercase = kwargs['''top_k'''] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[Any] ): __lowercase = load_image(inputs['''image'''] ) __lowercase = inputs['''candidate_labels'''] if isinstance(lowercase__ ,lowercase__ ): __lowercase = candidate_labels.split(''',''' ) __lowercase = torch.tensor([[image.height, image.width]] ,dtype=torch.intaa ) for i, candidate_label in enumerate(lowercase__ ): __lowercase = self.tokenizer(lowercase__ ,return_tensors=self.framework ) __lowercase = self.image_processor(lowercase__ ,return_tensors=self.framework ) yield { "is_last": i == len(lowercase__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ): __lowercase = model_inputs.pop('''target_size''' ) __lowercase = model_inputs.pop('''candidate_label''' ) __lowercase = model_inputs.pop('''is_last''' ) __lowercase = self.model(**lowercase__ ) __lowercase = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : List[Any]=0.1 ,lowercase__ : List[str]=None ): __lowercase = [] for model_output in model_outputs: __lowercase = model_output['''candidate_label'''] __lowercase = BaseModelOutput(lowercase__ ) __lowercase = self.image_processor.post_process_object_detection( outputs=lowercase__ ,threshold=lowercase__ ,target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): __lowercase = outputs['''scores'''][index].item() __lowercase = self._get_bounding_box(outputs['''boxes'''][index][0] ) __lowercase = {'''score''': score, '''label''': label, '''box''': box} results.append(lowercase__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : x["score"] ,reverse=lowercase__ ) if top_k: __lowercase = results[:top_k] return results def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : "torch.Tensor" ): if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) __lowercase , __lowercase , __lowercase , __lowercase = box.int().tolist() __lowercase = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
41
1
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def _A ( A__ , A__ ): """simple docstring""" __lowercase = F"{sampling_rate}" __lowercase = '''1''' __lowercase = '''f32le''' __lowercase = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(A__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: __lowercase = ffmpeg_process.communicate(A__ ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error __lowercase = output_stream[0] __lowercase = np.frombuffer(A__ , np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def _A ( A__ , A__ , A__ = "f32le" , ): """simple docstring""" __lowercase = F"{sampling_rate}" __lowercase = '''1''' if format_for_conversion == "s16le": __lowercase = 2 elif format_for_conversion == "f32le": __lowercase = 4 else: raise ValueError(F"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) __lowercase = platform.system() if system == "Linux": __lowercase = '''alsa''' __lowercase = '''default''' elif system == "Darwin": __lowercase = '''avfoundation''' __lowercase = ''':0''' elif system == "Windows": __lowercase = '''dshow''' __lowercase = '''default''' __lowercase = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] __lowercase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample __lowercase = _ffmpeg_stream(A__ , A__ ) for item in iterator: yield item def _A ( A__ , A__ , A__ = None , A__ = None , A__ = "f32le" , ): """simple docstring""" if stream_chunk_s is not None: __lowercase = stream_chunk_s else: __lowercase = chunk_length_s __lowercase = ffmpeg_microphone(A__ , A__ , format_for_conversion=A__ ) if format_for_conversion == "s16le": __lowercase = np.intaa __lowercase = 2 elif format_for_conversion == "f32le": __lowercase = np.floataa __lowercase = 4 else: raise ValueError(F"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) if stride_length_s is None: __lowercase = chunk_length_s / 6 __lowercase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(A__ , (int, float) ): __lowercase = [stride_length_s, stride_length_s] __lowercase = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample __lowercase = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample __lowercase = datetime.datetime.now() __lowercase = datetime.timedelta(seconds=A__ ) for item in chunk_bytes_iter(A__ , A__ , stride=(stride_left, stride_right) , stream=A__ ): # Put everything back in numpy scale __lowercase = np.frombuffer(item['''raw'''] , dtype=A__ ) __lowercase = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) __lowercase = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def _A ( A__ , A__ , A__ , A__ = False ): """simple docstring""" __lowercase = b'''''' __lowercase , __lowercase = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}" ) __lowercase = 0 for raw in iterator: acc += raw if stream and len(A__ ) < chunk_len: __lowercase = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(A__ ) >= chunk_len: # We are flushing the accumulator __lowercase = (_stride_left, stride_right) __lowercase = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: __lowercase = False yield item __lowercase = stride_left __lowercase = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(A__ ) > stride_left: __lowercase = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: __lowercase = False yield item def _A ( A__ , A__ ): """simple docstring""" __lowercase = 2**24 # 16Mo try: with subprocess.Popen(A__ , stdout=subprocess.PIPE , bufsize=A__ ) as ffmpeg_process: while True: __lowercase = ffmpeg_process.stdout.read(A__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
41
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 'facebook/bart-large-mnli' SCREAMING_SNAKE_CASE : Optional[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) SCREAMING_SNAKE_CASE : Any = 'text_classifier' SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : Tuple = ['text', ['text']] SCREAMING_SNAKE_CASE : List[str] = ['text'] def SCREAMING_SNAKE_CASE ( self : List[Any] ): super().setup() __lowercase = self.model.config __lowercase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): __lowercase = int(lowercase__ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Dict ,lowercase__ : List[Any] ): __lowercase = labels return self.pre_processor( [text] * len(lowercase__ ) ,[F"This example is {label}" for label in labels] ,return_tensors='''pt''' ,padding='''max_length''' ,) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = outputs.logits __lowercase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
41
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCAmelCase__ = { '''configuration_speecht5''': [ '''SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP''', '''SpeechT5Config''', '''SpeechT5HifiGanConfig''', ], '''feature_extraction_speecht5''': ['''SpeechT5FeatureExtractor'''], '''processing_speecht5''': ['''SpeechT5Processor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''SpeechT5Tokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SpeechT5ForSpeechToText''', '''SpeechT5ForSpeechToSpeech''', '''SpeechT5ForTextToSpeech''', '''SpeechT5Model''', '''SpeechT5PreTrainedModel''', '''SpeechT5HifiGan''', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
'''simple docstring''' from collections.abc import Callable class lowercase_ : """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : Callable | None = None ): # Stores actual heap items. __lowercase = [] # Stores indexes of each item for supporting updates and deletion. __lowercase = {} # Stores current size of heap. __lowercase = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __lowercase = key or (lambda lowercase__ : x) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : int ): return int((i - 1) / 2 ) if i > 0 else None def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = int(2 * i + 1 ) return left if 0 < left < self.size else None def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ): __lowercase = int(2 * i + 2 ) return right if 0 < right < self.size else None def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : int ,lowercase__ : int ): __lowercase , __lowercase = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __lowercase , __lowercase = self.arr[j], self.arr[i] def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): return self.arr[i][1] < self.arr[j][1] def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._left(lowercase__ ) __lowercase = self._right(lowercase__ ) __lowercase = i if left is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = left if right is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = right return valid_parent def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._parent(lowercase__ ) while parent is not None and not self._cmp(lowercase__ ,lowercase__ ): self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = parent, self._parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = self._get_valid_parent(lowercase__ ) while valid_parent != index: self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = valid_parent, self._get_valid_parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] __lowercase = [item, self.key(lowercase__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] del self.pos_map[item] __lowercase = self.arr[self.size - 1] __lowercase = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : int ): __lowercase = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(lowercase__ )] ) else: __lowercase = [item, self.key(lowercase__ )] __lowercase = self.size self.size += 1 self._heapify_up(self.size - 1 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): return self.arr[0] if self.size else None def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _A ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
41
1
'''simple docstring''' import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = GPTaTokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = GPTaTokenizerFast SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : str = {'add_prefix_space': True} SCREAMING_SNAKE_CASE : Optional[int] = False def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] __lowercase = dict(zip(lowercase__ ,range(len(lowercase__ ) ) ) ) __lowercase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowercase = {'''unk_token''': '''<unk>'''} __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase__ ) + '''\n''' ) with open(self.merges_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase__ ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ,**lowercase__ : Optional[Any] ): kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,**lowercase__ : str ): kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : str ): __lowercase = '''lower newer''' __lowercase = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = GPTaTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) __lowercase = '''lower newer''' __lowercase = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __lowercase = tokenizer.tokenize(lowercase__ ,add_prefix_space=lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) __lowercase = tokens + [tokenizer.unk_token] __lowercase = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): if not self.test_rust_tokenizer: return __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer(add_prefix_space=lowercase__ ) __lowercase = '''lower newer''' # Testing tokenization __lowercase = tokenizer.tokenize(lowercase__ ,add_prefix_space=lowercase__ ) __lowercase = rust_tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) # Testing conversion to ids without special tokens __lowercase = tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ,add_prefix_space=lowercase__ ) __lowercase = rust_tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) # Testing conversion to ids with special tokens __lowercase = self.get_rust_tokenizer(add_prefix_space=lowercase__ ) __lowercase = tokenizer.encode(lowercase__ ,add_prefix_space=lowercase__ ) __lowercase = rust_tokenizer.encode(lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) # Testing the unknown token __lowercase = tokens + [rust_tokenizer.unk_token] __lowercase = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowercase__ ) ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,*lowercase__ : Optional[int] ,**lowercase__ : int ): # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Dict=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase = self.rust_tokenizer_class.from_pretrained(lowercase__ ,**lowercase__ ) # Simple input __lowercase = '''This is a simple input''' __lowercase = ['''This is a simple input 1''', '''This is a simple input 2'''] __lowercase = ('''This is a simple input''', '''This is a pair''') __lowercase = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(lowercase__ ,tokenizer_r.encode ,lowercase__ ,max_length=lowercase__ ,padding='''max_length''' ) # Simple input self.assertRaises(lowercase__ ,tokenizer_r.encode_plus ,lowercase__ ,max_length=lowercase__ ,padding='''max_length''' ) # Simple input self.assertRaises( lowercase__ ,tokenizer_r.batch_encode_plus ,lowercase__ ,max_length=lowercase__ ,padding='''max_length''' ,) # Pair input self.assertRaises(lowercase__ ,tokenizer_r.encode ,lowercase__ ,max_length=lowercase__ ,padding='''max_length''' ) # Pair input self.assertRaises(lowercase__ ,tokenizer_r.encode_plus ,lowercase__ ,max_length=lowercase__ ,padding='''max_length''' ) # Pair input self.assertRaises( lowercase__ ,tokenizer_r.batch_encode_plus ,lowercase__ ,max_length=lowercase__ ,padding='''max_length''' ,) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = GPTaTokenizer.from_pretrained(self.tmpdirname ,pad_token='''<pad>''' ) # Simple input __lowercase = '''This is a simple input''' __lowercase = ['''This is a simple input looooooooong''', '''This is a simple input'''] __lowercase = ('''This is a simple input''', '''This is a pair''') __lowercase = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] __lowercase = tokenizer.pad_token_id __lowercase = tokenizer(lowercase__ ,padding='''max_length''' ,max_length=3_0 ,return_tensors='''np''' ) __lowercase = tokenizer(lowercase__ ,padding=lowercase__ ,truncate=lowercase__ ,return_tensors='''np''' ) __lowercase = tokenizer(*lowercase__ ,padding='''max_length''' ,max_length=6_0 ,return_tensors='''np''' ) __lowercase = tokenizer(lowercase__ ,padding=lowercase__ ,truncate=lowercase__ ,return_tensors='''np''' ) # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] ,3_0 ) self.assertTrue(pad_token_id in out_s['''input_ids'''] ) self.assertTrue(0 in out_s['''attention_mask'''] ) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] ,3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] ) self.assertFalse(0 in out_sa['''attention_mask'''][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] ) self.assertTrue(0 in out_sa['''attention_mask'''][1] ) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] ,6_0 ) self.assertTrue(pad_token_id in out_p['''input_ids'''] ) self.assertTrue(0 in out_p['''attention_mask'''] ) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] ,5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] ) self.assertFalse(0 in out_pa['''attention_mask'''][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] ) self.assertTrue(0 in out_pa['''attention_mask'''][1] ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = '''$$$''' __lowercase = GPTaTokenizer.from_pretrained(self.tmpdirname ,bos_token=lowercase__ ,add_bos_token=lowercase__ ) __lowercase = '''This is a simple input''' __lowercase = ['''This is a simple input 1''', '''This is a simple input 2'''] __lowercase = tokenizer.bos_token_id __lowercase = tokenizer(lowercase__ ) __lowercase = tokenizer(lowercase__ ) self.assertEqual(out_s.input_ids[0] ,lowercase__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) __lowercase = tokenizer.decode(out_s.input_ids ) __lowercase = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,lowercase__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def SCREAMING_SNAKE_CASE ( self : str ): pass def SCREAMING_SNAKE_CASE ( self : Optional[int] ): # TODO: change to self.get_tokenizers() when the fast version is implemented __lowercase = [self.get_tokenizer(do_lower_case=lowercase__ ,add_bos_token=lowercase__ )] for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): __lowercase = '''Encode this.''' __lowercase = '''This one too please.''' __lowercase = tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ) encoded_sequence += tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ) __lowercase = tokenizer.encode_plus( lowercase__ ,lowercase__ ,add_special_tokens=lowercase__ ,return_special_tokens_mask=lowercase__ ,) __lowercase = encoded_sequence_dict['''input_ids'''] __lowercase = encoded_sequence_dict['''special_tokens_mask'''] self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) ) __lowercase = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(lowercase__ ) ] __lowercase = [x for x in filtered_sequence if x is not None] self.assertEqual(lowercase__ ,lowercase__ ) @require_tokenizers class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Dict ): # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 __lowercase = AutoTokenizer.from_pretrained('''facebook/opt-350m''' ,from_slow=lowercase__ ) __lowercase = '''A photo of a cat''' __lowercase = tokenizer.encode( lowercase__ ,) self.assertEqual(lowercase__ ,[2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained('''test_opt''' ) __lowercase = AutoTokenizer.from_pretrained('''./test_opt''' ) __lowercase = tokenizer.encode( lowercase__ ,) self.assertEqual(lowercase__ ,[2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = AutoTokenizer.from_pretrained('''facebook/opt-350m''' ,use_slow=lowercase__ ) __lowercase = '''A photo of a cat''' __lowercase = tokenizer.encode( lowercase__ ,) # Same as above self.assertEqual(lowercase__ ,[2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) @unittest.skip('''This test is failing because of a bug in the fast tokenizer''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = AutoTokenizer.from_pretrained('''facebook/opt-350m''' ,from_slow=lowercase__ ) __lowercase = '''bos''' __lowercase = tokenizer.get_vocab()['''bos'''] __lowercase = '''A photo of a cat''' __lowercase = tokenizer.encode( lowercase__ ,) # We changed the bos token self.assertEqual(lowercase__ ,[3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained('''./tok''' ) __lowercase = AutoTokenizer.from_pretrained('''./tok''' ) self.assertTrue(tokenizer.is_fast ) __lowercase = tokenizer.encode( lowercase__ ,) self.assertEqual(lowercase__ ,[3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] )
41
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ): __lowercase = [] def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : str ,**lowercase__ : Any ): self.events.append('''on_init_end''' ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : int ,**lowercase__ : Optional[int] ): self.events.append('''on_train_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ,**lowercase__ : List[str] ): self.events.append('''on_train_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,**lowercase__ : Optional[Any] ): self.events.append('''on_epoch_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : Any ,**lowercase__ : Optional[int] ): self.events.append('''on_epoch_end''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_step_begin''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : Optional[int] ,**lowercase__ : Dict ): self.events.append('''on_step_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,**lowercase__ : Any ): self.events.append('''on_evaluate''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : int ,**lowercase__ : Optional[Any] ): self.events.append('''on_predict''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,**lowercase__ : int ): self.events.append('''on_save''' ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_log''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : int ,lowercase__ : Dict ,**lowercase__ : str ): self.events.append('''on_prediction_step''' ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): shutil.rmtree(self.output_dir ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any]=0 ,lowercase__ : Any=0 ,lowercase__ : Tuple=6_4 ,lowercase__ : Optional[int]=6_4 ,lowercase__ : Optional[Any]=None ,lowercase__ : str=False ,**lowercase__ : Any ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionModelConfig(a=lowercase__ ,b=lowercase__ ) __lowercase = RegressionPreTrainedModel(lowercase__ ) __lowercase = TrainingArguments(self.output_dir ,disable_tqdm=lowercase__ ,report_to=[] ,**lowercase__ ) return Trainer( lowercase__ ,lowercase__ ,train_dataset=lowercase__ ,eval_dataset=lowercase__ ,callbacks=lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) ) # Order doesn't matter __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) for cba, cba in zip(lowercase__ ,lowercase__ ): if isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,lowercase__ ) elif isinstance(lowercase__ ,lowercase__ ) and not isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,cba.__class__ ) elif not isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(cba.__class__ ,lowercase__ ) else: self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ): __lowercase = ['''on_init_end''', '''on_train_begin'''] __lowercase = 0 __lowercase = len(trainer.get_eval_dataloader() ) __lowercase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(lowercase__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.get_trainer() __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # Callbacks passed at init are added to the default callbacks __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __lowercase = self.get_trainer(disable_tqdm=lowercase__ ) __lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __lowercase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(cb.__class__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # We can also add, pop, or remove by instance __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' ,category=lowercase__ ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # Independent log/save/eval __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='''steps''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='''epoch''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # A bit of everything __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=1_0 ,eval_steps=5 ,evaluation_strategy='''steps''' ,) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,) assert str(lowercase__ ) in warn_mock.call_args[0][0]
41
1
'''simple docstring''' import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = os.path.abspath(A__ ) logger.info(F"Converting TensorFlow checkpoint from {tf_path}" ) # Load weights from TF model __lowercase = tf.train.list_variables(A__ ) __lowercase = [] __lowercase = [] __lowercase = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") __lowercase = full_name.split('''/''' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F"Skipping non-model layer {full_name}" ) continue if "optimizer" in full_name: logger.info(F"Skipping optimization layer {full_name}" ) continue if name[0] == "model": # ignore initial 'model' __lowercase = name[1:] # figure out how many levels deep the name is __lowercase = 0 for _name in name: if _name.startswith('''layer_with_weights''' ): depth += 1 else: break layer_depth.append(A__ ) # read data __lowercase = tf.train.load_variable(A__ , A__ ) names.append('''/'''.join(A__ ) ) arrays.append(A__ ) logger.info(F"Read a total of {len(A__ ):,} layers" ) # Sanity check if len(set(A__ ) ) != 1: raise ValueError(F"Found layer names with different depths (layer depth {list(set(A__ ) )})" ) __lowercase = list(set(A__ ) )[0] if layer_depth != 1: raise ValueError( '''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP''' ''' heads.''' ) # convert layers logger.info('''Converting weights...''' ) for full_name, array in zip(A__ , A__ ): __lowercase = full_name.split('''/''' ) __lowercase = model __lowercase = [] for i, m_name in enumerate(A__ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('''layer_with_weights''' ): __lowercase = int(m_name.split('''-''' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['''embeddings''', '''LayerNorm'''] ) __lowercase = getattr(A__ , '''embeddings''' ) __lowercase = getattr(A__ , '''LayerNorm''' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] ) __lowercase = getattr(A__ , '''encoder''' ) __lowercase = getattr(A__ , '''layer''' ) __lowercase = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['''pooler''', '''dense'''] ) __lowercase = getattr(A__ , '''pooler''' ) __lowercase = getattr(A__ , '''dense''' ) elif m_name == "embeddings": trace.append('''embeddings''' ) __lowercase = getattr(A__ , '''embeddings''' ) if layer_num == 0: trace.append('''word_embeddings''' ) __lowercase = getattr(A__ , '''word_embeddings''' ) elif layer_num == 1: trace.append('''position_embeddings''' ) __lowercase = getattr(A__ , '''position_embeddings''' ) elif layer_num == 2: trace.append('''token_type_embeddings''' ) __lowercase = getattr(A__ , '''token_type_embeddings''' ) else: raise ValueError(F"Unknown embedding layer with name {full_name}" ) trace.append('''weight''' ) __lowercase = getattr(A__ , '''weight''' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['''attention''', '''self'''] ) __lowercase = getattr(A__ , '''attention''' ) __lowercase = getattr(A__ , '''self''' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['''attention''', '''output''', '''LayerNorm'''] ) __lowercase = getattr(A__ , '''attention''' ) __lowercase = getattr(A__ , '''output''' ) __lowercase = getattr(A__ , '''LayerNorm''' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['''attention''', '''output''', '''dense'''] ) __lowercase = getattr(A__ , '''attention''' ) __lowercase = getattr(A__ , '''output''' ) __lowercase = getattr(A__ , '''dense''' ) elif m_name == "_output_dense": # output dense trace.extend(['''output''', '''dense'''] ) __lowercase = getattr(A__ , '''output''' ) __lowercase = getattr(A__ , '''dense''' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['''output''', '''LayerNorm'''] ) __lowercase = getattr(A__ , '''output''' ) __lowercase = getattr(A__ , '''LayerNorm''' ) elif m_name == "_key_dense": # attention key trace.append('''key''' ) __lowercase = getattr(A__ , '''key''' ) elif m_name == "_query_dense": # attention query trace.append('''query''' ) __lowercase = getattr(A__ , '''query''' ) elif m_name == "_value_dense": # attention value trace.append('''value''' ) __lowercase = getattr(A__ , '''value''' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['''intermediate''', '''dense'''] ) __lowercase = getattr(A__ , '''intermediate''' ) __lowercase = getattr(A__ , '''dense''' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('''output''' ) __lowercase = getattr(A__ , '''output''' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('''bias''' ) __lowercase = getattr(A__ , '''bias''' ) elif m_name in ["kernel", "gamma"]: trace.append('''weight''' ) __lowercase = getattr(A__ , '''weight''' ) else: logger.warning(F"Ignored {m_name}" ) # for certain layers reshape is necessary __lowercase = '''.'''.join(A__ ) if re.match(R'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''' , A__ ) or re.match( R'''(\S+)\.attention\.output\.dense\.weight''' , A__ ): __lowercase = array.reshape(pointer.data.shape ) if "kernel" in full_name: __lowercase = array.transpose() if pointer.shape == array.shape: __lowercase = torch.from_numpy(A__ ) else: raise ValueError( F"Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:" F" {array.shape}" ) logger.info(F"Successfully set variable {full_name} to PyTorch layer {trace}" ) return model def _A ( A__ , A__ , A__ ): """simple docstring""" logger.info(F"Loading model based on config from {config_path}..." ) __lowercase = BertConfig.from_json_file(A__ ) __lowercase = BertModel(A__ ) # Load weights from checkpoint logger.info(F"Loading weights from checkpoint {tf_checkpoint_path}..." ) load_tfa_weights_in_bert(A__ , A__ , A__ ) # Save pytorch-model logger.info(F"Saving PyTorch model to {pytorch_dump_path}..." ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow 2.x checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model (must include filename).''', ) lowerCAmelCase__ = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
41
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : jnp.ndarray SCREAMING_SNAKE_CASE : jnp.ndarray class lowercase_ (nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __lowercase = [] for i in range(len(self.block_out_channels ) - 1 ): __lowercase = self.block_out_channels[i] __lowercase = self.block_out_channels[i + 1] __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = blocks __lowercase = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : List[str] ,lowercase__ : Optional[int] ): __lowercase = self.conv_in(lowercase__ ) __lowercase = nn.silu(lowercase__ ) for block in self.blocks: __lowercase = block(lowercase__ ) __lowercase = nn.silu(lowercase__ ) __lowercase = self.conv_out(lowercase__ ) return embedding @flax_register_to_config class lowercase_ (nn.Module , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 3_2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False SCREAMING_SNAKE_CASE : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) SCREAMING_SNAKE_CASE : int = 2 SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None SCREAMING_SNAKE_CASE : int = 1_2_8_0 SCREAMING_SNAKE_CASE : float = 0.0 SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = "rgb" SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : jax.random.KeyArray ): # init input tensors __lowercase = (1, self.in_channels, self.sample_size, self.sample_size) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase = jnp.ones((1,) ,dtype=jnp.intaa ) __lowercase = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa ) __lowercase = (1, 3, self.sample_size * 8, self.sample_size * 8) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase , __lowercase = jax.random.split(lowercase__ ) __lowercase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )["params"] def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.block_out_channels __lowercase = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __lowercase = self.num_attention_heads or self.attention_head_dim # input __lowercase = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time __lowercase = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift ) __lowercase = FlaxTimestepEmbedding(lowercase__ ,dtype=self.dtype ) __lowercase = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) __lowercase = self.only_cross_attention if isinstance(lowercase__ ,lowercase__ ): __lowercase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = (num_attention_heads,) * len(self.down_block_types ) # down __lowercase = [] __lowercase = [] __lowercase = block_out_channels[0] __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) for i, down_block_type in enumerate(self.down_block_types ): __lowercase = output_channel __lowercase = block_out_channels[i] __lowercase = i == len(lowercase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": __lowercase = FlaxCrossAttnDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: __lowercase = FlaxDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(lowercase__ ) for _ in range(self.layers_per_block ): __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) if not is_final_block: __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) __lowercase = down_blocks __lowercase = controlnet_down_blocks # mid __lowercase = block_out_channels[-1] __lowercase = FlaxUNetMidBlockaDCrossAttn( in_channels=lowercase__ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : float = 1.0 ,lowercase__ : bool = True ,lowercase__ : bool = False ,): __lowercase = self.controlnet_conditioning_channel_order if channel_order == "bgr": __lowercase = jnp.flip(lowercase__ ,axis=1 ) # 1. time if not isinstance(lowercase__ ,jnp.ndarray ): __lowercase = jnp.array([timesteps] ,dtype=jnp.intaa ) elif isinstance(lowercase__ ,jnp.ndarray ) and len(timesteps.shape ) == 0: __lowercase = timesteps.astype(dtype=jnp.floataa ) __lowercase = jnp.expand_dims(lowercase__ ,0 ) __lowercase = self.time_proj(lowercase__ ) __lowercase = self.time_embedding(lowercase__ ) # 2. pre-process __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.conv_in(lowercase__ ) __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.controlnet_cond_embedding(lowercase__ ) sample += controlnet_cond # 3. down __lowercase = (sample,) for down_block in self.down_blocks: if isinstance(lowercase__ ,lowercase__ ): __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) else: __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,deterministic=not train ) down_block_res_samples += res_samples # 4. mid __lowercase = self.mid_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) # 5. contronet blocks __lowercase = () for down_block_res_sample, controlnet_block in zip(lowercase__ ,self.controlnet_down_blocks ): __lowercase = controlnet_block(lowercase__ ) controlnet_down_block_res_samples += (down_block_res_sample,) __lowercase = controlnet_down_block_res_samples __lowercase = self.controlnet_mid_block(lowercase__ ) # 6. scaling __lowercase = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowercase__ ,mid_block_res_sample=lowercase__ )
41
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''speechbrain/m-ctc-t-large''': '''https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json''', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 'mctct' def __init__( self : Any ,lowercase__ : Any=8_0_6_5 ,lowercase__ : Optional[Any]=1_5_3_6 ,lowercase__ : Dict=3_6 ,lowercase__ : List[Any]=6_1_4_4 ,lowercase__ : Any=4 ,lowercase__ : Tuple=3_8_4 ,lowercase__ : Tuple=9_2_0 ,lowercase__ : List[Any]=1e-5 ,lowercase__ : Optional[Any]=0.3 ,lowercase__ : str="relu" ,lowercase__ : Optional[Any]=0.0_2 ,lowercase__ : List[str]=0.3 ,lowercase__ : Any=0.3 ,lowercase__ : Optional[int]=1 ,lowercase__ : Optional[Any]=0 ,lowercase__ : Dict=2 ,lowercase__ : int=1 ,lowercase__ : Optional[Any]=0.3 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : Optional[int]=(7,) ,lowercase__ : Optional[int]=(3,) ,lowercase__ : Dict=8_0 ,lowercase__ : List[Any]=1 ,lowercase__ : Optional[Any]=None ,lowercase__ : Tuple="sum" ,lowercase__ : Optional[int]=False ,**lowercase__ : Dict ,): super().__init__(**lowercase__ ,pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = intermediate_size __lowercase = num_attention_heads __lowercase = attention_head_dim __lowercase = max_position_embeddings __lowercase = layer_norm_eps __lowercase = layerdrop __lowercase = hidden_act __lowercase = initializer_range __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = pad_token_id __lowercase = bos_token_id __lowercase = eos_token_id __lowercase = conv_glu_dim __lowercase = conv_dropout __lowercase = num_conv_layers __lowercase = input_feat_per_channel __lowercase = input_channels __lowercase = conv_channels __lowercase = ctc_loss_reduction __lowercase = ctc_zero_infinity # prevents config testing fail with exporting to json __lowercase = list(lowercase__ ) __lowercase = list(lowercase__ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ''' F"but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, " F"`config.num_conv_layers = {self.num_conv_layers}`." )
41
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase__ = False lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''ybelkada/fonts''' def _A ( ): """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use " '''Pix2StructImageProcessor. Please upgrade torch.''' ) def _A ( A__ , A__ , A__ ): """simple docstring""" requires_backends(A__ , ['''torch'''] ) _check_torch_version() __lowercase = image_tensor.unsqueeze(0 ) __lowercase = torch.nn.functional.unfold(A__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) __lowercase = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , A__ , A__ , -1 ) __lowercase = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def _A ( A__ , A__ = 36 , A__ = "black" , A__ = "white" , A__ = 5 , A__ = 5 , A__ = 5 , A__ = 5 , A__ = None , A__ = None , ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Add new lines so that each line is no more than 80 characters. __lowercase = textwrap.TextWrapper(width=80 ) __lowercase = wrapper.wrap(text=A__ ) __lowercase = '''\n'''.join(A__ ) if font_bytes is not None and font_path is None: __lowercase = io.BytesIO(A__ ) elif font_path is not None: __lowercase = font_path else: __lowercase = hf_hub_download(A__ , '''Arial.TTF''' ) __lowercase = ImageFont.truetype(A__ , encoding='''UTF-8''' , size=A__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. __lowercase = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , A__ ) ) __lowercase , __lowercase , __lowercase , __lowercase = temp_draw.textbbox((0, 0) , A__ , A__ ) # Create the actual image with a bit of padding around the text. __lowercase = text_width + left_padding + right_padding __lowercase = text_height + top_padding + bottom_padding __lowercase = Image.new('''RGB''' , (image_width, image_height) , A__ ) __lowercase = ImageDraw.Draw(A__ ) draw.text(xy=(left_padding, top_padding) , text=A__ , fill=A__ , font=A__ ) return image def _A ( A__ , A__ , **A__ ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Convert to PIL image if necessary __lowercase = to_pil_image(A__ ) __lowercase = render_text(A__ , **A__ ) __lowercase = max(header_image.width , image.width ) __lowercase = int(image.height * (new_width / image.width) ) __lowercase = int(header_image.height * (new_width / header_image.width) ) __lowercase = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary __lowercase = to_numpy_array(A__ ) if infer_channel_dimension_format(A__ ) == ChannelDimension.LAST: __lowercase = to_channel_dimension_format(A__ , ChannelDimension.LAST ) return new_image class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ['flattened_patches'] def __init__( self : Any ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : int = 2_0_4_8 ,lowercase__ : bool = False ,**lowercase__ : List[str] ,): super().__init__(**lowercase__ ) __lowercase = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6} __lowercase = do_normalize __lowercase = do_convert_rgb __lowercase = max_patches __lowercase = is_vqa def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : np.ndarray ,lowercase__ : int ,lowercase__ : dict ,**lowercase__ : Tuple ): requires_backends(self.extract_flattened_patches ,'''torch''' ) _check_torch_version() # convert to torch __lowercase = to_channel_dimension_format(lowercase__ ,ChannelDimension.FIRST ) __lowercase = torch.from_numpy(lowercase__ ) __lowercase , __lowercase = patch_size['''height'''], patch_size['''width'''] __lowercase , __lowercase = get_image_size(lowercase__ ) # maximize scale s.t. __lowercase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) __lowercase = max(min(math.floor(scale * image_height / patch_height ) ,lowercase__ ) ,1 ) __lowercase = max(min(math.floor(scale * image_width / patch_width ) ,lowercase__ ) ,1 ) __lowercase = max(num_feasible_rows * patch_height ,1 ) __lowercase = max(num_feasible_cols * patch_width ,1 ) __lowercase = torch.nn.functional.interpolate( image.unsqueeze(0 ) ,size=(resized_height, resized_width) ,mode='''bilinear''' ,align_corners=lowercase__ ,antialias=lowercase__ ,).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] __lowercase = torch_extract_patches(lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = patches.shape __lowercase = patches_shape[1] __lowercase = patches_shape[2] __lowercase = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] __lowercase = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] __lowercase = torch.arange(lowercase__ ).reshape([rows, 1] ).repeat(1 ,lowercase__ ).reshape([rows * columns, 1] ) __lowercase = torch.arange(lowercase__ ).reshape([1, columns] ).repeat(lowercase__ ,1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] __lowercase = row_ids.to(torch.floataa ) __lowercase = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] __lowercase = torch.cat([row_ids, col_ids, patches] ,-1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] __lowercase = torch.nn.functional.pad(lowercase__ ,[0, 0, 0, max_patches - (rows * columns)] ).float() __lowercase = to_numpy_array(lowercase__ ) return result def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : np.ndarray ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ): if image.dtype == np.uinta: __lowercase = image.astype(np.floataa ) # take mean across the whole `image` __lowercase = np.mean(lowercase__ ) __lowercase = np.std(lowercase__ ) __lowercase = max(lowercase__ ,1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : ImageInput ,lowercase__ : Optional[str] = None ,lowercase__ : bool = None ,lowercase__ : Optional[bool] = None ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[Dict[str, int]] = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : ChannelDimension = ChannelDimension.FIRST ,**lowercase__ : List[Any] ,): __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = patch_size if patch_size is not None else self.patch_size __lowercase = max_patches if max_patches is not None else self.max_patches __lowercase = self.is_vqa if kwargs.get('''data_format''' ,lowercase__ ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) __lowercase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(lowercase__ ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowercase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) __lowercase = kwargs.pop('''font_bytes''' ,lowercase__ ) __lowercase = kwargs.pop('''font_path''' ,lowercase__ ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = [header_text] * len(lowercase__ ) __lowercase = [ render_header(lowercase__ ,header_text[i] ,font_bytes=lowercase__ ,font_path=lowercase__ ) for i, image in enumerate(lowercase__ ) ] if do_normalize: __lowercase = [self.normalize(image=lowercase__ ) for image in images] # convert to torch tensor and permute __lowercase = [ self.extract_flattened_patches(image=lowercase__ ,max_patches=lowercase__ ,patch_size=lowercase__ ) for image in images ] # create attention mask in numpy __lowercase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] __lowercase = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks} ,tensor_type=lowercase__ ) return encoded_outputs
41
1
'''simple docstring''' import argparse import collections import json import os import re import string import sys import numpy as np lowerCAmelCase__ = re.compile(R'''\b(a|an|the)\b''', re.UNICODE) lowerCAmelCase__ = None def _A ( ): """simple docstring""" __lowercase = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' ) parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' ) parser.add_argument( '''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''' , '''-t''' , type=A__ , default=1.0 , help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' , ) parser.add_argument( '''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=A__ , help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def _A ( A__ ): """simple docstring""" __lowercase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __lowercase = bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def _A ( A__ ): """simple docstring""" def remove_articles(A__ ): return ARTICLES_REGEX.sub(''' ''' , A__ ) def white_space_fix(A__ ): return " ".join(text.split() ) def remove_punc(A__ ): __lowercase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(A__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(A__ ) ) ) ) def _A ( A__ ): """simple docstring""" if not s: return [] return normalize_answer(A__ ).split() def _A ( A__ , A__ ): """simple docstring""" return int(normalize_answer(A__ ) == normalize_answer(A__ ) ) def _A ( A__ , A__ ): """simple docstring""" __lowercase = get_tokens(A__ ) __lowercase = get_tokens(A__ ) __lowercase = collections.Counter(A__ ) & collections.Counter(A__ ) __lowercase = sum(common.values() ) if len(A__ ) == 0 or len(A__ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 __lowercase = 1.0 * num_same / len(A__ ) __lowercase = 1.0 * num_same / len(A__ ) __lowercase = (2 * precision * recall) / (precision + recall) return fa def _A ( A__ , A__ ): """simple docstring""" __lowercase = {} __lowercase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __lowercase = qa['''id'''] __lowercase = [t for t in qa['''answers''']['''text'''] if normalize_answer(A__ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string __lowercase = [''''''] if qid not in preds: print(F"Missing prediction for {qid}" ) continue __lowercase = preds[qid] # Take max over all gold answers __lowercase = max(compute_exact(A__ , A__ ) for a in gold_answers ) __lowercase = max(compute_fa(A__ , A__ ) for a in gold_answers ) return exact_scores, fa_scores def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = {} for qid, s in scores.items(): __lowercase = na_probs[qid] > na_prob_thresh if pred_na: __lowercase = float(not qid_to_has_ans[qid] ) else: __lowercase = s return new_scores def _A ( A__ , A__ , A__=None ): """simple docstring""" if not qid_list: __lowercase = len(A__ ) return collections.OrderedDict( [ ('''exact''', 1_0_0.0 * sum(exact_scores.values() ) / total), ('''f1''', 1_0_0.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: __lowercase = len(A__ ) return collections.OrderedDict( [ ('''exact''', 1_0_0.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 1_0_0.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def _A ( A__ , A__ , A__ ): """simple docstring""" for k in new_eval: __lowercase = new_eval[k] def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" plt.step(A__ , A__ , color='''b''' , alpha=0.2 , where='''post''' ) plt.fill_between(A__ , A__ , step='''post''' , alpha=0.2 , color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.0_5] ) plt.ylim([0.0, 1.0_5] ) plt.title(A__ ) plt.savefig(A__ ) plt.clf() def _A ( A__ , A__ , A__ , A__ , A__=None , A__=None ): """simple docstring""" __lowercase = sorted(A__ , key=lambda A__ : na_probs[k] ) __lowercase = 0.0 __lowercase = 1.0 __lowercase = 0.0 __lowercase = [1.0] __lowercase = [0.0] __lowercase = 0.0 for i, qid in enumerate(A__ ): if qid_to_has_ans[qid]: true_pos += scores[qid] __lowercase = true_pos / float(i + 1 ) __lowercase = true_pos / float(A__ ) if i == len(A__ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(A__ ) recalls.append(A__ ) if out_image: plot_pr_curve(A__ , A__ , A__ , A__ ) return {"ap": 1_0_0.0 * avg_prec} def _A ( A__ , A__ , A__ , A__ , A__ , A__ ): """simple docstring""" if out_image_dir and not os.path.exists(A__ ): os.makedirs(A__ ) __lowercase = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return __lowercase = make_precision_recall_eval( A__ , A__ , A__ , A__ , out_image=os.path.join(A__ , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , ) __lowercase = make_precision_recall_eval( A__ , A__ , A__ , A__ , out_image=os.path.join(A__ , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , ) __lowercase = {k: float(A__ ) for k, v in qid_to_has_ans.items()} __lowercase = make_precision_recall_eval( A__ , A__ , A__ , A__ , out_image=os.path.join(A__ , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , ) merge_eval(A__ , A__ , '''pr_exact''' ) merge_eval(A__ , A__ , '''pr_f1''' ) merge_eval(A__ , A__ , '''pr_oracle''' ) def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" if not qid_list: return __lowercase = [na_probs[k] for k in qid_list] __lowercase = np.ones_like(A__ ) / float(len(A__ ) ) plt.hist(A__ , weights=A__ , bins=20 , range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(F"Histogram of no-answer probability: {name}" ) plt.savefig(os.path.join(A__ , F"na_prob_hist_{name}.png" ) ) plt.clf() def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) __lowercase = num_no_ans __lowercase = cur_score __lowercase = 0.0 __lowercase = sorted(A__ , key=lambda A__ : na_probs[k] ) for i, qid in enumerate(A__ ): if qid not in scores: continue if qid_to_has_ans[qid]: __lowercase = scores[qid] else: if preds[qid]: __lowercase = -1 else: __lowercase = 0 cur_score += diff if cur_score > best_score: __lowercase = cur_score __lowercase = na_probs[qid] return 1_0_0.0 * best_score / len(A__ ), best_thresh def _A ( A__ , A__ , A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase , __lowercase = find_best_thresh(A__ , A__ , A__ , A__ ) __lowercase , __lowercase = find_best_thresh(A__ , A__ , A__ , A__ ) __lowercase = best_exact __lowercase = exact_thresh __lowercase = best_fa __lowercase = fa_thresh def _A ( ): """simple docstring""" with open(OPTS.data_file ) as f: __lowercase = json.load(A__ ) __lowercase = dataset_json['''data'''] with open(OPTS.pred_file ) as f: __lowercase = json.load(A__ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: __lowercase = json.load(A__ ) else: __lowercase = {k: 0.0 for k in preds} __lowercase = make_qid_to_has_ans(A__ ) # maps qid to True/False __lowercase = [k for k, v in qid_to_has_ans.items() if v] __lowercase = [k for k, v in qid_to_has_ans.items() if not v] __lowercase , __lowercase = get_raw_scores(A__ , A__ ) __lowercase = apply_no_ans_threshold(A__ , A__ , A__ , OPTS.na_prob_thresh ) __lowercase = apply_no_ans_threshold(A__ , A__ , A__ , OPTS.na_prob_thresh ) __lowercase = make_eval_dict(A__ , A__ ) if has_ans_qids: __lowercase = make_eval_dict(A__ , A__ , qid_list=A__ ) merge_eval(A__ , A__ , '''HasAns''' ) if no_ans_qids: __lowercase = make_eval_dict(A__ , A__ , qid_list=A__ ) merge_eval(A__ , A__ , '''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(A__ , A__ , A__ , A__ , A__ , A__ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(A__ , A__ , A__ , A__ , A__ , OPTS.out_image_dir ) histogram_na_prob(A__ , A__ , OPTS.out_image_dir , '''hasAns''' ) histogram_na_prob(A__ , A__ , OPTS.out_image_dir , '''noAns''' ) if OPTS.out_file: with open(OPTS.out_file , '''w''' ) as f: json.dump(A__ , A__ ) else: print(json.dumps(A__ , indent=2 ) ) if __name__ == "__main__": lowerCAmelCase__ = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
41
'''simple docstring''' import doctest from collections import deque import numpy as np class lowercase_ : """simple docstring""" def __init__( self : Optional[Any] ): __lowercase = [2, 1, 2, -1] __lowercase = [1, 2, 3, 4] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = len(self.first_signal ) __lowercase = len(self.second_signal ) __lowercase = max(lowercase__ ,lowercase__ ) # create a zero matrix of max_length x max_length __lowercase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __lowercase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __lowercase = np.matmul(np.transpose(lowercase__ ) ,np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ ,2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
41
1
'''simple docstring''' def _A ( A__ , A__ , A__ ): """simple docstring""" if len(A__ ) != len(A__ ): raise ValueError('''The length of profit and weight must be same.''' ) if max_weight <= 0: raise ValueError('''max_weight must greater than zero.''' ) if any(p < 0 for p in profit ): raise ValueError('''Profit can not be negative.''' ) if any(w < 0 for w in weight ): raise ValueError('''Weight can not be negative.''' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __lowercase = [p / w for p, w in zip(A__ , A__ )] # Creating a copy of the list and sorting profit/weight in ascending order __lowercase = sorted(A__ ) # declaring useful variables __lowercase = len(A__ ) __lowercase = 0 __lowercase = 0 __lowercase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __lowercase = sorted_profit_by_weight[length - i - 1] __lowercase = profit_by_weight.index(A__ ) __lowercase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) lowerCAmelCase__ = [int(x) for x in input('''Input profits separated by spaces: ''').split()] lowerCAmelCase__ = [int(x) for x in input('''Input weights separated by spaces: ''').split()] lowerCAmelCase__ = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
41
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
41
1
'''simple docstring''' import os import time import numpy as np import onnxruntime as ort lowerCAmelCase__ = '''1''' lowerCAmelCase__ = '''0''' lowerCAmelCase__ = '''1''' lowerCAmelCase__ = ort.SessionOptions() lowerCAmelCase__ = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('''Create inference session...''') lowerCAmelCase__ = ['''TensorrtExecutionProvider''', '''CUDAExecutionProvider'''] lowerCAmelCase__ = ort.InferenceSession('''model.onnx''', sess_options=sess_opt, providers=execution_provider) lowerCAmelCase__ = ort.RunOptions() lowerCAmelCase__ = 128 lowerCAmelCase__ = 1 lowerCAmelCase__ = np.ones((batch, sequence), dtype=np.intaa) lowerCAmelCase__ = np.ones((batch, sequence), dtype=np.intaa) lowerCAmelCase__ = np.ones((batch, sequence), dtype=np.intaa) print('''Warm up phase...''') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Start inference...''') lowerCAmelCase__ = time.time() lowerCAmelCase__ = 2000 lowerCAmelCase__ = {} for iter in range(max_iters): lowerCAmelCase__ = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Average Inference Time = {:.3f} ms'''.format((time.time() - start_time) * 1000 / max_iters))
41
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCAmelCase__ = getLogger(__name__) lowerCAmelCase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def _A ( A__ , A__ , A__ , A__ = 8 , A__ = DEFAULT_DEVICE , A__=False , A__="summarization" , A__=None , **A__ , ): """simple docstring""" __lowercase = Path(A__ ).open('''w''' , encoding='''utf-8''' ) __lowercase = str(A__ ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained(A__ ).to(A__ ) if fpaa: __lowercase = model.half() __lowercase = AutoTokenizer.from_pretrained(A__ ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __lowercase = time.time() # update config with task specific params use_task_specific_params(A__ , A__ ) if prefix is None: __lowercase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(A__ , A__ ) ) ): __lowercase = [prefix + text for text in examples_chunk] __lowercase = tokenizer(A__ , return_tensors='''pt''' , truncation=A__ , padding='''longest''' ).to(A__ ) __lowercase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **A__ , ) __lowercase = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __lowercase = int(time.time() - start_time ) # seconds __lowercase = len(A__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _A ( ): """simple docstring""" return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def _A ( A__=True ): """simple docstring""" __lowercase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=A__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=A__ , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=A__ , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=A__ , required=A__ , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=A__ , required=A__ , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=A__ , required=A__ , default=A__ , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=A__ , required=A__ , default=A__ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=A__ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=A__ , default=8 , required=A__ , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=A__ , default=-1 , required=A__ , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=A__ , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowercase , __lowercase = parser.parse_known_args() __lowercase = parse_numeric_n_bool_cl_kwargs(A__ ) if parsed_args and verbose: print(F"parsed the following generate kwargs: {parsed_args}" ) __lowercase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowercase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=A__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __lowercase = generate_summaries_or_translations( A__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **A__ , ) if args.reference_path is None: return {} # Compute scores __lowercase = calculate_bleu if '''translation''' in args.task else calculate_rouge __lowercase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowercase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(A__ )] __lowercase = score_fn(A__ , A__ ) scores.update(A__ ) if args.dump_args: scores.update(A__ ) if args.info: __lowercase = args.info if verbose: print(A__ ) if args.score_path is not None: json.dump(A__ , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
41
1
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class lowercase_ : """simple docstring""" SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : Node | None = None SCREAMING_SNAKE_CASE : Node | None = None def _A ( ): """simple docstring""" __lowercase = Node(1 ) __lowercase = Node(2 ) __lowercase = Node(3 ) __lowercase = Node(4 ) __lowercase = Node(5 ) return tree def _A ( A__ ): """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _A ( A__ ): """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _A ( A__ ): """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _A ( A__ ): """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def _A ( A__ ): """simple docstring""" __lowercase = [] if root is None: return output __lowercase = deque([root] ) while process_queue: __lowercase = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _A ( A__ , A__ ): """simple docstring""" __lowercase = [] def populate_output(A__ , A__ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(A__ , A__ ) return output def _A ( A__ , A__ ): """simple docstring""" __lowercase = [] def populate_output(A__ , A__ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(A__ , A__ ) return output def _A ( A__ ): """simple docstring""" if root is None: return [] __lowercase = [] __lowercase = 0 __lowercase = height(A__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(A__ , A__ ) ) __lowercase = 1 else: output.append(get_nodes_from_right_to_left(A__ , A__ ) ) __lowercase = 0 return output def _A ( ): # Main function for testing. """simple docstring""" __lowercase = make_tree() print(F"In-order Traversal: {inorder(A__ )}" ) print(F"Pre-order Traversal: {preorder(A__ )}" ) print(F"Post-order Traversal: {postorder(A__ )}" , '''\n''' ) print(F"Height of Tree: {height(A__ )}" , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(A__ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(A__ ) + 1 ): print(F"Level {level}:" , get_nodes_from_left_to_right(A__ , level=A__ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
41
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(A__ ): print(F"{i}\t\t{d}" ) def _A ( A__ , A__ , A__ ): """simple docstring""" for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = [float('''inf''' )] * vertex_count __lowercase = 0.0 for _ in range(vertex_count - 1 ): for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: __lowercase = distance[u] + w __lowercase = check_negative_cycle(A__ , A__ , A__ ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = int(input('''Enter number of vertices: ''').strip()) lowerCAmelCase__ = int(input('''Enter number of edges: ''').strip()) lowerCAmelCase__ = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) lowerCAmelCase__ = {'''src''': src, '''dst''': dest, '''weight''': weight} lowerCAmelCase__ = int(input('''\nEnter shortest path source:''').strip()) lowerCAmelCase__ = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
41
1
'''simple docstring''' from collections.abc import Callable class lowercase_ : """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : Callable | None = None ): # Stores actual heap items. __lowercase = [] # Stores indexes of each item for supporting updates and deletion. __lowercase = {} # Stores current size of heap. __lowercase = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __lowercase = key or (lambda lowercase__ : x) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : int ): return int((i - 1) / 2 ) if i > 0 else None def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = int(2 * i + 1 ) return left if 0 < left < self.size else None def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ): __lowercase = int(2 * i + 2 ) return right if 0 < right < self.size else None def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : int ,lowercase__ : int ): __lowercase , __lowercase = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __lowercase , __lowercase = self.arr[j], self.arr[i] def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): return self.arr[i][1] < self.arr[j][1] def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._left(lowercase__ ) __lowercase = self._right(lowercase__ ) __lowercase = i if left is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = left if right is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = right return valid_parent def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._parent(lowercase__ ) while parent is not None and not self._cmp(lowercase__ ,lowercase__ ): self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = parent, self._parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = self._get_valid_parent(lowercase__ ) while valid_parent != index: self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = valid_parent, self._get_valid_parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] __lowercase = [item, self.key(lowercase__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] del self.pos_map[item] __lowercase = self.arr[self.size - 1] __lowercase = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : int ): __lowercase = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(lowercase__ )] ) else: __lowercase = [item, self.key(lowercase__ )] __lowercase = self.size self.size += 1 self._heapify_up(self.size - 1 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): return self.arr[0] if self.size else None def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _A ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
41
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[Any] ,*lowercase__ : Optional[Any] ,**lowercase__ : int ): warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' ,lowercase__ ,) super().__init__(*lowercase__ ,**lowercase__ )
41
1
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ , A__ , A__ , A__ , ): """simple docstring""" __lowercase = len(A__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(A__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , A__ , A__ , ) def _A ( A__ ): """simple docstring""" __lowercase = [] depth_first_search([] , [] , [] , A__ , A__ ) # Print all the boards for board in boards: for column in board: print(A__ ) print('''''' ) print(len(A__ ) , '''solutions were found.''' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
41
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _A ( A__ ): """simple docstring""" __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = 0.0_1 with locka.acquire(): with pytest.raises(A__ ): __lowercase = time.time() locka.acquire(A__ ) assert time.time() - _start > timeout def _A ( A__ ): """simple docstring""" __lowercase = '''a''' * 1000 + '''.lock''' __lowercase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(A__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __lowercase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(A__ ): locka.acquire(0 )
41
1
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": lowerCAmelCase__ = pd.read_csv('''sample_data.csv''', header=None) lowerCAmelCase__ = df.shape[:1][0] # If you're using some other dataset input the target column lowerCAmelCase__ = df.iloc[:, 1:2] lowerCAmelCase__ = actual_data.values.reshape(len_data, 1) lowerCAmelCase__ = MinMaxScaler().fit_transform(actual_data) lowerCAmelCase__ = 10 lowerCAmelCase__ = 5 lowerCAmelCase__ = 20 lowerCAmelCase__ = len_data - periods * look_back lowerCAmelCase__ = actual_data[:division] lowerCAmelCase__ = actual_data[division - look_back :] lowerCAmelCase__ , lowerCAmelCase__ = [], [] lowerCAmelCase__ , lowerCAmelCase__ = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) lowerCAmelCase__ = np.array(train_x) lowerCAmelCase__ = np.array(test_x) lowerCAmelCase__ = np.array([list(i.ravel()) for i in train_y]) lowerCAmelCase__ = np.array([list(i.ravel()) for i in test_y]) lowerCAmelCase__ = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') lowerCAmelCase__ = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) lowerCAmelCase__ = model.predict(x_test)
41
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase__ = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
1
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _A ( ): """simple docstring""" __lowercase = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=A__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=A__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=A__ ) return parser.parse_args() def _A ( ): """simple docstring""" __lowercase = parse_args() # Import training_script as a module. __lowercase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowercase = script_fpath.stem __lowercase = importlib.import_module(A__ ) # Patch sys.argv __lowercase = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
41
'''simple docstring''' import argparse import os import re lowerCAmelCase__ = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(R'''\[([^\]]+)\]''') def _A ( A__ ): """simple docstring""" __lowercase = _re_indent.search(A__ ) return "" if search is None else search.groups()[0] def _A ( A__ , A__="" , A__=None , A__=None ): """simple docstring""" __lowercase = 0 __lowercase = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(A__ ): index += 1 __lowercase = ['''\n'''.join(lines[:index] )] else: __lowercase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowercase = [lines[index]] index += 1 while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(A__ ) ) if index < len(A__ ) - 1: __lowercase = [lines[index + 1]] index += 1 else: __lowercase = [] else: blocks.append('''\n'''.join(A__ ) ) __lowercase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A__ ) > 0: blocks.append('''\n'''.join(A__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def _A ( A__ ): """simple docstring""" def _inner(A__ ): return key(A__ ).lower().replace('''_''' , '''''' ) return _inner def _A ( A__ , A__=None ): """simple docstring""" def noop(A__ ): return x if key is None: __lowercase = noop # Constants are all uppercase, they go first. __lowercase = [obj for obj in objects if key(A__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowercase = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()] # Functions begin with a lowercase, they go last. __lowercase = [obj for obj in objects if not key(A__ )[0].isupper()] __lowercase = ignore_underscore(A__ ) return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) def _A ( A__ ): """simple docstring""" def _replace(A__ ): __lowercase = match.groups()[0] if "," not in imports: return F"[{imports}]" __lowercase = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) + "]" __lowercase = import_statement.split('''\n''' ) if len(A__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowercase = 2 if lines[1].strip() == '''[''' else 1 __lowercase = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowercase = sort_objects(A__ , key=lambda A__ : x[1] ) __lowercase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowercase = _re_bracket_content.sub(_replace , lines[1] ) else: __lowercase = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] __lowercase = get_indent(lines[1] ) + ''', '''.join([F"\"{k}\"" for k in sort_objects(A__ )] ) return "\n".join(A__ ) else: # Finally we have to deal with imports fitting on one line __lowercase = _re_bracket_content.sub(_replace , A__ ) return import_statement def _A ( A__ , A__=True ): """simple docstring""" with open(A__ , '''r''' ) as f: __lowercase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowercase = split_code_in_indented_blocks( A__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowercase = main_blocks[block_idx] __lowercase = block.split('''\n''' ) # Get to the start of the imports. __lowercase = 0 while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowercase = len(A__ ) else: line_idx += 1 if line_idx >= len(A__ ): continue # Ignore beginning and last line: they don't contain anything. __lowercase = '''\n'''.join(block_lines[line_idx:-1] ) __lowercase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowercase = split_code_in_indented_blocks(A__ , indent_level=A__ ) # We have two categories of import key: list or _import_structure[key].append/extend __lowercase = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowercase = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowercase = [(i, key) for i, key in enumerate(A__ ) if key is not None] __lowercase = [x[0] for x in sorted(A__ , key=lambda A__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowercase = 0 __lowercase = [] for i in range(len(A__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __lowercase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(A__ ) count += 1 # And we put our main block back together with its first and last line. __lowercase = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(A__ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(A__ , '''w''' ) as f: f.write('''\n'''.join(A__ ) ) def _A ( A__=True ): """simple docstring""" __lowercase = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: __lowercase = sort_imports(os.path.join(A__ , '''__init__.py''' ) , check_only=A__ ) if result: __lowercase = [os.path.join(A__ , '''__init__.py''' )] if len(A__ ) > 0: raise ValueError(F"Would overwrite {len(A__ )} files, run `make style`." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
41
1
'''simple docstring''' def _A ( A__ ): """simple docstring""" __lowercase = hex_num.strip() if not hex_num: raise ValueError('''No value was passed to the function''' ) __lowercase = hex_num[0] == '''-''' if is_negative: __lowercase = hex_num[1:] try: __lowercase = int(A__ , 16 ) except ValueError: raise ValueError('''Invalid value was passed to the function''' ) __lowercase = '''''' while int_num > 0: __lowercase = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('''-''' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
41
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = TextToVideoSDPipeline SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. SCREAMING_SNAKE_CASE : Optional[int] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') ,up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') ,cross_attention_dim=3_2 ,attention_head_dim=4 ,) __lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,clip_sample=lowercase__ ,set_alpha_to_one=lowercase__ ,) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=1_2_8 ,) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''gelu''' ,projection_dim=5_1_2 ,) __lowercase = CLIPTextModel(lowercase__ ) __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : List[str]=0 ): if str(lowercase__ ).startswith('''mps''' ): __lowercase = torch.manual_seed(lowercase__ ) else: __lowercase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = TextToVideoSDPipeline(**lowercase__ ) __lowercase = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs(lowercase__ ) __lowercase = '''np''' __lowercase = sd_pipe(**lowercase__ ).frames __lowercase = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) __lowercase = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def SCREAMING_SNAKE_CASE ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=1e-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass def SCREAMING_SNAKE_CASE ( self : List[str] ): return super().test_progress_bar() @slow @skip_mps class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2_5 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
41
1