code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : str = ShapEPipeline UpperCAmelCase__ : Union[str, Any] = ["prompt"] UpperCAmelCase__ : List[str] = ["prompt"] UpperCAmelCase__ : str = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase__ : Optional[Any] = False @property def snake_case_ ( self ) -> List[Any]: return 32 @property def snake_case_ ( self ) -> List[Any]: return 32 @property def snake_case_ ( self ) -> Dict: return self.time_input_dim * 4 @property def snake_case_ ( self ) -> Optional[int]: return 8 @property def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def snake_case_ ( self ) -> Tuple: torch.manual_seed(0 ) UpperCamelCase : List[str] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) @property def snake_case_ ( self ) -> Tuple: torch.manual_seed(0 ) UpperCamelCase : Optional[Any] = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } UpperCamelCase : str = PriorTransformer(**SCREAMING_SNAKE_CASE_ ) return model @property def snake_case_ ( self ) -> Tuple: torch.manual_seed(0 ) UpperCamelCase : List[Any] = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } UpperCamelCase : Tuple = ShapERenderer(**SCREAMING_SNAKE_CASE_ ) return model def snake_case_ ( self ) -> str: UpperCamelCase : List[Any] = self.dummy_prior UpperCamelCase : Union[str, Any] = self.dummy_text_encoder UpperCamelCase : List[str] = self.dummy_tokenizer UpperCamelCase : Dict = self.dummy_renderer UpperCamelCase : List[Any] = HeunDiscreteScheduler( beta_schedule='exp', num_train_timesteps=1024, prediction_type='sample', use_karras_sigmas=SCREAMING_SNAKE_CASE_, clip_sample=SCREAMING_SNAKE_CASE_, clip_sample_range=1.0, ) UpperCamelCase : Tuple = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> Dict: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): UpperCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : int = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def snake_case_ ( self ) -> Any: UpperCamelCase : int = 'cpu' UpperCamelCase : str = self.get_dummy_components() UpperCamelCase : Dict = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : int = output.images[0] UpperCamelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCamelCase : Optional[Any] = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ) -> List[Any]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Optional[Any] = torch_device == 'cpu' UpperCamelCase : Tuple = True self._test_inference_batch_single_identical( batch_size=2, test_max_difference=SCREAMING_SNAKE_CASE_, relax_max_difference=SCREAMING_SNAKE_CASE_, ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Tuple = self.get_dummy_components() UpperCamelCase : List[Any] = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = 1 UpperCamelCase : List[Any] = 2 UpperCamelCase : Dict = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) for key in inputs.keys(): if key in self.batch_params: UpperCamelCase : Dict = batch_size * [inputs[key]] UpperCamelCase : List[str] = pipe(**SCREAMING_SNAKE_CASE_, num_images_per_prompt=SCREAMING_SNAKE_CASE_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ) -> int: UpperCamelCase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) UpperCamelCase : Optional[Any] = ShapEPipeline.from_pretrained('openai/shap-e' ) UpperCamelCase : Tuple = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) UpperCamelCase : List[Any] = pipe( 'a shark', generator=SCREAMING_SNAKE_CASE_, guidance_scale=15.0, num_inference_steps=64, frame_size=64, output_type='np', ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
40
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase__ = False lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''ybelkada/fonts''' def _A ( ): """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use " '''Pix2StructImageProcessor. Please upgrade torch.''' ) def _A ( A__ , A__ , A__ ): """simple docstring""" requires_backends(A__ , ['''torch'''] ) _check_torch_version() __lowercase = image_tensor.unsqueeze(0 ) __lowercase = torch.nn.functional.unfold(A__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) __lowercase = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , A__ , A__ , -1 ) __lowercase = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def _A ( A__ , A__ = 36 , A__ = "black" , A__ = "white" , A__ = 5 , A__ = 5 , A__ = 5 , A__ = 5 , A__ = None , A__ = None , ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Add new lines so that each line is no more than 80 characters. __lowercase = textwrap.TextWrapper(width=80 ) __lowercase = wrapper.wrap(text=A__ ) __lowercase = '''\n'''.join(A__ ) if font_bytes is not None and font_path is None: __lowercase = io.BytesIO(A__ ) elif font_path is not None: __lowercase = font_path else: __lowercase = hf_hub_download(A__ , '''Arial.TTF''' ) __lowercase = ImageFont.truetype(A__ , encoding='''UTF-8''' , size=A__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. __lowercase = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , A__ ) ) __lowercase , __lowercase , __lowercase , __lowercase = temp_draw.textbbox((0, 0) , A__ , A__ ) # Create the actual image with a bit of padding around the text. __lowercase = text_width + left_padding + right_padding __lowercase = text_height + top_padding + bottom_padding __lowercase = Image.new('''RGB''' , (image_width, image_height) , A__ ) __lowercase = ImageDraw.Draw(A__ ) draw.text(xy=(left_padding, top_padding) , text=A__ , fill=A__ , font=A__ ) return image def _A ( A__ , A__ , **A__ ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Convert to PIL image if necessary __lowercase = to_pil_image(A__ ) __lowercase = render_text(A__ , **A__ ) __lowercase = max(header_image.width , image.width ) __lowercase = int(image.height * (new_width / image.width) ) __lowercase = int(header_image.height * (new_width / header_image.width) ) __lowercase = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary __lowercase = to_numpy_array(A__ ) if infer_channel_dimension_format(A__ ) == ChannelDimension.LAST: __lowercase = to_channel_dimension_format(A__ , ChannelDimension.LAST ) return new_image class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ['flattened_patches'] def __init__( self : Any ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : int = 2_0_4_8 ,lowercase__ : bool = False ,**lowercase__ : List[str] ,): super().__init__(**lowercase__ ) __lowercase = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6} __lowercase = do_normalize __lowercase = do_convert_rgb __lowercase = max_patches __lowercase = is_vqa def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : np.ndarray ,lowercase__ : int ,lowercase__ : dict ,**lowercase__ : Tuple ): requires_backends(self.extract_flattened_patches ,'''torch''' ) _check_torch_version() # convert to torch __lowercase = to_channel_dimension_format(lowercase__ ,ChannelDimension.FIRST ) __lowercase = torch.from_numpy(lowercase__ ) __lowercase , __lowercase = patch_size['''height'''], patch_size['''width'''] __lowercase , __lowercase = get_image_size(lowercase__ ) # maximize scale s.t. __lowercase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) __lowercase = max(min(math.floor(scale * image_height / patch_height ) ,lowercase__ ) ,1 ) __lowercase = max(min(math.floor(scale * image_width / patch_width ) ,lowercase__ ) ,1 ) __lowercase = max(num_feasible_rows * patch_height ,1 ) __lowercase = max(num_feasible_cols * patch_width ,1 ) __lowercase = torch.nn.functional.interpolate( image.unsqueeze(0 ) ,size=(resized_height, resized_width) ,mode='''bilinear''' ,align_corners=lowercase__ ,antialias=lowercase__ ,).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] __lowercase = torch_extract_patches(lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = patches.shape __lowercase = patches_shape[1] __lowercase = patches_shape[2] __lowercase = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] __lowercase = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] __lowercase = torch.arange(lowercase__ ).reshape([rows, 1] ).repeat(1 ,lowercase__ ).reshape([rows * columns, 1] ) __lowercase = torch.arange(lowercase__ ).reshape([1, columns] ).repeat(lowercase__ ,1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] __lowercase = row_ids.to(torch.floataa ) __lowercase = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] __lowercase = torch.cat([row_ids, col_ids, patches] ,-1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] __lowercase = torch.nn.functional.pad(lowercase__ ,[0, 0, 0, max_patches - (rows * columns)] ).float() __lowercase = to_numpy_array(lowercase__ ) return result def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : np.ndarray ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ): if image.dtype == np.uinta: __lowercase = image.astype(np.floataa ) # take mean across the whole `image` __lowercase = np.mean(lowercase__ ) __lowercase = np.std(lowercase__ ) __lowercase = max(lowercase__ ,1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : ImageInput ,lowercase__ : Optional[str] = None ,lowercase__ : bool = None ,lowercase__ : Optional[bool] = None ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[Dict[str, int]] = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : ChannelDimension = ChannelDimension.FIRST ,**lowercase__ : List[Any] ,): __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = patch_size if patch_size is not None else self.patch_size __lowercase = max_patches if max_patches is not None else self.max_patches __lowercase = self.is_vqa if kwargs.get('''data_format''' ,lowercase__ ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) __lowercase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(lowercase__ ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowercase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) __lowercase = kwargs.pop('''font_bytes''' ,lowercase__ ) __lowercase = kwargs.pop('''font_path''' ,lowercase__ ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = [header_text] * len(lowercase__ ) __lowercase = [ render_header(lowercase__ ,header_text[i] ,font_bytes=lowercase__ ,font_path=lowercase__ ) for i, image in enumerate(lowercase__ ) ] if do_normalize: __lowercase = [self.normalize(image=lowercase__ ) for image in images] # convert to torch tensor and permute __lowercase = [ self.extract_flattened_patches(image=lowercase__ ,max_patches=lowercase__ ,patch_size=lowercase__ ) for image in images ] # create attention mask in numpy __lowercase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] __lowercase = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks} ,tensor_type=lowercase__ ) return encoded_outputs
41
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch A_ = random.Random() def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase=1.0 ,__UpperCamelCase=None ,__UpperCamelCase=None ) -> Dict: if rng is None: lowerCamelCase_ = global_rng lowerCamelCase_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=400 , SCREAMING_SNAKE_CASE_=2000 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=16000 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=80 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_="hann_window" , SCREAMING_SNAKE_CASE_=80 , SCREAMING_SNAKE_CASE_=7600 , SCREAMING_SNAKE_CASE_=1E-10 , SCREAMING_SNAKE_CASE_=True , ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = min_seq_length lowerCamelCase_ = max_seq_length lowerCamelCase_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCamelCase_ = feature_size lowerCamelCase_ = padding_value lowerCamelCase_ = sampling_rate lowerCamelCase_ = do_normalize lowerCamelCase_ = num_mel_bins lowerCamelCase_ = hop_length lowerCamelCase_ = win_length lowerCamelCase_ = win_function lowerCamelCase_ = fmin lowerCamelCase_ = fmax lowerCamelCase_ = mel_floor lowerCamelCase_ = return_attention_mask def UpperCamelCase( self ) -> Dict: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def UpperCamelCase( self , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False ) -> List[str]: '''simple docstring''' def _flatten(SCREAMING_SNAKE_CASE_ ): return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) ) if equal_length: lowerCamelCase_ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCamelCase_ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCamelCase_ = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] return speech_inputs def UpperCamelCase( self , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False ) -> Tuple: '''simple docstring''' if equal_length: lowerCamelCase_ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCamelCase_ = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCamelCase_ = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] return speech_inputs @require_torch class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = SpeechTaFeatureExtractor def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = SpeechTaFeatureExtractionTester(self ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' self.assertTrue(np.all(np.mean(SCREAMING_SNAKE_CASE_ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(SCREAMING_SNAKE_CASE_ , axis=0 ) - 1 ) < 1E-3 ) ) def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase_ = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs] # Test not batched input lowerCamelCase_ = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values lowerCamelCase_ = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) # Test batched lowerCamelCase_ = feat_extract(SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_values lowerCamelCase_ = feat_extract(SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase_ = ['longest', 'max_length', 'do_not_pad'] lowerCamelCase_ = [None, 1600, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = feat_extract(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors='np' ) lowerCamelCase_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ = range(800 , 1400 , 200 ) lowerCamelCase_ = [floats_list((1, x) )[0] for x in lengths] lowerCamelCase_ = ['longest', 'max_length', 'do_not_pad'] lowerCamelCase_ = [None, 1600, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = feat_extract(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase_ = feat_extract( SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=1000 , padding='max_length' , return_tensors='np' ) lowerCamelCase_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase_ = feat_extract( SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=1000 , padding='longest' , return_tensors='np' ) lowerCamelCase_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) lowerCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase_ = feat_extract( SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=2000 , padding='longest' , return_tensors='np' ) lowerCamelCase_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase_ = np.random.rand(100 ).astype(np.floataa ) lowerCamelCase_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCamelCase_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCamelCase_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase_ = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs] # Test feature size lowerCamelCase_ = feature_extractor(audio_target=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input lowerCamelCase_ = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values lowerCamelCase_ = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) # Test batched lowerCamelCase_ = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_values lowerCamelCase_ = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCamelCase_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCamelCase_ = np.asarray(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_values lowerCamelCase_ = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = self.feat_extract_tester.prepare_inputs_for_target() lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase_ = feat_extract.model_input_names[0] lowerCamelCase_ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) for x, y in zip(SCREAMING_SNAKE_CASE_ , processed_features[input_name] ) ) ) lowerCamelCase_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) lowerCamelCase_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCamelCase_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def UpperCamelCase( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase_ = feat_extract.model_input_names[0] lowerCamelCase_ = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) lowerCamelCase_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCamelCase_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase_ = self.feat_extract_tester.prepare_inputs_for_target() lowerCamelCase_ = feat_extract.model_input_names[0] lowerCamelCase_ = BatchFeature({input_name: speech_inputs} ) lowerCamelCase_ = feat_extract.num_mel_bins # hack! lowerCamelCase_ = feat_extract.pad(SCREAMING_SNAKE_CASE_ , padding='longest' , return_tensors='np' )[input_name] lowerCamelCase_ = feat_extract.pad(SCREAMING_SNAKE_CASE_ , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = self.feat_extract_dict lowerCamelCase_ = True lowerCamelCase_ = self.feature_extraction_class(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.feat_extract_tester.prepare_inputs_for_target() lowerCamelCase_ = [len(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] lowerCamelCase_ = feat_extract.model_input_names[0] lowerCamelCase_ = BatchFeature({input_name: speech_inputs} ) lowerCamelCase_ = feat_extract.num_mel_bins # hack! lowerCamelCase_ = feat_extract.pad(SCREAMING_SNAKE_CASE_ , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ = self.feat_extract_dict lowerCamelCase_ = True lowerCamelCase_ = self.feature_extraction_class(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.feat_extract_tester.prepare_inputs_for_target() lowerCamelCase_ = [len(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] lowerCamelCase_ = feat_extract.model_input_names[0] lowerCamelCase_ = BatchFeature({input_name: speech_inputs} ) lowerCamelCase_ = min(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = feat_extract.num_mel_bins # hack! lowerCamelCase_ = feat_extract.pad( SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='np' ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE_ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' from datasets import load_dataset lowerCamelCase_ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech lowerCamelCase_ = ds.sort('id' ).select(range(SCREAMING_SNAKE_CASE_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = torch.tensor( [2.3804E-03, 2.0752E-03, 1.9836E-03, 2.1057E-03, 1.6174E-03, 3.0518E-04, 9.1553E-05, 3.3569E-04, 9.7656E-04, 1.8311E-03, 2.0142E-03, 2.1057E-03, 1.7395E-03, 4.5776E-04, -3.9673E-04, 4.5776E-04, 1.0071E-03, 9.1553E-05, 4.8828E-04, 1.1597E-03, 7.3242E-04, 9.4604E-04, 1.8005E-03, 1.8311E-03, 8.8501E-04, 4.2725E-04, 4.8828E-04, 7.3242E-04, 1.0986E-03, 2.1057E-03] ) # fmt: on lowerCamelCase_ = self._load_datasamples(1 ) lowerCamelCase_ = SpeechTaFeatureExtractor() lowerCamelCase_ = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 93680) ) self.assertTrue(torch.allclose(input_values[0, :30] , SCREAMING_SNAKE_CASE_ , atol=1E-6 ) ) def UpperCamelCase( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ = torch.tensor( [-2.6_870, -3.0_104, -3.1_356, -3.5_352, -3.0_044, -3.0_353, -3.4_719, -3.6_777, -3.1_520, -2.9_435, -2.6_553, -2.8_795, -2.9_944, -2.5_921, -3.0_279, -3.0_386, -3.0_864, -3.1_291, -3.2_353, -2.7_444, -2.6_831, -2.7_287, -3.1_761, -3.1_571, -3.2_726, -3.0_582, -3.1_007, -3.4_533, -3.4_695, -3.0_998] ) # fmt: on lowerCamelCase_ = self._load_datasamples(1 ) lowerCamelCase_ = SpeechTaFeatureExtractor() lowerCamelCase_ = feature_extractor(audio_target=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
42
'''simple docstring''' import doctest from collections import deque import numpy as np class lowercase_ : """simple docstring""" def __init__( self : Optional[Any] ): __lowercase = [2, 1, 2, -1] __lowercase = [1, 2, 3, 4] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = len(self.first_signal ) __lowercase = len(self.second_signal ) __lowercase = max(lowercase__ ,lowercase__ ) # create a zero matrix of max_length x max_length __lowercase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __lowercase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __lowercase = np.matmul(np.transpose(lowercase__ ) ,np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ ,2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
41
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowerCAmelCase = None lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } lowerCAmelCase = { 'camembert-base': 512, } lowerCAmelCase = '▁' class _a ( UpperCamelCase__ ): _lowercase : str = VOCAB_FILES_NAMES _lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _lowercase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] _lowercase : Tuple = CamembertTokenizer def __init__( self: List[Any] , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Dict=None , UpperCamelCase_: str="<s>" , UpperCamelCase_: Any="</s>" , UpperCamelCase_: Dict="</s>" , UpperCamelCase_: Optional[Any]="<s>" , UpperCamelCase_: Optional[int]="<unk>" , UpperCamelCase_: Tuple="<pad>" , UpperCamelCase_: Optional[Any]="<mask>" , UpperCamelCase_: Tuple=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCamelCase_: Union[str, Any] , ) -> List[Any]: """simple docstring""" lowercase__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , **UpperCamelCase_ , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def lowerCamelCase_ ( self: int , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) return (out_vocab_file,)
43
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
41
0
'''simple docstring''' import fire from utils import calculate_rouge, save_json def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : int = [x.strip() for x in open(_lowerCAmelCase ).readlines()] _lowerCamelCase : Dict = [x.strip() for x in open(_lowerCAmelCase ).readlines()][: len(_lowerCAmelCase )] _lowerCamelCase : List[str] = calculate_rouge(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) if save_path is not None: save_json(_lowerCAmelCase , _lowerCAmelCase , indent=_lowerCAmelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
44
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCAmelCase__ = getLogger(__name__) lowerCAmelCase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def _A ( A__ , A__ , A__ , A__ = 8 , A__ = DEFAULT_DEVICE , A__=False , A__="summarization" , A__=None , **A__ , ): """simple docstring""" __lowercase = Path(A__ ).open('''w''' , encoding='''utf-8''' ) __lowercase = str(A__ ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained(A__ ).to(A__ ) if fpaa: __lowercase = model.half() __lowercase = AutoTokenizer.from_pretrained(A__ ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __lowercase = time.time() # update config with task specific params use_task_specific_params(A__ , A__ ) if prefix is None: __lowercase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(A__ , A__ ) ) ): __lowercase = [prefix + text for text in examples_chunk] __lowercase = tokenizer(A__ , return_tensors='''pt''' , truncation=A__ , padding='''longest''' ).to(A__ ) __lowercase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **A__ , ) __lowercase = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __lowercase = int(time.time() - start_time ) # seconds __lowercase = len(A__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _A ( ): """simple docstring""" return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def _A ( A__=True ): """simple docstring""" __lowercase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=A__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=A__ , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=A__ , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=A__ , required=A__ , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=A__ , required=A__ , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=A__ , required=A__ , default=A__ , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=A__ , required=A__ , default=A__ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=A__ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=A__ , default=8 , required=A__ , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=A__ , default=-1 , required=A__ , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=A__ , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowercase , __lowercase = parser.parse_known_args() __lowercase = parse_numeric_n_bool_cl_kwargs(A__ ) if parsed_args and verbose: print(F"parsed the following generate kwargs: {parsed_args}" ) __lowercase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowercase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=A__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __lowercase = generate_summaries_or_translations( A__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **A__ , ) if args.reference_path is None: return {} # Compute scores __lowercase = calculate_bleu if '''translation''' in args.task else calculate_rouge __lowercase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowercase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(A__ )] __lowercase = score_fn(A__ , A__ ) scores.update(A__ ) if args.dump_args: scores.update(A__ ) if args.info: __lowercase = args.info if verbose: print(A__ ) if args.score_path is not None: json.dump(A__ , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
41
0
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase = "▁" UpperCamelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = BigBirdTokenizer _snake_case : List[Any] = BigBirdTokenizerFast _snake_case : Any = True _snake_case : Optional[int] = True def __a ( self :Union[str, Any] ): super().setUp() UpperCamelCase__ :List[Any] = self.tokenizer_class(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self :str ): UpperCamelCase__ :List[str] = """<s>""" UpperCamelCase__ :str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ :Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """[MASK]""" ) self.assertEqual(len(lowerCamelCase__ ) , 10_04 ) def __a ( self :Optional[int] ): self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def __a ( self :Optional[Any] ): if not self.test_rust_tokenizer: return UpperCamelCase__ :Any = self.get_tokenizer() UpperCamelCase__ :str = self.get_rust_tokenizer() UpperCamelCase__ :List[Any] = """I was born in 92000, and this is falsé.""" UpperCamelCase__ :List[str] = tokenizer.tokenize(lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :str = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Tuple = self.get_rust_tokenizer() UpperCamelCase__ :Any = tokenizer.encode(lowerCamelCase__ ) UpperCamelCase__ :Tuple = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[Any] ): UpperCamelCase__ :Dict = BigBirdTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) UpperCamelCase__ :str = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [2_85, 46, 10, 1_70, 3_82] , ) UpperCamelCase__ :List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCamelCase__ :Tuple = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCamelCase__ :Optional[int] = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def __a ( self :Dict ): return BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) @slow def __a ( self :List[str] ): UpperCamelCase__ :Dict = """Hello World!""" UpperCamelCase__ :Any = [65, 1_85_36, 22_60, 1_01, 66] self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def __a ( self :str ): UpperCamelCase__ :Optional[Any] = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) # fmt: off UpperCamelCase__ :Any = [65, 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, 66] # noqa: E231 # fmt: on self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @require_torch @slow def __a ( self :str ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCamelCase__ :Optional[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCamelCase__ :Optional[Any] = """ """.join(lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = self.big_tokenizer.encode_plus(lowerCamelCase__ , return_tensors="""pt""" , return_token_type_ids=lowerCamelCase__ ) UpperCamelCase__ :List[Any] = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = BigBirdConfig(attention_type="""original_full""" ) UpperCamelCase__ :List[str] = BigBirdModel(lowerCamelCase__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCamelCase__ ) model(**lowerCamelCase__ ) @slow def __a ( self :List[str] ): UpperCamelCase__ :Any = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) UpperCamelCase__ :Any = tokenizer.decode(tokenizer("""Paris is the [MASK].""" ).input_ids ) self.assertTrue(decoded_text == """[CLS] Paris is the[MASK].[SEP]""" ) @slow def __a ( self :Union[str, Any] ): # fmt: off UpperCamelCase__ :int = {"""input_ids""": [[65, 3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14, 66], [65, 4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name="""google/bigbird-roberta-base""" , revision="""215c99f1600e06f83acce68422f2035b2b5c3510""" , )
45
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(A__ ): print(F"{i}\t\t{d}" ) def _A ( A__ , A__ , A__ ): """simple docstring""" for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = [float('''inf''' )] * vertex_count __lowercase = 0.0 for _ in range(vertex_count - 1 ): for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: __lowercase = distance[u] + w __lowercase = check_negative_cycle(A__ , A__ , A__ ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = int(input('''Enter number of vertices: ''').strip()) lowerCAmelCase__ = int(input('''Enter number of edges: ''').strip()) lowerCAmelCase__ = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) lowerCAmelCase__ = {'''src''': src, '''dst''': dest, '''weight''': weight} lowerCAmelCase__ = int(input('''\nEnter shortest path source:''').strip()) lowerCAmelCase__ = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
41
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = False ) -> str: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : str = F"""Expected string as input, found {type(_lowerCamelCase )}""" raise ValueError(_lowerCamelCase ) if not isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : List[Any] = F"""Expected boolean as use_pascal parameter, found {type(_lowerCamelCase )}""" raise ValueError(_lowerCamelCase ) _lowerCamelCase : str = input_str.split("_" ) _lowerCamelCase : str = 0 if use_pascal else 1 _lowerCamelCase : List[Any] = words[start_index:] _lowerCamelCase : Tuple = [word[0].upper() + word[1:] for word in words_to_capitalize] _lowerCamelCase : int = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
46
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[Any] ,*lowercase__ : Optional[Any] ,**lowercase__ : int ): warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' ,lowercase__ ,) super().__init__(*lowercase__ ,**lowercase__ )
41
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def UpperCAmelCase__ ( lowerCamelCase_ : Tuple ): __a : List[str] = 3_8_4 if "tiny" in model_name: __a : Optional[int] = [3, 3, 9, 3] __a : Tuple = [9_6, 1_9_2, 3_8_4, 7_6_8] if "small" in model_name: __a : Any = [3, 3, 2_7, 3] __a : List[Any] = [9_6, 1_9_2, 3_8_4, 7_6_8] if "base" in model_name: __a : str = [3, 3, 2_7, 3] __a : Dict = [1_2_8, 2_5_6, 5_1_2, 1_0_2_4] __a : Optional[int] = 5_1_2 if "large" in model_name: __a : Tuple = [3, 3, 2_7, 3] __a : str = [1_9_2, 3_8_4, 7_6_8, 1_5_3_6] __a : Dict = 7_6_8 if "xlarge" in model_name: __a : int = [3, 3, 2_7, 3] __a : Optional[Any] = [2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] __a : Optional[int] = 1_0_2_4 # set label information __a : Tuple = 1_5_0 __a : Optional[int] = 'huggingface/label-files' __a : Any = 'ade20k-id2label.json' __a : Dict = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset' ) , 'r' ) ) __a : Union[str, Any] = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} __a : Any = {v: k for k, v in idalabel.items()} __a : Optional[int] = ConvNextConfig( depths=lowerCamelCase_ , hidden_sizes=lowerCamelCase_ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) __a : Optional[int] = UperNetConfig( backbone_config=lowerCamelCase_ , auxiliary_in_channels=lowerCamelCase_ , num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_ , ) return config def UpperCAmelCase__ ( lowerCamelCase_ : str ): __a : int = [] # fmt: off # stem rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight') ) rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias') ) rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight') ) rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def UpperCAmelCase__ ( lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict ): __a : List[str] = dct.pop(lowerCamelCase_ ) __a : Optional[Any] = val def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple ): __a : str = { 'upernet-convnext-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth', 'upernet-convnext-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth', 'upernet-convnext-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth', 'upernet-convnext-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth', 'upernet-convnext-xlarge': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth', } __a : Any = model_name_to_url[model_name] __a : List[Any] = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu' )['state_dict'] __a : Optional[int] = get_upernet_config(lowerCamelCase_ ) __a : Any = UperNetForSemanticSegmentation(lowerCamelCase_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __a : Dict = state_dict.pop(lowerCamelCase_ ) if "bn" in key: __a : Dict = key.replace('bn' , 'batch_norm' ) __a : int = val # rename keys __a : Dict = create_rename_keys(lowerCamelCase_ ) for src, dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) # verify on image __a : str = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' __a : Optional[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert('RGB' ) __a : Union[str, Any] = SegformerImageProcessor() __a : str = processor(lowerCamelCase_ , return_tensors='pt' ).pixel_values with torch.no_grad(): __a : Union[str, Any] = model(lowerCamelCase_ ) if model_name == "upernet-convnext-tiny": __a : Optional[Any] = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __a : Tuple = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __a : Optional[int] = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __a : str = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __a : int = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase_ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowerCamelCase_ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F"upernet-convnext-{size}" for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
47
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _A ( A__ ): """simple docstring""" __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = 0.0_1 with locka.acquire(): with pytest.raises(A__ ): __lowercase = time.time() locka.acquire(A__ ) assert time.time() - _start > timeout def _A ( A__ ): """simple docstring""" __lowercase = '''a''' * 1000 + '''.lock''' __lowercase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(A__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __lowercase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(A__ ): locka.acquire(0 )
41
0
'''simple docstring''' def A ( UpperCamelCase_ : bytes ) -> str: '''simple docstring''' return "".join([hex(UpperCamelCase_ )[2:].zfill(2 ).upper() for byte in list(UpperCamelCase_ )] ) def A ( UpperCamelCase_ : str ) -> bytes: '''simple docstring''' if (len(UpperCamelCase_ ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(UpperCamelCase_ ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(UpperCamelCase_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
48
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase__ = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowercase : int = logging.get_logger(__name__) _lowercase : Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _lowercase : List[str] = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } _lowercase : Optional[int] = { 'gpt-neox-20b': 20_48, } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : List[str] = VOCAB_FILES_NAMES a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : str = ["input_ids", "attention_mask"] def __init__( self : Tuple , _lowercase : Optional[int]=None , _lowercase : Optional[Any]=None , _lowercase : str=None , _lowercase : List[Any]="<|endoftext|>" , _lowercase : List[Any]="<|endoftext|>" , _lowercase : Optional[int]="<|endoftext|>" , _lowercase : List[Any]=False , **_lowercase : Optional[int] , ): super().__init__( _lowercase , _lowercase , tokenizer_file=_lowercase , unk_token=_lowercase , bos_token=_lowercase , eos_token=_lowercase , add_prefix_space=_lowercase , **_lowercase , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _lowercase ) != add_prefix_space: __UpperCAmelCase = getattr(_lowercase , pre_tok_state.pop('''type''' ) ) __UpperCAmelCase = add_prefix_space __UpperCAmelCase = pre_tok_class(**_lowercase ) __UpperCAmelCase = add_prefix_space def a ( self : int , _lowercase : str , _lowercase : Optional[str] = None ): __UpperCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase ) def a ( self : Any , _lowercase : "Conversation" ): __UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowercase , add_special_tokens=_lowercase ) + [self.eos_token_id] ) if len(_lowercase ) > self.model_max_length: __UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
49
'''simple docstring''' import argparse import os import re lowerCAmelCase__ = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(R'''\[([^\]]+)\]''') def _A ( A__ ): """simple docstring""" __lowercase = _re_indent.search(A__ ) return "" if search is None else search.groups()[0] def _A ( A__ , A__="" , A__=None , A__=None ): """simple docstring""" __lowercase = 0 __lowercase = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(A__ ): index += 1 __lowercase = ['''\n'''.join(lines[:index] )] else: __lowercase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowercase = [lines[index]] index += 1 while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(A__ ) ) if index < len(A__ ) - 1: __lowercase = [lines[index + 1]] index += 1 else: __lowercase = [] else: blocks.append('''\n'''.join(A__ ) ) __lowercase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A__ ) > 0: blocks.append('''\n'''.join(A__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def _A ( A__ ): """simple docstring""" def _inner(A__ ): return key(A__ ).lower().replace('''_''' , '''''' ) return _inner def _A ( A__ , A__=None ): """simple docstring""" def noop(A__ ): return x if key is None: __lowercase = noop # Constants are all uppercase, they go first. __lowercase = [obj for obj in objects if key(A__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowercase = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()] # Functions begin with a lowercase, they go last. __lowercase = [obj for obj in objects if not key(A__ )[0].isupper()] __lowercase = ignore_underscore(A__ ) return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) def _A ( A__ ): """simple docstring""" def _replace(A__ ): __lowercase = match.groups()[0] if "," not in imports: return F"[{imports}]" __lowercase = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) + "]" __lowercase = import_statement.split('''\n''' ) if len(A__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowercase = 2 if lines[1].strip() == '''[''' else 1 __lowercase = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowercase = sort_objects(A__ , key=lambda A__ : x[1] ) __lowercase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowercase = _re_bracket_content.sub(_replace , lines[1] ) else: __lowercase = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] __lowercase = get_indent(lines[1] ) + ''', '''.join([F"\"{k}\"" for k in sort_objects(A__ )] ) return "\n".join(A__ ) else: # Finally we have to deal with imports fitting on one line __lowercase = _re_bracket_content.sub(_replace , A__ ) return import_statement def _A ( A__ , A__=True ): """simple docstring""" with open(A__ , '''r''' ) as f: __lowercase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowercase = split_code_in_indented_blocks( A__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowercase = main_blocks[block_idx] __lowercase = block.split('''\n''' ) # Get to the start of the imports. __lowercase = 0 while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowercase = len(A__ ) else: line_idx += 1 if line_idx >= len(A__ ): continue # Ignore beginning and last line: they don't contain anything. __lowercase = '''\n'''.join(block_lines[line_idx:-1] ) __lowercase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowercase = split_code_in_indented_blocks(A__ , indent_level=A__ ) # We have two categories of import key: list or _import_structure[key].append/extend __lowercase = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowercase = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowercase = [(i, key) for i, key in enumerate(A__ ) if key is not None] __lowercase = [x[0] for x in sorted(A__ , key=lambda A__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowercase = 0 __lowercase = [] for i in range(len(A__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __lowercase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(A__ ) count += 1 # And we put our main block back together with its first and last line. __lowercase = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(A__ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(A__ , '''w''' ) as f: f.write('''\n'''.join(A__ ) ) def _A ( A__=True ): """simple docstring""" __lowercase = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: __lowercase = sort_imports(os.path.join(A__ , '''__init__.py''' ) , check_only=A__ ) if result: __lowercase = [os.path.join(A__ , '''__init__.py''' )] if len(A__ ) > 0: raise ValueError(F"Would overwrite {len(A__ )} files, run `make style`." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
41
0
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = RobertaTokenizer _UpperCamelCase = RobertaTokenizerFast _UpperCamelCase = True _UpperCamelCase = {'cls_token': '<s>'} def UpperCamelCase_ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowerCamelCase__ = dict(zip(_lowerCAmelCase ,range(len(_lowerCAmelCase ) ) ) ) lowerCamelCase__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowerCamelCase__ = {"""unk_token""": """<unk>"""} lowerCamelCase__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCamelCase__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_lowerCAmelCase ) ) def UpperCamelCase_ ( self ,**_lowerCAmelCase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,**_lowerCAmelCase ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ): lowerCamelCase__ = """lower newer""" lowerCamelCase__ = """lower newer""" return input_text, output_text def UpperCamelCase_ ( self ): lowerCamelCase__ = self.tokenizer_class(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] lowerCamelCase__ = tokenizer.tokenize(_lowerCAmelCase ) # , add_prefix_space=True) self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = tokens + [tokenizer.unk_token] lowerCamelCase__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" ,add_special_tokens=_lowerCAmelCase ) ,[0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" ,add_special_tokens=_lowerCAmelCase ) ,[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] ,) @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = self.tokenizer_class.from_pretrained("""roberta-base""" ) lowerCamelCase__ = tokenizer.encode("""sequence builders""" ,add_special_tokens=_lowerCAmelCase ) lowerCamelCase__ = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=_lowerCAmelCase ) lowerCamelCase__ = tokenizer.encode( """sequence builders""" ,add_special_tokens=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ) lowerCamelCase__ = tokenizer.encode( """sequence builders""" ,"""multi-sequence build""" ,add_special_tokens=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ) lowerCamelCase__ = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) lowerCamelCase__ = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ,_lowerCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = """Encode this sequence.""" lowerCamelCase__ = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments lowerCamelCase__ = tokenizer.encode(_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = tokenizer.encode(_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_lowerCAmelCase ,_lowerCAmelCase ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) lowerCamelCase__ = tokenizer.encode(_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_lowerCAmelCase ,_lowerCAmelCase ) # Testing spaces after special tokens lowerCamelCase__ = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase )} ) # mask token has a left space lowerCamelCase__ = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) lowerCamelCase__ = """Encode <mask> sequence""" lowerCamelCase__ = """Encode <mask>sequence""" lowerCamelCase__ = tokenizer.encode(_lowerCAmelCase ) lowerCamelCase__ = encoded.index(_lowerCAmelCase ) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = tokenizer.encode(_lowerCAmelCase ) lowerCamelCase__ = encoded.index(_lowerCAmelCase ) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase ,**_lowerCAmelCase ) lowerCamelCase__ = self.tokenizer_class.from_pretrained(_lowerCAmelCase ,**_lowerCAmelCase ) lowerCamelCase__ = """A, <mask> AllenNLP sentence.""" lowerCamelCase__ = tokenizer_r.encode_plus(_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ,return_token_type_ids=_lowerCAmelCase ) lowerCamelCase__ = tokenizer_p.encode_plus(_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ,return_token_type_ids=_lowerCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) ,sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) ,sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) ,) lowerCamelCase__ = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) lowerCamelCase__ = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( _lowerCAmelCase ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( _lowerCAmelCase ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def UpperCamelCase_ ( self ): for trim_offsets, add_prefix_space in itertools.product([True, False] ,repeat=2 ): lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname ,use_fast=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ,trim_offsets=_lowerCAmelCase ) lowerCamelCase__ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowerCamelCase__ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] ,_lowerCAmelCase ) self.assertEqual(post_processor_state["""add_prefix_space"""] ,_lowerCAmelCase ) self.assertEqual(post_processor_state["""trim_offsets"""] ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase__ = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` lowerCamelCase__ = F'''{text_of_1_token} {text_of_1_token}''' lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase ,use_fast=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ,trim_offsets=_lowerCAmelCase ) lowerCamelCase__ = tokenizer_r(_lowerCAmelCase ,return_offsets_mapping=_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(_lowerCAmelCase ) + 1, len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) ,) lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase ,use_fast=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ,trim_offsets=_lowerCAmelCase ) lowerCamelCase__ = tokenizer_r(_lowerCAmelCase ,return_offsets_mapping=_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(_lowerCAmelCase ) + 1, len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) ,) lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase ,use_fast=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ,trim_offsets=_lowerCAmelCase ) lowerCamelCase__ = tokenizer_r(_lowerCAmelCase ,return_offsets_mapping=_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(_lowerCAmelCase ), len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) ,) lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase ,use_fast=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ,trim_offsets=_lowerCAmelCase ) lowerCamelCase__ = tokenizer_r(_lowerCAmelCase ,return_offsets_mapping=_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(_lowerCAmelCase ), len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) ,) lowerCamelCase__ = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase ,use_fast=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ,trim_offsets=_lowerCAmelCase ) lowerCamelCase__ = tokenizer_r(_lowerCAmelCase ,return_offsets_mapping=_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(_lowerCAmelCase ) + 1, 1 + len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) ,) lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase ,use_fast=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ,trim_offsets=_lowerCAmelCase ) lowerCamelCase__ = tokenizer_r(_lowerCAmelCase ,return_offsets_mapping=_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(_lowerCAmelCase ), 1 + len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) ,) lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase ,use_fast=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ,trim_offsets=_lowerCAmelCase ) lowerCamelCase__ = tokenizer_r(_lowerCAmelCase ,return_offsets_mapping=_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(_lowerCAmelCase ), 1 + len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) ,)
50
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = TextToVideoSDPipeline SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. SCREAMING_SNAKE_CASE : Optional[int] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') ,up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') ,cross_attention_dim=3_2 ,attention_head_dim=4 ,) __lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,clip_sample=lowercase__ ,set_alpha_to_one=lowercase__ ,) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=1_2_8 ,) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''gelu''' ,projection_dim=5_1_2 ,) __lowercase = CLIPTextModel(lowercase__ ) __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : List[str]=0 ): if str(lowercase__ ).startswith('''mps''' ): __lowercase = torch.manual_seed(lowercase__ ) else: __lowercase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = TextToVideoSDPipeline(**lowercase__ ) __lowercase = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs(lowercase__ ) __lowercase = '''np''' __lowercase = sd_pipe(**lowercase__ ).frames __lowercase = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) __lowercase = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def SCREAMING_SNAKE_CASE ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=1e-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass def SCREAMING_SNAKE_CASE ( self : List[str] ): return super().test_progress_bar() @slow @skip_mps class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2_5 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
41
0
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =StableUnCLIPPipeline _lowerCamelCase =TEXT_TO_IMAGE_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _lowerCamelCase =False def __snake_case ( self : str ): UpperCAmelCase = 32 UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=a__ , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=a__ , num_layers=1 , ) torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=a__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=a__ ) UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=a__ , layers_per_block=1 , upcast_attention=a__ , use_linear_projection=a__ , ) torch.manual_seed(0 ) UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=a__ , steps_offset=1 , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL() UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def __snake_case ( self : str , a__ : Dict , a__ : List[str]=0 ): if str(a__ ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(a__ ) else: UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ ) UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __snake_case ( self : List[Any] ): UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=a__ ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Optional[int] ): UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase = pipe('''anime turle''' , generator=a__ , output_type='''np''' ) UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a__ , a__ ) def __snake_case ( self : str ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) UpperCAmelCase = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
51
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _A ( A__ ): """simple docstring""" __lowercase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def _A ( A__ ): """simple docstring""" __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(A__ , A__ , bias=A__ ) __lowercase = emb.weight.data return lin_layer def _A ( A__ , A__="facebook/mbart-large-en-ro" , A__=False , A__=False ): """simple docstring""" __lowercase = torch.load(A__ , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A__ ) __lowercase = state_dict['''encoder.embed_tokens.weight'''].shape[0] __lowercase = MBartConfig.from_pretrained(A__ , vocab_size=A__ ) if mbart_aa and finetuned: __lowercase = '''relu''' __lowercase = state_dict['''decoder.embed_tokens.weight'''] __lowercase = MBartForConditionalGeneration(A__ ) model.model.load_state_dict(A__ ) if finetuned: __lowercase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
41
0
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowercase ( _UpperCamelCase ): '''simple docstring''' @slow @require_torch def _lowerCamelCase ( self ): __a : List[str] = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) __a : Optional[Any] = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __a : Optional[int] = bertabert.config.encoder.vocab_size __a : str = tokenizer.sep_token_id __a : Union[str, Any] = tokenizer.cls_token_id __a : Tuple = 128 __a : Tuple = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) __a : int = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) __a : Optional[int] = train_dataset.select(range(32 ) ) __a : Optional[Any] = val_dataset.select(range(16 ) ) __a : List[Any] = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] __a : Tuple = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=_UpperCAmelCase , max_length=512 ) __a : int = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=_UpperCAmelCase , max_length=128 ) __a : int = inputs.input_ids __a : Optional[int] = inputs.attention_mask __a : Tuple = outputs.input_ids __a : str = outputs.input_ids.copy() __a : Tuple = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] __a : Tuple = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase ): __a : int = pred.label_ids __a : int = pred.predictions # all unnecessary tokens are removed __a : Optional[int] = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) __a : Union[str, Any] = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) __a : Any = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset __a : str = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset __a : Optional[int] = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) __a : Optional[Any] = self.get_auto_remove_tmp_dir() __a : int = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy='''steps''' , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __a : Dict = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
52
'''simple docstring''' import os from math import logaa def _A ( A__ = "base_exp.txt" ): """simple docstring""" __lowercase = 0 __lowercase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowercase , __lowercase = list(map(A__ , line.split(''',''' ) ) ) if x * logaa(A__ ) > largest: __lowercase = x * logaa(A__ ) __lowercase = i + 1 return result if __name__ == "__main__": print(solution())
41
0
def a_ ( lowerCAmelCase_ : list, lowerCAmelCase_ : int = 0 ): __lowerCAmelCase = length or len(lowerCAmelCase_ ) __lowerCAmelCase = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: __lowerCAmelCase , __lowerCAmelCase = list_data[i + 1], list_data[i] __lowerCAmelCase = True return list_data if not swapped else bubble_sort(lowerCAmelCase_, length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
53
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'blenderbot-small' SCREAMING_SNAKE_CASE : int = ['past_key_values'] SCREAMING_SNAKE_CASE : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] ,lowercase__ : List[str]=5_0_2_6_5 ,lowercase__ : Optional[Any]=5_1_2 ,lowercase__ : Optional[int]=8 ,lowercase__ : List[Any]=2_0_4_8 ,lowercase__ : List[str]=1_6 ,lowercase__ : str=8 ,lowercase__ : Any=2_0_4_8 ,lowercase__ : Tuple=1_6 ,lowercase__ : Tuple=0.0 ,lowercase__ : List[str]=0.0 ,lowercase__ : Any=True ,lowercase__ : str=True ,lowercase__ : int="gelu" ,lowercase__ : Tuple=5_1_2 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : str=0.0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : List[Any]=False ,lowercase__ : Optional[int]=0 ,lowercase__ : Optional[int]=1 ,lowercase__ : str=2 ,lowercase__ : int=2 ,**lowercase__ : List[str] ,): __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = use_cache __lowercase = encoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,is_encoder_decoder=lowercase__ ,decoder_start_token_id=lowercase__ ,forced_eos_token_id=lowercase__ ,**lowercase__ ,) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Dict ): if self.task in ["default", "seq2seq-lm"]: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase = {0: '''batch'''} __lowercase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase__ ,direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super().outputs else: __lowercase = super(lowercase__ ,self ).outputs if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) # Generate decoder inputs __lowercase = seq_length if not self.use_past else 1 __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __lowercase = dict(**lowercase__ ,**lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape __lowercase = common_inputs['''decoder_input_ids'''].shape[1] __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = decoder_seq_length + 3 __lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase__ ,lowercase__ )] ,dim=1 ) __lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase = self.num_layers __lowercase = min(lowercase__ ,lowercase__ ) __lowercase = max(lowercase__ ,lowercase__ ) - min_num_layers __lowercase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), ) ) # TODO: test this. __lowercase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase__ ,lowercase__ ): common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase , __lowercase = self.num_layers __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = common_inputs['''attention_mask'''].dtype __lowercase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase__ ,lowercase__ ,dtype=lowercase__ )] ,dim=1 ) __lowercase = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ ) ] return common_inputs def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = tokenizer.num_special_tokens_to_add(lowercase__ ) __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowercase__ ) # Generate dummy inputs according to compute batch and sequence __lowercase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase = dict(tokenizer(lowercase__ ,return_tensors=lowercase__ ) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): if self.task in ["default", "seq2seq-lm"]: __lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) elif self.task == "causal-lm": __lowercase = self._generate_dummy_inputs_for_causal_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) else: __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super()._flatten_past_key_values_(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) else: __lowercase = super(lowercase__ ,self )._flatten_past_key_values_( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
41
0
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( __lowercase , unittest.TestCase ): _snake_case =MgpstrTokenizer _snake_case =False _snake_case ={} _snake_case =False def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' super().setUp() # fmt: off UpperCAmelCase_ =["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on UpperCAmelCase_ =dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) UpperCAmelCase_ =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + "\n" ) def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: Tuple ) -> str: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: Tuple ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ ="tester" UpperCAmelCase_ ="tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' pass def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ ="[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) UpperCAmelCase_ =tokenizer.encode([special_token] , add_special_tokens=_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def lowerCAmelCase__ ( self: Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ , UpperCAmelCase_ =self.get_input_output_texts(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertNotEqual(len(_lowerCAmelCase ) , 0 ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(text_a.replace(" " , "" ) , _lowerCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def lowerCAmelCase__ ( self: Optional[Any] ) -> List[Any]: '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def lowerCAmelCase__ ( self: str ) -> Union[str, Any]: '''simple docstring''' pass
54
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" if b == 0: return (1, 0) ((__lowercase) , (__lowercase)) = extended_euclid(A__ , a % b ) __lowercase = a // b return (y, x - k * y) def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m def _A ( A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) if b < 0: __lowercase = (b % n + n) % n return b def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase , __lowercase = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
41
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = patch_size __A = text_seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = coordinate_size __A = shape_size __A = num_labels __A = num_choices __A = scope __A = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __A = text_seq_length __A = (image_size // patch_size) ** 2 + 1 __A = self.text_seq_length + self.image_seq_length def UpperCamelCase_ ( self : int ): __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) __A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __A = bbox[i, j, 3] __A = bbox[i, j, 1] __A = t if bbox[i, j, 2] < bbox[i, j, 0]: __A = bbox[i, j, 2] __A = bbox[i, j, 0] __A = t __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.text_seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) __A = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ): __A = LayoutLMvaModel(config=A ) model.to(A ) model.eval() # text + image __A = model(A ,pixel_values=A ) __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __A = model(pixel_values=A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ): __A = self.num_labels __A = LayoutLMvaForSequenceClassification(A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ): __A = self.num_labels __A = LayoutLMvaForTokenClassification(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ): __A = LayoutLMvaForQuestionAnswering(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) snake_case_ = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def UpperCamelCase_ ( self : Union[str, Any] ): __A = LayoutLMvaModelTester(self ) __A = ConfigTester(self ,config_class=A ,hidden_size=37 ) def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ): __A = copy.deepcopy(A ) if model_class in get_values(A ): __A = { k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous() if isinstance(A ,torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A ): __A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in get_values(A ): __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,) return inputs_dict def UpperCamelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A = type self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = LayoutLMvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> Dict: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : Any ): return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Dict ): __A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A ) __A = torch.tensor([[1, 2]] ) __A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __A = model( input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,) # verify the logits __A = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape ,A ) __A = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
55
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _A ( ): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __lowercase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , A__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _A ( ): """simple docstring""" assert _test_patching.open is open __lowercase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , A__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , A__ ): pass def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , A__ ) is None with patch_submodule(_test_patching , '''len''' , A__ ): assert _test_patching.len is mock assert _test_patching.len is len def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_start_and_stop_mock__''' __lowercase = patch_submodule(_test_patching , '''open''' , A__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _A ( ): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __lowercase = '''__test_patch_submodule_successive_join__''' __lowercase = '''__test_patch_submodule_successive_dirname__''' __lowercase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , A__ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , A__ ): pass
41
0
'''simple docstring''' def _a (lowercase__ : str ) -> list: """simple docstring""" return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(lowercase__ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
56
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : """simple docstring""" def __init__( self : Dict ,lowercase__ : Dict ,lowercase__ : int=1_3 ,lowercase__ : List[str]=7 ,lowercase__ : int=True ,lowercase__ : int=True ,lowercase__ : Union[str, Any]=True ,lowercase__ : List[Any]=True ,lowercase__ : str=9_9 ,lowercase__ : Optional[Any]=3_2 ,lowercase__ : Union[str, Any]=5 ,lowercase__ : List[Any]=4 ,lowercase__ : str=3_7 ,lowercase__ : Tuple="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : Dict=0.1 ,lowercase__ : int=1_2_8 ,lowercase__ : Dict=3_2 ,lowercase__ : Dict=1_6 ,lowercase__ : Any=2 ,lowercase__ : int=0.0_2 ,lowercase__ : List[str]=3 ,lowercase__ : Dict=4 ,lowercase__ : Optional[int]=None ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return NezhaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.prepare_config_and_inputs() __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : str ): __lowercase = NezhaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Dict ,lowercase__ : str ,lowercase__ : Optional[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,): __lowercase = True __lowercase = NezhaModel(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,encoder_attention_mask=lowercase__ ,) __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,) __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): __lowercase = NezhaForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): __lowercase = NezhaForNextSentencePrediction(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ): __lowercase = NezhaForPreTraining(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,next_sentence_label=lowercase__ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ): __lowercase = NezhaForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,start_positions=lowercase__ ,end_positions=lowercase__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Tuple ,lowercase__ : str ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : Optional[int] ,lowercase__ : int ): __lowercase = self.num_labels __lowercase = NezhaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Any ,lowercase__ : Optional[Any] ): __lowercase = self.num_labels __lowercase = NezhaForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : str ): __lowercase = self.num_choices __lowercase = NezhaForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : List[str] = True def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : Any=False ): __lowercase = super()._prepare_for_class(lowercase__ ,lowercase__ ,return_labels=lowercase__ ) if return_labels: if model_class in get_values(lowercase__ ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowercase__ ) __lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowercase__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = NezhaModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : int ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): # This regression test was failing with PyTorch < 1.3 ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase = None self.model_tester.create_and_check_model_as_decoder( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = NezhaModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __lowercase = True __lowercase = model_class(config=lowercase__ ) __lowercase = self._prepare_for_class(lowercase__ ,lowercase__ ) __lowercase = torch.jit.trace( lowercase__ ,(inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase__ ,os.path.join(lowercase__ ,'''bert.pt''' ) ) __lowercase = torch.jit.load(os.path.join(lowercase__ ,'''bert.pt''' ) ,map_location=lowercase__ ) loaded(inputs_dict['''input_ids'''].to(lowercase__ ) ,inputs_dict['''attention_mask'''].to(lowercase__ ) ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) )
41
0
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=9_9 , _lowerCamelCase=3_2 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=3_7 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=5_1_2 , _lowerCamelCase=1_6 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=4 , ): UpperCamelCase_: int = parent UpperCamelCase_: List[str] = batch_size UpperCamelCase_: List[str] = seq_length UpperCamelCase_: Union[str, Any] = is_training UpperCamelCase_: Optional[int] = use_attention_mask UpperCamelCase_: List[Any] = use_token_type_ids UpperCamelCase_: Optional[Any] = use_labels UpperCamelCase_: List[str] = vocab_size UpperCamelCase_: Optional[int] = hidden_size UpperCamelCase_: str = num_hidden_layers UpperCamelCase_: str = num_attention_heads UpperCamelCase_: List[Any] = intermediate_size UpperCamelCase_: Optional[Any] = hidden_act UpperCamelCase_: int = hidden_dropout_prob UpperCamelCase_: Any = attention_probs_dropout_prob UpperCamelCase_: List[Any] = max_position_embeddings UpperCamelCase_: int = type_vocab_size UpperCamelCase_: str = type_sequence_label_size UpperCamelCase_: Union[str, Any] = initializer_range UpperCamelCase_: Optional[Any] = num_choices def _a ( self ): UpperCamelCase_: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: List[str] = None if self.use_attention_mask: UpperCamelCase_: Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_: List[Any] = None if self.use_token_type_ids: UpperCamelCase_: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_: List[str] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _a ( self ): UpperCamelCase_: Union[str, Any] = self.prepare_config_and_inputs() UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: List[str] = config_and_inputs UpperCamelCase_: Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Dict =( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _a ( self ): UpperCamelCase_: int = FlaxAlbertModelTester(self ) @slow def _a ( self ): for model_class_name in self.all_model_classes: UpperCamelCase_: int = model_class_name.from_pretrained('albert-base-v2' ) UpperCamelCase_: Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCamelCase ) @require_flax class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" @slow def _a ( self ): UpperCamelCase_: Any = FlaxAlbertModel.from_pretrained('albert-base-v2' ) UpperCamelCase_: Union[str, Any] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) UpperCamelCase_: int = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCamelCase_: str = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] UpperCamelCase_: Union[str, Any] = (1, 1_1, 7_6_8) self.assertEqual(output.shape , _lowerCamelCase ) UpperCamelCase_: Any = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _lowerCamelCase , atol=1e-4 ) )
57
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KEY''') lowerCAmelCase__ = TypeVar('''VAL''') @dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ ) class lowercase_ (Generic[KEY, VAL] ): """simple docstring""" SCREAMING_SNAKE_CASE : KEY SCREAMING_SNAKE_CASE : VAL class lowercase_ (_Item ): """simple docstring""" def __init__( self : Optional[int] ): super().__init__(lowercase__ ,lowercase__ ) def __bool__( self : List[str] ): return False lowerCAmelCase__ = _DeletedItem() class lowercase_ (MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ): __lowercase = initial_block_size __lowercase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowercase = capacity_factor __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ): return hash(lowercase__ ) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ): return (ind + 1) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ): __lowercase = self._buckets[ind] if not stored: __lowercase = _Item(lowercase__ ,lowercase__ ) self._len += 1 return True elif stored.key == key: __lowercase = _Item(lowercase__ ,lowercase__ ) return True else: return False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False __lowercase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ): __lowercase = self._buckets __lowercase = [None] * new_size __lowercase = 0 for item in old_buckets: if item: self._add_item(item.key ,item.val ) def SCREAMING_SNAKE_CASE ( self : str ): self._resize(len(self._buckets ) * 2 ) def SCREAMING_SNAKE_CASE ( self : Tuple ): self._resize(len(self._buckets ) // 2 ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ): __lowercase = self._get_bucket_index(lowercase__ ) for _ in range(len(self._buckets ) ): yield ind __lowercase = self._get_next_ind(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): for ind in self._iterate_buckets(lowercase__ ): if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ): break def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): if self._is_full(): self._size_up() self._add_item(lowercase__ ,lowercase__ ) def __delitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: raise KeyError(lowercase__ ) if item is _deleted: continue if item.key == key: __lowercase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowercase__ ) def __len__( self : Optional[int] ): return self._len def __iter__( self : str ): yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ): __lowercase = ''' ,'''.join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
41
0
"""simple docstring""" __lowerCAmelCase : dict[tuple[int, int, int], int] = {} def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on snake_case_ : Optional[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one snake_case_ : Optional[int] = _calculate(days - 1 , __UpperCamelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 snake_case_ : List[str] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter snake_case_ : int = _calculate(days - 1 , __UpperCamelCase , 0 ) snake_case_ : Tuple = state_late + state_absent + state_ontime snake_case_ : List[Any] = prizestrings return prizestrings def __lowerCAmelCase ( __UpperCamelCase : int = 3_0 ): '''simple docstring''' return _calculate(__UpperCamelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
58
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ,**lowercase__ : Tuple ): super().__init__(**lowercase__ ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self ,'''vision''' ) self.check_model_type(lowercase__ ) def __call__( self : List[str] ,lowercase__ : Union[str, "Image.Image", List[Dict[str, Any]]] ,lowercase__ : Union[str, List[str]] = None ,**lowercase__ : str ,): if "text_queries" in kwargs: __lowercase = kwargs.pop('''text_queries''' ) if isinstance(lowercase__ ,(str, Image.Image) ): __lowercase = {'''image''': image, '''candidate_labels''': candidate_labels} else: __lowercase = image __lowercase = super().__call__(lowercase__ ,**lowercase__ ) return results def SCREAMING_SNAKE_CASE ( self : int ,**lowercase__ : List[Any] ): __lowercase = {} if "threshold" in kwargs: __lowercase = kwargs['''threshold'''] if "top_k" in kwargs: __lowercase = kwargs['''top_k'''] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[Any] ): __lowercase = load_image(inputs['''image'''] ) __lowercase = inputs['''candidate_labels'''] if isinstance(lowercase__ ,lowercase__ ): __lowercase = candidate_labels.split(''',''' ) __lowercase = torch.tensor([[image.height, image.width]] ,dtype=torch.intaa ) for i, candidate_label in enumerate(lowercase__ ): __lowercase = self.tokenizer(lowercase__ ,return_tensors=self.framework ) __lowercase = self.image_processor(lowercase__ ,return_tensors=self.framework ) yield { "is_last": i == len(lowercase__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ): __lowercase = model_inputs.pop('''target_size''' ) __lowercase = model_inputs.pop('''candidate_label''' ) __lowercase = model_inputs.pop('''is_last''' ) __lowercase = self.model(**lowercase__ ) __lowercase = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : List[Any]=0.1 ,lowercase__ : List[str]=None ): __lowercase = [] for model_output in model_outputs: __lowercase = model_output['''candidate_label'''] __lowercase = BaseModelOutput(lowercase__ ) __lowercase = self.image_processor.post_process_object_detection( outputs=lowercase__ ,threshold=lowercase__ ,target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): __lowercase = outputs['''scores'''][index].item() __lowercase = self._get_bounding_box(outputs['''boxes'''][index][0] ) __lowercase = {'''score''': score, '''label''': label, '''box''': box} results.append(lowercase__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : x["score"] ,reverse=lowercase__ ) if top_k: __lowercase = results[:top_k] return results def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : "torch.Tensor" ): if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) __lowercase , __lowercase , __lowercase , __lowercase = box.int().tolist() __lowercase = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
41
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
59
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 'facebook/bart-large-mnli' SCREAMING_SNAKE_CASE : Optional[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) SCREAMING_SNAKE_CASE : Any = 'text_classifier' SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : Tuple = ['text', ['text']] SCREAMING_SNAKE_CASE : List[str] = ['text'] def SCREAMING_SNAKE_CASE ( self : List[Any] ): super().setup() __lowercase = self.model.config __lowercase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): __lowercase = int(lowercase__ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Dict ,lowercase__ : List[Any] ): __lowercase = labels return self.pre_processor( [text] * len(lowercase__ ) ,[F"This example is {label}" for label in labels] ,return_tensors='''pt''' ,padding='''max_length''' ,) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = outputs.logits __lowercase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
41
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowerCAmelCase : def __init__(self , __magic_name__ , __magic_name__=13 , __magic_name__=10 , __magic_name__=3 , __magic_name__=2 , __magic_name__=2 , __magic_name__=True , __magic_name__=True , __magic_name__=32 , __magic_name__=5 , __magic_name__=4 , __magic_name__=37 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=10 , __magic_name__=0.02 , __magic_name__="divided_space_time" , __magic_name__=None , ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : Optional[Any] = batch_size snake_case_ : Union[str, Any] = image_size snake_case_ : Tuple = num_channels snake_case_ : int = patch_size snake_case_ : str = num_frames snake_case_ : str = is_training snake_case_ : Dict = use_labels snake_case_ : Optional[int] = hidden_size snake_case_ : Dict = num_hidden_layers snake_case_ : List[str] = num_attention_heads snake_case_ : Union[str, Any] = intermediate_size snake_case_ : int = hidden_act snake_case_ : int = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : Tuple = attention_type snake_case_ : Any = initializer_range snake_case_ : Optional[int] = scope snake_case_ : List[str] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token snake_case_ : Any = (image_size // patch_size) ** 2 snake_case_ : List[str] = (num_frames) * self.num_patches_per_frame + 1 def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) snake_case_ : List[str] = None if self.use_labels: snake_case_ : Dict = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ : List[Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : int = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) snake_case_ : Tuple = self.num_labels return config def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' snake_case_ : Dict = TimesformerModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() snake_case_ : List[str] = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[int] = TimesformerForVideoClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() snake_case_ : Union[str, Any] = model(__magic_name__ ) # verify the logits shape snake_case_ : Tuple = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __magic_name__ ) def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : str = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = config_and_inputs snake_case_ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( _a, _a, unittest.TestCase ): lowerCamelCase_ : Optional[int] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowerCamelCase_ : Union[str, Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowerCamelCase_ : List[str] = False lowerCamelCase_ : List[Any] = False lowerCamelCase_ : Dict = False lowerCamelCase_ : List[Any] = False def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = TimesformerModelTester(self ) snake_case_ : Tuple = ConfigTester( self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__=False ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = copy.deepcopy(__magic_name__ ) if return_labels: if model_class in get_values(__magic_name__ ): snake_case_ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) return inputs_dict def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def lowerCamelCase (self ) -> Tuple: '''simple docstring''' pass def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ , snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Tuple = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ , snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Optional[int] = model_class(__magic_name__ ) snake_case_ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : List[str] = [*signature.parameters.keys()] snake_case_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' snake_case_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__magic_name__ ) @slow def lowerCamelCase (self ) -> int: '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Optional[Any] = TimesformerModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' if not self.has_attentions: pass else: snake_case_ , snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Union[str, Any] = True for model_class in self.all_model_classes: snake_case_ : List[Any] = self.model_tester.seq_length snake_case_ : List[Any] = self.model_tester.num_frames snake_case_ : List[str] = True snake_case_ : Union[str, Any] = False snake_case_ : List[str] = True snake_case_ : List[Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): snake_case_ : Optional[Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) snake_case_ : Optional[Any] = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case_ : Dict = True snake_case_ : Optional[int] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): snake_case_ : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) snake_case_ : List[Any] = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) snake_case_ : Dict = len(__magic_name__ ) # Check attention is always last and order is fine snake_case_ : Dict = True snake_case_ : Any = True snake_case_ : int = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): snake_case_ : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(out_len + 1 , len(__magic_name__ ) ) snake_case_ : Optional[Any] = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowerCamelCase (self ) -> str: '''simple docstring''' def check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ): snake_case_ : List[Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): snake_case_ : List[Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) snake_case_ : str = outputs.hidden_states snake_case_ : List[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) snake_case_ : Optional[Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) snake_case_ , snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Optional[Any] = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ : List[str] = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def lowerCamelCase_ ( ) -> Optional[int]: """simple docstring""" snake_case_ : List[Any] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) snake_case_ : Dict = np.load(_UpperCamelCase ) return list(_UpperCamelCase ) @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase (self ) -> Tuple: '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' snake_case_ : Any = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( __magic_name__ ) snake_case_ : List[str] = self.default_image_processor snake_case_ : List[str] = prepare_video() snake_case_ : int = image_processor(video[:8] , return_tensors='''pt''' ).to(__magic_name__ ) # forward pass with torch.no_grad(): snake_case_ : Union[str, Any] = model(**__magic_name__ ) # verify the logits snake_case_ : Any = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) snake_case_ : Any = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1e-4 ) )
60
'''simple docstring''' from collections.abc import Callable class lowercase_ : """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : Callable | None = None ): # Stores actual heap items. __lowercase = [] # Stores indexes of each item for supporting updates and deletion. __lowercase = {} # Stores current size of heap. __lowercase = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __lowercase = key or (lambda lowercase__ : x) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : int ): return int((i - 1) / 2 ) if i > 0 else None def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = int(2 * i + 1 ) return left if 0 < left < self.size else None def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ): __lowercase = int(2 * i + 2 ) return right if 0 < right < self.size else None def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : int ,lowercase__ : int ): __lowercase , __lowercase = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __lowercase , __lowercase = self.arr[j], self.arr[i] def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): return self.arr[i][1] < self.arr[j][1] def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._left(lowercase__ ) __lowercase = self._right(lowercase__ ) __lowercase = i if left is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = left if right is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = right return valid_parent def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._parent(lowercase__ ) while parent is not None and not self._cmp(lowercase__ ,lowercase__ ): self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = parent, self._parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = self._get_valid_parent(lowercase__ ) while valid_parent != index: self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = valid_parent, self._get_valid_parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] __lowercase = [item, self.key(lowercase__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] del self.pos_map[item] __lowercase = self.arr[self.size - 1] __lowercase = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : int ): __lowercase = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(lowercase__ )] ) else: __lowercase = [item, self.key(lowercase__ )] __lowercase = self.size self.size += 1 self._heapify_up(self.size - 1 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): return self.arr[0] if self.size else None def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _A ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
41
0
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple=3 , SCREAMING_SNAKE_CASE__ : List[str]=32 , SCREAMING_SNAKE_CASE__ : List[str]=3 , SCREAMING_SNAKE_CASE__ : Dict=10 , SCREAMING_SNAKE_CASE__ : str=[10, 20, 30, 40] , SCREAMING_SNAKE_CASE__ : Any=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Any="relu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=3 , SCREAMING_SNAKE_CASE__ : Dict=None , ) -> Dict: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = embeddings_size lowerCAmelCase__ = hidden_sizes lowerCAmelCase__ = depths lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_act lowerCAmelCase__ = num_labels lowerCAmelCase__ = scope lowerCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) def a ( self : List[str] ) -> List[str]: lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def a ( self : Tuple ) -> str: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any ) -> Dict: lowerCAmelCase__ = RegNetModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = RegNetForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a ( self : List[Any] ) -> int: lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" snake_case__ = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () snake_case__ = ( {"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification} if is_torch_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def a ( self : List[Any] ) -> List[Any]: lowerCAmelCase__ = RegNetModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ ) def a ( self : Union[str, Any] ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a ( self : Any ) -> Dict: return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def a ( self : Union[str, Any] ) -> Dict: pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def a ( self : List[Any] ) -> Dict: pass def a ( self : Tuple ) -> Dict: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def a ( self : Dict ) -> Dict: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def a ( self : Any ) -> List[Any]: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(config=SCREAMING_SNAKE_CASE__ ) for name, module in model.named_modules(): if isinstance(SCREAMING_SNAKE_CASE__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def a ( self : int ) -> Optional[Any]: def check_hidden_states_output(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): lowerCAmelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase__ = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase__ = layer_type lowerCAmelCase__ = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def a ( self : str ) -> List[str]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) @slow def a ( self : Dict ) -> List[str]: for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = RegNetModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def _A ( ): """simple docstring""" lowerCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def a ( self : Dict ) -> List[Any]: return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def a ( self : Tuple ) -> Any: lowerCAmelCase__ = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits lowerCAmelCase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = torch.tensor([-0.4_180, -1.5_051, -3.4_836] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
61
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ): __lowercase = [] def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : str ,**lowercase__ : Any ): self.events.append('''on_init_end''' ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : int ,**lowercase__ : Optional[int] ): self.events.append('''on_train_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ,**lowercase__ : List[str] ): self.events.append('''on_train_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,**lowercase__ : Optional[Any] ): self.events.append('''on_epoch_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : Any ,**lowercase__ : Optional[int] ): self.events.append('''on_epoch_end''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_step_begin''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : Optional[int] ,**lowercase__ : Dict ): self.events.append('''on_step_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,**lowercase__ : Any ): self.events.append('''on_evaluate''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : int ,**lowercase__ : Optional[Any] ): self.events.append('''on_predict''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,**lowercase__ : int ): self.events.append('''on_save''' ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_log''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : int ,lowercase__ : Dict ,**lowercase__ : str ): self.events.append('''on_prediction_step''' ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): shutil.rmtree(self.output_dir ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any]=0 ,lowercase__ : Any=0 ,lowercase__ : Tuple=6_4 ,lowercase__ : Optional[int]=6_4 ,lowercase__ : Optional[Any]=None ,lowercase__ : str=False ,**lowercase__ : Any ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionModelConfig(a=lowercase__ ,b=lowercase__ ) __lowercase = RegressionPreTrainedModel(lowercase__ ) __lowercase = TrainingArguments(self.output_dir ,disable_tqdm=lowercase__ ,report_to=[] ,**lowercase__ ) return Trainer( lowercase__ ,lowercase__ ,train_dataset=lowercase__ ,eval_dataset=lowercase__ ,callbacks=lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) ) # Order doesn't matter __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) for cba, cba in zip(lowercase__ ,lowercase__ ): if isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,lowercase__ ) elif isinstance(lowercase__ ,lowercase__ ) and not isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,cba.__class__ ) elif not isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(cba.__class__ ,lowercase__ ) else: self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ): __lowercase = ['''on_init_end''', '''on_train_begin'''] __lowercase = 0 __lowercase = len(trainer.get_eval_dataloader() ) __lowercase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(lowercase__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.get_trainer() __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # Callbacks passed at init are added to the default callbacks __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __lowercase = self.get_trainer(disable_tqdm=lowercase__ ) __lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __lowercase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(cb.__class__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # We can also add, pop, or remove by instance __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' ,category=lowercase__ ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # Independent log/save/eval __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='''steps''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='''epoch''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # A bit of everything __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=1_0 ,eval_steps=5 ,evaluation_strategy='''steps''' ,) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,) assert str(lowercase__ ) in warn_mock.call_args[0][0]
41
0
import argparse import os import re import packaging.version snake_case = """examples/""" snake_case = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } snake_case = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } snake_case = """README.md""" def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" with open(lowercase , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE : str = f.read() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = REPLACE_PATTERNS[pattern] SCREAMING_SNAKE_CASE : List[str] = replace.replace("VERSION" , lowercase ) SCREAMING_SNAKE_CASE : Any = re_pattern.sub(lowercase , lowercase ) with open(lowercase , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" for folder, directories, fnames in os.walk(lowercase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(lowercase , lowercase ) , lowercase , pattern="examples" ) def lowerCamelCase__ ( lowercase , lowercase=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowercase , lowercase , lowercase ) if not patch: update_version_in_examples(lowercase ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = "🤗 Transformers currently provides the following architectures" SCREAMING_SNAKE_CASE : Optional[int] = "1. Want to contribute a new model?" with open(lowercase , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE : str = f.readlines() # Find the start of the list. SCREAMING_SNAKE_CASE : List[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE : List[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): SCREAMING_SNAKE_CASE : int = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(lowercase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lowercase ) def lowerCamelCase__ ( ): """simple docstring""" with open(REPLACE_FILES["init"] , "r" ) as f: SCREAMING_SNAKE_CASE : int = f.read() SCREAMING_SNAKE_CASE : str = REPLACE_PATTERNS["init"][0].search(lowercase ).groups()[0] return packaging.version.parse(lowercase ) def lowerCamelCase__ ( lowercase=False ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: SCREAMING_SNAKE_CASE : Dict = default_version.base_version elif patch: SCREAMING_SNAKE_CASE : str = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: SCREAMING_SNAKE_CASE : str = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. SCREAMING_SNAKE_CASE : str = input(F'''Which version are you releasing? [{default_version}]''' ) if len(lowercase ) == 0: SCREAMING_SNAKE_CASE : List[Any] = default_version print(F'''Updating version to {version}.''' ) global_version_update(lowercase , patch=lowercase ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = get_version() SCREAMING_SNAKE_CASE : Dict = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' SCREAMING_SNAKE_CASE : Union[str, Any] = current_version.base_version # Check with the user we got that right. SCREAMING_SNAKE_CASE : List[Any] = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(lowercase ) == 0: SCREAMING_SNAKE_CASE : Optional[int] = dev_version print(F'''Updating version to {version}.''' ) global_version_update(lowercase ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") snake_case = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
62
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : jnp.ndarray SCREAMING_SNAKE_CASE : jnp.ndarray class lowercase_ (nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __lowercase = [] for i in range(len(self.block_out_channels ) - 1 ): __lowercase = self.block_out_channels[i] __lowercase = self.block_out_channels[i + 1] __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = blocks __lowercase = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : List[str] ,lowercase__ : Optional[int] ): __lowercase = self.conv_in(lowercase__ ) __lowercase = nn.silu(lowercase__ ) for block in self.blocks: __lowercase = block(lowercase__ ) __lowercase = nn.silu(lowercase__ ) __lowercase = self.conv_out(lowercase__ ) return embedding @flax_register_to_config class lowercase_ (nn.Module , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 3_2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False SCREAMING_SNAKE_CASE : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) SCREAMING_SNAKE_CASE : int = 2 SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None SCREAMING_SNAKE_CASE : int = 1_2_8_0 SCREAMING_SNAKE_CASE : float = 0.0 SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = "rgb" SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : jax.random.KeyArray ): # init input tensors __lowercase = (1, self.in_channels, self.sample_size, self.sample_size) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase = jnp.ones((1,) ,dtype=jnp.intaa ) __lowercase = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa ) __lowercase = (1, 3, self.sample_size * 8, self.sample_size * 8) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase , __lowercase = jax.random.split(lowercase__ ) __lowercase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )["params"] def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.block_out_channels __lowercase = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __lowercase = self.num_attention_heads or self.attention_head_dim # input __lowercase = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time __lowercase = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift ) __lowercase = FlaxTimestepEmbedding(lowercase__ ,dtype=self.dtype ) __lowercase = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) __lowercase = self.only_cross_attention if isinstance(lowercase__ ,lowercase__ ): __lowercase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = (num_attention_heads,) * len(self.down_block_types ) # down __lowercase = [] __lowercase = [] __lowercase = block_out_channels[0] __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) for i, down_block_type in enumerate(self.down_block_types ): __lowercase = output_channel __lowercase = block_out_channels[i] __lowercase = i == len(lowercase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": __lowercase = FlaxCrossAttnDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: __lowercase = FlaxDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(lowercase__ ) for _ in range(self.layers_per_block ): __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) if not is_final_block: __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) __lowercase = down_blocks __lowercase = controlnet_down_blocks # mid __lowercase = block_out_channels[-1] __lowercase = FlaxUNetMidBlockaDCrossAttn( in_channels=lowercase__ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : float = 1.0 ,lowercase__ : bool = True ,lowercase__ : bool = False ,): __lowercase = self.controlnet_conditioning_channel_order if channel_order == "bgr": __lowercase = jnp.flip(lowercase__ ,axis=1 ) # 1. time if not isinstance(lowercase__ ,jnp.ndarray ): __lowercase = jnp.array([timesteps] ,dtype=jnp.intaa ) elif isinstance(lowercase__ ,jnp.ndarray ) and len(timesteps.shape ) == 0: __lowercase = timesteps.astype(dtype=jnp.floataa ) __lowercase = jnp.expand_dims(lowercase__ ,0 ) __lowercase = self.time_proj(lowercase__ ) __lowercase = self.time_embedding(lowercase__ ) # 2. pre-process __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.conv_in(lowercase__ ) __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.controlnet_cond_embedding(lowercase__ ) sample += controlnet_cond # 3. down __lowercase = (sample,) for down_block in self.down_blocks: if isinstance(lowercase__ ,lowercase__ ): __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) else: __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,deterministic=not train ) down_block_res_samples += res_samples # 4. mid __lowercase = self.mid_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) # 5. contronet blocks __lowercase = () for down_block_res_sample, controlnet_block in zip(lowercase__ ,self.controlnet_down_blocks ): __lowercase = controlnet_block(lowercase__ ) controlnet_down_block_res_samples += (down_block_res_sample,) __lowercase = controlnet_down_block_res_samples __lowercase = self.controlnet_mid_block(lowercase__ ) # 6. scaling __lowercase = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowercase__ ,mid_block_res_sample=lowercase__ )
41
0
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class a : """simple docstring""" a : int a : int class a : """simple docstring""" def __init__( self : Optional[int] , __lowercase : int ) -> List[Any]: __UpperCAmelCase : list[list[Edge]] = [[] for _ in range(__lowercase )] __UpperCAmelCase : Optional[Any] = size def __getitem__( self : int , __lowercase : int ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: return self._size def UpperCAmelCase ( self : List[str] , __lowercase : int , __lowercase : int , __lowercase : int ) -> Any: if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(__lowercase , __lowercase ) ) def UpperCAmelCase ( self : Union[str, Any] , __lowercase : int , __lowercase : int ) -> int | None: __UpperCAmelCase : List[str] = deque([start_vertex] ) __UpperCAmelCase : list[int | None] = [None] * self.size __UpperCAmelCase : Optional[int] = 0 while queue: __UpperCAmelCase : Tuple = queue.popleft() __UpperCAmelCase : Tuple = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: __UpperCAmelCase : Any = current_distance + edge.weight __UpperCAmelCase : Tuple = distances[edge.destination_vertex] if ( isinstance(__lowercase , __lowercase ) and new_distance >= dest_vertex_distance ): continue __UpperCAmelCase : Optional[int] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
63
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase__ = False lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''ybelkada/fonts''' def _A ( ): """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use " '''Pix2StructImageProcessor. Please upgrade torch.''' ) def _A ( A__ , A__ , A__ ): """simple docstring""" requires_backends(A__ , ['''torch'''] ) _check_torch_version() __lowercase = image_tensor.unsqueeze(0 ) __lowercase = torch.nn.functional.unfold(A__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) __lowercase = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , A__ , A__ , -1 ) __lowercase = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def _A ( A__ , A__ = 36 , A__ = "black" , A__ = "white" , A__ = 5 , A__ = 5 , A__ = 5 , A__ = 5 , A__ = None , A__ = None , ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Add new lines so that each line is no more than 80 characters. __lowercase = textwrap.TextWrapper(width=80 ) __lowercase = wrapper.wrap(text=A__ ) __lowercase = '''\n'''.join(A__ ) if font_bytes is not None and font_path is None: __lowercase = io.BytesIO(A__ ) elif font_path is not None: __lowercase = font_path else: __lowercase = hf_hub_download(A__ , '''Arial.TTF''' ) __lowercase = ImageFont.truetype(A__ , encoding='''UTF-8''' , size=A__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. __lowercase = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , A__ ) ) __lowercase , __lowercase , __lowercase , __lowercase = temp_draw.textbbox((0, 0) , A__ , A__ ) # Create the actual image with a bit of padding around the text. __lowercase = text_width + left_padding + right_padding __lowercase = text_height + top_padding + bottom_padding __lowercase = Image.new('''RGB''' , (image_width, image_height) , A__ ) __lowercase = ImageDraw.Draw(A__ ) draw.text(xy=(left_padding, top_padding) , text=A__ , fill=A__ , font=A__ ) return image def _A ( A__ , A__ , **A__ ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Convert to PIL image if necessary __lowercase = to_pil_image(A__ ) __lowercase = render_text(A__ , **A__ ) __lowercase = max(header_image.width , image.width ) __lowercase = int(image.height * (new_width / image.width) ) __lowercase = int(header_image.height * (new_width / header_image.width) ) __lowercase = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary __lowercase = to_numpy_array(A__ ) if infer_channel_dimension_format(A__ ) == ChannelDimension.LAST: __lowercase = to_channel_dimension_format(A__ , ChannelDimension.LAST ) return new_image class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ['flattened_patches'] def __init__( self : Any ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : int = 2_0_4_8 ,lowercase__ : bool = False ,**lowercase__ : List[str] ,): super().__init__(**lowercase__ ) __lowercase = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6} __lowercase = do_normalize __lowercase = do_convert_rgb __lowercase = max_patches __lowercase = is_vqa def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : np.ndarray ,lowercase__ : int ,lowercase__ : dict ,**lowercase__ : Tuple ): requires_backends(self.extract_flattened_patches ,'''torch''' ) _check_torch_version() # convert to torch __lowercase = to_channel_dimension_format(lowercase__ ,ChannelDimension.FIRST ) __lowercase = torch.from_numpy(lowercase__ ) __lowercase , __lowercase = patch_size['''height'''], patch_size['''width'''] __lowercase , __lowercase = get_image_size(lowercase__ ) # maximize scale s.t. __lowercase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) __lowercase = max(min(math.floor(scale * image_height / patch_height ) ,lowercase__ ) ,1 ) __lowercase = max(min(math.floor(scale * image_width / patch_width ) ,lowercase__ ) ,1 ) __lowercase = max(num_feasible_rows * patch_height ,1 ) __lowercase = max(num_feasible_cols * patch_width ,1 ) __lowercase = torch.nn.functional.interpolate( image.unsqueeze(0 ) ,size=(resized_height, resized_width) ,mode='''bilinear''' ,align_corners=lowercase__ ,antialias=lowercase__ ,).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] __lowercase = torch_extract_patches(lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = patches.shape __lowercase = patches_shape[1] __lowercase = patches_shape[2] __lowercase = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] __lowercase = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] __lowercase = torch.arange(lowercase__ ).reshape([rows, 1] ).repeat(1 ,lowercase__ ).reshape([rows * columns, 1] ) __lowercase = torch.arange(lowercase__ ).reshape([1, columns] ).repeat(lowercase__ ,1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] __lowercase = row_ids.to(torch.floataa ) __lowercase = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] __lowercase = torch.cat([row_ids, col_ids, patches] ,-1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] __lowercase = torch.nn.functional.pad(lowercase__ ,[0, 0, 0, max_patches - (rows * columns)] ).float() __lowercase = to_numpy_array(lowercase__ ) return result def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : np.ndarray ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ): if image.dtype == np.uinta: __lowercase = image.astype(np.floataa ) # take mean across the whole `image` __lowercase = np.mean(lowercase__ ) __lowercase = np.std(lowercase__ ) __lowercase = max(lowercase__ ,1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : ImageInput ,lowercase__ : Optional[str] = None ,lowercase__ : bool = None ,lowercase__ : Optional[bool] = None ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[Dict[str, int]] = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : ChannelDimension = ChannelDimension.FIRST ,**lowercase__ : List[Any] ,): __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = patch_size if patch_size is not None else self.patch_size __lowercase = max_patches if max_patches is not None else self.max_patches __lowercase = self.is_vqa if kwargs.get('''data_format''' ,lowercase__ ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) __lowercase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(lowercase__ ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowercase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) __lowercase = kwargs.pop('''font_bytes''' ,lowercase__ ) __lowercase = kwargs.pop('''font_path''' ,lowercase__ ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = [header_text] * len(lowercase__ ) __lowercase = [ render_header(lowercase__ ,header_text[i] ,font_bytes=lowercase__ ,font_path=lowercase__ ) for i, image in enumerate(lowercase__ ) ] if do_normalize: __lowercase = [self.normalize(image=lowercase__ ) for image in images] # convert to torch tensor and permute __lowercase = [ self.extract_flattened_patches(image=lowercase__ ,max_patches=lowercase__ ,patch_size=lowercase__ ) for image in images ] # create attention mask in numpy __lowercase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] __lowercase = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks} ,tensor_type=lowercase__ ) return encoded_outputs
41
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer lowercase_ : str = logging.get_logger(__name__) lowercase_ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowercase_ : Any = { 'vocab_file': { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt' ), } } lowercase_ : Optional[Any] = { 'junnyu/roformer_chinese_small': 1_5_3_6, 'junnyu/roformer_chinese_base': 1_5_3_6, 'junnyu/roformer_chinese_char_small': 5_1_2, 'junnyu/roformer_chinese_char_base': 5_1_2, 'junnyu/roformer_small_discriminator': 1_2_8, 'junnyu/roformer_small_generator': 1_2_8, } lowercase_ : str = { 'junnyu/roformer_chinese_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_base': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_base': {'do_lower_case': True}, 'junnyu/roformer_small_discriminator': {'do_lower_case': True}, 'junnyu/roformer_small_generator': {'do_lower_case': True}, } class _lowerCamelCase ( UpperCamelCase_ ): __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = PRETRAINED_INIT_CONFIGURATION __a = RoFormerTokenizer def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ) -> Optional[Any]: super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) SCREAMING_SNAKE_CASE__: Union[str, Any]= json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , lowerCAmelCase ) != do_lower_case or pre_tok_state.get('''strip_accents''' , lowerCAmelCase ) != strip_accents ): SCREAMING_SNAKE_CASE__: Any= getattr(lowerCAmelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE__: Optional[Any]= do_lower_case SCREAMING_SNAKE_CASE__: str= strip_accents SCREAMING_SNAKE_CASE__: Union[str, Any]= pre_tok_class(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__: str= do_lower_case def __getstate__( self ) -> Dict: SCREAMING_SNAKE_CASE__: str= self.__dict__.copy() SCREAMING_SNAKE_CASE__: Tuple= BertPreTokenizer() return state def __setstate__( self , lowerCAmelCase ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__: Tuple= d SCREAMING_SNAKE_CASE__: Tuple= self.__dict__['''_tokenizer'''].get_vocab() SCREAMING_SNAKE_CASE__: str= PreTokenizer.custom(JiebaPreTokenizer(lowerCAmelCase ) ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase=None ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__: Optional[Any]= [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase = None ) -> List[int]: SCREAMING_SNAKE_CASE__: Dict= [self.sep_token_id] SCREAMING_SNAKE_CASE__: str= [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE__: Tuple= self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=False , **lowerCAmelCase , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__: Tuple= BertPreTokenizer() return super().save_pretrained(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase )
64
'''simple docstring''' import doctest from collections import deque import numpy as np class lowercase_ : """simple docstring""" def __init__( self : Optional[Any] ): __lowercase = [2, 1, 2, -1] __lowercase = [1, 2, 3, 4] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = len(self.first_signal ) __lowercase = len(self.second_signal ) __lowercase = max(lowercase__ ,lowercase__ ) # create a zero matrix of max_length x max_length __lowercase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __lowercase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __lowercase = np.matmul(np.transpose(lowercase__ ) ,np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ ,2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
41
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__lowerCamelCase ) class __lowercase ( __lowerCamelCase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization snake_case_ = field(default="""text-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case_ = Features({"""text""": Value("""string""" )} ) snake_case_ = Features({"""labels""": ClassLabel} ) snake_case_ = "text" snake_case_ = "labels" def __lowercase ( self : Dict ,A : int ): '''simple docstring''' if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] ,A ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) UpperCAmelCase__ : Dict = copy.deepcopy(self ) UpperCAmelCase__ : Optional[int] = self.label_schema.copy() UpperCAmelCase__ : Dict = features[self.label_column] UpperCAmelCase__ : Optional[int] = label_schema return task_template @property def __lowercase ( self : Optional[int] ): '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
65
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
41
0
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: _lowercase : int = args.pruning_method _lowercase : Optional[int] = args.threshold _lowercase : str = args.model_name_or_path.rstrip('/' ) _lowercase : Optional[Any] = args.target_model_path print(F"""Load fine-pruned model from {model_name_or_path}""" ) _lowercase : int = torch.load(os.path.join(SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ) _lowercase : List[Any] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _lowercase : Optional[Any] = tensor print(F"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: _lowercase : Tuple = tensor print(F"""Copied layer {name}""" ) elif "bias" in name: _lowercase : List[Any] = tensor print(F"""Copied layer {name}""" ) else: if pruning_method == "magnitude": _lowercase : Optional[int] = MagnitudeBinarizer.apply(inputs=SCREAMING_SNAKE_CASE , threshold=SCREAMING_SNAKE_CASE ) _lowercase : Dict = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue _lowercase : List[Any] = name[:-6] _lowercase : Dict = model[F"""{prefix_}mask_scores"""] _lowercase : Any = TopKBinarizer.apply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _lowercase : Dict = name[:-6] _lowercase : Union[str, Any] = model[F"""{prefix_}mask_scores"""] _lowercase : Any = ThresholdBinarizer.apply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : str = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue _lowercase : Optional[Any] = name[:-6] _lowercase : Optional[int] = model[F"""{prefix_}mask_scores"""] _lowercase , _lowercase : List[str] = -0.1, 1.1 _lowercase : int = torch.sigmoid(SCREAMING_SNAKE_CASE ) _lowercase : Tuple = s * (r - l) + l _lowercase : Union[str, Any] = s_bar.clamp(min=0.0 , max=1.0 ) _lowercase : Optional[int] = tensor * mask print(F"""Pruned layer {name}""" ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: _lowercase : Tuple = os.path.join( os.path.dirname(SCREAMING_SNAKE_CASE ) , F"""bertarized_{os.path.basename(SCREAMING_SNAKE_CASE )}""" ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): shutil.copytree(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(F"""\nCreated folder {target_model_path}""" ) torch.save(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) UpperCamelCase = parser.parse_args() main(args)
66
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCAmelCase__ = getLogger(__name__) lowerCAmelCase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def _A ( A__ , A__ , A__ , A__ = 8 , A__ = DEFAULT_DEVICE , A__=False , A__="summarization" , A__=None , **A__ , ): """simple docstring""" __lowercase = Path(A__ ).open('''w''' , encoding='''utf-8''' ) __lowercase = str(A__ ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained(A__ ).to(A__ ) if fpaa: __lowercase = model.half() __lowercase = AutoTokenizer.from_pretrained(A__ ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __lowercase = time.time() # update config with task specific params use_task_specific_params(A__ , A__ ) if prefix is None: __lowercase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(A__ , A__ ) ) ): __lowercase = [prefix + text for text in examples_chunk] __lowercase = tokenizer(A__ , return_tensors='''pt''' , truncation=A__ , padding='''longest''' ).to(A__ ) __lowercase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **A__ , ) __lowercase = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __lowercase = int(time.time() - start_time ) # seconds __lowercase = len(A__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _A ( ): """simple docstring""" return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def _A ( A__=True ): """simple docstring""" __lowercase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=A__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=A__ , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=A__ , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=A__ , required=A__ , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=A__ , required=A__ , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=A__ , required=A__ , default=A__ , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=A__ , required=A__ , default=A__ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=A__ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=A__ , default=8 , required=A__ , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=A__ , default=-1 , required=A__ , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=A__ , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowercase , __lowercase = parser.parse_known_args() __lowercase = parse_numeric_n_bool_cl_kwargs(A__ ) if parsed_args and verbose: print(F"parsed the following generate kwargs: {parsed_args}" ) __lowercase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowercase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=A__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __lowercase = generate_summaries_or_translations( A__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **A__ , ) if args.reference_path is None: return {} # Compute scores __lowercase = calculate_bleu if '''translation''' in args.task else calculate_rouge __lowercase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowercase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(A__ )] __lowercase = score_fn(A__ , A__ ) scores.update(A__ ) if args.dump_args: scores.update(A__ ) if args.info: __lowercase = args.info if verbose: print(A__ ) if args.score_path is not None: json.dump(A__ , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
41
0
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker snake_case = """CompVis/stable-diffusion-v1-1""" snake_case = """CompVis/stable-diffusion-v1-2""" snake_case = """CompVis/stable-diffusion-v1-3""" snake_case = """CompVis/stable-diffusion-v1-4""" class A_ ( UpperCAmelCase ): """simple docstring""" def __init__( self : Union[str, Any] ,__A : AutoencoderKL ,__A : CLIPTextModel ,__A : CLIPTokenizer ,__A : UNetaDConditionModel ,__A : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] ,__A : StableDiffusionSafetyChecker ,__A : CLIPImageProcessor ,__A : bool = True ,) -> Any: super()._init_() _lowercase = StableDiffusionPipeline.from_pretrained(__A ) _lowercase = StableDiffusionPipeline.from_pretrained(__A ) _lowercase = StableDiffusionPipeline.from_pretrained(__A ) _lowercase = StableDiffusionPipeline( vae=__A ,text_encoder=__A ,tokenizer=__A ,unet=__A ,scheduler=__A ,safety_checker=__A ,feature_extractor=__A ,requires_safety_checker=__A ,) self.register_modules(pipelinea=self.pipea ,pipelinea=self.pipea ,pipelinea=self.pipea ,pipelinea=self.pipea ) @property def __UpperCAmelCase ( self : Dict ) -> Dict[str, Any]: return {k: getattr(self ,__A ) for k in self.config.keys() if not k.startswith('_' )} def __UpperCAmelCase ( self : int ,__A : Optional[Union[str, int]] = "auto" ) -> Optional[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__A ) def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: self.enable_attention_slicing(__A ) @torch.no_grad() def __UpperCAmelCase ( self : int ,__A : Union[str, List[str]] ,__A : int = 512 ,__A : int = 512 ,__A : int = 50 ,__A : float = 7.5 ,__A : Optional[Union[str, List[str]]] = None ,__A : Optional[int] = 1 ,__A : float = 0.0 ,__A : Optional[torch.Generator] = None ,__A : Optional[torch.FloatTensor] = None ,__A : Optional[str] = "pil" ,__A : bool = True ,__A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,__A : int = 1 ,**__A : Dict ,) -> Tuple: return self.pipea( prompt=__A ,height=__A ,width=__A ,num_inference_steps=__A ,guidance_scale=__A ,negative_prompt=__A ,num_images_per_prompt=__A ,eta=__A ,generator=__A ,latents=__A ,output_type=__A ,return_dict=__A ,callback=__A ,callback_steps=__A ,**__A ,) @torch.no_grad() def __UpperCAmelCase ( self : int ,__A : Union[str, List[str]] ,__A : int = 512 ,__A : int = 512 ,__A : int = 50 ,__A : float = 7.5 ,__A : Optional[Union[str, List[str]]] = None ,__A : Optional[int] = 1 ,__A : float = 0.0 ,__A : Optional[torch.Generator] = None ,__A : Optional[torch.FloatTensor] = None ,__A : Optional[str] = "pil" ,__A : bool = True ,__A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,__A : int = 1 ,**__A : Union[str, Any] ,) -> Tuple: return self.pipea( prompt=__A ,height=__A ,width=__A ,num_inference_steps=__A ,guidance_scale=__A ,negative_prompt=__A ,num_images_per_prompt=__A ,eta=__A ,generator=__A ,latents=__A ,output_type=__A ,return_dict=__A ,callback=__A ,callback_steps=__A ,**__A ,) @torch.no_grad() def __UpperCAmelCase ( self : Optional[int] ,__A : Union[str, List[str]] ,__A : int = 512 ,__A : int = 512 ,__A : int = 50 ,__A : float = 7.5 ,__A : Optional[Union[str, List[str]]] = None ,__A : Optional[int] = 1 ,__A : float = 0.0 ,__A : Optional[torch.Generator] = None ,__A : Optional[torch.FloatTensor] = None ,__A : Optional[str] = "pil" ,__A : bool = True ,__A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,__A : int = 1 ,**__A : int ,) -> str: return self.pipea( prompt=__A ,height=__A ,width=__A ,num_inference_steps=__A ,guidance_scale=__A ,negative_prompt=__A ,num_images_per_prompt=__A ,eta=__A ,generator=__A ,latents=__A ,output_type=__A ,return_dict=__A ,callback=__A ,callback_steps=__A ,**__A ,) @torch.no_grad() def __UpperCAmelCase ( self : Any ,__A : Union[str, List[str]] ,__A : int = 512 ,__A : int = 512 ,__A : int = 50 ,__A : float = 7.5 ,__A : Optional[Union[str, List[str]]] = None ,__A : Optional[int] = 1 ,__A : float = 0.0 ,__A : Optional[torch.Generator] = None ,__A : Optional[torch.FloatTensor] = None ,__A : Optional[str] = "pil" ,__A : bool = True ,__A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,__A : int = 1 ,**__A : Union[str, Any] ,) -> List[Any]: return self.pipea( prompt=__A ,height=__A ,width=__A ,num_inference_steps=__A ,guidance_scale=__A ,negative_prompt=__A ,num_images_per_prompt=__A ,eta=__A ,generator=__A ,latents=__A ,output_type=__A ,return_dict=__A ,callback=__A ,callback_steps=__A ,**__A ,) @torch.no_grad() def __UpperCAmelCase ( self : List[str] ,__A : Union[str, List[str]] ,__A : int = 512 ,__A : int = 512 ,__A : int = 50 ,__A : float = 7.5 ,__A : Optional[Union[str, List[str]]] = None ,__A : Optional[int] = 1 ,__A : float = 0.0 ,__A : Optional[torch.Generator] = None ,__A : Optional[torch.FloatTensor] = None ,__A : Optional[str] = "pil" ,__A : bool = True ,__A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,__A : int = 1 ,**__A : Tuple ,) -> Optional[Any]: _lowercase = 'cuda' if torch.cuda.is_available() else 'cpu' self.to(__A ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 _lowercase = self.textaimg_sda_a( prompt=__A ,height=__A ,width=__A ,num_inference_steps=__A ,guidance_scale=__A ,negative_prompt=__A ,num_images_per_prompt=__A ,eta=__A ,generator=__A ,latents=__A ,output_type=__A ,return_dict=__A ,callback=__A ,callback_steps=__A ,**__A ,) # Get first result from Stable Diffusion Checkpoint v1.2 _lowercase = self.textaimg_sda_a( prompt=__A ,height=__A ,width=__A ,num_inference_steps=__A ,guidance_scale=__A ,negative_prompt=__A ,num_images_per_prompt=__A ,eta=__A ,generator=__A ,latents=__A ,output_type=__A ,return_dict=__A ,callback=__A ,callback_steps=__A ,**__A ,) # Get first result from Stable Diffusion Checkpoint v1.3 _lowercase = self.textaimg_sda_a( prompt=__A ,height=__A ,width=__A ,num_inference_steps=__A ,guidance_scale=__A ,negative_prompt=__A ,num_images_per_prompt=__A ,eta=__A ,generator=__A ,latents=__A ,output_type=__A ,return_dict=__A ,callback=__A ,callback_steps=__A ,**__A ,) # Get first result from Stable Diffusion Checkpoint v1.4 _lowercase = self.textaimg_sda_a( prompt=__A ,height=__A ,width=__A ,num_inference_steps=__A ,guidance_scale=__A ,negative_prompt=__A ,num_images_per_prompt=__A ,eta=__A ,generator=__A ,latents=__A ,output_type=__A ,return_dict=__A ,callback=__A ,callback_steps=__A ,**__A ,) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
67
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(A__ ): print(F"{i}\t\t{d}" ) def _A ( A__ , A__ , A__ ): """simple docstring""" for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = [float('''inf''' )] * vertex_count __lowercase = 0.0 for _ in range(vertex_count - 1 ): for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: __lowercase = distance[u] + w __lowercase = check_negative_cycle(A__ , A__ , A__ ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = int(input('''Enter number of vertices: ''').strip()) lowerCAmelCase__ = int(input('''Enter number of edges: ''').strip()) lowerCAmelCase__ = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) lowerCAmelCase__ = {'''src''': src, '''dst''': dest, '''weight''': weight} lowerCAmelCase__ = int(input('''\nEnter shortest path source:''').strip()) lowerCAmelCase__ = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
41
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } __A = { "distilbert-base-uncased": 5_12, "distilbert-base-uncased-distilled-squad": 5_12, "distilbert-base-cased": 5_12, "distilbert-base-cased-distilled-squad": 5_12, "distilbert-base-german-cased": 5_12, "distilbert-base-multilingual-cased": 5_12, } __A = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class _A ( UpperCamelCase ): """simple docstring""" lowerCamelCase : List[str] = VOCAB_FILES_NAMES lowerCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : str = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Optional[int] = ['input_ids', 'attention_mask'] lowerCamelCase : Optional[int] = DistilBertTokenizer def __init__( self : int , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : List[Any]="[UNK]" , __SCREAMING_SNAKE_CASE : Optional[Any]="[SEP]" , __SCREAMING_SNAKE_CASE : Any="[PAD]" , __SCREAMING_SNAKE_CASE : Tuple="[CLS]" , __SCREAMING_SNAKE_CASE : List[Any]="[MASK]" , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[str]=None , **__SCREAMING_SNAKE_CASE : Any , ) -> str: super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __UpperCAmelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get("""strip_accents""" , __SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): __UpperCAmelCase =getattr(__SCREAMING_SNAKE_CASE , normalizer_state.pop("""type""" ) ) __UpperCAmelCase =do_lower_case __UpperCAmelCase =strip_accents __UpperCAmelCase =tokenize_chinese_chars __UpperCAmelCase =normalizer_class(**__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =do_lower_case def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any=None ) -> Optional[Any]: __UpperCAmelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase =[self.sep_token_id] __UpperCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: __UpperCAmelCase =self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE )
68
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[Any] ,*lowercase__ : Optional[Any] ,**lowercase__ : int ): warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' ,lowercase__ ,) super().__init__(*lowercase__ ,**lowercase__ )
41
0
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : Optional[Any] = logging.get_logger(__name__) a : Union[str, Any] = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } a : int = { '''b0''': { '''hidden_dim''': 1_280, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 224, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1_280, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 240, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 1_408, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 260, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 1_536, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 300, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 1_792, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 380, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2_048, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 456, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 2_304, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 528, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 2_560, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 600, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def __UpperCAmelCase ( _UpperCAmelCase : List[str] ) -> List[Any]: __snake_case = EfficientNetConfig() __snake_case = CONFIG_MAP[model_name]["hidden_dim"] __snake_case = CONFIG_MAP[model_name]["width_coef"] __snake_case = CONFIG_MAP[model_name]["depth_coef"] __snake_case = CONFIG_MAP[model_name]["image_size"] __snake_case = CONFIG_MAP[model_name]["dropout_rate"] __snake_case = CONFIG_MAP[model_name]["dw_padding"] __snake_case = "huggingface/label-files" __snake_case = "imagenet-1k-id2label.json" __snake_case = 10_00 __snake_case = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="dataset" ) , "r" ) ) __snake_case = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} __snake_case = idalabel __snake_case = {v: k for k, v in idalabel.items()} return config def __UpperCAmelCase ( ) -> int: __snake_case = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] ) -> Tuple: __snake_case = CONFIG_MAP[model_name]["image_size"] __snake_case = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=_UpperCAmelCase , ) return preprocessor def __UpperCAmelCase ( _UpperCAmelCase : List[str] ) -> str: __snake_case = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] __snake_case = sorted(set(_UpperCAmelCase ) ) __snake_case = len(_UpperCAmelCase ) __snake_case = {b: str(_UpperCAmelCase ) for b, i in zip(_UpperCAmelCase , range(_UpperCAmelCase ) )} __snake_case = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: __snake_case = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) __snake_case = {} for item in rename_keys: if item[0] in original_param_names: __snake_case = "efficientnet." + item[1] __snake_case = "classifier.weight" __snake_case = "classifier.bias" return key_mapping def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> Dict: for key, value in tf_params.items(): if "normalization" in key: continue __snake_case = key_mapping[key] if "_conv" in key and "kernel" in key: __snake_case = torch.from_numpy(_UpperCAmelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __snake_case = torch.from_numpy(_UpperCAmelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __snake_case = torch.from_numpy(np.transpose(_UpperCAmelCase ) ) else: __snake_case = torch.from_numpy(_UpperCAmelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_UpperCAmelCase ) @torch.no_grad() def __UpperCAmelCase ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> List[str]: __snake_case = model_classes[model_name]( include_top=_UpperCAmelCase , weights="imagenet" , input_tensor=_UpperCAmelCase , input_shape=_UpperCAmelCase , pooling=_UpperCAmelCase , classes=10_00 , classifier_activation="softmax" , ) __snake_case = original_model.trainable_variables __snake_case = original_model.non_trainable_variables __snake_case = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __snake_case = param.numpy() __snake_case = list(tf_params.keys() ) # Load HuggingFace model __snake_case = get_efficientnet_config(_UpperCAmelCase ) __snake_case = EfficientNetForImageClassification(_UpperCAmelCase ).eval() __snake_case = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) __snake_case = rename_keys(_UpperCAmelCase ) replace_params(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Initialize preprocessor and preprocess input image __snake_case = convert_image_processor(_UpperCAmelCase ) __snake_case = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): __snake_case = hf_model(**_UpperCAmelCase ) __snake_case = outputs.logits.detach().numpy() # Original model inference __snake_case = False __snake_case = CONFIG_MAP[model_name]["image_size"] __snake_case = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __snake_case = image.img_to_array(_UpperCAmelCase ) __snake_case = np.expand_dims(_UpperCAmelCase , axis=0 ) __snake_case = original_model.predict(_UpperCAmelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(_UpperCAmelCase ): os.mkdir(_UpperCAmelCase ) # Save converted model and image processor hf_model.save_pretrained(_UpperCAmelCase ) preprocessor.save_pretrained(_UpperCAmelCase ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) __snake_case = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(_UpperCAmelCase ) hf_model.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') a : Optional[int] = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
69
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _A ( A__ ): """simple docstring""" __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = 0.0_1 with locka.acquire(): with pytest.raises(A__ ): __lowercase = time.time() locka.acquire(A__ ) assert time.time() - _start > timeout def _A ( A__ ): """simple docstring""" __lowercase = '''a''' * 1000 + '''.lock''' __lowercase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(A__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __lowercase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(A__ ): locka.acquire(0 )
41
0
from ... import PretrainedConfig lowerCamelCase : Any = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP UpperCamelCase = '''nezha''' def __init__( self : Union[str, Any] , A_ : Dict=21128 , A_ : Dict=768 , A_ : Dict=12 , A_ : Union[str, Any]=12 , A_ : int=3072 , A_ : Tuple="gelu" , A_ : Optional[Any]=0.1 , A_ : List[Any]=0.1 , A_ : Union[str, Any]=512 , A_ : List[Any]=64 , A_ : Tuple=2 , A_ : Dict=0.02 , A_ : List[Any]=1E-12 , A_ : Any=0.1 , A_ : str=0 , A_ : List[Any]=2 , A_ : Tuple=3 , A_ : Tuple=True , **A_ : Union[str, Any] , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = max_relative_position lowerCamelCase_ = type_vocab_size lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = classifier_dropout lowerCamelCase_ = use_cache
70
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase__ = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
0
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black _lowerCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _lowerCamelCase = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class _snake_case (unittest.TestCase): def UpperCamelCase__ ( self ): UpperCAmelCase_ : Union[str, Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir ,"schedulers/" ) ) UpperCAmelCase_ : Tuple = self.diffusers_dir shutil.copy( os.path.join(_snake_case ,"src/diffusers/schedulers/scheduling_ddpm.py" ) ,os.path.join(self.diffusers_dir ,"schedulers/scheduling_ddpm.py" ) ,) def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[Any] = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case=None ): UpperCAmelCase_ : Any = comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: UpperCAmelCase_ : List[str] = comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result UpperCAmelCase_ : List[str] = black.Mode(target_versions={black.TargetVersion.PYaa} ,line_length=1_19 ) UpperCAmelCase_ : Union[str, Any] = black.format_str(_snake_case ,mode=_snake_case ) UpperCAmelCase_ : Any = os.path.join(self.diffusers_dir ,"new_code.py" ) with open(_snake_case ,"w" ,newline="\n" ) as f: f.write(_snake_case ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_snake_case ) ) == 0 ) else: check_copies.is_copy_consistent(f.name ,overwrite=_snake_case ) with open(_snake_case ,"r" ) as f: self.assertTrue(f.read() ,_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(_snake_case ,_snake_case ) def UpperCamelCase__ ( self ): # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" ,"DDPMSchedulerOutput" ,REFERENCE_CODE + "\n" ,) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" ,"DDPMSchedulerOutput" ,_snake_case ,) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" ,"TestSchedulerOutput" ,re.sub("DDPM" ,"Test" ,_snake_case ) ,) # Copy consistency with a really long name UpperCAmelCase_ : str = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' ,f'''{long_class_name}SchedulerOutput''' ,re.sub("Bert" ,_snake_case ,_snake_case ) ,) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" ,"TestSchedulerOutput" ,_snake_case ,overwrite_result=re.sub("DDPM" ,"Test" ,_snake_case ) ,)
71
'''simple docstring''' import argparse import os import re lowerCAmelCase__ = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(R'''\[([^\]]+)\]''') def _A ( A__ ): """simple docstring""" __lowercase = _re_indent.search(A__ ) return "" if search is None else search.groups()[0] def _A ( A__ , A__="" , A__=None , A__=None ): """simple docstring""" __lowercase = 0 __lowercase = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(A__ ): index += 1 __lowercase = ['''\n'''.join(lines[:index] )] else: __lowercase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowercase = [lines[index]] index += 1 while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(A__ ) ) if index < len(A__ ) - 1: __lowercase = [lines[index + 1]] index += 1 else: __lowercase = [] else: blocks.append('''\n'''.join(A__ ) ) __lowercase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A__ ) > 0: blocks.append('''\n'''.join(A__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def _A ( A__ ): """simple docstring""" def _inner(A__ ): return key(A__ ).lower().replace('''_''' , '''''' ) return _inner def _A ( A__ , A__=None ): """simple docstring""" def noop(A__ ): return x if key is None: __lowercase = noop # Constants are all uppercase, they go first. __lowercase = [obj for obj in objects if key(A__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowercase = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()] # Functions begin with a lowercase, they go last. __lowercase = [obj for obj in objects if not key(A__ )[0].isupper()] __lowercase = ignore_underscore(A__ ) return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) def _A ( A__ ): """simple docstring""" def _replace(A__ ): __lowercase = match.groups()[0] if "," not in imports: return F"[{imports}]" __lowercase = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) + "]" __lowercase = import_statement.split('''\n''' ) if len(A__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowercase = 2 if lines[1].strip() == '''[''' else 1 __lowercase = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowercase = sort_objects(A__ , key=lambda A__ : x[1] ) __lowercase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowercase = _re_bracket_content.sub(_replace , lines[1] ) else: __lowercase = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] __lowercase = get_indent(lines[1] ) + ''', '''.join([F"\"{k}\"" for k in sort_objects(A__ )] ) return "\n".join(A__ ) else: # Finally we have to deal with imports fitting on one line __lowercase = _re_bracket_content.sub(_replace , A__ ) return import_statement def _A ( A__ , A__=True ): """simple docstring""" with open(A__ , '''r''' ) as f: __lowercase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowercase = split_code_in_indented_blocks( A__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowercase = main_blocks[block_idx] __lowercase = block.split('''\n''' ) # Get to the start of the imports. __lowercase = 0 while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowercase = len(A__ ) else: line_idx += 1 if line_idx >= len(A__ ): continue # Ignore beginning and last line: they don't contain anything. __lowercase = '''\n'''.join(block_lines[line_idx:-1] ) __lowercase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowercase = split_code_in_indented_blocks(A__ , indent_level=A__ ) # We have two categories of import key: list or _import_structure[key].append/extend __lowercase = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowercase = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowercase = [(i, key) for i, key in enumerate(A__ ) if key is not None] __lowercase = [x[0] for x in sorted(A__ , key=lambda A__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowercase = 0 __lowercase = [] for i in range(len(A__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __lowercase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(A__ ) count += 1 # And we put our main block back together with its first and last line. __lowercase = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(A__ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(A__ , '''w''' ) as f: f.write('''\n'''.join(A__ ) ) def _A ( A__=True ): """simple docstring""" __lowercase = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: __lowercase = sort_imports(os.path.join(A__ , '''__init__.py''' ) , check_only=A__ ) if result: __lowercase = [os.path.join(A__ , '''__init__.py''' )] if len(A__ ) > 0: raise ValueError(F"Would overwrite {len(A__ )} files, run `make style`." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
41
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _UpperCAmelCase : int = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[Any] = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _UpperCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
72
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = TextToVideoSDPipeline SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. SCREAMING_SNAKE_CASE : Optional[int] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') ,up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') ,cross_attention_dim=3_2 ,attention_head_dim=4 ,) __lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,clip_sample=lowercase__ ,set_alpha_to_one=lowercase__ ,) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=1_2_8 ,) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''gelu''' ,projection_dim=5_1_2 ,) __lowercase = CLIPTextModel(lowercase__ ) __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : List[str]=0 ): if str(lowercase__ ).startswith('''mps''' ): __lowercase = torch.manual_seed(lowercase__ ) else: __lowercase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = TextToVideoSDPipeline(**lowercase__ ) __lowercase = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs(lowercase__ ) __lowercase = '''np''' __lowercase = sd_pipe(**lowercase__ ).frames __lowercase = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) __lowercase = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def SCREAMING_SNAKE_CASE ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=1e-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass def SCREAMING_SNAKE_CASE ( self : List[str] ): return super().test_progress_bar() @slow @skip_mps class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2_5 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
41
0
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed a_ : Any = 'true' def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=82 , _UpperCAmelCase=16): set_seed(42) SCREAMING_SNAKE_CASE = RegressionModel() SCREAMING_SNAKE_CASE = deepcopy(_UpperCAmelCase) SCREAMING_SNAKE_CASE = RegressionDataset(length=_UpperCAmelCase) SCREAMING_SNAKE_CASE = DataLoader(_UpperCAmelCase , batch_size=_UpperCAmelCase) model.to(accelerator.device) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase) return model, ddp_model, dataloader def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=False): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased') SCREAMING_SNAKE_CASE = load_dataset('glue' , 'mrpc' , split='validation') def tokenize_function(_UpperCAmelCase): SCREAMING_SNAKE_CASE = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase) return outputs with accelerator.main_process_first(): SCREAMING_SNAKE_CASE = dataset.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) SCREAMING_SNAKE_CASE = tokenized_datasets.rename_column('label' , 'labels') def collate_fn(_UpperCAmelCase): if use_longest: return tokenizer.pad(_UpperCAmelCase , padding='longest' , return_tensors='pt') return tokenizer.pad(_UpperCAmelCase , padding='max_length' , max_length=128 , return_tensors='pt') return DataLoader(_UpperCAmelCase , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=16) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = Accelerator(dispatch_batches=_UpperCAmelCase , split_batches=_UpperCAmelCase) SCREAMING_SNAKE_CASE = get_dataloader(_UpperCAmelCase , not dispatch_batches) SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=_UpperCAmelCase) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = [] for batch in dataloader: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = batch.values() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(_UpperCAmelCase) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((logit, target)) logits_and_targets.append((logit, target)) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = [], [] for logit, targ in logits_and_targets: logits.append(_UpperCAmelCase) targs.append(_UpperCAmelCase) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torch.cat(_UpperCAmelCase), torch.cat(_UpperCAmelCase) return logits, targs def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=82 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=16): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_basic_setup(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = generate_predictions(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) assert ( len(_UpperCAmelCase) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_UpperCAmelCase)}''' def lowerCamelCase__ (_UpperCAmelCase = False , _UpperCAmelCase = False): SCREAMING_SNAKE_CASE = evaluate.load('glue' , 'mrpc') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_mrpc_setup(_UpperCAmelCase , _UpperCAmelCase) # First do baseline SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = setup['no'] model.to(_UpperCAmelCase) model.eval() for batch in dataloader: batch.to(_UpperCAmelCase) with torch.inference_mode(): SCREAMING_SNAKE_CASE = model(**_UpperCAmelCase) SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1) metric.add_batch(predictions=_UpperCAmelCase , references=batch['labels']) SCREAMING_SNAKE_CASE = metric.compute() # Then do distributed SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): SCREAMING_SNAKE_CASE = model(**_UpperCAmelCase) SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1) SCREAMING_SNAKE_CASE = batch['labels'] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((preds, references)) metric.add_batch(predictions=_UpperCAmelCase , references=_UpperCAmelCase) SCREAMING_SNAKE_CASE = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key]), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = Accelerator(split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**') for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''') test_mrpc(_UpperCAmelCase , _UpperCAmelCase) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**') for split_batches in [True, False]: for dispatch_batches in [True, False]: SCREAMING_SNAKE_CASE = Accelerator(split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''') test_torch_metrics(_UpperCAmelCase , 99) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**') SCREAMING_SNAKE_CASE = Accelerator() test_torch_metrics(_UpperCAmelCase , 512) accelerator.state._reset_state() def lowerCamelCase__ (_UpperCAmelCase): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
73
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _A ( A__ ): """simple docstring""" __lowercase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def _A ( A__ ): """simple docstring""" __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(A__ , A__ , bias=A__ ) __lowercase = emb.weight.data return lin_layer def _A ( A__ , A__="facebook/mbart-large-en-ro" , A__=False , A__=False ): """simple docstring""" __lowercase = torch.load(A__ , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A__ ) __lowercase = state_dict['''encoder.embed_tokens.weight'''].shape[0] __lowercase = MBartConfig.from_pretrained(A__ , vocab_size=A__ ) if mbart_aa and finetuned: __lowercase = '''relu''' __lowercase = state_dict['''decoder.embed_tokens.weight'''] __lowercase = MBartForConditionalGeneration(A__ ) model.model.load_state_dict(A__ ) if finetuned: __lowercase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
41
0
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch lowercase_ = True except ImportError: lowercase_ = False try: from torch.hub import _get_torch_home lowercase_ = _get_torch_home() except ImportError: lowercase_ = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) lowercase_ = os.path.join(torch_cache_home, """transformers""") lowercase_ = """https://cdn.huggingface.co""" lowercase_ = """https://s3.amazonaws.com/models.huggingface.co/bert""" lowercase_ = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) lowercase_ = os.path.join(PATH, """config.yaml""") lowercase_ = os.path.join(PATH, """attributes.txt""") lowercase_ = os.path.join(PATH, """objects.txt""") lowercase_ = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) lowercase_ = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) lowercase_ = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) lowercase_ = """pytorch_model.bin""" lowercase_ = """config.yaml""" def a__ ( snake_case=OBJECTS , snake_case=ATTRIBUTES ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = [] with open(snake_case ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) __SCREAMING_SNAKE_CASE : List[str] = [] with open(snake_case ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = OrderedDict() with open(snake_case , '''rb''' ) as f: __SCREAMING_SNAKE_CASE : Dict = pkl.load(snake_case )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): __SCREAMING_SNAKE_CASE : int = ckp.pop(snake_case ) if isinstance(snake_case , np.ndarray ): __SCREAMING_SNAKE_CASE : List[str] = torch.tensor(snake_case ) else: assert isinstance(snake_case , torch.tensor ), type(snake_case ) __SCREAMING_SNAKE_CASE : Any = v return r class __UpperCamelCase : """simple docstring""" lowerCAmelCase_ = {} def __init__( self : Dict , _A : dict , _A : str = "root" , _A : str=0 ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = name __SCREAMING_SNAKE_CASE : Dict = level __SCREAMING_SNAKE_CASE : Tuple = {} for k, v in dictionary.items(): if v is None: raise ValueError() __SCREAMING_SNAKE_CASE : List[Any] = copy.deepcopy(_A ) __SCREAMING_SNAKE_CASE : Dict = copy.deepcopy(_A ) if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Optional[int] = Config(_A , name=_A , level=level + 1 ) __SCREAMING_SNAKE_CASE : str = v setattr(self , _A , _A ) __SCREAMING_SNAKE_CASE : Optional[int] = d def __repr__( self : List[str] ): """simple docstring""" return str(list((self._pointer.keys()) ) ) def __setattr__( self : List[str] , _A : List[str] , _A : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = val __SCREAMING_SNAKE_CASE : Optional[Any] = val __SCREAMING_SNAKE_CASE : Dict = key.split('''.''' ) __SCREAMING_SNAKE_CASE : List[str] = len(_A ) - 1 __SCREAMING_SNAKE_CASE : Optional[int] = self._pointer if len(_A ) > 1: for i, l in enumerate(_A ): if hasattr(self , _A ) and isinstance(getattr(self , _A ) , _A ): setattr(getattr(self , _A ) , '''.'''.join(levels[i:] ) , _A ) if l == last_level: __SCREAMING_SNAKE_CASE : List[str] = val else: __SCREAMING_SNAKE_CASE : Optional[int] = pointer[l] def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" return self._pointer def UpperCAmelCase__ ( self : Any , _A : int , _A : Tuple ): """simple docstring""" with open(F'''{file_name}''' , '''w''' ) as stream: dump(_A , _A ) def UpperCAmelCase__ ( self : Optional[Any] , _A : List[Any] , _A : Tuple ): """simple docstring""" with open(F'''{file_name}''' , '''w''' ) as stream: json.dump(_A , _A ) @staticmethod def UpperCAmelCase__ ( _A : List[Any] ): """simple docstring""" with open(_A ) as stream: __SCREAMING_SNAKE_CASE : Optional[Any] = load(_A , Loader=_A ) return data def __str__( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = ''' ''' if self._name != "root": __SCREAMING_SNAKE_CASE : Optional[Any] = F'''{t * (self._level-1)}{self._name}:\n''' else: __SCREAMING_SNAKE_CASE : Optional[int] = '''''' __SCREAMING_SNAKE_CASE : str = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(_A , _A ): r += F'''{t * (self._level)}{v}\n''' self._level += 1 else: r += F'''{t * (self._level)}{k}: {v} ({type(_A ).__name__})\n''' __SCREAMING_SNAKE_CASE : Optional[Any] = level return r[:-1] @classmethod def UpperCAmelCase__ ( cls : Optional[Any] , _A : str , **_A : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = cls.get_config_dict(_A , **_A ) return cls(_A ) @classmethod def UpperCAmelCase__ ( cls : Union[str, Any] , _A : str , **_A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = kwargs.pop('''cache_dir''' , _A ) __SCREAMING_SNAKE_CASE : str = kwargs.pop('''force_download''' , _A ) __SCREAMING_SNAKE_CASE : Any = kwargs.pop('''resume_download''' , _A ) __SCREAMING_SNAKE_CASE : Tuple = kwargs.pop('''proxies''' , _A ) __SCREAMING_SNAKE_CASE : Any = kwargs.pop('''local_files_only''' , _A ) if os.path.isdir(_A ): __SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(_A , _A ) elif os.path.isfile(_A ) or is_remote_url(_A ): __SCREAMING_SNAKE_CASE : Dict = pretrained_model_name_or_path else: __SCREAMING_SNAKE_CASE : List[str] = hf_bucket_url(_A , filename=_A , use_cdn=_A ) try: # Load from URL or cache if already cached __SCREAMING_SNAKE_CASE : str = cached_path( _A , cache_dir=_A , force_download=_A , proxies=_A , resume_download=_A , local_files_only=_A , ) # Load config dict if resolved_config_file is None: raise EnvironmentError __SCREAMING_SNAKE_CASE : str = Config.load_yaml(_A ) except EnvironmentError: __SCREAMING_SNAKE_CASE : Optional[int] = '''Can\'t load config for''' raise EnvironmentError(_A ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(_A ), kwargs def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.load('''dump.pt''' , map_location=in_tensor.device ) __SCREAMING_SNAKE_CASE : int = in_tensor.numpy() __SCREAMING_SNAKE_CASE : List[Any] = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(snake_case , snake_case , rtol=0.01 , atol=0.1 ), ( F'''{sum([1 for x in np.isclose(snake_case , snake_case , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = urlparse(snake_case ) return parsed.scheme in ("http", "https") def a__ ( snake_case , snake_case , snake_case=True ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX __SCREAMING_SNAKE_CASE : Optional[Any] = '''/''' not in model_id if legacy_format: return F'''{endpoint}/{model_id}-{filename}''' else: return F'''{endpoint}/{model_id}/{filename}''' def a__ ( snake_case , snake_case , snake_case=None , snake_case=0 , snake_case=None , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(snake_case , snake_case ): ua += "; " + "; ".join('''{}/{}'''.format(snake_case , snake_case ) for k, v in user_agent.items() ) elif isinstance(snake_case , snake_case ): ua += "; " + user_agent __SCREAMING_SNAKE_CASE : Dict = {'''user-agent''': ua} if resume_size > 0: __SCREAMING_SNAKE_CASE : List[Any] = '''bytes=%d-''' % (resume_size,) __SCREAMING_SNAKE_CASE : Union[str, Any] = requests.get(snake_case , stream=snake_case , proxies=snake_case , headers=snake_case ) if response.status_code == 416: # Range not satisfiable return __SCREAMING_SNAKE_CASE : str = response.headers.get('''Content-Length''' ) __SCREAMING_SNAKE_CASE : Dict = resume_size + int(snake_case ) if content_length is not None else None __SCREAMING_SNAKE_CASE : Dict = tqdm( unit='''B''' , unit_scale=snake_case , total=snake_case , initial=snake_case , desc='''Downloading''' , ) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(snake_case ) ) temp_file.write(snake_case ) progress.close() def a__ ( snake_case , snake_case=None , snake_case=False , snake_case=None , snake_case=10 , snake_case=False , snake_case=None , snake_case=False , ): """simple docstring""" if cache_dir is None: __SCREAMING_SNAKE_CASE : Optional[int] = TRANSFORMERS_CACHE if isinstance(snake_case , snake_case ): __SCREAMING_SNAKE_CASE : Optional[Any] = str(snake_case ) os.makedirs(snake_case , exist_ok=snake_case ) __SCREAMING_SNAKE_CASE : Tuple = None if not local_files_only: try: __SCREAMING_SNAKE_CASE : List[Any] = requests.head(snake_case , allow_redirects=snake_case , proxies=snake_case , timeout=snake_case ) if response.status_code == 200: __SCREAMING_SNAKE_CASE : str = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass __SCREAMING_SNAKE_CASE : Tuple = url_to_filename(snake_case , snake_case ) # get cache path to put the file __SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(snake_case , snake_case ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(snake_case ): return cache_path else: __SCREAMING_SNAKE_CASE : List[str] = [ file for file in fnmatch.filter(os.listdir(snake_case ) , filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(snake_case ) > 0: return os.path.join(snake_case , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(snake_case ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. __SCREAMING_SNAKE_CASE : List[str] = cache_path + '''.lock''' with FileLock(snake_case ): # If the download just completed while the lock was activated. if os.path.exists(snake_case ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: __SCREAMING_SNAKE_CASE : Optional[int] = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(snake_case , '''a+b''' ) as f: yield f __SCREAMING_SNAKE_CASE : Dict = _resumable_file_manager if os.path.exists(snake_case ): __SCREAMING_SNAKE_CASE : Optional[Any] = os.stat(snake_case ).st_size else: __SCREAMING_SNAKE_CASE : str = 0 else: __SCREAMING_SNAKE_CASE : Dict = partial(tempfile.NamedTemporaryFile , dir=snake_case , delete=snake_case ) __SCREAMING_SNAKE_CASE : Tuple = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' , snake_case , temp_file.name , ) http_get( snake_case , snake_case , proxies=snake_case , resume_size=snake_case , user_agent=snake_case , ) os.replace(temp_file.name , snake_case ) __SCREAMING_SNAKE_CASE : Dict = {'''url''': url, '''etag''': etag} __SCREAMING_SNAKE_CASE : List[str] = cache_path + '''.json''' with open(snake_case , '''w''' ) as meta_file: json.dump(snake_case , snake_case ) return cache_path def a__ ( snake_case , snake_case=None ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = url.encode('''utf-8''' ) __SCREAMING_SNAKE_CASE : Tuple = shaaaa(snake_case ) __SCREAMING_SNAKE_CASE : str = url_hash.hexdigest() if etag: __SCREAMING_SNAKE_CASE : Any = etag.encode('''utf-8''' ) __SCREAMING_SNAKE_CASE : Optional[int] = shaaaa(snake_case ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def a__ ( snake_case , snake_case=None , snake_case=False , snake_case=None , snake_case=False , snake_case=None , snake_case=False , snake_case=False , snake_case=False , ): """simple docstring""" if cache_dir is None: __SCREAMING_SNAKE_CASE : Union[str, Any] = TRANSFORMERS_CACHE if isinstance(snake_case , snake_case ): __SCREAMING_SNAKE_CASE : Optional[int] = str(snake_case ) if isinstance(snake_case , snake_case ): __SCREAMING_SNAKE_CASE : List[Any] = str(snake_case ) if is_remote_url(snake_case ): # URL, so get it from the cache (downloading if necessary) __SCREAMING_SNAKE_CASE : Optional[Any] = get_from_cache( snake_case , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , user_agent=snake_case , local_files_only=snake_case , ) elif os.path.exists(snake_case ): # File, and it exists. __SCREAMING_SNAKE_CASE : Optional[Any] = url_or_filename elif urlparse(snake_case ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(snake_case ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(snake_case ) ) if extract_compressed_file: if not is_zipfile(snake_case ) and not tarfile.is_tarfile(snake_case ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.split(snake_case ) __SCREAMING_SNAKE_CASE : Optional[Any] = output_file.replace('''.''' , '''-''' ) + '''-extracted''' __SCREAMING_SNAKE_CASE : str = os.path.join(snake_case , snake_case ) if os.path.isdir(snake_case ) and os.listdir(snake_case ) and not force_extract: return output_path_extracted # Prevent parallel extractions __SCREAMING_SNAKE_CASE : Dict = output_path + '''.lock''' with FileLock(snake_case ): shutil.rmtree(snake_case , ignore_errors=snake_case ) os.makedirs(snake_case ) if is_zipfile(snake_case ): with ZipFile(snake_case , '''r''' ) as zip_file: zip_file.extractall(snake_case ) zip_file.close() elif tarfile.is_tarfile(snake_case ): __SCREAMING_SNAKE_CASE : Optional[Any] = tarfile.open(snake_case ) tar_file.extractall(snake_case ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(snake_case ) ) return output_path_extracted return output_path def a__ ( snake_case , snake_case="," ): """simple docstring""" assert isinstance(snake_case , snake_case ) if os.path.isfile(snake_case ): with open(snake_case ) as f: __SCREAMING_SNAKE_CASE : Optional[int] = eval(f.read() ) else: __SCREAMING_SNAKE_CASE : int = requests.get(snake_case ) try: __SCREAMING_SNAKE_CASE : str = requests.json() except Exception: __SCREAMING_SNAKE_CASE : List[Any] = req.content.decode() assert data is not None, "could not connect" try: __SCREAMING_SNAKE_CASE : Union[str, Any] = eval(snake_case ) except Exception: __SCREAMING_SNAKE_CASE : Any = data.split('''\n''' ) req.close() return data def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = requests.get(snake_case ) __SCREAMING_SNAKE_CASE : Optional[Any] = np.array(Image.open(BytesIO(response.content ) ) ) return img def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(snake_case ) with open(snake_case , '''rb''' ) as stream: __SCREAMING_SNAKE_CASE : str = pkl.load(snake_case ) __SCREAMING_SNAKE_CASE : int = weights.pop('''model''' ) __SCREAMING_SNAKE_CASE : str = {} for k, v in model.items(): __SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(snake_case ) if "running_var" in k: __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([0] ) __SCREAMING_SNAKE_CASE : Optional[int] = k.replace('''running_var''' , '''num_batches_tracked''' ) __SCREAMING_SNAKE_CASE : Any = zero return new def a__ ( ): """simple docstring""" print(F'''{os.path.abspath(os.path.join(snake_case , os.pardir ) )}/demo.ipynb''' ) def a__ ( snake_case , snake_case="RGB" ): """simple docstring""" assert isinstance(snake_case , snake_case ) if os.path.isfile(snake_case ): __SCREAMING_SNAKE_CASE : List[Any] = cva.imread(snake_case ) else: __SCREAMING_SNAKE_CASE : List[Any] = get_image_from_url(snake_case ) assert img is not None, F'''could not connect to: {im}''' __SCREAMING_SNAKE_CASE : int = cva.cvtColor(snake_case , cva.COLOR_BGR2RGB ) if input_format == "RGB": __SCREAMING_SNAKE_CASE : Dict = img[:, :, ::-1] return img def a__ ( snake_case , snake_case=1 ): """simple docstring""" return (images[i : i + batch] for i in range(0 , len(snake_case ) , snake_case ))
74
'''simple docstring''' import os from math import logaa def _A ( A__ = "base_exp.txt" ): """simple docstring""" __lowercase = 0 __lowercase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowercase , __lowercase = list(map(A__ , line.split(''',''' ) ) ) if x * logaa(A__ ) > largest: __lowercase = x * logaa(A__ ) __lowercase = i + 1 return result if __name__ == "__main__": print(solution())
41
0
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> np.ndarray: UpperCAmelCase__ : List[str] = cva.getAffineTransform(lowerCAmelCase__ , lowerCAmelCase__ ) return cva.warpAffine(lowerCAmelCase__ , lowerCAmelCase__ , (rows, cols) ) if __name__ == "__main__": # read original image UpperCamelCase__ = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value UpperCamelCase__ = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape UpperCamelCase__ , UpperCamelCase__ = gray_img.shape # set different points to rotate image UpperCamelCase__ = np.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa) UpperCamelCase__ = np.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa) UpperCamelCase__ = np.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa) UpperCamelCase__ = np.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa) # add all rotated images in a list UpperCamelCase__ = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations UpperCamelCase__ = plt.figure(1) UpperCamelCase__ = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
75
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'blenderbot-small' SCREAMING_SNAKE_CASE : int = ['past_key_values'] SCREAMING_SNAKE_CASE : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] ,lowercase__ : List[str]=5_0_2_6_5 ,lowercase__ : Optional[Any]=5_1_2 ,lowercase__ : Optional[int]=8 ,lowercase__ : List[Any]=2_0_4_8 ,lowercase__ : List[str]=1_6 ,lowercase__ : str=8 ,lowercase__ : Any=2_0_4_8 ,lowercase__ : Tuple=1_6 ,lowercase__ : Tuple=0.0 ,lowercase__ : List[str]=0.0 ,lowercase__ : Any=True ,lowercase__ : str=True ,lowercase__ : int="gelu" ,lowercase__ : Tuple=5_1_2 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : str=0.0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : List[Any]=False ,lowercase__ : Optional[int]=0 ,lowercase__ : Optional[int]=1 ,lowercase__ : str=2 ,lowercase__ : int=2 ,**lowercase__ : List[str] ,): __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = use_cache __lowercase = encoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,is_encoder_decoder=lowercase__ ,decoder_start_token_id=lowercase__ ,forced_eos_token_id=lowercase__ ,**lowercase__ ,) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Dict ): if self.task in ["default", "seq2seq-lm"]: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase = {0: '''batch'''} __lowercase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase__ ,direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super().outputs else: __lowercase = super(lowercase__ ,self ).outputs if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) # Generate decoder inputs __lowercase = seq_length if not self.use_past else 1 __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __lowercase = dict(**lowercase__ ,**lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape __lowercase = common_inputs['''decoder_input_ids'''].shape[1] __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = decoder_seq_length + 3 __lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase__ ,lowercase__ )] ,dim=1 ) __lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase = self.num_layers __lowercase = min(lowercase__ ,lowercase__ ) __lowercase = max(lowercase__ ,lowercase__ ) - min_num_layers __lowercase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), ) ) # TODO: test this. __lowercase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase__ ,lowercase__ ): common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase , __lowercase = self.num_layers __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = common_inputs['''attention_mask'''].dtype __lowercase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase__ ,lowercase__ ,dtype=lowercase__ )] ,dim=1 ) __lowercase = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ ) ] return common_inputs def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = tokenizer.num_special_tokens_to_add(lowercase__ ) __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowercase__ ) # Generate dummy inputs according to compute batch and sequence __lowercase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase = dict(tokenizer(lowercase__ ,return_tensors=lowercase__ ) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): if self.task in ["default", "seq2seq-lm"]: __lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) elif self.task == "causal-lm": __lowercase = self._generate_dummy_inputs_for_causal_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) else: __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super()._flatten_past_key_values_(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) else: __lowercase = super(lowercase__ ,self )._flatten_past_key_values_( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
41
0
"""simple docstring""" import numpy as np def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): return np.where(vector > 0 , __UpperCamelCase , (alpha * (np.exp(__UpperCamelCase ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
76
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" if b == 0: return (1, 0) ((__lowercase) , (__lowercase)) = extended_euclid(A__ , a % b ) __lowercase = a // b return (y, x - k * y) def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m def _A ( A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) if b < 0: __lowercase = (b % n + n) % n return b def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase , __lowercase = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
41
0
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase ) -> bool: """simple docstring""" if not isinstance(UpperCamelCase , UpperCamelCase ): raise ValueError("check_bouncy() accepts only integer arguments" ) __UpperCAmelCase : Optional[int] = str(UpperCamelCase ) __UpperCAmelCase : List[Any] = "".join(sorted(UpperCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def _UpperCamelCase ( UpperCamelCase = 99 ) -> int: """simple docstring""" if not 0 < percent < 100: raise ValueError("solution() only accepts values from 0 to 100" ) __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 while True: if check_bouncy(UpperCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(99)}''')
77
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _A ( ): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __lowercase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , A__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _A ( ): """simple docstring""" assert _test_patching.open is open __lowercase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , A__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , A__ ): pass def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , A__ ) is None with patch_submodule(_test_patching , '''len''' , A__ ): assert _test_patching.len is mock assert _test_patching.len is len def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_start_and_stop_mock__''' __lowercase = patch_submodule(_test_patching , '''open''' , A__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _A ( ): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __lowercase = '''__test_patch_submodule_successive_join__''' __lowercase = '''__test_patch_submodule_successive_dirname__''' __lowercase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , A__ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , A__ ): pass
41
0
'''simple docstring''' import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification SCREAMING_SNAKE_CASE_: Any =DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co SCREAMING_SNAKE_CASE_: Dict ='main' # Default branch name SCREAMING_SNAKE_CASE_: Optional[int] ='f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) SCREAMING_SNAKE_CASE_: Optional[Any] ='aaaaaaa' # This commit does not exist, so we should 404. SCREAMING_SNAKE_CASE_: List[str] ='d9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes SCREAMING_SNAKE_CASE_: Dict ='4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def lowerCAmelCase_ ( ) -> Optional[int]: '''simple docstring''' print("Welcome!" ) yield print("Bye!" ) @contextlib.contextmanager def lowerCAmelCase_ ( ) -> Tuple: '''simple docstring''' print("Bonjour!" ) yield print("Au revoir!" ) class __A ( unittest.TestCase ): def _lowercase (self : Tuple ): # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("transformers" ) is not None class __A ( unittest.TestCase ): @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def _lowercase (self : str , __a : List[Any] ): with ContextManagers([] ): print("Transformers are awesome!" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , "Transformers are awesome!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def _lowercase (self : Optional[Any] , __a : List[Any] ): with ContextManagers([context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Welcome!\nTransformers are awesome!\nBye!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def _lowercase (self : Dict , __a : Union[str, Any] ): with ContextManagers([context_fr(), context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n" ) @require_torch def _lowercase (self : int ): self.assertEqual(find_labels(__a ) , ["labels"] ) self.assertEqual(find_labels(__a ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(__a ) , ["start_positions", "end_positions"] ) class __A ( UpperCamelCase__ ): pass self.assertEqual(find_labels(__a ) , ["labels"] ) @require_tf def _lowercase (self : Tuple ): self.assertEqual(find_labels(__a ) , ["labels"] ) self.assertEqual(find_labels(__a ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(__a ) , ["start_positions", "end_positions"] ) class __A ( UpperCamelCase__ ): pass self.assertEqual(find_labels(__a ) , ["labels"] ) @require_flax def _lowercase (self : Tuple ): # Flax models don't have labels self.assertEqual(find_labels(__a ) , [] ) self.assertEqual(find_labels(__a ) , [] ) self.assertEqual(find_labels(__a ) , [] ) class __A ( UpperCamelCase__ ): pass self.assertEqual(find_labels(__a ) , [] )
78
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : """simple docstring""" def __init__( self : Dict ,lowercase__ : Dict ,lowercase__ : int=1_3 ,lowercase__ : List[str]=7 ,lowercase__ : int=True ,lowercase__ : int=True ,lowercase__ : Union[str, Any]=True ,lowercase__ : List[Any]=True ,lowercase__ : str=9_9 ,lowercase__ : Optional[Any]=3_2 ,lowercase__ : Union[str, Any]=5 ,lowercase__ : List[Any]=4 ,lowercase__ : str=3_7 ,lowercase__ : Tuple="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : Dict=0.1 ,lowercase__ : int=1_2_8 ,lowercase__ : Dict=3_2 ,lowercase__ : Dict=1_6 ,lowercase__ : Any=2 ,lowercase__ : int=0.0_2 ,lowercase__ : List[str]=3 ,lowercase__ : Dict=4 ,lowercase__ : Optional[int]=None ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return NezhaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.prepare_config_and_inputs() __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : str ): __lowercase = NezhaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Dict ,lowercase__ : str ,lowercase__ : Optional[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,): __lowercase = True __lowercase = NezhaModel(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,encoder_attention_mask=lowercase__ ,) __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,) __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): __lowercase = NezhaForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): __lowercase = NezhaForNextSentencePrediction(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ): __lowercase = NezhaForPreTraining(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,next_sentence_label=lowercase__ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ): __lowercase = NezhaForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,start_positions=lowercase__ ,end_positions=lowercase__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Tuple ,lowercase__ : str ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : Optional[int] ,lowercase__ : int ): __lowercase = self.num_labels __lowercase = NezhaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Any ,lowercase__ : Optional[Any] ): __lowercase = self.num_labels __lowercase = NezhaForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : str ): __lowercase = self.num_choices __lowercase = NezhaForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : List[str] = True def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : Any=False ): __lowercase = super()._prepare_for_class(lowercase__ ,lowercase__ ,return_labels=lowercase__ ) if return_labels: if model_class in get_values(lowercase__ ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowercase__ ) __lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowercase__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = NezhaModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : int ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): # This regression test was failing with PyTorch < 1.3 ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase = None self.model_tester.create_and_check_model_as_decoder( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = NezhaModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __lowercase = True __lowercase = model_class(config=lowercase__ ) __lowercase = self._prepare_for_class(lowercase__ ,lowercase__ ) __lowercase = torch.jit.trace( lowercase__ ,(inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase__ ,os.path.join(lowercase__ ,'''bert.pt''' ) ) __lowercase = torch.jit.load(os.path.join(lowercase__ ,'''bert.pt''' ) ,map_location=lowercase__ ) loaded(inputs_dict['''input_ids'''].to(lowercase__ ) ,inputs_dict['''attention_mask'''].to(lowercase__ ) ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) )
41
0
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ : Dict = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right SCREAMING_SNAKE_CASE__ : str = 25_60_47 SCREAMING_SNAKE_CASE__ : Optional[int] = 25_61_45 @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( __lowerCamelCase , unittest.TestCase ): __lowerCamelCase = NllbTokenizer __lowerCamelCase = NllbTokenizerFast __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = {} def __UpperCAmelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : Any = NllbTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[Any] = NllbTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowerCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase__ : List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCAmelCase__ : Optional[int] = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase__ : str = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : str = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-nllb""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase__ : str = self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase__ : Dict = tempfile.mkdtemp() UpperCAmelCase__ : int = tokenizer_r.save_pretrained(_lowerCAmelCase ) UpperCAmelCase__ : Dict = tokenizer_p.save_pretrained(_lowerCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) UpperCAmelCase__ : Tuple = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(_lowerCAmelCase , _lowerCAmelCase ) # Checks everything loads correctly in the same way UpperCAmelCase__ : str = tokenizer_r.from_pretrained(_lowerCAmelCase ) UpperCAmelCase__ : Tuple = tokenizer_p.from_pretrained(_lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCAmelCase , _lowerCAmelCase ) ) shutil.rmtree(_lowerCAmelCase ) # Save tokenizer rust, legacy_format=True UpperCAmelCase__ : List[str] = tempfile.mkdtemp() UpperCAmelCase__ : Union[str, Any] = tokenizer_r.save_pretrained(_lowerCAmelCase , legacy_format=_lowerCAmelCase ) UpperCAmelCase__ : int = tokenizer_p.save_pretrained(_lowerCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(_lowerCAmelCase , _lowerCAmelCase ) # Checks everything loads correctly in the same way UpperCAmelCase__ : int = tokenizer_r.from_pretrained(_lowerCAmelCase ) UpperCAmelCase__ : List[Any] = tokenizer_p.from_pretrained(_lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCAmelCase , _lowerCAmelCase ) ) shutil.rmtree(_lowerCAmelCase ) # Save tokenizer rust, legacy_format=False UpperCAmelCase__ : Optional[Any] = tempfile.mkdtemp() UpperCAmelCase__ : List[str] = tokenizer_r.save_pretrained(_lowerCAmelCase , legacy_format=_lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = tokenizer_p.save_pretrained(_lowerCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase__ : int = tokenizer_r.from_pretrained(_lowerCAmelCase ) UpperCAmelCase__ : str = tokenizer_p.from_pretrained(_lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCAmelCase , _lowerCAmelCase ) ) shutil.rmtree(_lowerCAmelCase ) @require_torch def __UpperCAmelCase ( self ): if not self.test_seqaseq: return UpperCAmelCase__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Longer text that will definitely require truncation. UpperCAmelCase__ : Optional[Any] = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for""" """ Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons""" """ will only worsen the violence and misery for millions of people.""", ] UpperCAmelCase__ : Optional[int] = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al""" """ Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi""" """ că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] try: UpperCAmelCase__ : Union[str, Any] = tokenizer.prepare_seqaseq_batch( src_texts=_lowerCAmelCase , tgt_texts=_lowerCAmelCase , max_length=3 , max_target_length=10 , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified UpperCAmelCase__ : Optional[Any] = tokenizer.prepare_seqaseq_batch( _lowerCAmelCase , tgt_texts=_lowerCAmelCase , max_length=3 , return_tensors="""pt""" ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) UpperCAmelCase__ : Tuple = tokenizer.prepare_seqaseq_batch( src_texts=_lowerCAmelCase , max_length=3 , max_target_length=10 , return_tensors="""pt""" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn("""decoder_input_ids""" , _lowerCAmelCase ) @unittest.skip("""Unfortunately way too slow to build a BPE with SentencePiece.""" ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase__ : int = [AddedToken("""<special>""" , lstrip=_lowerCAmelCase )] UpperCAmelCase__ : Any = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase__ : str = tokenizer_r.encode("""Hey this is a <special> token""" ) UpperCAmelCase__ : Optional[Any] = tokenizer_r.encode("""<special>""" , add_special_tokens=_lowerCAmelCase )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: UpperCAmelCase__ : int = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , **_lowerCAmelCase , ) UpperCAmelCase__ : Any = self.tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = tokenizer_p.encode("""Hey this is a <special> token""" ) UpperCAmelCase__ : Dict = tokenizer_cr.encode("""Hey this is a <special> token""" ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase ): __lowerCamelCase = 'facebook/nllb-200-distilled-600M' __lowerCamelCase = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] __lowerCamelCase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] __lowerCamelCase = [ 256_047, 16_297, 134_408, 8_165, 248_066, 14_734, 950, 1_135, 105_721, 3_573, 83, 27_352, 108, 49_486, 2, ] @classmethod def __UpperCAmelCase ( cls ): UpperCAmelCase__ : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""" ) UpperCAmelCase__ : Union[str, Any] = 1 return cls def __UpperCAmelCase ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Arab"""] , 256001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Latn"""] , 256002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""fra_Latn"""] , 256057 ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _lowerCAmelCase ) def __UpperCAmelCase ( self ): self.assertIn(_lowerCAmelCase , self.tokenizer.all_special_ids ) # fmt: off UpperCAmelCase__ : Union[str, Any] = [RO_CODE, 4254, 98068, 112923, 39072, 3909, 713, 102767, 26, 17314, 35642, 14683, 33118, 2022, 66987, 2, 256047] # fmt: on UpperCAmelCase__ : Optional[Any] = self.tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) UpperCAmelCase__ : Tuple = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Optional[Any] = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , _lowerCAmelCase ) UpperCAmelCase__ : Any = 10 UpperCAmelCase__ : Dict = self.tokenizer(_lowerCAmelCase , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , _lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) def __UpperCAmelCase ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [256203, 3] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Dict = tempfile.mkdtemp() UpperCAmelCase__ : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase__ : List[str] = NllbTokenizer.from_pretrained(_lowerCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowerCAmelCase ) @require_torch def __UpperCAmelCase ( self ): UpperCAmelCase__ : Union[str, Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) UpperCAmelCase__ : Optional[int] = shift_tokens_right( batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["""ron_Latn"""] ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) UpperCAmelCase__ : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[Any] = self.tokenizer(self.src_text , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=3 , return_tensors="""pt""" ) UpperCAmelCase__ : Optional[int] = self.tokenizer( text_target=self.tgt_text , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=10 , return_tensors="""pt""" ) UpperCAmelCase__ : List[Any] = targets["""input_ids"""] UpperCAmelCase__ : Dict = shift_tokens_right( _lowerCAmelCase , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __UpperCAmelCase ( self ): UpperCAmelCase__ : Union[str, Any] = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , { # A, test, EOS, en_XX """input_ids""": [[256047, 70, 7356, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 256057, } , ) @require_torch def __UpperCAmelCase ( self ): UpperCAmelCase__ : int = True UpperCAmelCase__ : Tuple = self.tokenizer( """UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids , [16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2, 256047] ) UpperCAmelCase__ : int = False UpperCAmelCase__ : Tuple = self.tokenizer( """UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids , [256047, 16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2] )
79
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KEY''') lowerCAmelCase__ = TypeVar('''VAL''') @dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ ) class lowercase_ (Generic[KEY, VAL] ): """simple docstring""" SCREAMING_SNAKE_CASE : KEY SCREAMING_SNAKE_CASE : VAL class lowercase_ (_Item ): """simple docstring""" def __init__( self : Optional[int] ): super().__init__(lowercase__ ,lowercase__ ) def __bool__( self : List[str] ): return False lowerCAmelCase__ = _DeletedItem() class lowercase_ (MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ): __lowercase = initial_block_size __lowercase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowercase = capacity_factor __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ): return hash(lowercase__ ) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ): return (ind + 1) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ): __lowercase = self._buckets[ind] if not stored: __lowercase = _Item(lowercase__ ,lowercase__ ) self._len += 1 return True elif stored.key == key: __lowercase = _Item(lowercase__ ,lowercase__ ) return True else: return False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False __lowercase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ): __lowercase = self._buckets __lowercase = [None] * new_size __lowercase = 0 for item in old_buckets: if item: self._add_item(item.key ,item.val ) def SCREAMING_SNAKE_CASE ( self : str ): self._resize(len(self._buckets ) * 2 ) def SCREAMING_SNAKE_CASE ( self : Tuple ): self._resize(len(self._buckets ) // 2 ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ): __lowercase = self._get_bucket_index(lowercase__ ) for _ in range(len(self._buckets ) ): yield ind __lowercase = self._get_next_ind(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): for ind in self._iterate_buckets(lowercase__ ): if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ): break def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): if self._is_full(): self._size_up() self._add_item(lowercase__ ,lowercase__ ) def __delitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: raise KeyError(lowercase__ ) if item is _deleted: continue if item.key == key: __lowercase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowercase__ ) def __len__( self : Optional[int] ): return self._len def __iter__( self : str ): yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ): __lowercase = ''' ,'''.join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
41
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): __snake_case :str = ViTImageProcessor if is_vision_available() else None @property def _a ( self : Optional[Any] ) -> Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _a ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = (3, 32, 128) __lowercase = tempfile.mkdtemp() # fmt: off __lowercase = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __lowercase = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) __lowercase = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } __lowercase = os.path.join(self.tmpdirname , _lowerCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : List[Any] , **_lowerCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def _a ( self : Union[str, Any] , **_lowerCAmelCase : Dict ) -> List[str]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __lowercase = Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1 ) ) return image_input def _a ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = self.get_tokenizer() __lowercase = self.get_image_processor() __lowercase = MgpstrProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) __lowercase = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCAmelCase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCAmelCase ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.get_tokenizer() __lowercase = self.get_image_processor() __lowercase = MgpstrProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __lowercase = self.get_image_processor(do_normalize=_lowerCAmelCase , padding_value=1.0 ) __lowercase = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCAmelCase ) def _a ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = MgpstrProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(_lowerCAmelCase , return_tensors="""np""" ) __lowercase = processor(images=_lowerCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _a ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = MgpstrProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) __lowercase = """test""" __lowercase = processor(text=_lowerCAmelCase ) __lowercase = tokenizer(_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = MgpstrProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) __lowercase = """test""" __lowercase = self.prepare_image_inputs() __lowercase = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def _a ( self : int ) -> Optional[int]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = MgpstrProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) __lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __lowercase = processor.char_decode(_lowerCAmelCase ) __lowercase = tokenizer.batch_decode(_lowerCAmelCase ) __lowercase = [seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = MgpstrProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) __lowercase = None __lowercase = self.prepare_image_inputs() __lowercase = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def _a ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = MgpstrProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) __lowercase = torch.randn(1 , 27 , 38 ) __lowercase = torch.randn(1 , 27 , 5_0257 ) __lowercase = torch.randn(1 , 27 , 3_0522 ) __lowercase = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
80
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ,**lowercase__ : Tuple ): super().__init__(**lowercase__ ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self ,'''vision''' ) self.check_model_type(lowercase__ ) def __call__( self : List[str] ,lowercase__ : Union[str, "Image.Image", List[Dict[str, Any]]] ,lowercase__ : Union[str, List[str]] = None ,**lowercase__ : str ,): if "text_queries" in kwargs: __lowercase = kwargs.pop('''text_queries''' ) if isinstance(lowercase__ ,(str, Image.Image) ): __lowercase = {'''image''': image, '''candidate_labels''': candidate_labels} else: __lowercase = image __lowercase = super().__call__(lowercase__ ,**lowercase__ ) return results def SCREAMING_SNAKE_CASE ( self : int ,**lowercase__ : List[Any] ): __lowercase = {} if "threshold" in kwargs: __lowercase = kwargs['''threshold'''] if "top_k" in kwargs: __lowercase = kwargs['''top_k'''] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[Any] ): __lowercase = load_image(inputs['''image'''] ) __lowercase = inputs['''candidate_labels'''] if isinstance(lowercase__ ,lowercase__ ): __lowercase = candidate_labels.split(''',''' ) __lowercase = torch.tensor([[image.height, image.width]] ,dtype=torch.intaa ) for i, candidate_label in enumerate(lowercase__ ): __lowercase = self.tokenizer(lowercase__ ,return_tensors=self.framework ) __lowercase = self.image_processor(lowercase__ ,return_tensors=self.framework ) yield { "is_last": i == len(lowercase__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ): __lowercase = model_inputs.pop('''target_size''' ) __lowercase = model_inputs.pop('''candidate_label''' ) __lowercase = model_inputs.pop('''is_last''' ) __lowercase = self.model(**lowercase__ ) __lowercase = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : List[Any]=0.1 ,lowercase__ : List[str]=None ): __lowercase = [] for model_output in model_outputs: __lowercase = model_output['''candidate_label'''] __lowercase = BaseModelOutput(lowercase__ ) __lowercase = self.image_processor.post_process_object_detection( outputs=lowercase__ ,threshold=lowercase__ ,target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): __lowercase = outputs['''scores'''][index].item() __lowercase = self._get_bounding_box(outputs['''boxes'''][index][0] ) __lowercase = {'''score''': score, '''label''': label, '''box''': box} results.append(lowercase__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : x["score"] ,reverse=lowercase__ ) if top_k: __lowercase = results[:top_k] return results def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : "torch.Tensor" ): if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) __lowercase , __lowercase , __lowercase , __lowercase = box.int().tolist() __lowercase = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
41
0
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a (_lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : int = IFInpaintingPipeline __UpperCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} __UpperCAmelCase : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCAmelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"latents"} def __snake_case ( self : int ) -> str: return self._get_dummy_components() def __snake_case ( self : Any , lowerCamelCase : Dict , lowerCamelCase : Dict=0 ) -> Dict: if str(lowerCamelCase ).startswith("mps" ): __snake_case : Optional[Any] = torch.manual_seed(lowerCamelCase ) else: __snake_case : Any = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __snake_case : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) __snake_case : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) __snake_case : Union[str, Any] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __snake_case ( self : Tuple ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __snake_case ( self : Union[str, Any] ) -> List[str]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def __snake_case ( self : Optional[int] ) -> str: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __snake_case ( self : Any ) -> Any: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __snake_case ( self : List[Any] ) -> Tuple: self._test_save_load_local() def __snake_case ( self : List[Any] ) -> Tuple: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
81
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 'facebook/bart-large-mnli' SCREAMING_SNAKE_CASE : Optional[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) SCREAMING_SNAKE_CASE : Any = 'text_classifier' SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : Tuple = ['text', ['text']] SCREAMING_SNAKE_CASE : List[str] = ['text'] def SCREAMING_SNAKE_CASE ( self : List[Any] ): super().setup() __lowercase = self.model.config __lowercase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): __lowercase = int(lowercase__ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Dict ,lowercase__ : List[Any] ): __lowercase = labels return self.pre_processor( [text] * len(lowercase__ ) ,[F"This example is {label}" for label in labels] ,return_tensors='''pt''' ,padding='''max_length''' ,) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = outputs.logits __lowercase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
41
0
"""simple docstring""" def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = "" for word_or_phrase in separated: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
82
'''simple docstring''' from collections.abc import Callable class lowercase_ : """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : Callable | None = None ): # Stores actual heap items. __lowercase = [] # Stores indexes of each item for supporting updates and deletion. __lowercase = {} # Stores current size of heap. __lowercase = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __lowercase = key or (lambda lowercase__ : x) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : int ): return int((i - 1) / 2 ) if i > 0 else None def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = int(2 * i + 1 ) return left if 0 < left < self.size else None def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ): __lowercase = int(2 * i + 2 ) return right if 0 < right < self.size else None def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : int ,lowercase__ : int ): __lowercase , __lowercase = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __lowercase , __lowercase = self.arr[j], self.arr[i] def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): return self.arr[i][1] < self.arr[j][1] def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._left(lowercase__ ) __lowercase = self._right(lowercase__ ) __lowercase = i if left is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = left if right is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = right return valid_parent def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._parent(lowercase__ ) while parent is not None and not self._cmp(lowercase__ ,lowercase__ ): self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = parent, self._parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = self._get_valid_parent(lowercase__ ) while valid_parent != index: self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = valid_parent, self._get_valid_parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] __lowercase = [item, self.key(lowercase__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] del self.pos_map[item] __lowercase = self.arr[self.size - 1] __lowercase = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : int ): __lowercase = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(lowercase__ )] ) else: __lowercase = [item, self.key(lowercase__ )] __lowercase = self.size self.size += 1 self._heapify_up(self.size - 1 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): return self.arr[0] if self.size else None def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _A ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
41
0
"""simple docstring""" from __future__ import annotations lowerCAmelCase__ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowerCAmelCase__ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def snake_case_ ( A_ : list[float] ): '''simple docstring''' _lowerCamelCase : Tuple = [] _lowerCamelCase : List[str] = len(A_ ) for i in range(A_ ): _lowerCamelCase : float = -1 for j in range(i + 1, A_ ): if arr[i] < arr[j]: _lowerCamelCase : int = arr[j] break result.append(A_ ) return result def snake_case_ ( A_ : list[float] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = [] for i, outer in enumerate(A_ ): _lowerCamelCase : float = -1 for inner in arr[i + 1 :]: if outer < inner: _lowerCamelCase : List[str] = inner break result.append(A_ ) return result def snake_case_ ( A_ : list[float] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = len(A_ ) _lowerCamelCase : list[float] = [] _lowerCamelCase : list[float] = [-1] * arr_size for index in reversed(range(A_ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _lowerCamelCase : Any = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCAmelCase__ = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
83
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ): __lowercase = [] def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : str ,**lowercase__ : Any ): self.events.append('''on_init_end''' ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : int ,**lowercase__ : Optional[int] ): self.events.append('''on_train_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ,**lowercase__ : List[str] ): self.events.append('''on_train_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,**lowercase__ : Optional[Any] ): self.events.append('''on_epoch_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : Any ,**lowercase__ : Optional[int] ): self.events.append('''on_epoch_end''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_step_begin''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : Optional[int] ,**lowercase__ : Dict ): self.events.append('''on_step_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,**lowercase__ : Any ): self.events.append('''on_evaluate''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : int ,**lowercase__ : Optional[Any] ): self.events.append('''on_predict''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,**lowercase__ : int ): self.events.append('''on_save''' ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_log''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : int ,lowercase__ : Dict ,**lowercase__ : str ): self.events.append('''on_prediction_step''' ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): shutil.rmtree(self.output_dir ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any]=0 ,lowercase__ : Any=0 ,lowercase__ : Tuple=6_4 ,lowercase__ : Optional[int]=6_4 ,lowercase__ : Optional[Any]=None ,lowercase__ : str=False ,**lowercase__ : Any ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionModelConfig(a=lowercase__ ,b=lowercase__ ) __lowercase = RegressionPreTrainedModel(lowercase__ ) __lowercase = TrainingArguments(self.output_dir ,disable_tqdm=lowercase__ ,report_to=[] ,**lowercase__ ) return Trainer( lowercase__ ,lowercase__ ,train_dataset=lowercase__ ,eval_dataset=lowercase__ ,callbacks=lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) ) # Order doesn't matter __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) for cba, cba in zip(lowercase__ ,lowercase__ ): if isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,lowercase__ ) elif isinstance(lowercase__ ,lowercase__ ) and not isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,cba.__class__ ) elif not isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(cba.__class__ ,lowercase__ ) else: self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ): __lowercase = ['''on_init_end''', '''on_train_begin'''] __lowercase = 0 __lowercase = len(trainer.get_eval_dataloader() ) __lowercase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(lowercase__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.get_trainer() __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # Callbacks passed at init are added to the default callbacks __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __lowercase = self.get_trainer(disable_tqdm=lowercase__ ) __lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __lowercase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(cb.__class__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # We can also add, pop, or remove by instance __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' ,category=lowercase__ ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # Independent log/save/eval __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='''steps''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='''epoch''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # A bit of everything __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=1_0 ,eval_steps=5 ,evaluation_strategy='''steps''' ,) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,) assert str(lowercase__ ) in warn_mock.call_args[0][0]
41
0
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): lowercase = ['a', 'b', 'c'] # Defaults to last layer if both are None lowercase , lowercase = get_aligned_output_features_output_indices(snake_case , snake_case , snake_case ) self.assertEqual(snake_case , ['c'] ) self.assertEqual(snake_case , [2] ) # Out indices set to match out features lowercase , lowercase = get_aligned_output_features_output_indices(['a', 'c'] , snake_case , snake_case ) self.assertEqual(snake_case , ['a', 'c'] ) self.assertEqual(snake_case , [0, 2] ) # Out features set to match out indices lowercase , lowercase = get_aligned_output_features_output_indices(snake_case , [0, 2] , snake_case ) self.assertEqual(snake_case , ['a', 'c'] ) self.assertEqual(snake_case , [0, 2] ) # Out features selected from negative indices lowercase , lowercase = get_aligned_output_features_output_indices(snake_case , [-3, -1] , snake_case ) self.assertEqual(snake_case , ['a', 'c'] ) self.assertEqual(snake_case , [-3, -1] ) def SCREAMING_SNAKE_CASE__ ( self ): # Stage names must be set with self.assertRaises(snake_case ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , snake_case ) # Out features must be a list with self.assertRaises(snake_case ): verify_out_features_out_indices(('a', 'b') , (0, 1) , ['a', 'b'] ) # Out features must be a subset of stage names with self.assertRaises(snake_case ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , ['a'] ) # Out indices must be a list or tuple with self.assertRaises(snake_case ): verify_out_features_out_indices(snake_case , 0 , ['a', 'b'] ) # Out indices must be a subset of stage names with self.assertRaises(snake_case ): verify_out_features_out_indices(snake_case , (0, 1) , ['a'] ) # Out features and out indices must be the same length with self.assertRaises(snake_case ): verify_out_features_out_indices(['a', 'b'] , (0,) , ['a', 'b', 'c'] ) # Out features should match out indices with self.assertRaises(snake_case ): verify_out_features_out_indices(['a', 'b'] , (0, 2) , ['a', 'b', 'c'] ) # Out features and out indices should be in order with self.assertRaises(snake_case ): verify_out_features_out_indices(['b', 'a'] , (0, 1) , ['a', 'b'] ) # Check passes with valid inputs verify_out_features_out_indices(['a', 'b', 'd'] , (0, 1, -1) , ['a', 'b', 'c', 'd'] ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = BackboneMixin() lowercase = ['a', 'b', 'c'] lowercase = ['a', 'c'] lowercase = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly lowercase = ['a', 'b'] self.assertEqual(backbone.out_features , ['a', 'b'] ) self.assertEqual(backbone.out_indices , [0, 1] ) lowercase = [-3, -1] self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [-3, -1] )
84
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : jnp.ndarray SCREAMING_SNAKE_CASE : jnp.ndarray class lowercase_ (nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __lowercase = [] for i in range(len(self.block_out_channels ) - 1 ): __lowercase = self.block_out_channels[i] __lowercase = self.block_out_channels[i + 1] __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = blocks __lowercase = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : List[str] ,lowercase__ : Optional[int] ): __lowercase = self.conv_in(lowercase__ ) __lowercase = nn.silu(lowercase__ ) for block in self.blocks: __lowercase = block(lowercase__ ) __lowercase = nn.silu(lowercase__ ) __lowercase = self.conv_out(lowercase__ ) return embedding @flax_register_to_config class lowercase_ (nn.Module , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 3_2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False SCREAMING_SNAKE_CASE : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) SCREAMING_SNAKE_CASE : int = 2 SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None SCREAMING_SNAKE_CASE : int = 1_2_8_0 SCREAMING_SNAKE_CASE : float = 0.0 SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = "rgb" SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : jax.random.KeyArray ): # init input tensors __lowercase = (1, self.in_channels, self.sample_size, self.sample_size) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase = jnp.ones((1,) ,dtype=jnp.intaa ) __lowercase = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa ) __lowercase = (1, 3, self.sample_size * 8, self.sample_size * 8) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase , __lowercase = jax.random.split(lowercase__ ) __lowercase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )["params"] def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.block_out_channels __lowercase = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __lowercase = self.num_attention_heads or self.attention_head_dim # input __lowercase = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time __lowercase = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift ) __lowercase = FlaxTimestepEmbedding(lowercase__ ,dtype=self.dtype ) __lowercase = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) __lowercase = self.only_cross_attention if isinstance(lowercase__ ,lowercase__ ): __lowercase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = (num_attention_heads,) * len(self.down_block_types ) # down __lowercase = [] __lowercase = [] __lowercase = block_out_channels[0] __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) for i, down_block_type in enumerate(self.down_block_types ): __lowercase = output_channel __lowercase = block_out_channels[i] __lowercase = i == len(lowercase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": __lowercase = FlaxCrossAttnDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: __lowercase = FlaxDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(lowercase__ ) for _ in range(self.layers_per_block ): __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) if not is_final_block: __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) __lowercase = down_blocks __lowercase = controlnet_down_blocks # mid __lowercase = block_out_channels[-1] __lowercase = FlaxUNetMidBlockaDCrossAttn( in_channels=lowercase__ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : float = 1.0 ,lowercase__ : bool = True ,lowercase__ : bool = False ,): __lowercase = self.controlnet_conditioning_channel_order if channel_order == "bgr": __lowercase = jnp.flip(lowercase__ ,axis=1 ) # 1. time if not isinstance(lowercase__ ,jnp.ndarray ): __lowercase = jnp.array([timesteps] ,dtype=jnp.intaa ) elif isinstance(lowercase__ ,jnp.ndarray ) and len(timesteps.shape ) == 0: __lowercase = timesteps.astype(dtype=jnp.floataa ) __lowercase = jnp.expand_dims(lowercase__ ,0 ) __lowercase = self.time_proj(lowercase__ ) __lowercase = self.time_embedding(lowercase__ ) # 2. pre-process __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.conv_in(lowercase__ ) __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.controlnet_cond_embedding(lowercase__ ) sample += controlnet_cond # 3. down __lowercase = (sample,) for down_block in self.down_blocks: if isinstance(lowercase__ ,lowercase__ ): __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) else: __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,deterministic=not train ) down_block_res_samples += res_samples # 4. mid __lowercase = self.mid_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) # 5. contronet blocks __lowercase = () for down_block_res_sample, controlnet_block in zip(lowercase__ ,self.controlnet_down_blocks ): __lowercase = controlnet_block(lowercase__ ) controlnet_down_block_res_samples += (down_block_res_sample,) __lowercase = controlnet_down_block_res_samples __lowercase = self.controlnet_mid_block(lowercase__ ) # 6. scaling __lowercase = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowercase__ ,mid_block_res_sample=lowercase__ )
41
0
import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _a ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : List[Any] ): '''simple docstring''' if openai_config_file == "": SCREAMING_SNAKE_CASE__ : Optional[int] = OpenAIGPTConfig() else: SCREAMING_SNAKE_CASE__ : int = OpenAIGPTConfig.from_json_file(lowercase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = OpenAIGPTModel(lowercase__ ) # Load weights from numpy load_tf_weights_in_openai_gpt(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model SCREAMING_SNAKE_CASE__ : str = pytorch_dump_folder_path + '/' + WEIGHTS_NAME SCREAMING_SNAKE_CASE__ : Dict = pytorch_dump_folder_path + '/' + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , lowercase__ ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(lowercase__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) SCREAMING_SNAKE_CASE__ : List[str] = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
85
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase__ = False lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''ybelkada/fonts''' def _A ( ): """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use " '''Pix2StructImageProcessor. Please upgrade torch.''' ) def _A ( A__ , A__ , A__ ): """simple docstring""" requires_backends(A__ , ['''torch'''] ) _check_torch_version() __lowercase = image_tensor.unsqueeze(0 ) __lowercase = torch.nn.functional.unfold(A__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) __lowercase = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , A__ , A__ , -1 ) __lowercase = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def _A ( A__ , A__ = 36 , A__ = "black" , A__ = "white" , A__ = 5 , A__ = 5 , A__ = 5 , A__ = 5 , A__ = None , A__ = None , ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Add new lines so that each line is no more than 80 characters. __lowercase = textwrap.TextWrapper(width=80 ) __lowercase = wrapper.wrap(text=A__ ) __lowercase = '''\n'''.join(A__ ) if font_bytes is not None and font_path is None: __lowercase = io.BytesIO(A__ ) elif font_path is not None: __lowercase = font_path else: __lowercase = hf_hub_download(A__ , '''Arial.TTF''' ) __lowercase = ImageFont.truetype(A__ , encoding='''UTF-8''' , size=A__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. __lowercase = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , A__ ) ) __lowercase , __lowercase , __lowercase , __lowercase = temp_draw.textbbox((0, 0) , A__ , A__ ) # Create the actual image with a bit of padding around the text. __lowercase = text_width + left_padding + right_padding __lowercase = text_height + top_padding + bottom_padding __lowercase = Image.new('''RGB''' , (image_width, image_height) , A__ ) __lowercase = ImageDraw.Draw(A__ ) draw.text(xy=(left_padding, top_padding) , text=A__ , fill=A__ , font=A__ ) return image def _A ( A__ , A__ , **A__ ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Convert to PIL image if necessary __lowercase = to_pil_image(A__ ) __lowercase = render_text(A__ , **A__ ) __lowercase = max(header_image.width , image.width ) __lowercase = int(image.height * (new_width / image.width) ) __lowercase = int(header_image.height * (new_width / header_image.width) ) __lowercase = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary __lowercase = to_numpy_array(A__ ) if infer_channel_dimension_format(A__ ) == ChannelDimension.LAST: __lowercase = to_channel_dimension_format(A__ , ChannelDimension.LAST ) return new_image class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ['flattened_patches'] def __init__( self : Any ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : int = 2_0_4_8 ,lowercase__ : bool = False ,**lowercase__ : List[str] ,): super().__init__(**lowercase__ ) __lowercase = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6} __lowercase = do_normalize __lowercase = do_convert_rgb __lowercase = max_patches __lowercase = is_vqa def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : np.ndarray ,lowercase__ : int ,lowercase__ : dict ,**lowercase__ : Tuple ): requires_backends(self.extract_flattened_patches ,'''torch''' ) _check_torch_version() # convert to torch __lowercase = to_channel_dimension_format(lowercase__ ,ChannelDimension.FIRST ) __lowercase = torch.from_numpy(lowercase__ ) __lowercase , __lowercase = patch_size['''height'''], patch_size['''width'''] __lowercase , __lowercase = get_image_size(lowercase__ ) # maximize scale s.t. __lowercase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) __lowercase = max(min(math.floor(scale * image_height / patch_height ) ,lowercase__ ) ,1 ) __lowercase = max(min(math.floor(scale * image_width / patch_width ) ,lowercase__ ) ,1 ) __lowercase = max(num_feasible_rows * patch_height ,1 ) __lowercase = max(num_feasible_cols * patch_width ,1 ) __lowercase = torch.nn.functional.interpolate( image.unsqueeze(0 ) ,size=(resized_height, resized_width) ,mode='''bilinear''' ,align_corners=lowercase__ ,antialias=lowercase__ ,).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] __lowercase = torch_extract_patches(lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = patches.shape __lowercase = patches_shape[1] __lowercase = patches_shape[2] __lowercase = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] __lowercase = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] __lowercase = torch.arange(lowercase__ ).reshape([rows, 1] ).repeat(1 ,lowercase__ ).reshape([rows * columns, 1] ) __lowercase = torch.arange(lowercase__ ).reshape([1, columns] ).repeat(lowercase__ ,1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] __lowercase = row_ids.to(torch.floataa ) __lowercase = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] __lowercase = torch.cat([row_ids, col_ids, patches] ,-1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] __lowercase = torch.nn.functional.pad(lowercase__ ,[0, 0, 0, max_patches - (rows * columns)] ).float() __lowercase = to_numpy_array(lowercase__ ) return result def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : np.ndarray ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ): if image.dtype == np.uinta: __lowercase = image.astype(np.floataa ) # take mean across the whole `image` __lowercase = np.mean(lowercase__ ) __lowercase = np.std(lowercase__ ) __lowercase = max(lowercase__ ,1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : ImageInput ,lowercase__ : Optional[str] = None ,lowercase__ : bool = None ,lowercase__ : Optional[bool] = None ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[Dict[str, int]] = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : ChannelDimension = ChannelDimension.FIRST ,**lowercase__ : List[Any] ,): __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = patch_size if patch_size is not None else self.patch_size __lowercase = max_patches if max_patches is not None else self.max_patches __lowercase = self.is_vqa if kwargs.get('''data_format''' ,lowercase__ ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) __lowercase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(lowercase__ ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowercase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) __lowercase = kwargs.pop('''font_bytes''' ,lowercase__ ) __lowercase = kwargs.pop('''font_path''' ,lowercase__ ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = [header_text] * len(lowercase__ ) __lowercase = [ render_header(lowercase__ ,header_text[i] ,font_bytes=lowercase__ ,font_path=lowercase__ ) for i, image in enumerate(lowercase__ ) ] if do_normalize: __lowercase = [self.normalize(image=lowercase__ ) for image in images] # convert to torch tensor and permute __lowercase = [ self.extract_flattened_patches(image=lowercase__ ,max_patches=lowercase__ ,patch_size=lowercase__ ) for image in images ] # create attention mask in numpy __lowercase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] __lowercase = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks} ,tensor_type=lowercase__ ) return encoded_outputs
41
0
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): __a :Optional[Any] = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: __a :List[Any] = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" A_ = (images / 2 + 0.5).clamp(0 ,1 ) A_ = images.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() A_ = numpy_to_pil(__UpperCamelCase ) return images def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if images.ndim == 3: A_ = images[None, ...] A_ = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images A_ = [Image.fromarray(image.squeeze() ,mode="L" ) for image in images] else: A_ = [Image.fromarray(__UpperCamelCase ) for image in images] return pil_images
86
'''simple docstring''' import doctest from collections import deque import numpy as np class lowercase_ : """simple docstring""" def __init__( self : Optional[Any] ): __lowercase = [2, 1, 2, -1] __lowercase = [1, 2, 3, 4] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = len(self.first_signal ) __lowercase = len(self.second_signal ) __lowercase = max(lowercase__ ,lowercase__ ) # create a zero matrix of max_length x max_length __lowercase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __lowercase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __lowercase = np.matmul(np.transpose(lowercase__ ) ,np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ ,2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
41
0
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = torch.load(lowercase_ , map_location='''cpu''' ) if "model" in sd.keys(): A__ = torch.load(lowercase_ , map_location='''cpu''' )['''model'''] # pop unnecessary weights A__ = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(lowercase_ ) A__ = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: A__ = sd.pop(lowercase_ ) A__ = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: A__ = sd[key] # We split QKV in separate Q,K,V A__ = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) A__ = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) A__ = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) A__ = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 A__ , A__ , A__ = torch.split(lowercase_ , depth // 3 , dim=0 ) A__ = q A__ = k A__ = v del sd[key] return sd @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None ) -> Any: """simple docstring""" A__ = load_checkpoint(lowercase_ ) if config is not None: A__ = OPTConfig.from_pretrained(lowercase_ ) else: A__ = OPTConfig() A__ = OPTModel(lowercase_ ).half().eval() model.load_state_dict(lowercase_ ) # Check results Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") _lowerCamelCase : Tuple = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
87
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
41
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase__ ( A_ ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> Tuple: super().__init__() # make sure scheduler can always be converted to DDIM _lowerCamelCase : List[Any] = DDIMScheduler.from_config(scheduler.config) self.register_modules(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , SCREAMING_SNAKE_CASE): _lowerCamelCase : int = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: _lowerCamelCase : List[str] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) and len(SCREAMING_SNAKE_CASE) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE)}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.') _lowerCamelCase : int = randn_tensor(SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , device=self.device , dtype=self.unet.dtype) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output _lowerCamelCase : int = self.unet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _lowerCamelCase : Optional[int] = self.scheduler.step( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , eta=SCREAMING_SNAKE_CASE , use_clipped_model_output=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE).prev_sample _lowerCamelCase : List[str] = (image / 2 + 0.5).clamp(0 , 1) _lowerCamelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _lowerCamelCase : Tuple = self.numpy_to_pil(SCREAMING_SNAKE_CASE) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE)
88
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCAmelCase__ = getLogger(__name__) lowerCAmelCase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def _A ( A__ , A__ , A__ , A__ = 8 , A__ = DEFAULT_DEVICE , A__=False , A__="summarization" , A__=None , **A__ , ): """simple docstring""" __lowercase = Path(A__ ).open('''w''' , encoding='''utf-8''' ) __lowercase = str(A__ ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained(A__ ).to(A__ ) if fpaa: __lowercase = model.half() __lowercase = AutoTokenizer.from_pretrained(A__ ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __lowercase = time.time() # update config with task specific params use_task_specific_params(A__ , A__ ) if prefix is None: __lowercase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(A__ , A__ ) ) ): __lowercase = [prefix + text for text in examples_chunk] __lowercase = tokenizer(A__ , return_tensors='''pt''' , truncation=A__ , padding='''longest''' ).to(A__ ) __lowercase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **A__ , ) __lowercase = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __lowercase = int(time.time() - start_time ) # seconds __lowercase = len(A__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _A ( ): """simple docstring""" return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def _A ( A__=True ): """simple docstring""" __lowercase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=A__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=A__ , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=A__ , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=A__ , required=A__ , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=A__ , required=A__ , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=A__ , required=A__ , default=A__ , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=A__ , required=A__ , default=A__ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=A__ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=A__ , default=8 , required=A__ , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=A__ , default=-1 , required=A__ , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=A__ , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowercase , __lowercase = parser.parse_known_args() __lowercase = parse_numeric_n_bool_cl_kwargs(A__ ) if parsed_args and verbose: print(F"parsed the following generate kwargs: {parsed_args}" ) __lowercase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowercase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=A__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __lowercase = generate_summaries_or_translations( A__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **A__ , ) if args.reference_path is None: return {} # Compute scores __lowercase = calculate_bleu if '''translation''' in args.task else calculate_rouge __lowercase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowercase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(A__ )] __lowercase = score_fn(A__ , A__ ) scores.update(A__ ) if args.dump_args: scores.update(A__ ) if args.info: __lowercase = args.info if verbose: print(A__ ) if args.score_path is not None: json.dump(A__ , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
41
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_=False ) -> str: _lowercase : List[str] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowercase : str = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False ) -> str: for i in range(config.num_hidden_layers ): if base_model: _lowercase : List[Any] = '' else: _lowercase : Dict = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowercase : Any = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' ) _lowercase : str = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _lowercase : int = in_proj_weight[ : config.hidden_size, : ] _lowercase : str = in_proj_bias[: config.hidden_size] _lowercase : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowercase : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowercase : List[str] = in_proj_weight[ -config.hidden_size :, : ] _lowercase : Tuple = in_proj_bias[-config.hidden_size :] def UpperCamelCase_( lowerCamelCase_ ) -> str: _lowercase : Dict = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_( lowerCamelCase_ ) -> Optional[int]: # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. _lowercase : List[str] = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: _lowercase : Union[str, Any] = dct.pop(lowerCamelCase_ ) _lowercase : str = val def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> int: _lowercase : Any = ViTMSNConfig() _lowercase : List[str] = 1000 _lowercase : List[Any] = 'datasets/huggingface/label-files' _lowercase : Dict = 'imagenet-1k-id2label.json' _lowercase : Optional[Any] = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ ) , 'r' ) ) _lowercase : Tuple = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} _lowercase : Optional[Any] = idalabel _lowercase : Tuple = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: _lowercase : Any = 384 _lowercase : List[Any] = 1536 _lowercase : Dict = 6 elif "l16" in checkpoint_url: _lowercase : List[str] = 1024 _lowercase : Optional[int] = 4096 _lowercase : Any = 24 _lowercase : List[str] = 16 _lowercase : Optional[int] = 0.1 elif "b4" in checkpoint_url: _lowercase : int = 4 elif "l7" in checkpoint_url: _lowercase : List[Any] = 7 _lowercase : Union[str, Any] = 1024 _lowercase : Union[str, Any] = 4096 _lowercase : str = 24 _lowercase : Any = 16 _lowercase : Any = 0.1 _lowercase : Any = ViTMSNModel(lowerCamelCase_ ) _lowercase : Any = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu' )['target_encoder'] _lowercase : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(lowerCamelCase_ ) _lowercase : Dict = create_rename_keys(lowerCamelCase_ , base_model=lowerCamelCase_ ) for src, dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_ , base_model=lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) model.eval() _lowercase : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowercase : Tuple = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) _lowercase : List[Any] = ViTImageProcessor( size=config.image_size , image_mean=lowerCamelCase_ , image_std=lowerCamelCase_ ) _lowercase : Dict = image_processor(images=lowerCamelCase_ , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) _lowercase : Tuple = model(**lowerCamelCase_ ) _lowercase : Optional[int] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: _lowercase : int = torch.tensor([[-1.09_15, -1.48_76, -1.18_09]] ) elif "b16" in checkpoint_url: _lowercase : Optional[Any] = torch.tensor([[14.28_89, -18.90_45, 11.72_81]] ) elif "l16" in checkpoint_url: _lowercase : Union[str, Any] = torch.tensor([[41.50_28, -22.86_81, 45.64_75]] ) elif "b4" in checkpoint_url: _lowercase : List[Any] = torch.tensor([[-4.38_68, 5.29_32, -0.41_37]] ) else: _lowercase : Optional[Any] = torch.tensor([[-0.17_92, -0.64_65, 2.42_63]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , lowerCamelCase_ , atol=1e-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
89
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(A__ ): print(F"{i}\t\t{d}" ) def _A ( A__ , A__ , A__ ): """simple docstring""" for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = [float('''inf''' )] * vertex_count __lowercase = 0.0 for _ in range(vertex_count - 1 ): for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: __lowercase = distance[u] + w __lowercase = check_negative_cycle(A__ , A__ , A__ ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = int(input('''Enter number of vertices: ''').strip()) lowerCAmelCase__ = int(input('''Enter number of edges: ''').strip()) lowerCAmelCase__ = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) lowerCAmelCase__ = {'''src''': src, '''dst''': dest, '''weight''': weight} lowerCAmelCase__ = int(input('''\nEnter shortest path source:''').strip()) lowerCAmelCase__ = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
41
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def _snake_case ( A ) -> str: lowerCAmelCase__ = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowerCAmelCase__ = [144, 192, 240] lowerCAmelCase__ = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowerCAmelCase__ = [96, 120, 144] lowerCAmelCase__ = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowerCAmelCase__ = [64, 80, 96] lowerCAmelCase__ = [16, 16, 24, 48, 64, 80, 320] lowerCAmelCase__ = 0.05 lowerCAmelCase__ = 2.0 if mobilevit_name.startswith('''deeplabv3_''' ): lowerCAmelCase__ = 512 lowerCAmelCase__ = 16 lowerCAmelCase__ = 21 lowerCAmelCase__ = '''pascal-voc-id2label.json''' else: lowerCAmelCase__ = 1000 lowerCAmelCase__ = '''imagenet-1k-id2label.json''' lowerCAmelCase__ = '''huggingface/label-files''' lowerCAmelCase__ = json.load(open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase__ = {int(A ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} return config def _snake_case ( A , A=False ) -> str: for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowerCAmelCase__ = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowerCAmelCase__ = name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: lowerCAmelCase__ = name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: lowerCAmelCase__ = name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: lowerCAmelCase__ = name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: lowerCAmelCase__ = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: lowerCAmelCase__ = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: lowerCAmelCase__ = name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: lowerCAmelCase__ = name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: lowerCAmelCase__ = name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowerCAmelCase__ = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowerCAmelCase__ = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowerCAmelCase__ = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: lowerCAmelCase__ = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: lowerCAmelCase__ = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowerCAmelCase__ = name.replace(F""".global_rep.{i}.weight""" , '''.layernorm.weight''' ) if F""".global_rep.{i}.bias""" in name: lowerCAmelCase__ = name.replace(F""".global_rep.{i}.bias""" , '''.layernorm.bias''' ) if ".global_rep." in name: lowerCAmelCase__ = name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: lowerCAmelCase__ = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: lowerCAmelCase__ = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: lowerCAmelCase__ = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: lowerCAmelCase__ = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: lowerCAmelCase__ = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: lowerCAmelCase__ = name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: lowerCAmelCase__ = name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: lowerCAmelCase__ = name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: lowerCAmelCase__ = name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: lowerCAmelCase__ = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: lowerCAmelCase__ = name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): lowerCAmelCase__ = '''mobilevit.''' + name return name def _snake_case ( A , A , A=False ) -> Tuple: if base_model: lowerCAmelCase__ = '''''' else: lowerCAmelCase__ = '''mobilevit.''' for key in orig_state_dict.copy().keys(): lowerCAmelCase__ = orig_state_dict.pop(A ) if key[:8] == "encoder.": lowerCAmelCase__ = key[8:] if "qkv" in key: lowerCAmelCase__ = key.split('''.''' ) lowerCAmelCase__ = int(key_split[0][6:] ) - 1 lowerCAmelCase__ = int(key_split[3] ) lowerCAmelCase__ = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowerCAmelCase__ = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowerCAmelCase__ = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowerCAmelCase__ = val[:dim, :] lowerCAmelCase__ = val[dim : dim * 2, :] lowerCAmelCase__ = val[-dim:, :] else: lowerCAmelCase__ = val[:dim] lowerCAmelCase__ = val[dim : dim * 2] lowerCAmelCase__ = val[-dim:] else: lowerCAmelCase__ = val return orig_state_dict def _snake_case ( ) -> Dict: lowerCAmelCase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase__ = Image.open(requests.get(A , stream=A ).raw ) return im @torch.no_grad() def _snake_case ( A , A , A , A=False ) -> int: lowerCAmelCase__ = get_mobilevit_config(A ) # load original state_dict lowerCAmelCase__ = torch.load(A , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): lowerCAmelCase__ = MobileViTForSemanticSegmentation(A ).eval() else: lowerCAmelCase__ = MobileViTForImageClassification(A ).eval() lowerCAmelCase__ = convert_state_dict(A , A ) model.load_state_dict(A ) # Check outputs on an image, prepared by MobileViTImageProcessor lowerCAmelCase__ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowerCAmelCase__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCAmelCase__ = model(**A ) lowerCAmelCase__ = outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowerCAmelCase__ = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowerCAmelCase__ = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowerCAmelCase__ = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , A , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": lowerCAmelCase__ = torch.tensor([-0.9_866, 0.2_392, -1.1_241] ) elif mobilevit_name == "mobilevit_xs": lowerCAmelCase__ = torch.tensor([-2.4_761, -0.9_399, -1.9_587] ) elif mobilevit_name == "mobilevit_xxs": lowerCAmelCase__ = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , A , atol=1E-4 ) Path(A ).mkdir(exist_ok=A ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(A ) if push_to_hub: lowerCAmelCase__ = { '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) lowerCAmelCase__ = model_mapping[mobilevit_name] image_processor.push_to_hub(A , organization='''apple''' ) model.push_to_hub(A , organization='''apple''' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __UpperCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
90
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[Any] ,*lowercase__ : Optional[Any] ,**lowercase__ : int ): warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' ,lowercase__ ,) super().__init__(*lowercase__ ,**lowercase__ )
41
0
"""simple docstring""" def _snake_case ( snake_case__ : int = 1000 ): A = 2**power A = 0 while n: A , A = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
91
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _A ( A__ ): """simple docstring""" __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = 0.0_1 with locka.acquire(): with pytest.raises(A__ ): __lowercase = time.time() locka.acquire(A__ ) assert time.time() - _start > timeout def _A ( A__ ): """simple docstring""" __lowercase = '''a''' * 1000 + '''.lock''' __lowercase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(A__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __lowercase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(A__ ): locka.acquire(0 )
41
0
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCamelCase_ = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple , UpperCAmelCase__ : Path , UpperCAmelCase__ : Union[str, None] = None , UpperCAmelCase__ : Union[List[str], None] = None , UpperCAmelCase__ : Union[str, List[str], None] = None , UpperCAmelCase__ : bool = True , ): '''simple docstring''' lowercase : List[Any] =[file for file in os.listdir(UpperCAmelCase__ ) if os.path.isfile(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) )] if identifier is not None: lowercase : List[str] =[file for file in files if identifier in file] if n_identifier is not None: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): for n_ in n_identifier: lowercase : Tuple =[file for file in files if n_ not in file] else: lowercase : int =[file for file in files if n_identifier not in file] lowercase : Optional[Any] =ignore_files or [] ignore_files.append('''__init__.py''' ) lowercase : List[str] =[file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , UpperCAmelCase__ ) if only_modules: lowercase : Any =file.split('''.''' )[0] try: lowercase : Optional[Any] =getattr(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase : str =doctest.DocTestSuite(UpperCAmelCase__ ) lowercase : str =unittest.TextTestRunner().run(UpperCAmelCase__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'''{module_identifier} is not a module.''' ) else: lowercase : Optional[int] =doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowercase : str =Path('''src/transformers''' ) lowercase : Optional[Any] ='''modeling''' lowercase : Dict =[ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(UpperCAmelCase__ , identifier=UpperCAmelCase__ , ignore_files=UpperCAmelCase__ ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowercase : int =Path('''src/transformers''' ) lowercase : List[str] ='''tokenization''' self.analyze_directory(UpperCAmelCase__ , identifier=UpperCAmelCase__ ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : Dict =Path('''src/transformers''' ) lowercase : Any ='''configuration''' self.analyze_directory(UpperCAmelCase__ , identifier=UpperCAmelCase__ ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowercase : str =Path('''src/transformers''' ) lowercase : List[str] =['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(UpperCAmelCase__ , n_identifier=UpperCAmelCase__ ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : Any =Path('''docs/source''' ) lowercase : List[Any] =['''favicon.ico'''] self.analyze_directory(UpperCAmelCase__ , ignore_files=UpperCAmelCase__ , only_modules=UpperCAmelCase__ )
92
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase__ = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
0
"""simple docstring""" # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = None , __UpperCAmelCase = 5_0 , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :List[Any] = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=__UpperCAmelCase , ) lowerCAmelCase__ :Tuple = image.to(self.device ) # set step values self.scheduler.set_timesteps(__UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCAmelCase__ :Union[str, Any] = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase__ :int = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample lowerCAmelCase__ :int = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase__ :Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase__ :Union[str, Any] = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=__UpperCAmelCase ), "This is a local test"
93
'''simple docstring''' import argparse import os import re lowerCAmelCase__ = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(R'''\[([^\]]+)\]''') def _A ( A__ ): """simple docstring""" __lowercase = _re_indent.search(A__ ) return "" if search is None else search.groups()[0] def _A ( A__ , A__="" , A__=None , A__=None ): """simple docstring""" __lowercase = 0 __lowercase = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(A__ ): index += 1 __lowercase = ['''\n'''.join(lines[:index] )] else: __lowercase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowercase = [lines[index]] index += 1 while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(A__ ) ) if index < len(A__ ) - 1: __lowercase = [lines[index + 1]] index += 1 else: __lowercase = [] else: blocks.append('''\n'''.join(A__ ) ) __lowercase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A__ ) > 0: blocks.append('''\n'''.join(A__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def _A ( A__ ): """simple docstring""" def _inner(A__ ): return key(A__ ).lower().replace('''_''' , '''''' ) return _inner def _A ( A__ , A__=None ): """simple docstring""" def noop(A__ ): return x if key is None: __lowercase = noop # Constants are all uppercase, they go first. __lowercase = [obj for obj in objects if key(A__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowercase = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()] # Functions begin with a lowercase, they go last. __lowercase = [obj for obj in objects if not key(A__ )[0].isupper()] __lowercase = ignore_underscore(A__ ) return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) def _A ( A__ ): """simple docstring""" def _replace(A__ ): __lowercase = match.groups()[0] if "," not in imports: return F"[{imports}]" __lowercase = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) + "]" __lowercase = import_statement.split('''\n''' ) if len(A__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowercase = 2 if lines[1].strip() == '''[''' else 1 __lowercase = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowercase = sort_objects(A__ , key=lambda A__ : x[1] ) __lowercase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowercase = _re_bracket_content.sub(_replace , lines[1] ) else: __lowercase = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] __lowercase = get_indent(lines[1] ) + ''', '''.join([F"\"{k}\"" for k in sort_objects(A__ )] ) return "\n".join(A__ ) else: # Finally we have to deal with imports fitting on one line __lowercase = _re_bracket_content.sub(_replace , A__ ) return import_statement def _A ( A__ , A__=True ): """simple docstring""" with open(A__ , '''r''' ) as f: __lowercase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowercase = split_code_in_indented_blocks( A__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowercase = main_blocks[block_idx] __lowercase = block.split('''\n''' ) # Get to the start of the imports. __lowercase = 0 while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowercase = len(A__ ) else: line_idx += 1 if line_idx >= len(A__ ): continue # Ignore beginning and last line: they don't contain anything. __lowercase = '''\n'''.join(block_lines[line_idx:-1] ) __lowercase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowercase = split_code_in_indented_blocks(A__ , indent_level=A__ ) # We have two categories of import key: list or _import_structure[key].append/extend __lowercase = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowercase = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowercase = [(i, key) for i, key in enumerate(A__ ) if key is not None] __lowercase = [x[0] for x in sorted(A__ , key=lambda A__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowercase = 0 __lowercase = [] for i in range(len(A__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __lowercase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(A__ ) count += 1 # And we put our main block back together with its first and last line. __lowercase = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(A__ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(A__ , '''w''' ) as f: f.write('''\n'''.join(A__ ) ) def _A ( A__=True ): """simple docstring""" __lowercase = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: __lowercase = sort_imports(os.path.join(A__ , '''__init__.py''' ) , check_only=A__ ) if result: __lowercase = [os.path.join(A__ , '''__init__.py''' )] if len(A__ ) > 0: raise ValueError(F"Would overwrite {len(A__ )} files, run `make style`." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
41
0
'''simple docstring''' def lowercase_ ( __A : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
94
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = TextToVideoSDPipeline SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. SCREAMING_SNAKE_CASE : Optional[int] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') ,up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') ,cross_attention_dim=3_2 ,attention_head_dim=4 ,) __lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,clip_sample=lowercase__ ,set_alpha_to_one=lowercase__ ,) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=1_2_8 ,) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''gelu''' ,projection_dim=5_1_2 ,) __lowercase = CLIPTextModel(lowercase__ ) __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : List[str]=0 ): if str(lowercase__ ).startswith('''mps''' ): __lowercase = torch.manual_seed(lowercase__ ) else: __lowercase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = TextToVideoSDPipeline(**lowercase__ ) __lowercase = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs(lowercase__ ) __lowercase = '''np''' __lowercase = sd_pipe(**lowercase__ ).frames __lowercase = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) __lowercase = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def SCREAMING_SNAKE_CASE ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=1e-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass def SCREAMING_SNAKE_CASE ( self : List[str] ): return super().test_progress_bar() @slow @skip_mps class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2_5 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
41
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class UpperCamelCase_ (__A ): __magic_name__ = '''vit''' def __init__( self : int , lowerCAmelCase_ : Any=768 , lowerCAmelCase_ : str=12 , lowerCAmelCase_ : Optional[int]=12 , lowerCAmelCase_ : List[str]=3_072 , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : List[str]=0.0 , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : Optional[int]=0.0_2 , lowerCAmelCase_ : Optional[Any]=1e-12 , lowerCAmelCase_ : Any=224 , lowerCAmelCase_ : str=16 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[str]=16 , **lowerCAmelCase_ : Union[str, Any] , ) -> Dict: super().__init__(**lowerCAmelCase_ ) UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : str = num_hidden_layers UpperCAmelCase_ : Optional[Any] = num_attention_heads UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : Optional[int] = hidden_act UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : str = attention_probs_dropout_prob UpperCAmelCase_ : Dict = initializer_range UpperCAmelCase_ : Tuple = layer_norm_eps UpperCAmelCase_ : Tuple = image_size UpperCAmelCase_ : Union[str, Any] = patch_size UpperCAmelCase_ : Tuple = num_channels UpperCAmelCase_ : Optional[int] = qkv_bias UpperCAmelCase_ : Tuple = encoder_stride class UpperCamelCase_ (__A ): __magic_name__ = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : str ) -> float: return 1e-4
95
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _A ( A__ ): """simple docstring""" __lowercase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def _A ( A__ ): """simple docstring""" __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(A__ , A__ , bias=A__ ) __lowercase = emb.weight.data return lin_layer def _A ( A__ , A__="facebook/mbart-large-en-ro" , A__=False , A__=False ): """simple docstring""" __lowercase = torch.load(A__ , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A__ ) __lowercase = state_dict['''encoder.embed_tokens.weight'''].shape[0] __lowercase = MBartConfig.from_pretrained(A__ , vocab_size=A__ ) if mbart_aa and finetuned: __lowercase = '''relu''' __lowercase = state_dict['''decoder.embed_tokens.weight'''] __lowercase = MBartForConditionalGeneration(A__ ) model.model.load_state_dict(A__ ) if finetuned: __lowercase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
41
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = field(default="automatic-speech-recognition" ,metadata={"include_in_asdict_even_if_is_default": True} ) UpperCAmelCase__ = Features({"audio": Audio()} ) UpperCAmelCase__ = Features({"transcription": Value("string" )} ) UpperCAmelCase__ = "audio" UpperCAmelCase__ = "transcription" def lowerCamelCase__ ( self : Optional[Any] , __snake_case : Union[str, Any] ) -> Any: if self.audio_column not in features: raise ValueError(F'Column {self.audio_column} is not present in features.' ) if not isinstance(features[self.audio_column] , __snake_case ): raise ValueError(F'Column {self.audio_column} is not an Audio type.' ) __magic_name__: List[str] = copy.deepcopy(self ) __magic_name__: Tuple = self.input_schema.copy() __magic_name__: Dict = features[self.audio_column] __magic_name__: List[str] = input_schema return task_template @property def lowerCamelCase__ ( self : List[str] ) -> Dict[str, str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
96
'''simple docstring''' import os from math import logaa def _A ( A__ = "base_exp.txt" ): """simple docstring""" __lowercase = 0 __lowercase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowercase , __lowercase = list(map(A__ , line.split(''',''' ) ) ) if x * logaa(A__ ) > largest: __lowercase = x * logaa(A__ ) __lowercase = i + 1 return result if __name__ == "__main__": print(solution())
41
0
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def a ( snake_case__: List[Any] , snake_case__: Optional[Any] ): '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer lowercase_ = flax_key_tuple[:-1] + ('''weight''',) lowercase_ = torch.permute(snake_case__ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(snake_case__ ): # linear layer lowercase_ = flax_key_tuple[:-1] + ('''weight''',) lowercase_ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowercase_ = flax_key_tuple[:-1] + ('''weight''',) return flax_key_tuple, flax_tensor def a ( snake_case__: Optional[int] , snake_case__: Optional[int] , snake_case__: Any ): '''simple docstring''' if "metadata" in layer: lowercase_ = layer.split('''metadata''' ) lowercase_ = ''''''.join(split_layer[0] )[:-1] lowercase_ = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )] elif "kvstore" in layer: lowercase_ = layer.split('''kvstore''' ) lowercase_ = ''''''.join(split_layer[0] )[:-1] lowercase_ = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )] else: lowercase_ = layer.split('''/''' ) lowercase_ = '''/'''.join(split_layer[:-1] ) lowercase_ = (split_layer[-1],) if "kvstore/path" in layer: lowercase_ = F'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: lowercase_ = '''file''' else: lowercase_ = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def a ( snake_case__: Optional[Any] , snake_case__: Any ): '''simple docstring''' lowercase_ = rename_keys(snake_case__ ) lowercase_ = {} for k, v in current_block.items(): lowercase_ = v lowercase_ = new_current_block torch.save(snake_case__ , snake_case__ ) def a ( snake_case__: Optional[int] , snake_case__: Tuple , snake_case__: Union[str, Any] , snake_case__: Dict , snake_case__: str = WEIGHTS_NAME ): '''simple docstring''' lowercase_ = convert_file_size_to_int(snake_case__ ) lowercase_ = [] lowercase_ = {} lowercase_ = 0 lowercase_ = 0 os.makedirs(snake_case__ , exist_ok=snake_case__ ) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp: lowercase_ = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target'''] lowercase_ = flatten_dict(snake_case__ , sep='''/''' ) lowercase_ = {} for layer in checkpoint_info.keys(): lowercase_ , lowercase_ , lowercase_ = get_key_and_tensorstore_dict( snake_case__ , snake_case__ , snake_case__ ) if curr_real_layer_name in all_layers: lowercase_ = content else: lowercase_ = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file lowercase_ = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() lowercase_ = torch.tensor(snake_case__ ) lowercase_ = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts lowercase_ , lowercase_ = rename_base_flax_keys(tuple(key.split('''/''' ) ) , snake_case__ ) lowercase_ = '''/'''.join(snake_case__ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: lowercase_ = os.path.join( snake_case__ , weights_name.replace('''.bin''' , F'''-{len(snake_case__ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(snake_case__ , snake_case__ ) sharded_state_dicts.append(current_block.keys() ) del current_block lowercase_ = {} lowercase_ = 0 lowercase_ = raw_weights.to(getattr(snake_case__ , snake_case__ ) ) current_block_size += weight_size total_size += weight_size # Add the last block lowercase_ = os.path.join(snake_case__ , weights_name.replace('''.bin''' , F'''-{len(snake_case__ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(snake_case__ , snake_case__ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(snake_case__ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index lowercase_ = {} lowercase_ = {} for idx, shard in enumerate(snake_case__ ): lowercase_ = weights_name.replace( '''.bin''' , F'''-{idx+1:05d}-of-{len(snake_case__ ):05d}.bin''' ) # len(sharded_state_dicts):05d} lowercase_ = os.path.join(snake_case__ , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(snake_case__ , os.path.join(snake_case__ , snake_case__ ) ) lowercase_ = shard for key in shard: lowercase_ = shard_file # Add the metadata lowercase_ = {'''total_size''': total_size} lowercase_ = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(snake_case__ , snake_case__ ) , '''w''' , encoding='''utf-8''' ) as f: lowercase_ = json.dumps(snake_case__ , indent=2 , sort_keys=snake_case__ ) + '''\n''' f.write(snake_case__ ) return metadata, index if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) __a = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def a ( ): '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer lowercase_ = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' ) config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' ) lowercase_ = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' ) lowercase_ = TaTokenizer.from_pretrained('''t5-small''' ) lowercase_ = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''' lowercase_ = tokenizer(snake_case__ , return_tensors='''pt''' ).input_ids lowercase_ = model.generate(snake_case__ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
97
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'blenderbot-small' SCREAMING_SNAKE_CASE : int = ['past_key_values'] SCREAMING_SNAKE_CASE : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] ,lowercase__ : List[str]=5_0_2_6_5 ,lowercase__ : Optional[Any]=5_1_2 ,lowercase__ : Optional[int]=8 ,lowercase__ : List[Any]=2_0_4_8 ,lowercase__ : List[str]=1_6 ,lowercase__ : str=8 ,lowercase__ : Any=2_0_4_8 ,lowercase__ : Tuple=1_6 ,lowercase__ : Tuple=0.0 ,lowercase__ : List[str]=0.0 ,lowercase__ : Any=True ,lowercase__ : str=True ,lowercase__ : int="gelu" ,lowercase__ : Tuple=5_1_2 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : str=0.0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : List[Any]=False ,lowercase__ : Optional[int]=0 ,lowercase__ : Optional[int]=1 ,lowercase__ : str=2 ,lowercase__ : int=2 ,**lowercase__ : List[str] ,): __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = use_cache __lowercase = encoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,is_encoder_decoder=lowercase__ ,decoder_start_token_id=lowercase__ ,forced_eos_token_id=lowercase__ ,**lowercase__ ,) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Dict ): if self.task in ["default", "seq2seq-lm"]: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase = {0: '''batch'''} __lowercase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase__ ,direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super().outputs else: __lowercase = super(lowercase__ ,self ).outputs if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) # Generate decoder inputs __lowercase = seq_length if not self.use_past else 1 __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __lowercase = dict(**lowercase__ ,**lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape __lowercase = common_inputs['''decoder_input_ids'''].shape[1] __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = decoder_seq_length + 3 __lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase__ ,lowercase__ )] ,dim=1 ) __lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase = self.num_layers __lowercase = min(lowercase__ ,lowercase__ ) __lowercase = max(lowercase__ ,lowercase__ ) - min_num_layers __lowercase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), ) ) # TODO: test this. __lowercase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase__ ,lowercase__ ): common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase , __lowercase = self.num_layers __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = common_inputs['''attention_mask'''].dtype __lowercase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase__ ,lowercase__ ,dtype=lowercase__ )] ,dim=1 ) __lowercase = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ ) ] return common_inputs def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = tokenizer.num_special_tokens_to_add(lowercase__ ) __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowercase__ ) # Generate dummy inputs according to compute batch and sequence __lowercase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase = dict(tokenizer(lowercase__ ,return_tensors=lowercase__ ) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): if self.task in ["default", "seq2seq-lm"]: __lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) elif self.task == "causal-lm": __lowercase = self._generate_dummy_inputs_for_causal_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) else: __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super()._flatten_past_key_values_(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) else: __lowercase = super(lowercase__ ,self )._flatten_past_key_values_( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
41
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=__magic_name__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) _snake_case : ClassVar[Features] = Features({'audio': Audio()} ) _snake_case : ClassVar[Features] = Features({'labels': ClassLabel} ) _snake_case : str = "audio" _snake_case : str = "labels" def snake_case__ ( self : Dict , lowerCAmelCase__ : List[str] ) -> Any: '''simple docstring''' if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , lowerCAmelCase__ ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) _UpperCamelCase = copy.deepcopy(self ) _UpperCamelCase = self.label_schema.copy() _UpperCamelCase = features[self.label_column] _UpperCamelCase = label_schema return task_template @property def snake_case__ ( self : int ) -> Dict[str, str]: '''simple docstring''' return { self.audio_column: "audio", self.label_column: "labels", }
98
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" if b == 0: return (1, 0) ((__lowercase) , (__lowercase)) = extended_euclid(A__ , a % b ) __lowercase = a // b return (y, x - k * y) def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m def _A ( A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) if b < 0: __lowercase = (b % n + n) % n return b def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase , __lowercase = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
41
0
from typing import TYPE_CHECKING from ...utils import _LazyModule SCREAMING_SNAKE_CASE = {'tokenization_byt5': ['ByT5Tokenizer']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
99
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _A ( ): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __lowercase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , A__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _A ( ): """simple docstring""" assert _test_patching.open is open __lowercase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , A__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , A__ ): pass def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , A__ ) is None with patch_submodule(_test_patching , '''len''' , A__ ): assert _test_patching.len is mock assert _test_patching.len is len def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_start_and_stop_mock__''' __lowercase = patch_submodule(_test_patching , '''open''' , A__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _A ( ): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __lowercase = '''__test_patch_submodule_successive_join__''' __lowercase = '''__test_patch_submodule_successive_dirname__''' __lowercase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , A__ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , A__ ): pass
41
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A : Any = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Optional[Any] = ["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any = ["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str = [ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Tuple = [ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : List[Any] = [ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _A : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
100
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : """simple docstring""" def __init__( self : Dict ,lowercase__ : Dict ,lowercase__ : int=1_3 ,lowercase__ : List[str]=7 ,lowercase__ : int=True ,lowercase__ : int=True ,lowercase__ : Union[str, Any]=True ,lowercase__ : List[Any]=True ,lowercase__ : str=9_9 ,lowercase__ : Optional[Any]=3_2 ,lowercase__ : Union[str, Any]=5 ,lowercase__ : List[Any]=4 ,lowercase__ : str=3_7 ,lowercase__ : Tuple="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : Dict=0.1 ,lowercase__ : int=1_2_8 ,lowercase__ : Dict=3_2 ,lowercase__ : Dict=1_6 ,lowercase__ : Any=2 ,lowercase__ : int=0.0_2 ,lowercase__ : List[str]=3 ,lowercase__ : Dict=4 ,lowercase__ : Optional[int]=None ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return NezhaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.prepare_config_and_inputs() __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : str ): __lowercase = NezhaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Dict ,lowercase__ : str ,lowercase__ : Optional[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,): __lowercase = True __lowercase = NezhaModel(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,encoder_attention_mask=lowercase__ ,) __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,) __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): __lowercase = NezhaForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): __lowercase = NezhaForNextSentencePrediction(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ): __lowercase = NezhaForPreTraining(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,next_sentence_label=lowercase__ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ): __lowercase = NezhaForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,start_positions=lowercase__ ,end_positions=lowercase__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Tuple ,lowercase__ : str ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : Optional[int] ,lowercase__ : int ): __lowercase = self.num_labels __lowercase = NezhaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Any ,lowercase__ : Optional[Any] ): __lowercase = self.num_labels __lowercase = NezhaForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : str ): __lowercase = self.num_choices __lowercase = NezhaForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : List[str] = True def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : Any=False ): __lowercase = super()._prepare_for_class(lowercase__ ,lowercase__ ,return_labels=lowercase__ ) if return_labels: if model_class in get_values(lowercase__ ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowercase__ ) __lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowercase__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = NezhaModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : int ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): # This regression test was failing with PyTorch < 1.3 ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase = None self.model_tester.create_and_check_model_as_decoder( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = NezhaModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __lowercase = True __lowercase = model_class(config=lowercase__ ) __lowercase = self._prepare_for_class(lowercase__ ,lowercase__ ) __lowercase = torch.jit.trace( lowercase__ ,(inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase__ ,os.path.join(lowercase__ ,'''bert.pt''' ) ) __lowercase = torch.jit.load(os.path.join(lowercase__ ,'''bert.pt''' ) ,map_location=lowercase__ ) loaded(inputs_dict['''input_ids'''].to(lowercase__ ) ,inputs_dict['''attention_mask'''].to(lowercase__ ) ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) )
41
0
from __future__ import annotations def a__ ( A__, A__, A__, A__ ): SCREAMING_SNAKE_CASE_ : List[Any] = [] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = result + left + right return input_list def a__ ( A__ ): if len(A__ ) <= 1: return input_list SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(A__ ) # iteration for two-way merging SCREAMING_SNAKE_CASE_ : Any = 2 while p <= len(A__ ): # getting low, high and middle value for merge-sort of single list for i in range(0, len(A__ ), A__ ): SCREAMING_SNAKE_CASE_ : str = i SCREAMING_SNAKE_CASE_ : Union[str, Any] = i + p - 1 SCREAMING_SNAKE_CASE_ : Optional[int] = (low + high + 1) // 2 SCREAMING_SNAKE_CASE_ : List[Any] = merge(A__, A__, A__, A__ ) # final merge of last two parts if p * 2 >= len(A__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = i SCREAMING_SNAKE_CASE_ : int = merge(A__, 0, A__, len(A__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowerCAmelCase__ : Optional[Any] =input('Enter numbers separated by a comma:\n').strip() if user_input == "": lowerCAmelCase__ : Dict =[] else: lowerCAmelCase__ : Optional[int] =[int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
101
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KEY''') lowerCAmelCase__ = TypeVar('''VAL''') @dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ ) class lowercase_ (Generic[KEY, VAL] ): """simple docstring""" SCREAMING_SNAKE_CASE : KEY SCREAMING_SNAKE_CASE : VAL class lowercase_ (_Item ): """simple docstring""" def __init__( self : Optional[int] ): super().__init__(lowercase__ ,lowercase__ ) def __bool__( self : List[str] ): return False lowerCAmelCase__ = _DeletedItem() class lowercase_ (MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ): __lowercase = initial_block_size __lowercase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowercase = capacity_factor __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ): return hash(lowercase__ ) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ): return (ind + 1) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ): __lowercase = self._buckets[ind] if not stored: __lowercase = _Item(lowercase__ ,lowercase__ ) self._len += 1 return True elif stored.key == key: __lowercase = _Item(lowercase__ ,lowercase__ ) return True else: return False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False __lowercase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ): __lowercase = self._buckets __lowercase = [None] * new_size __lowercase = 0 for item in old_buckets: if item: self._add_item(item.key ,item.val ) def SCREAMING_SNAKE_CASE ( self : str ): self._resize(len(self._buckets ) * 2 ) def SCREAMING_SNAKE_CASE ( self : Tuple ): self._resize(len(self._buckets ) // 2 ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ): __lowercase = self._get_bucket_index(lowercase__ ) for _ in range(len(self._buckets ) ): yield ind __lowercase = self._get_next_ind(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): for ind in self._iterate_buckets(lowercase__ ): if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ): break def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): if self._is_full(): self._size_up() self._add_item(lowercase__ ,lowercase__ ) def __delitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: raise KeyError(lowercase__ ) if item is _deleted: continue if item.key == key: __lowercase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowercase__ ) def __len__( self : Optional[int] ): return self._len def __iter__( self : str ): yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ): __lowercase = ''' ,'''.join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
41
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowercase__ : """simple docstring""" @staticmethod def _a ( *_A , **_A ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class lowercase__ ( unittest.TestCase ): """simple docstring""" __lowerCAmelCase : Tuple = MODEL_FOR_OBJECT_DETECTION_MAPPING def _a ( self , _A , _A , _A ): '''simple docstring''' UpperCamelCase : Any = ObjectDetectionPipeline(model=_A , image_processor=_A ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def _a ( self , _A , _A ): '''simple docstring''' UpperCamelCase : Any = object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" , threshold=0.0 ) self.assertGreater(len(_A ) , 0 ) for detected_object in outputs: self.assertEqual( _A , { """score""": ANY(_A ), """label""": ANY(_A ), """box""": {"""xmin""": ANY(_A ), """ymin""": ANY(_A ), """xmax""": ANY(_A ), """ymax""": ANY(_A )}, } , ) import datasets UpperCamelCase : int = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) UpperCamelCase : Optional[int] = [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] UpperCamelCase : Dict = object_detector(_A , threshold=0.0 ) self.assertEqual(len(_A ) , len(_A ) ) for outputs in batch_outputs: self.assertGreater(len(_A ) , 0 ) for detected_object in outputs: self.assertEqual( _A , { """score""": ANY(_A ), """label""": ANY(_A ), """box""": {"""xmin""": ANY(_A ), """ymin""": ANY(_A ), """xmax""": ANY(_A ), """ymax""": ANY(_A )}, } , ) @require_tf @unittest.skip("""Object detection not implemented in TF""" ) def _a ( self ): '''simple docstring''' pass @require_torch def _a ( self ): '''simple docstring''' UpperCamelCase : int = """hf-internal-testing/tiny-detr-mobilenetsv3""" UpperCamelCase : Optional[int] = AutoModelForObjectDetection.from_pretrained(_A ) UpperCamelCase : List[Any] = AutoFeatureExtractor.from_pretrained(_A ) UpperCamelCase : Tuple = ObjectDetectionPipeline(model=_A , feature_extractor=_A ) UpperCamelCase : Dict = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=0.0 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}}, {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}}, ] , ) UpperCamelCase : int = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ [ {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}}, {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}}, ], [ {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}}, {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}}, ], ] , ) @require_torch @slow def _a ( self ): '''simple docstring''' UpperCamelCase : Any = """facebook/detr-resnet-50""" UpperCamelCase : int = AutoModelForObjectDetection.from_pretrained(_A ) UpperCamelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(_A ) UpperCamelCase : Dict = ObjectDetectionPipeline(model=_A , feature_extractor=_A ) UpperCamelCase : Dict = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ] , ) UpperCamelCase : Optional[int] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ], [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ], ] , ) @require_torch @slow def _a ( self ): '''simple docstring''' UpperCamelCase : List[Any] = """facebook/detr-resnet-50""" UpperCamelCase : Optional[Any] = pipeline("""object-detection""" , model=_A ) UpperCamelCase : Optional[Any] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ] , ) UpperCamelCase : int = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ], [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ], ] , ) @require_torch @slow def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = 0.99_85 UpperCamelCase : Tuple = """facebook/detr-resnet-50""" UpperCamelCase : Dict = pipeline("""object-detection""" , model=_A ) UpperCamelCase : str = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=_A ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ] , ) @require_torch @require_pytesseract @slow def _a ( self ): '''simple docstring''' UpperCamelCase : List[Any] = """Narsil/layoutlmv3-finetuned-funsd""" UpperCamelCase : Optional[int] = 0.99_93 UpperCamelCase : List[Any] = pipeline("""object-detection""" , model=_A , threshold=_A ) UpperCamelCase : Tuple = object_detector( """https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {"""score""": 0.99_93, """label""": """I-ANSWER""", """box""": {"""xmin""": 2_9_4, """ymin""": 2_5_4, """xmax""": 3_4_3, """ymax""": 2_6_4}}, {"""score""": 0.99_93, """label""": """I-ANSWER""", """box""": {"""xmin""": 2_9_4, """ymin""": 2_5_4, """xmax""": 3_4_3, """ymax""": 2_6_4}}, ] , )
102
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ,**lowercase__ : Tuple ): super().__init__(**lowercase__ ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self ,'''vision''' ) self.check_model_type(lowercase__ ) def __call__( self : List[str] ,lowercase__ : Union[str, "Image.Image", List[Dict[str, Any]]] ,lowercase__ : Union[str, List[str]] = None ,**lowercase__ : str ,): if "text_queries" in kwargs: __lowercase = kwargs.pop('''text_queries''' ) if isinstance(lowercase__ ,(str, Image.Image) ): __lowercase = {'''image''': image, '''candidate_labels''': candidate_labels} else: __lowercase = image __lowercase = super().__call__(lowercase__ ,**lowercase__ ) return results def SCREAMING_SNAKE_CASE ( self : int ,**lowercase__ : List[Any] ): __lowercase = {} if "threshold" in kwargs: __lowercase = kwargs['''threshold'''] if "top_k" in kwargs: __lowercase = kwargs['''top_k'''] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[Any] ): __lowercase = load_image(inputs['''image'''] ) __lowercase = inputs['''candidate_labels'''] if isinstance(lowercase__ ,lowercase__ ): __lowercase = candidate_labels.split(''',''' ) __lowercase = torch.tensor([[image.height, image.width]] ,dtype=torch.intaa ) for i, candidate_label in enumerate(lowercase__ ): __lowercase = self.tokenizer(lowercase__ ,return_tensors=self.framework ) __lowercase = self.image_processor(lowercase__ ,return_tensors=self.framework ) yield { "is_last": i == len(lowercase__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ): __lowercase = model_inputs.pop('''target_size''' ) __lowercase = model_inputs.pop('''candidate_label''' ) __lowercase = model_inputs.pop('''is_last''' ) __lowercase = self.model(**lowercase__ ) __lowercase = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : List[Any]=0.1 ,lowercase__ : List[str]=None ): __lowercase = [] for model_output in model_outputs: __lowercase = model_output['''candidate_label'''] __lowercase = BaseModelOutput(lowercase__ ) __lowercase = self.image_processor.post_process_object_detection( outputs=lowercase__ ,threshold=lowercase__ ,target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): __lowercase = outputs['''scores'''][index].item() __lowercase = self._get_bounding_box(outputs['''boxes'''][index][0] ) __lowercase = {'''score''': score, '''label''': label, '''box''': box} results.append(lowercase__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : x["score"] ,reverse=lowercase__ ) if top_k: __lowercase = results[:top_k] return results def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : "torch.Tensor" ): if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) __lowercase , __lowercase , __lowercase , __lowercase = box.int().tolist() __lowercase = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
41
0
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig snake_case = logging.get_logger(__name__) # General docstring snake_case = '''MobileNetV1Config''' # Base docstring snake_case = '''google/mobilenet_v1_1.0_224''' snake_case = [1, 1_0_2_4, 7, 7] # Image classification docstring snake_case = '''google/mobilenet_v1_1.0_224''' snake_case = '''tabby, tabby cat''' snake_case = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None ) -> Dict: _snake_case = {} if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = model.mobilenet_va else: _snake_case = model _snake_case = '''MobilenetV1/Conv2d_0/''' _snake_case = backbone.conv_stem.convolution.weight _snake_case = backbone.conv_stem.normalization.bias _snake_case = backbone.conv_stem.normalization.weight _snake_case = backbone.conv_stem.normalization.running_mean _snake_case = backbone.conv_stem.normalization.running_var for i in range(13 ): _snake_case = i + 1 _snake_case = i * 2 _snake_case = backbone.layer[pt_index] _snake_case = f"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" _snake_case = pointer.convolution.weight _snake_case = pointer.normalization.bias _snake_case = pointer.normalization.weight _snake_case = pointer.normalization.running_mean _snake_case = pointer.normalization.running_var _snake_case = backbone.layer[pt_index + 1] _snake_case = f"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" _snake_case = pointer.convolution.weight _snake_case = pointer.normalization.bias _snake_case = pointer.normalization.weight _snake_case = pointer.normalization.running_mean _snake_case = pointer.normalization.running_var if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' _snake_case = model.classifier.weight _snake_case = model.classifier.bias return tf_to_pt_map def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model _snake_case = tf.train.list_variables(lowerCAmelCase_ ) _snake_case = {} for name, shape in init_vars: logger.info(f"""Loading TF weight {name} with shape {shape}""" ) _snake_case = tf.train.load_variable(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = array # Build TF to PyTorch weights loading map _snake_case = _build_tf_to_pytorch_map(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for name, pointer in tf_to_pt_map.items(): logger.info(f"""Importing {name}""" ) if name not in tf_weights: logger.info(f"""{name} not in tf pre-trained weights, skipping""" ) continue _snake_case = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) _snake_case = np.transpose(lowerCAmelCase_ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer _snake_case = array.squeeze().transpose() else: _snake_case = np.transpose(lowerCAmelCase_ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(f"""Initialize PyTorch weight {name} {array.shape}""" ) _snake_case = torch.from_numpy(lowerCAmelCase_ ) tf_weights.pop(lowerCAmelCase_ , lowerCAmelCase_ ) tf_weights.pop(name + '''/RMSProp''' , lowerCAmelCase_ ) tf_weights.pop(name + '''/RMSProp_1''' , lowerCAmelCase_ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , lowerCAmelCase_ ) logger.info(f"""Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}""" ) return model def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> torch.Tensor: _snake_case , _snake_case = features.shape[-2:] _snake_case , _snake_case = conv_layer.stride _snake_case , _snake_case = conv_layer.kernel_size if in_height % stride_height == 0: _snake_case = max(kernel_height - stride_height , 0 ) else: _snake_case = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: _snake_case = max(kernel_width - stride_width , 0 ) else: _snake_case = max(kernel_width - (in_width % stride_width) , 0 ) _snake_case = pad_along_width // 2 _snake_case = pad_along_width - pad_left _snake_case = pad_along_height // 2 _snake_case = pad_along_height - pad_top _snake_case = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(lowerCAmelCase_ , lowerCAmelCase_ , '''constant''' , 0.0 ) class UpperCAmelCase ( nn.Module ): def __init__( self : int , __lowerCamelCase : MobileNetVaConfig , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Optional[int] = 1 , __lowerCamelCase : Optional[int] = 1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[bool] = True , __lowerCamelCase : Optional[bool or str] = True , ): """simple docstring""" super().__init__() _snake_case = config if in_channels % groups != 0: raise ValueError(f"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(f"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) _snake_case = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _snake_case = nn.Convad( in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , kernel_size=__lowerCamelCase , stride=__lowerCamelCase , padding=__lowerCamelCase , groups=__lowerCamelCase , bias=__lowerCamelCase , padding_mode='''zeros''' , ) if use_normalization: _snake_case = nn.BatchNormad( num_features=__lowerCamelCase , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=__lowerCamelCase , track_running_stats=__lowerCamelCase , ) else: _snake_case = None if use_activation: if isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = ACTaFN[use_activation] elif isinstance(config.hidden_act , __lowerCamelCase ): _snake_case = ACTaFN[config.hidden_act] else: _snake_case = config.hidden_act else: _snake_case = None def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : torch.Tensor ): """simple docstring""" if self.config.tf_padding: _snake_case = apply_tf_padding(__lowerCamelCase , self.convolution ) _snake_case = self.convolution(__lowerCamelCase ) if self.normalization is not None: _snake_case = self.normalization(__lowerCamelCase ) if self.activation is not None: _snake_case = self.activation(__lowerCamelCase ) return features class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : str = MobileNetVaConfig A__ : Dict = load_tf_weights_in_mobilenet_va A__ : List[str] = '''mobilenet_v1''' A__ : Optional[Any] = '''pixel_values''' A__ : List[Any] = False def __UpperCAmelCase ( self : int , __lowerCamelCase : Union[nn.Linear, nn.Convad] ): """simple docstring""" if isinstance(__lowerCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__lowerCamelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) snake_case = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' snake_case = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''',__SCREAMING_SNAKE_CASE,) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : Union[str, Any] , __lowerCamelCase : MobileNetVaConfig , __lowerCamelCase : bool = True ): """simple docstring""" super().__init__(__lowerCamelCase ) _snake_case = config _snake_case = 3_2 _snake_case = max(int(depth * config.depth_multiplier ) , config.min_depth ) _snake_case = MobileNetVaConvLayer( __lowerCamelCase , in_channels=config.num_channels , out_channels=__lowerCamelCase , kernel_size=3 , stride=2 , ) _snake_case = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _snake_case = nn.ModuleList() for i in range(1_3 ): _snake_case = out_channels if strides[i] == 2 or i == 0: depth *= 2 _snake_case = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( __lowerCamelCase , in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=__lowerCamelCase , ) ) self.layer.append( MobileNetVaConvLayer( __lowerCamelCase , in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , kernel_size=1 , ) ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] ): """simple docstring""" raise NotImplementedError @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[bool] = None , ): """simple docstring""" _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) _snake_case = self.conv_stem(__lowerCamelCase ) _snake_case = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _snake_case = layer_module(__lowerCamelCase ) if output_hidden_states: _snake_case = all_hidden_states + (hidden_states,) _snake_case = hidden_states if self.pooler is not None: _snake_case = torch.flatten(self.pooler(__lowerCamelCase ) , start_dim=1 ) else: _snake_case = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowerCamelCase , pooler_output=__lowerCamelCase , hidden_states=__lowerCamelCase , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''',__SCREAMING_SNAKE_CASE,) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : int , __lowerCamelCase : MobileNetVaConfig ): """simple docstring""" super().__init__(__lowerCamelCase ) _snake_case = config.num_labels _snake_case = MobileNetVaModel(__lowerCamelCase ) _snake_case = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _snake_case = nn.Dropout(config.classifier_dropout_prob , inplace=__lowerCamelCase ) _snake_case = nn.Linear(__lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[bool] = None , ): """simple docstring""" _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.mobilenet_va(__lowerCamelCase , output_hidden_states=__lowerCamelCase , return_dict=__lowerCamelCase ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(self.dropout(__lowerCamelCase ) ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = '''single_label_classification''' else: _snake_case = '''multi_label_classification''' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(__lowerCamelCase , __lowerCamelCase ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(__lowerCamelCase , __lowerCamelCase ) if not return_dict: _snake_case = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=__lowerCamelCase , logits=__lowerCamelCase , hidden_states=outputs.hidden_states , )
103
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 'facebook/bart-large-mnli' SCREAMING_SNAKE_CASE : Optional[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) SCREAMING_SNAKE_CASE : Any = 'text_classifier' SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : Tuple = ['text', ['text']] SCREAMING_SNAKE_CASE : List[str] = ['text'] def SCREAMING_SNAKE_CASE ( self : List[Any] ): super().setup() __lowercase = self.model.config __lowercase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): __lowercase = int(lowercase__ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Dict ,lowercase__ : List[Any] ): __lowercase = labels return self.pre_processor( [text] * len(lowercase__ ) ,[F"This example is {label}" for label in labels] ,return_tensors='''pt''' ,padding='''max_length''' ,) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = outputs.logits __lowercase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
41
0
"""simple docstring""" def _lowerCamelCase ( UpperCAmelCase_ : int, UpperCAmelCase_ : int ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def _lowerCamelCase ( ) -> None: """simple docstring""" print("Truth Table of NOR Gate:" ) print("| Input 1 | Input 2 | Output |" ) print(F"""| 0 | 0 | {nor_gate(0, 0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0, 1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1, 0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1, 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
104
'''simple docstring''' from collections.abc import Callable class lowercase_ : """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : Callable | None = None ): # Stores actual heap items. __lowercase = [] # Stores indexes of each item for supporting updates and deletion. __lowercase = {} # Stores current size of heap. __lowercase = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __lowercase = key or (lambda lowercase__ : x) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : int ): return int((i - 1) / 2 ) if i > 0 else None def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = int(2 * i + 1 ) return left if 0 < left < self.size else None def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ): __lowercase = int(2 * i + 2 ) return right if 0 < right < self.size else None def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : int ,lowercase__ : int ): __lowercase , __lowercase = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __lowercase , __lowercase = self.arr[j], self.arr[i] def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): return self.arr[i][1] < self.arr[j][1] def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._left(lowercase__ ) __lowercase = self._right(lowercase__ ) __lowercase = i if left is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = left if right is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = right return valid_parent def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._parent(lowercase__ ) while parent is not None and not self._cmp(lowercase__ ,lowercase__ ): self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = parent, self._parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = self._get_valid_parent(lowercase__ ) while valid_parent != index: self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = valid_parent, self._get_valid_parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] __lowercase = [item, self.key(lowercase__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] del self.pos_map[item] __lowercase = self.arr[self.size - 1] __lowercase = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : int ): __lowercase = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(lowercase__ )] ) else: __lowercase = [item, self.key(lowercase__ )] __lowercase = self.size self.size += 1 self._heapify_up(self.size - 1 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): return self.arr[0] if self.size else None def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _A ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
41
0
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str="attention" ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = params[F'{prefix}/layers_{i}/{layer_name}/key/kernel'] SCREAMING_SNAKE_CASE_ : str = params[F'{prefix}/layers_{i}/{layer_name}/out/kernel'] SCREAMING_SNAKE_CASE_ : Optional[int] = params[F'{prefix}/layers_{i}/{layer_name}/query/kernel'] SCREAMING_SNAKE_CASE_ : Union[str, Any] = params[F'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple=False ) -> Dict: """simple docstring""" if split_mlp_wi: SCREAMING_SNAKE_CASE_ : Union[str, Any] = params[F'{prefix}/layers_{i}/mlp/wi_0/kernel'] SCREAMING_SNAKE_CASE_ : int = params[F'{prefix}/layers_{i}/mlp/wi_1/kernel'] SCREAMING_SNAKE_CASE_ : Any = (wi_a, wi_a) else: SCREAMING_SNAKE_CASE_ : int = params[F'{prefix}/layers_{i}/mlp/wi/kernel'] SCREAMING_SNAKE_CASE_ : str = params[F'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def __UpperCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Dict ) -> Any: """simple docstring""" return params[F'{prefix}/layers_{i}/{layer_name}/scale'] def __UpperCAmelCase ( lowerCamelCase_ : dict , *, lowerCamelCase_ : int , lowerCamelCase_ : bool ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = traverse_util.flatten_dict(variables['target'] ) SCREAMING_SNAKE_CASE_ : str = {'/'.join(lowerCamelCase_ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi SCREAMING_SNAKE_CASE_ : Tuple = 'encoder/layers_0/mlp/wi_0/kernel' in old print('Split MLP:' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = collections.OrderedDict() # Shared embeddings. SCREAMING_SNAKE_CASE_ : Union[str, Any] = old['token_embedder/embedding'] # Encoder. for i in range(lowerCamelCase_ ): # Block i, layer 0 (Self Attention). SCREAMING_SNAKE_CASE_ : Optional[Any] = tax_layer_norm_lookup(lowerCamelCase_ , lowerCamelCase_ , 'encoder' , 'pre_attention_layer_norm' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = tax_attention_lookup(lowerCamelCase_ , lowerCamelCase_ , 'encoder' , 'attention' ) SCREAMING_SNAKE_CASE_ : List[str] = layer_norm SCREAMING_SNAKE_CASE_ : List[Any] = k.T SCREAMING_SNAKE_CASE_ : Any = o.T SCREAMING_SNAKE_CASE_ : List[str] = q.T SCREAMING_SNAKE_CASE_ : List[Any] = v.T # Block i, layer 1 (MLP). SCREAMING_SNAKE_CASE_ : Dict = tax_layer_norm_lookup(lowerCamelCase_ , lowerCamelCase_ , 'encoder' , 'pre_mlp_layer_norm' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = tax_mlp_lookup(lowerCamelCase_ , lowerCamelCase_ , 'encoder' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE_ : Optional[Any] = wi[0].T SCREAMING_SNAKE_CASE_ : str = wi[1].T else: SCREAMING_SNAKE_CASE_ : List[str] = wi.T SCREAMING_SNAKE_CASE_ : Tuple = wo.T SCREAMING_SNAKE_CASE_ : str = old[ 'encoder/relpos_bias/rel_embedding' ].T SCREAMING_SNAKE_CASE_ : Any = old['encoder/encoder_norm/scale'] if not is_encoder_only: # Decoder. for i in range(lowerCamelCase_ ): # Block i, layer 0 (Self Attention). SCREAMING_SNAKE_CASE_ : str = tax_layer_norm_lookup(lowerCamelCase_ , lowerCamelCase_ , 'decoder' , 'pre_self_attention_layer_norm' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = tax_attention_lookup(lowerCamelCase_ , lowerCamelCase_ , 'decoder' , 'self_attention' ) SCREAMING_SNAKE_CASE_ : int = layer_norm SCREAMING_SNAKE_CASE_ : Any = k.T SCREAMING_SNAKE_CASE_ : Tuple = o.T SCREAMING_SNAKE_CASE_ : Optional[Any] = q.T SCREAMING_SNAKE_CASE_ : Any = v.T # Block i, layer 1 (Cross Attention). SCREAMING_SNAKE_CASE_ : Dict = tax_layer_norm_lookup(lowerCamelCase_ , lowerCamelCase_ , 'decoder' , 'pre_cross_attention_layer_norm' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = tax_attention_lookup(lowerCamelCase_ , lowerCamelCase_ , 'decoder' , 'encoder_decoder_attention' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer_norm SCREAMING_SNAKE_CASE_ : str = k.T SCREAMING_SNAKE_CASE_ : List[str] = o.T SCREAMING_SNAKE_CASE_ : Union[str, Any] = q.T SCREAMING_SNAKE_CASE_ : List[str] = v.T # Block i, layer 2 (MLP). SCREAMING_SNAKE_CASE_ : str = tax_layer_norm_lookup(lowerCamelCase_ , lowerCamelCase_ , 'decoder' , 'pre_mlp_layer_norm' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = tax_mlp_lookup(lowerCamelCase_ , lowerCamelCase_ , 'decoder' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE_ : Optional[int] = wi[0].T SCREAMING_SNAKE_CASE_ : Dict = wi[1].T else: SCREAMING_SNAKE_CASE_ : Optional[Any] = wi.T SCREAMING_SNAKE_CASE_ : Any = wo.T SCREAMING_SNAKE_CASE_ : Tuple = old['decoder/decoder_norm/scale'] SCREAMING_SNAKE_CASE_ : Optional[int] = old[ 'decoder/relpos_bias/rel_embedding' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: SCREAMING_SNAKE_CASE_ : Any = old['decoder/logits_dense/kernel'].T return new def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : bool ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: SCREAMING_SNAKE_CASE_ : Optional[int] = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: SCREAMING_SNAKE_CASE_ : str = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) SCREAMING_SNAKE_CASE_ : Dict = state_dict['shared.weight'] return state_dict def __UpperCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = checkpoints.load_tax_checkpoint(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Dict = convert_tax_to_pytorch(lowerCamelCase_ , num_layers=config.num_layers , is_encoder_only=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = make_state_dict(lowerCamelCase_ , lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : bool = False ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = TaConfig.from_json_file(lowerCamelCase_ ) print(F'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: SCREAMING_SNAKE_CASE_ : Optional[Any] = TaEncoderModel(lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE_ : Tuple = TaForConditionalGeneration(lowerCamelCase_ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowerCamelCase_ ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCamelCase_ ) print('Done' ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) UpperCamelCase__ : Dict = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
105
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ): __lowercase = [] def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : str ,**lowercase__ : Any ): self.events.append('''on_init_end''' ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : int ,**lowercase__ : Optional[int] ): self.events.append('''on_train_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ,**lowercase__ : List[str] ): self.events.append('''on_train_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,**lowercase__ : Optional[Any] ): self.events.append('''on_epoch_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : Any ,**lowercase__ : Optional[int] ): self.events.append('''on_epoch_end''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_step_begin''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : Optional[int] ,**lowercase__ : Dict ): self.events.append('''on_step_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,**lowercase__ : Any ): self.events.append('''on_evaluate''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : int ,**lowercase__ : Optional[Any] ): self.events.append('''on_predict''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,**lowercase__ : int ): self.events.append('''on_save''' ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_log''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : int ,lowercase__ : Dict ,**lowercase__ : str ): self.events.append('''on_prediction_step''' ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): shutil.rmtree(self.output_dir ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any]=0 ,lowercase__ : Any=0 ,lowercase__ : Tuple=6_4 ,lowercase__ : Optional[int]=6_4 ,lowercase__ : Optional[Any]=None ,lowercase__ : str=False ,**lowercase__ : Any ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionModelConfig(a=lowercase__ ,b=lowercase__ ) __lowercase = RegressionPreTrainedModel(lowercase__ ) __lowercase = TrainingArguments(self.output_dir ,disable_tqdm=lowercase__ ,report_to=[] ,**lowercase__ ) return Trainer( lowercase__ ,lowercase__ ,train_dataset=lowercase__ ,eval_dataset=lowercase__ ,callbacks=lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) ) # Order doesn't matter __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) for cba, cba in zip(lowercase__ ,lowercase__ ): if isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,lowercase__ ) elif isinstance(lowercase__ ,lowercase__ ) and not isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,cba.__class__ ) elif not isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(cba.__class__ ,lowercase__ ) else: self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ): __lowercase = ['''on_init_end''', '''on_train_begin'''] __lowercase = 0 __lowercase = len(trainer.get_eval_dataloader() ) __lowercase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(lowercase__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.get_trainer() __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # Callbacks passed at init are added to the default callbacks __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __lowercase = self.get_trainer(disable_tqdm=lowercase__ ) __lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __lowercase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(cb.__class__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # We can also add, pop, or remove by instance __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' ,category=lowercase__ ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # Independent log/save/eval __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='''steps''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='''epoch''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # A bit of everything __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=1_0 ,eval_steps=5 ,evaluation_strategy='''steps''' ,) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,) assert str(lowercase__ ) in warn_mock.call_args[0][0]
41
0
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def lowerCamelCase_ ( lowerCAmelCase__ : NDArray[floataa] , lowerCAmelCase__ : NDArray[floataa] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int , ) -> list[float]: '''simple docstring''' A , A = coefficient_matrix.shape A , A = constant_matrix.shape if rowsa != colsa: A = F'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(lowerCAmelCase__ ) if colsa != 1: A = F'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(lowerCAmelCase__ ) if rowsa != rowsa: A = ( 'Coefficient and constant matrices dimensions must be nxn and nx1 but ' F'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) != rowsa: A = ( 'Number of initial values must be equal to number of rows in coefficient ' F'''matrix but received {len(lowerCAmelCase__ )} and {rowsa}''' ) raise ValueError(lowerCAmelCase__ ) if iterations <= 0: raise ValueError('Iterations must be at least 1' ) A = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) A , A = table.shape strictly_diagonally_dominant(lowerCAmelCase__ ) # Iterates the whole matrix for given number of times for _ in range(lowerCAmelCase__ ): A = [] for row in range(lowerCAmelCase__ ): A = 0 for col in range(lowerCAmelCase__ ): if col == row: A = table[row][col] elif col == cols - 1: A = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] A = (temp + val) / denom new_val.append(lowerCAmelCase__ ) A = new_val return [float(lowerCAmelCase__ ) for i in new_val] def lowerCamelCase_ ( lowerCAmelCase__ : NDArray[floataa] ) -> bool: '''simple docstring''' A , A = table.shape A = True for i in range(0 , lowerCAmelCase__ ): A = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('Coefficient matrix is not strictly diagonally dominant' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
106
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : jnp.ndarray SCREAMING_SNAKE_CASE : jnp.ndarray class lowercase_ (nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __lowercase = [] for i in range(len(self.block_out_channels ) - 1 ): __lowercase = self.block_out_channels[i] __lowercase = self.block_out_channels[i + 1] __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = blocks __lowercase = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : List[str] ,lowercase__ : Optional[int] ): __lowercase = self.conv_in(lowercase__ ) __lowercase = nn.silu(lowercase__ ) for block in self.blocks: __lowercase = block(lowercase__ ) __lowercase = nn.silu(lowercase__ ) __lowercase = self.conv_out(lowercase__ ) return embedding @flax_register_to_config class lowercase_ (nn.Module , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 3_2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False SCREAMING_SNAKE_CASE : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) SCREAMING_SNAKE_CASE : int = 2 SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None SCREAMING_SNAKE_CASE : int = 1_2_8_0 SCREAMING_SNAKE_CASE : float = 0.0 SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = "rgb" SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : jax.random.KeyArray ): # init input tensors __lowercase = (1, self.in_channels, self.sample_size, self.sample_size) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase = jnp.ones((1,) ,dtype=jnp.intaa ) __lowercase = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa ) __lowercase = (1, 3, self.sample_size * 8, self.sample_size * 8) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase , __lowercase = jax.random.split(lowercase__ ) __lowercase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )["params"] def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.block_out_channels __lowercase = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __lowercase = self.num_attention_heads or self.attention_head_dim # input __lowercase = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time __lowercase = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift ) __lowercase = FlaxTimestepEmbedding(lowercase__ ,dtype=self.dtype ) __lowercase = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) __lowercase = self.only_cross_attention if isinstance(lowercase__ ,lowercase__ ): __lowercase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = (num_attention_heads,) * len(self.down_block_types ) # down __lowercase = [] __lowercase = [] __lowercase = block_out_channels[0] __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) for i, down_block_type in enumerate(self.down_block_types ): __lowercase = output_channel __lowercase = block_out_channels[i] __lowercase = i == len(lowercase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": __lowercase = FlaxCrossAttnDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: __lowercase = FlaxDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(lowercase__ ) for _ in range(self.layers_per_block ): __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) if not is_final_block: __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) __lowercase = down_blocks __lowercase = controlnet_down_blocks # mid __lowercase = block_out_channels[-1] __lowercase = FlaxUNetMidBlockaDCrossAttn( in_channels=lowercase__ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : float = 1.0 ,lowercase__ : bool = True ,lowercase__ : bool = False ,): __lowercase = self.controlnet_conditioning_channel_order if channel_order == "bgr": __lowercase = jnp.flip(lowercase__ ,axis=1 ) # 1. time if not isinstance(lowercase__ ,jnp.ndarray ): __lowercase = jnp.array([timesteps] ,dtype=jnp.intaa ) elif isinstance(lowercase__ ,jnp.ndarray ) and len(timesteps.shape ) == 0: __lowercase = timesteps.astype(dtype=jnp.floataa ) __lowercase = jnp.expand_dims(lowercase__ ,0 ) __lowercase = self.time_proj(lowercase__ ) __lowercase = self.time_embedding(lowercase__ ) # 2. pre-process __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.conv_in(lowercase__ ) __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.controlnet_cond_embedding(lowercase__ ) sample += controlnet_cond # 3. down __lowercase = (sample,) for down_block in self.down_blocks: if isinstance(lowercase__ ,lowercase__ ): __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) else: __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,deterministic=not train ) down_block_res_samples += res_samples # 4. mid __lowercase = self.mid_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) # 5. contronet blocks __lowercase = () for down_block_res_sample, controlnet_block in zip(lowercase__ ,self.controlnet_down_blocks ): __lowercase = controlnet_block(lowercase__ ) controlnet_down_block_res_samples += (down_block_res_sample,) __lowercase = controlnet_down_block_res_samples __lowercase = self.controlnet_mid_block(lowercase__ ) # 6. scaling __lowercase = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowercase__ ,mid_block_res_sample=lowercase__ )
41
0
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class lowercase_ : """simple docstring""" def __init__( self : Tuple, UpperCamelCase__ : list[tuple[float, float]] ) -> Any: _A = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _A = len(UpperCamelCase__ ) - 1 def __UpperCAmelCase ( self : Optional[Any], UpperCamelCase__ : float ) -> list[float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." _A = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree, UpperCamelCase__ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(UpperCamelCase__ ), 5 ) == 1 return output_values def __UpperCAmelCase ( self : Dict, UpperCamelCase__ : float ) -> tuple[float, float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." _A = self.basis_function(UpperCamelCase__ ) _A = 0.0 _A = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __UpperCAmelCase ( self : Dict, UpperCamelCase__ : float = 0.01 ) -> List[Any]: from matplotlib import pyplot as plt # type: ignore _A = [] # x coordinates of points to plot _A = [] # y coordinates of points to plot _A = 0.0 while t <= 1: _A = self.bezier_curve_function(UpperCamelCase__ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _A = [i[0] for i in self.list_of_points] _A = [i[1] for i in self.list_of_points] plt.plot( UpperCamelCase__, UpperCamelCase__, color='blue', label='Curve of Degree ' + str(self.degree ), ) plt.scatter(UpperCamelCase__, UpperCamelCase__, color='red', label='Control Points' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
107
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase__ = False lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''ybelkada/fonts''' def _A ( ): """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use " '''Pix2StructImageProcessor. Please upgrade torch.''' ) def _A ( A__ , A__ , A__ ): """simple docstring""" requires_backends(A__ , ['''torch'''] ) _check_torch_version() __lowercase = image_tensor.unsqueeze(0 ) __lowercase = torch.nn.functional.unfold(A__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) __lowercase = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , A__ , A__ , -1 ) __lowercase = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def _A ( A__ , A__ = 36 , A__ = "black" , A__ = "white" , A__ = 5 , A__ = 5 , A__ = 5 , A__ = 5 , A__ = None , A__ = None , ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Add new lines so that each line is no more than 80 characters. __lowercase = textwrap.TextWrapper(width=80 ) __lowercase = wrapper.wrap(text=A__ ) __lowercase = '''\n'''.join(A__ ) if font_bytes is not None and font_path is None: __lowercase = io.BytesIO(A__ ) elif font_path is not None: __lowercase = font_path else: __lowercase = hf_hub_download(A__ , '''Arial.TTF''' ) __lowercase = ImageFont.truetype(A__ , encoding='''UTF-8''' , size=A__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. __lowercase = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , A__ ) ) __lowercase , __lowercase , __lowercase , __lowercase = temp_draw.textbbox((0, 0) , A__ , A__ ) # Create the actual image with a bit of padding around the text. __lowercase = text_width + left_padding + right_padding __lowercase = text_height + top_padding + bottom_padding __lowercase = Image.new('''RGB''' , (image_width, image_height) , A__ ) __lowercase = ImageDraw.Draw(A__ ) draw.text(xy=(left_padding, top_padding) , text=A__ , fill=A__ , font=A__ ) return image def _A ( A__ , A__ , **A__ ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Convert to PIL image if necessary __lowercase = to_pil_image(A__ ) __lowercase = render_text(A__ , **A__ ) __lowercase = max(header_image.width , image.width ) __lowercase = int(image.height * (new_width / image.width) ) __lowercase = int(header_image.height * (new_width / header_image.width) ) __lowercase = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary __lowercase = to_numpy_array(A__ ) if infer_channel_dimension_format(A__ ) == ChannelDimension.LAST: __lowercase = to_channel_dimension_format(A__ , ChannelDimension.LAST ) return new_image class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ['flattened_patches'] def __init__( self : Any ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : int = 2_0_4_8 ,lowercase__ : bool = False ,**lowercase__ : List[str] ,): super().__init__(**lowercase__ ) __lowercase = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6} __lowercase = do_normalize __lowercase = do_convert_rgb __lowercase = max_patches __lowercase = is_vqa def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : np.ndarray ,lowercase__ : int ,lowercase__ : dict ,**lowercase__ : Tuple ): requires_backends(self.extract_flattened_patches ,'''torch''' ) _check_torch_version() # convert to torch __lowercase = to_channel_dimension_format(lowercase__ ,ChannelDimension.FIRST ) __lowercase = torch.from_numpy(lowercase__ ) __lowercase , __lowercase = patch_size['''height'''], patch_size['''width'''] __lowercase , __lowercase = get_image_size(lowercase__ ) # maximize scale s.t. __lowercase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) __lowercase = max(min(math.floor(scale * image_height / patch_height ) ,lowercase__ ) ,1 ) __lowercase = max(min(math.floor(scale * image_width / patch_width ) ,lowercase__ ) ,1 ) __lowercase = max(num_feasible_rows * patch_height ,1 ) __lowercase = max(num_feasible_cols * patch_width ,1 ) __lowercase = torch.nn.functional.interpolate( image.unsqueeze(0 ) ,size=(resized_height, resized_width) ,mode='''bilinear''' ,align_corners=lowercase__ ,antialias=lowercase__ ,).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] __lowercase = torch_extract_patches(lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = patches.shape __lowercase = patches_shape[1] __lowercase = patches_shape[2] __lowercase = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] __lowercase = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] __lowercase = torch.arange(lowercase__ ).reshape([rows, 1] ).repeat(1 ,lowercase__ ).reshape([rows * columns, 1] ) __lowercase = torch.arange(lowercase__ ).reshape([1, columns] ).repeat(lowercase__ ,1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] __lowercase = row_ids.to(torch.floataa ) __lowercase = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] __lowercase = torch.cat([row_ids, col_ids, patches] ,-1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] __lowercase = torch.nn.functional.pad(lowercase__ ,[0, 0, 0, max_patches - (rows * columns)] ).float() __lowercase = to_numpy_array(lowercase__ ) return result def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : np.ndarray ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ): if image.dtype == np.uinta: __lowercase = image.astype(np.floataa ) # take mean across the whole `image` __lowercase = np.mean(lowercase__ ) __lowercase = np.std(lowercase__ ) __lowercase = max(lowercase__ ,1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : ImageInput ,lowercase__ : Optional[str] = None ,lowercase__ : bool = None ,lowercase__ : Optional[bool] = None ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[Dict[str, int]] = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : ChannelDimension = ChannelDimension.FIRST ,**lowercase__ : List[Any] ,): __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = patch_size if patch_size is not None else self.patch_size __lowercase = max_patches if max_patches is not None else self.max_patches __lowercase = self.is_vqa if kwargs.get('''data_format''' ,lowercase__ ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) __lowercase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(lowercase__ ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowercase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) __lowercase = kwargs.pop('''font_bytes''' ,lowercase__ ) __lowercase = kwargs.pop('''font_path''' ,lowercase__ ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = [header_text] * len(lowercase__ ) __lowercase = [ render_header(lowercase__ ,header_text[i] ,font_bytes=lowercase__ ,font_path=lowercase__ ) for i, image in enumerate(lowercase__ ) ] if do_normalize: __lowercase = [self.normalize(image=lowercase__ ) for image in images] # convert to torch tensor and permute __lowercase = [ self.extract_flattened_patches(image=lowercase__ ,max_patches=lowercase__ ,patch_size=lowercase__ ) for image in images ] # create attention mask in numpy __lowercase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] __lowercase = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks} ,tensor_type=lowercase__ ) return encoded_outputs
41
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar __a: Any = TypeVar('''T''') class SCREAMING_SNAKE_CASE__ ( Generic[T] ): '''simple docstring''' _lowerCamelCase = 42 # Cache store of keys _lowerCamelCase = 42 # References of the keys in cache _lowerCamelCase = 10 # Maximum capacity of cache def __init__( self : Optional[int] , lowerCamelCase : int ) -> None: """simple docstring""" _UpperCAmelCase = deque() _UpperCAmelCase = set() if not n: _UpperCAmelCase = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: _UpperCAmelCase = n def lowerCamelCase ( self : Optional[Any] , lowerCamelCase : T ) -> None: """simple docstring""" if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _UpperCAmelCase = self.dq_store.pop() self.key_reference.remove(lowerCamelCase ) else: self.dq_store.remove(lowerCamelCase ) self.dq_store.appendleft(lowerCamelCase ) self.key_reference.add(lowerCamelCase ) def lowerCamelCase ( self : str ) -> None: """simple docstring""" for k in self.dq_store: print(lowerCamelCase ) def __repr__( self : Optional[Any] ) -> str: """simple docstring""" return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() __a: LRUCache[str | int] = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
108
'''simple docstring''' import doctest from collections import deque import numpy as np class lowercase_ : """simple docstring""" def __init__( self : Optional[Any] ): __lowercase = [2, 1, 2, -1] __lowercase = [1, 2, 3, 4] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = len(self.first_signal ) __lowercase = len(self.second_signal ) __lowercase = max(lowercase__ ,lowercase__ ) # create a zero matrix of max_length x max_length __lowercase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __lowercase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __lowercase = np.matmul(np.transpose(lowercase__ ) ,np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ ,2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
41
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class __a ( metaclass=_snake_case ): __UpperCamelCase : Optional[Any] = ['onnx'] def __init__( self : List[str] ,*lowerCamelCase : str ,**lowerCamelCase : Dict ): '''simple docstring''' requires_backends(self ,["""onnx"""] ) @classmethod def UpperCAmelCase__ ( cls : List[str] ,*lowerCamelCase : str ,**lowerCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(cls ,["""onnx"""] ) @classmethod def UpperCAmelCase__ ( cls : Tuple ,*lowerCamelCase : Dict ,**lowerCamelCase : Tuple ): '''simple docstring''' requires_backends(cls ,["""onnx"""] )
109
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
41
0
"""simple docstring""" def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case ,_snake_case ): # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case ): # Base Case if curr_ind == len(_snake_case ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 ,len(_snake_case ) ): if valid_connection(_snake_case ,_snake_case ,_snake_case ,_snake_case ): # Insert current vertex into path as next transition UpperCAmelCase__ : str = next_ver # Validate created path if util_hamilton_cycle(_snake_case ,_snake_case ,curr_ind + 1 ): return True # Backtrack UpperCAmelCase__ : int = -1 return False def lowerCamelCase ( _snake_case ,_snake_case = 0 ): UpperCAmelCase__ : str = [-1] * (len(_snake_case ) + 1) # initialize start and end of path with starting index UpperCAmelCase__ : Optional[Any] = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(_snake_case ,_snake_case ,1 ) else []
110
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCAmelCase__ = getLogger(__name__) lowerCAmelCase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def _A ( A__ , A__ , A__ , A__ = 8 , A__ = DEFAULT_DEVICE , A__=False , A__="summarization" , A__=None , **A__ , ): """simple docstring""" __lowercase = Path(A__ ).open('''w''' , encoding='''utf-8''' ) __lowercase = str(A__ ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained(A__ ).to(A__ ) if fpaa: __lowercase = model.half() __lowercase = AutoTokenizer.from_pretrained(A__ ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __lowercase = time.time() # update config with task specific params use_task_specific_params(A__ , A__ ) if prefix is None: __lowercase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(A__ , A__ ) ) ): __lowercase = [prefix + text for text in examples_chunk] __lowercase = tokenizer(A__ , return_tensors='''pt''' , truncation=A__ , padding='''longest''' ).to(A__ ) __lowercase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **A__ , ) __lowercase = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __lowercase = int(time.time() - start_time ) # seconds __lowercase = len(A__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _A ( ): """simple docstring""" return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def _A ( A__=True ): """simple docstring""" __lowercase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=A__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=A__ , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=A__ , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=A__ , required=A__ , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=A__ , required=A__ , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=A__ , required=A__ , default=A__ , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=A__ , required=A__ , default=A__ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=A__ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=A__ , default=8 , required=A__ , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=A__ , default=-1 , required=A__ , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=A__ , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowercase , __lowercase = parser.parse_known_args() __lowercase = parse_numeric_n_bool_cl_kwargs(A__ ) if parsed_args and verbose: print(F"parsed the following generate kwargs: {parsed_args}" ) __lowercase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowercase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=A__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __lowercase = generate_summaries_or_translations( A__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **A__ , ) if args.reference_path is None: return {} # Compute scores __lowercase = calculate_bleu if '''translation''' in args.task else calculate_rouge __lowercase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowercase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(A__ )] __lowercase = score_fn(A__ , A__ ) scores.update(A__ ) if args.dump_args: scores.update(A__ ) if args.info: __lowercase = args.info if verbose: print(A__ ) if args.score_path is not None: json.dump(A__ , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
41
0
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def a_ () -> Union[str, Any]: """simple docstring""" __a : Any = HfArgumentParser(A__ ) __a : Dict = parser.parse_args_into_dataclasses()[0] __a : str = TensorFlowBenchmark(args=A__ ) try: __a : Union[str, Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: __a : Optional[Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." __a : Dict = " ".join(str(A__ ).split(" " )[:-1] ) __a : Union[str, Any] = "" __a : Union[str, Any] = eval(str(A__ ).split(" " )[-1] ) __a : Optional[Any] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(A__ ) if len(A__ ) > 0: __a : Any = full_error_msg + begin_error_msg + str(A__ ) raise ValueError(A__ ) benchmark.run() if __name__ == "__main__": main()
351
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(A__ ): print(F"{i}\t\t{d}" ) def _A ( A__ , A__ , A__ ): """simple docstring""" for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = [float('''inf''' )] * vertex_count __lowercase = 0.0 for _ in range(vertex_count - 1 ): for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: __lowercase = distance[u] + w __lowercase = check_negative_cycle(A__ , A__ , A__ ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = int(input('''Enter number of vertices: ''').strip()) lowerCAmelCase__ = int(input('''Enter number of edges: ''').strip()) lowerCAmelCase__ = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) lowerCAmelCase__ = {'''src''': src, '''dst''': dest, '''weight''': weight} lowerCAmelCase__ = int(input('''\nEnter shortest path source:''').strip()) lowerCAmelCase__ = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
41
0
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class lowerCAmelCase__ ( lowerCamelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[int] = 'mvp' _SCREAMING_SNAKE_CASE : str = ['past_key_values'] _SCREAMING_SNAKE_CASE : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : int , _SCREAMING_SNAKE_CASE : str=50_267 , _SCREAMING_SNAKE_CASE : List[str]=1_024 , _SCREAMING_SNAKE_CASE : Union[str, Any]=12 , _SCREAMING_SNAKE_CASE : Optional[int]=4_096 , _SCREAMING_SNAKE_CASE : Tuple=16 , _SCREAMING_SNAKE_CASE : Union[str, Any]=12 , _SCREAMING_SNAKE_CASE : Union[str, Any]=4_096 , _SCREAMING_SNAKE_CASE : Optional[int]=16 , _SCREAMING_SNAKE_CASE : int=0.0 , _SCREAMING_SNAKE_CASE : Any=0.0 , _SCREAMING_SNAKE_CASE : Optional[int]="gelu" , _SCREAMING_SNAKE_CASE : Dict=1_024 , _SCREAMING_SNAKE_CASE : List[str]=0.1 , _SCREAMING_SNAKE_CASE : Optional[int]=0.0 , _SCREAMING_SNAKE_CASE : Optional[int]=0.0 , _SCREAMING_SNAKE_CASE : Any=0.0_2 , _SCREAMING_SNAKE_CASE : Any=0.0 , _SCREAMING_SNAKE_CASE : List[str]=False , _SCREAMING_SNAKE_CASE : List[str]=True , _SCREAMING_SNAKE_CASE : Optional[int]=1 , _SCREAMING_SNAKE_CASE : int=0 , _SCREAMING_SNAKE_CASE : List[Any]=2 , _SCREAMING_SNAKE_CASE : str=True , _SCREAMING_SNAKE_CASE : Dict=2 , _SCREAMING_SNAKE_CASE : str=2 , _SCREAMING_SNAKE_CASE : Tuple=False , _SCREAMING_SNAKE_CASE : List[str]=100 , _SCREAMING_SNAKE_CASE : int=800 , **_SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = d_model SCREAMING_SNAKE_CASE : List[str] = encoder_ffn_dim SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_layers SCREAMING_SNAKE_CASE : Tuple = encoder_attention_heads SCREAMING_SNAKE_CASE : Dict = decoder_ffn_dim SCREAMING_SNAKE_CASE : int = decoder_layers SCREAMING_SNAKE_CASE : Any = decoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = dropout SCREAMING_SNAKE_CASE : int = attention_dropout SCREAMING_SNAKE_CASE : Any = activation_dropout SCREAMING_SNAKE_CASE : Any = activation_function SCREAMING_SNAKE_CASE : Union[str, Any] = init_std SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layerdrop SCREAMING_SNAKE_CASE : List[str] = classifier_dropout SCREAMING_SNAKE_CASE : Dict = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_layers SCREAMING_SNAKE_CASE : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE : List[Any] = use_prompt SCREAMING_SNAKE_CASE : Any = prompt_length SCREAMING_SNAKE_CASE : Union[str, Any] = prompt_mid_dim super().__init__( pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , lowercase__ ): SCREAMING_SNAKE_CASE : Tuple = self.bos_token_id warnings.warn( f"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ 'The config can simply be saved and uploaded again to be fixed.' )
265
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[Any] ,*lowercase__ : Optional[Any] ,**lowercase__ : int ): warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' ,lowercase__ ,) super().__init__(*lowercase__ ,**lowercase__ )
41
0
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP UpperCAmelCase_ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ : Union[str, Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\")\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\")\n >>> pipe.to(\"cuda\")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save(\"cat.png\")\n ```\n" def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=8 ): __magic_name__ : Optional[Any] =h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 __magic_name__ : str =w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class __A ( lowerCamelCase__ ): def __init__( self :List[Any] , __snake_case :MultilingualCLIP , __snake_case :XLMRobertaTokenizer , __snake_case :UNetaDConditionModel , __snake_case :Union[DDIMScheduler, DDPMScheduler] , __snake_case :VQModel , ): '''simple docstring''' super().__init__() self.register_modules( text_encoder=lowercase__ , tokenizer=lowercase__ , unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) __magic_name__ : Dict =2 ** (len(self.movq.config.block_out_channels ) - 1) def A__ ( self :Tuple , __snake_case :Dict , __snake_case :List[Any] , __snake_case :Dict , __snake_case :Union[str, Any] , __snake_case :int , __snake_case :Dict ): '''simple docstring''' if latents is None: __magic_name__ : str =randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__ ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) __magic_name__ : Optional[Any] =latents.to(lowercase__ ) __magic_name__ : List[Any] =latents * scheduler.init_noise_sigma return latents def A__ ( self :Optional[Any] , __snake_case :Union[str, Any] , __snake_case :Optional[Any] , __snake_case :Any , __snake_case :List[Any] , __snake_case :Tuple=None , ): '''simple docstring''' __magic_name__ : int =len(lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else 1 # get prompt text embeddings __magic_name__ : List[Any] =self.tokenizer( lowercase__ , padding="""max_length""" , truncation=lowercase__ , max_length=77 , return_attention_mask=lowercase__ , add_special_tokens=lowercase__ , return_tensors="""pt""" , ) __magic_name__ : Optional[Any] =text_inputs.input_ids __magic_name__ : Any =self.tokenizer(lowercase__ , padding="""longest""" , return_tensors="""pt""" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(lowercase__ , lowercase__ ): __magic_name__ : Any =self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) __magic_name__ : str =text_input_ids.to(lowercase__ ) __magic_name__ : Tuple =text_inputs.attention_mask.to(lowercase__ ) __magic_name__ , __magic_name__ : List[str] =self.text_encoder( input_ids=lowercase__ , attention_mask=lowercase__ ) __magic_name__ : List[str] =prompt_embeds.repeat_interleave(lowercase__ , dim=0 ) __magic_name__ : Dict =text_encoder_hidden_states.repeat_interleave(lowercase__ , dim=0 ) __magic_name__ : Union[str, Any] =text_mask.repeat_interleave(lowercase__ , dim=0 ) if do_classifier_free_guidance: __magic_name__ : str =42 if negative_prompt is None: __magic_name__ : str =[""""""] * batch_size elif type(lowercase__ ) is not type(lowercase__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(lowercase__ )} !=" f" {type(lowercase__ )}." ) elif isinstance(lowercase__ , lowercase__ ): __magic_name__ : Any =[negative_prompt] elif batch_size != len(lowercase__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(lowercase__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" """ the batch size of `prompt`.""" ) else: __magic_name__ : Tuple =negative_prompt __magic_name__ : Tuple =self.tokenizer( lowercase__ , padding="""max_length""" , max_length=77 , truncation=lowercase__ , return_attention_mask=lowercase__ , add_special_tokens=lowercase__ , return_tensors="""pt""" , ) __magic_name__ : str =uncond_input.input_ids.to(lowercase__ ) __magic_name__ : List[Any] =uncond_input.attention_mask.to(lowercase__ ) __magic_name__ , __magic_name__ : List[Any] =self.text_encoder( input_ids=lowercase__ , attention_mask=lowercase__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __magic_name__ : Union[str, Any] =negative_prompt_embeds.shape[1] __magic_name__ : List[str] =negative_prompt_embeds.repeat(1 , lowercase__ ) __magic_name__ : int =negative_prompt_embeds.view(batch_size * num_images_per_prompt , lowercase__ ) __magic_name__ : List[Any] =uncond_text_encoder_hidden_states.shape[1] __magic_name__ : Any =uncond_text_encoder_hidden_states.repeat(1 , lowercase__ , 1 ) __magic_name__ : List[Any] =uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , lowercase__ , -1 ) __magic_name__ : Union[str, Any] =uncond_text_mask.repeat_interleave(lowercase__ , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __magic_name__ : Union[str, Any] =torch.cat([negative_prompt_embeds, prompt_embeds] ) __magic_name__ : List[str] =torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) __magic_name__ : int =torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def A__ ( self :List[str] , __snake_case :List[Any]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) __magic_name__ : Tuple =torch.device(f"cuda:{gpu_id}" ) __magic_name__ : Optional[Any] =[ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__ ) def A__ ( self :Dict , __snake_case :Union[str, Any]=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) __magic_name__ : str =torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=lowercase__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __magic_name__ : str =None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: __magic_name__ , __magic_name__ : List[str] =cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__ ) if self.safety_checker is not None: __magic_name__ , __magic_name__ : Any =cpu_offload_with_hook(self.safety_checker , lowercase__ , prev_module_hook=lowercase__ ) # We'll offload the last model manually. __magic_name__ : List[Any] =hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A__ ( self :Dict ): '''simple docstring''' if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase__ ) def __call__( self :Union[str, Any] , __snake_case :Union[str, List[str]] , __snake_case :Union[torch.FloatTensor, List[torch.FloatTensor]] , __snake_case :Union[torch.FloatTensor, List[torch.FloatTensor]] , __snake_case :Optional[Union[str, List[str]]] = None , __snake_case :int = 5_12 , __snake_case :int = 5_12 , __snake_case :int = 1_00 , __snake_case :float = 4.0 , __snake_case :int = 1 , __snake_case :Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case :Optional[torch.FloatTensor] = None , __snake_case :Optional[str] = "pil" , __snake_case :bool = True , ): '''simple docstring''' if isinstance(lowercase__ , lowercase__ ): __magic_name__ : Any =1 elif isinstance(lowercase__ , lowercase__ ): __magic_name__ : Union[str, Any] =len(lowercase__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(lowercase__ )}" ) __magic_name__ : Any =self._execution_device __magic_name__ : int =batch_size * num_images_per_prompt __magic_name__ : Union[str, Any] =guidance_scale > 1.0 __magic_name__ , __magic_name__ , __magic_name__ : Dict =self._encode_prompt( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if isinstance(lowercase__ , lowercase__ ): __magic_name__ : int =torch.cat(lowercase__ , dim=0 ) if isinstance(lowercase__ , lowercase__ ): __magic_name__ : Dict =torch.cat(lowercase__ , dim=0 ) if do_classifier_free_guidance: __magic_name__ : Dict =image_embeds.repeat_interleave(lowercase__ , dim=0 ) __magic_name__ : Optional[int] =negative_image_embeds.repeat_interleave(lowercase__ , dim=0 ) __magic_name__ : List[str] =torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=lowercase__ ) self.scheduler.set_timesteps(lowercase__ , device=lowercase__ ) __magic_name__ : Dict =self.scheduler.timesteps __magic_name__ : int =self.unet.config.in_channels __magic_name__ , __magic_name__ : Any =get_new_h_w(lowercase__ , lowercase__ , self.movq_scale_factor ) # create initial latent __magic_name__ : int =self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__ ) ): # expand the latents if we are doing classifier free guidance __magic_name__ : str =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __magic_name__ : int ={"""text_embeds""": prompt_embeds, """image_embeds""": image_embeds} __magic_name__ : List[Any] =self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: __magic_name__ , __magic_name__ : Tuple =noise_pred.split(latents.shape[1] , dim=1 ) __magic_name__ , __magic_name__ : List[Any] =noise_pred.chunk(2 ) __magic_name__ , __magic_name__ : str =variance_pred.chunk(2 ) __magic_name__ : Tuple =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __magic_name__ : List[str] =torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __magic_name__ , __magic_name__ : Dict =noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __magic_name__ : Tuple =self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , ).prev_sample # post-processing __magic_name__ : Union[str, Any] =self.movq.decode(lowercase__ , force_not_quantize=lowercase__ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: __magic_name__ : Optional[Any] =image * 0.5 + 0.5 __magic_name__ : Dict =image.clamp(0 , 1 ) __magic_name__ : Optional[Any] =image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __magic_name__ : Optional[int] =self.numpy_to_pil(lowercase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__ )
21
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _A ( A__ ): """simple docstring""" __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = 0.0_1 with locka.acquire(): with pytest.raises(A__ ): __lowercase = time.time() locka.acquire(A__ ) assert time.time() - _start > timeout def _A ( A__ ): """simple docstring""" __lowercase = '''a''' * 1000 + '''.lock''' __lowercase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(A__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __lowercase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(A__ ): locka.acquire(0 )
41
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase ={ "configuration_vision_encoder_decoder": ["VisionEncoderDecoderConfig", "VisionEncoderDecoderOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase =["VisionEncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase =["TFVisionEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase =["FlaxVisionEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
617
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase__ = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
0
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): '''simple docstring''' UpperCAmelCase = len(A__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(A__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , A__ , A__ , ) def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = [] depth_first_search([] , [] , [] , A__ , A__ ) # Print all the boards for board in boards: for column in board: print(A__ ) print("""""" ) print(len(A__ ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
673
'''simple docstring''' import argparse import os import re lowerCAmelCase__ = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(R'''\[([^\]]+)\]''') def _A ( A__ ): """simple docstring""" __lowercase = _re_indent.search(A__ ) return "" if search is None else search.groups()[0] def _A ( A__ , A__="" , A__=None , A__=None ): """simple docstring""" __lowercase = 0 __lowercase = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(A__ ): index += 1 __lowercase = ['''\n'''.join(lines[:index] )] else: __lowercase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowercase = [lines[index]] index += 1 while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(A__ ) ) if index < len(A__ ) - 1: __lowercase = [lines[index + 1]] index += 1 else: __lowercase = [] else: blocks.append('''\n'''.join(A__ ) ) __lowercase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A__ ) > 0: blocks.append('''\n'''.join(A__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def _A ( A__ ): """simple docstring""" def _inner(A__ ): return key(A__ ).lower().replace('''_''' , '''''' ) return _inner def _A ( A__ , A__=None ): """simple docstring""" def noop(A__ ): return x if key is None: __lowercase = noop # Constants are all uppercase, they go first. __lowercase = [obj for obj in objects if key(A__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowercase = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()] # Functions begin with a lowercase, they go last. __lowercase = [obj for obj in objects if not key(A__ )[0].isupper()] __lowercase = ignore_underscore(A__ ) return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) def _A ( A__ ): """simple docstring""" def _replace(A__ ): __lowercase = match.groups()[0] if "," not in imports: return F"[{imports}]" __lowercase = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) + "]" __lowercase = import_statement.split('''\n''' ) if len(A__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowercase = 2 if lines[1].strip() == '''[''' else 1 __lowercase = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowercase = sort_objects(A__ , key=lambda A__ : x[1] ) __lowercase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowercase = _re_bracket_content.sub(_replace , lines[1] ) else: __lowercase = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] __lowercase = get_indent(lines[1] ) + ''', '''.join([F"\"{k}\"" for k in sort_objects(A__ )] ) return "\n".join(A__ ) else: # Finally we have to deal with imports fitting on one line __lowercase = _re_bracket_content.sub(_replace , A__ ) return import_statement def _A ( A__ , A__=True ): """simple docstring""" with open(A__ , '''r''' ) as f: __lowercase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowercase = split_code_in_indented_blocks( A__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowercase = main_blocks[block_idx] __lowercase = block.split('''\n''' ) # Get to the start of the imports. __lowercase = 0 while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowercase = len(A__ ) else: line_idx += 1 if line_idx >= len(A__ ): continue # Ignore beginning and last line: they don't contain anything. __lowercase = '''\n'''.join(block_lines[line_idx:-1] ) __lowercase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowercase = split_code_in_indented_blocks(A__ , indent_level=A__ ) # We have two categories of import key: list or _import_structure[key].append/extend __lowercase = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowercase = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowercase = [(i, key) for i, key in enumerate(A__ ) if key is not None] __lowercase = [x[0] for x in sorted(A__ , key=lambda A__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowercase = 0 __lowercase = [] for i in range(len(A__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __lowercase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(A__ ) count += 1 # And we put our main block back together with its first and last line. __lowercase = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(A__ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(A__ , '''w''' ) as f: f.write('''\n'''.join(A__ ) ) def _A ( A__=True ): """simple docstring""" __lowercase = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: __lowercase = sort_imports(os.path.join(A__ , '''__init__.py''' ) , check_only=A__ ) if result: __lowercase = [os.path.join(A__ , '''__init__.py''' )] if len(A__ ) > 0: raise ValueError(F"Would overwrite {len(A__ )} files, run `make style`." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
41
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase : Dict = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class _UpperCamelCase ( lowerCamelCase__,unittest.TestCase ): '''simple docstring''' a_ : Optional[int] = XGLMTokenizer a_ : int = XGLMTokenizerFast a_ : List[str] = True a_ : Tuple = True def _snake_case ( self : Tuple ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowerCamelCase : Optional[Any] = XGLMTokenizer(lowercase__ , keep_accents=lowercase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowerCamelCase : Optional[Any] = """<pad>""" __lowerCamelCase : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def _snake_case ( self : int ): '''simple docstring''' __lowerCamelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(lowercase__ ) , 1_0_0_8 ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_8 ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = XGLMTokenizer(lowercase__ , keep_accents=lowercase__ ) __lowerCamelCase : Tuple = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowercase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase__ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) __lowerCamelCase : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __lowerCamelCase : List[str] = tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual( lowercase__ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) __lowerCamelCase : List[Any] = tokenizer.convert_ids_to_tokens(lowercase__ ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def _snake_case ( self : int ): '''simple docstring''' return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def _snake_case ( self : Optional[int] ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowercase__ , f.name ) __lowerCamelCase : Dict = XGLMTokenizer(f.name , keep_accents=lowercase__ ) __lowerCamelCase : Dict = pickle.dumps(lowercase__ ) pickle.loads(lowercase__ ) def _snake_case ( self : List[str] ): '''simple docstring''' if not self.test_rust_tokenizer: return __lowerCamelCase : Optional[int] = self.get_tokenizer() __lowerCamelCase : List[str] = self.get_rust_tokenizer() __lowerCamelCase : str = """I was born in 92000, and this is falsé.""" __lowerCamelCase : int = tokenizer.tokenize(lowercase__ ) __lowerCamelCase : Union[str, Any] = rust_tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) __lowerCamelCase : str = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) __lowerCamelCase : List[Any] = rust_tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) __lowerCamelCase : Any = self.get_rust_tokenizer() __lowerCamelCase : List[str] = tokenizer.encode(lowercase__ ) __lowerCamelCase : int = rust_tokenizer.encode(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) @slow def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowerCamelCase : Optional[Any] = """Hello World!""" __lowerCamelCase : List[Any] = [2, 3_1_2_2_7, 4_4_4_7, 3_5] self.assertListEqual(lowercase__ , self.big_tokenizer.encode(lowercase__ ) ) @slow def _snake_case ( self : Any ): '''simple docstring''' __lowerCamelCase : Dict = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off __lowerCamelCase : Any = [2, 1_0_1_8, 6_7, 1_1, 1_9_8_8, 2_6_1_7, 5_6_3_1, 2_7_8, 1_1, 3_4_0_7, 4_8, 7_1_6_3_0, 2_8_0_8_5, 4, 3_2_3_4, 1_5_7, 1_3, 6, 5, 6, 4, 3_5_2_6, 7_6_8, 1_5, 6_5_9, 5_7, 2_9_8, 3_9_8_3, 8_6_4, 1_2_9, 2_1, 6, 5, 1_3_6_7_5, 3_7_7, 6_5_2, 7_5_8_0, 1_0_3_4_1, 1_5_5, 2_8_1_7, 4_2_2, 1_6_6_6, 7, 1_6_7_4, 5_3, 1_1_3, 2_0_2_2_7_7, 1_7_8_9_2, 3_3, 6_0, 8_7, 4, 3_2_3_4, 1_5_7, 6_1, 2_6_6_7, 5_2_3_7_6, 1_9, 8_8, 2_3, 7_3_5] # fmt: on self.assertListEqual(lowercase__ , self.big_tokenizer.encode(lowercase__ ) ) @slow def _snake_case ( self : List[Any] ): '''simple docstring''' __lowerCamelCase : Any = { """input_ids""": [[2, 1_0_8_8_2_5, 1_1_6_3, 1_5, 8_8_0_1_0, 4_7_3, 1_5_8_9_8, 1_5_7, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 2_3_8_0_2_1, 1_1_6_3, 5_3, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 5_3_2_8_3, 1_8_2_3_9_6, 8, 1_8_5_6_6, 1_6, 3_6_7_3_3, 4_1_0_1, 8, 2_3_0, 2_4_4_0_1_7, 1_2_2_5_5_3, 7, 1_5, 1_3_2_5_9_7, 4, 2_9_3, 1_2_5_1_1, 7_6_1_0, 4, 3_4_1_4, 1_3_2_5_9_7, 9, 4, 3_2_3_6_1, 3_6_2, 4, 7_3_4, 2_8_5_1_2, 3_2_5_6_9, 1_8, 4, 3_2_3_6_1, 2_6_0_9_6, 1_4_9_8_2, 7_3, 1_8_7_1_5, 2_1_4_3_3, 2_3_5_2_6_1, 1_5, 4_9_2, 1_2_4_2_7, 1_6, 5_3, 1_8_7_1_5, 2_1_4_3_3, 6_5_4_5_4, 1_5, 2_3_6_5_9, 5_6_3, 1_6, 2_7_8, 5_9_7, 2_8_4_3, 5_9_5, 7_9_3_1, 1_8_2_3_9_6, 6_4_1_8_6, 2_2, 8_8_6, 5_9_5, 1_3_2_9_8_1, 5_3, 2_5_5_4_0, 3_4_4_9, 4_3_9_8_2, 3_9_9_0_1, 5_9_5_1, 8_7_8, 3_3_0, 4, 2_7_6_9_4, 8_0_2_6_9, 3_1_2, 5_3, 6_5_1_7, 1_1_7_8_0, 6_1_1, 2_0_4_0_8, 5], [2, 6, 1_3_2_5_9_7, 6_7, 4_2_8_9_7, 3_3, 5_9_2, 8, 1_6_3_7_2_9, 2_5_5_4_0, 3_6_1, 1_3_6_9_9_7, 1_0_9_5_1_4, 1_7_3_2_3_0, 7, 5_0_1, 6_0, 1_0_2_9_1_3, 1_9_6, 5_6_3_1, 2_3_5, 6_3_2_4_3, 4_7_3, 6, 2_3_1_7_5_7, 7_4, 5_2_7_7, 7_9_0_5, 5_3, 3_0_9_5, 3_7_3_1_7, 2_2, 4_5_4, 1_8_3_8_7_4, 5], [2, 2_6_8, 3_1_2_9_8, 4_6_5_3_0, 6, 1_3_2_9_3_5, 4_3_8_3_1, 7, 5_9_7, 3_2, 2_4, 3_6_8_8, 9_8_6_5, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name="""facebook/xglm-564M""" , padding=lowercase__ , )
519
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = TextToVideoSDPipeline SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. SCREAMING_SNAKE_CASE : Optional[int] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') ,up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') ,cross_attention_dim=3_2 ,attention_head_dim=4 ,) __lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,clip_sample=lowercase__ ,set_alpha_to_one=lowercase__ ,) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=1_2_8 ,) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''gelu''' ,projection_dim=5_1_2 ,) __lowercase = CLIPTextModel(lowercase__ ) __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : List[str]=0 ): if str(lowercase__ ).startswith('''mps''' ): __lowercase = torch.manual_seed(lowercase__ ) else: __lowercase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = TextToVideoSDPipeline(**lowercase__ ) __lowercase = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs(lowercase__ ) __lowercase = '''np''' __lowercase = sd_pipe(**lowercase__ ).frames __lowercase = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) __lowercase = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def SCREAMING_SNAKE_CASE ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=1e-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass def SCREAMING_SNAKE_CASE ( self : List[str] ): return super().test_progress_bar() @slow @skip_mps class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2_5 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
41
0
"""simple docstring""" import os from distutils.util import strtobool def a_ ( __a , __a ): for e in env_keys: A__ = int(os.environ.get(A__ , -1 ) ) if val >= 0: return val return default def a_ ( __a , __a=False ): A__ = os.environ.get(A__ , str(A__ ) ) return strtobool(A__ ) == 1 # As its name indicates `strtobool` actually returns an int... def a_ ( __a , __a="no" ): A__ = os.environ.get(A__ , str(A__ ) ) return value
571
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _A ( A__ ): """simple docstring""" __lowercase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def _A ( A__ ): """simple docstring""" __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(A__ , A__ , bias=A__ ) __lowercase = emb.weight.data return lin_layer def _A ( A__ , A__="facebook/mbart-large-en-ro" , A__=False , A__=False ): """simple docstring""" __lowercase = torch.load(A__ , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A__ ) __lowercase = state_dict['''encoder.embed_tokens.weight'''].shape[0] __lowercase = MBartConfig.from_pretrained(A__ , vocab_size=A__ ) if mbart_aa and finetuned: __lowercase = '''relu''' __lowercase = state_dict['''decoder.embed_tokens.weight'''] __lowercase = MBartForConditionalGeneration(A__ ) model.model.load_state_dict(A__ ) if finetuned: __lowercase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
41
0
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __SCREAMING_SNAKE_CASE ="""src/transformers""" # This is to make sure the transformers module imported is the one in the repo. __SCREAMING_SNAKE_CASE =direct_transformers_import(PATH_TO_TRANSFORMERS) __SCREAMING_SNAKE_CASE =transformers.models.auto.configuration_auto.CONFIG_MAPPING __SCREAMING_SNAKE_CASE ={ # used to compute the property `self.chunk_length` """EncodecConfig""": ["""overlap"""], # used as `self.bert_model = BertModel(config, ...)` """DPRConfig""": True, # not used in modeling files, but it's an important information """FSMTConfig""": ["""langs"""], # used internally in the configuration class file """GPTNeoConfig""": ["""attention_types"""], # used internally in the configuration class file """EsmConfig""": ["""is_folding_model"""], # used during training (despite we don't have training script for these models yet) """Mask2FormerConfig""": ["""ignore_value"""], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) """OneFormerConfig""": ["""ignore_value""", """norm"""], # used during preprocessing and collation, see `collating_graphormer.py` """GraphormerConfig""": ["""spatial_pos_max"""], # used internally in the configuration class file """T5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally """MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], """UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], # used internally in the configuration class file """LongT5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file """SwitchTransformersConfig""": ["""feed_forward_proj"""], # having default values other than `1e-5` - we can't fix them without breaking """BioGptConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """GLPNConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """SegformerConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """CvtConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """PerceiverConfig""": ["""layer_norm_eps"""], # used internally to calculate the feature size """InformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate `mlp_dim` """SamVisionConfig""": ["""mlp_ratio"""], # For (head) training, but so far not implemented """ClapAudioConfig""": ["""num_classes"""], # Not used, but providing useful information to users """SpeechT5HifiGanConfig""": ["""sampling_rate"""], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { """CLIPSegConfig""": True, """DeformableDetrConfig""": True, """DetaConfig""": True, """DinatConfig""": True, """DonutSwinConfig""": True, """EfficientFormerConfig""": True, """FSMTConfig""": True, """JukeboxConfig""": True, """LayoutLMv2Config""": True, """MaskFormerSwinConfig""": True, """MT5Config""": True, """NatConfig""": True, """OneFormerConfig""": True, """PerceiverConfig""": True, """RagConfig""": True, """SpeechT5Config""": True, """SwinConfig""": True, """Swin2SRConfig""": True, """Swinv2Config""": True, """SwitchTransformersConfig""": True, """TableTransformerConfig""": True, """TapasConfig""": True, """TransfoXLConfig""": True, """UniSpeechConfig""": True, """UniSpeechSatConfig""": True, """WavLMConfig""": True, """WhisperConfig""": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) """JukeboxPriorConfig""": True, # TODO: @Younes (for `is_decoder`) """Pix2StructTextConfig""": True, } ) def a (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"config.{attribute}" in modeling_source or F"getattr(config, \"{attribute}\"" in modeling_source or F"getattr(self.config, \"{attribute}\"" in modeling_source ): SCREAMING_SNAKE_CASE_ = True # Deal with multi-line cases elif ( re.search( RF"getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"" , A__ , ) is not None ): SCREAMING_SNAKE_CASE_ = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: SCREAMING_SNAKE_CASE_ = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files SCREAMING_SNAKE_CASE_ = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] SCREAMING_SNAKE_CASE_ = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed SCREAMING_SNAKE_CASE_ = True if not attribute_used: SCREAMING_SNAKE_CASE_ = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: SCREAMING_SNAKE_CASE_ = True elif attribute in ["tie_word_embeddings"] and default_value is False: SCREAMING_SNAKE_CASE_ = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: SCREAMING_SNAKE_CASE_ = True elif attribute.endswith('''_token_id''' ): SCREAMING_SNAKE_CASE_ = True # configuration class specific cases if not case_allowed: SCREAMING_SNAKE_CASE_ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) SCREAMING_SNAKE_CASE_ = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def a (_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = dict(inspect.signature(config_class.__init__ ).parameters ) SCREAMING_SNAKE_CASE_ = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] SCREAMING_SNAKE_CASE_ = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass SCREAMING_SNAKE_CASE_ = {} if len(config_class.attribute_map ) > 0: SCREAMING_SNAKE_CASE_ = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files SCREAMING_SNAKE_CASE_ = inspect.getsourcefile(A__ ) SCREAMING_SNAKE_CASE_ = os.path.dirname(A__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. SCREAMING_SNAKE_CASE_ = [os.path.join(A__ , A__ ) for fn in os.listdir(A__ ) if fn.startswith('''modeling_''' )] # Get the source code strings SCREAMING_SNAKE_CASE_ = [] for path in modeling_paths: if os.path.isfile(A__ ): with open(A__ ) as fp: modeling_sources.append(fp.read() ) SCREAMING_SNAKE_CASE_ = [] for config_param, default_value in zip(A__ , A__ ): # `attributes` here is all the variant names for `config_param` SCREAMING_SNAKE_CASE_ = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(A__ , A__ , A__ , A__ ): unused_attributes.append(attributes[0] ) return sorted(A__ ) def a (): SCREAMING_SNAKE_CASE_ = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) SCREAMING_SNAKE_CASE_ = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda _lowerCAmelCase : inspect.isclass(A__ ) and issubclass(A__ , A__ ) and inspect.getmodule(A__ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: SCREAMING_SNAKE_CASE_ = check_config_attributes_being_used(A__ ) if len(A__ ) > 0: SCREAMING_SNAKE_CASE_ = unused_attributes if len(A__ ) > 0: SCREAMING_SNAKE_CASE_ = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += F"{name}: {attributes}\n" raise ValueError(A__ ) if __name__ == "__main__": check_config_attributes()
234
'''simple docstring''' import os from math import logaa def _A ( A__ = "base_exp.txt" ): """simple docstring""" __lowercase = 0 __lowercase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowercase , __lowercase = list(map(A__ , line.split(''',''' ) ) ) if x * logaa(A__ ) > largest: __lowercase = x * logaa(A__ ) __lowercase = i + 1 return result if __name__ == "__main__": print(solution())
41
0
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) lowercase__ : str = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(A__ ) ) return round(A__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
152
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'blenderbot-small' SCREAMING_SNAKE_CASE : int = ['past_key_values'] SCREAMING_SNAKE_CASE : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] ,lowercase__ : List[str]=5_0_2_6_5 ,lowercase__ : Optional[Any]=5_1_2 ,lowercase__ : Optional[int]=8 ,lowercase__ : List[Any]=2_0_4_8 ,lowercase__ : List[str]=1_6 ,lowercase__ : str=8 ,lowercase__ : Any=2_0_4_8 ,lowercase__ : Tuple=1_6 ,lowercase__ : Tuple=0.0 ,lowercase__ : List[str]=0.0 ,lowercase__ : Any=True ,lowercase__ : str=True ,lowercase__ : int="gelu" ,lowercase__ : Tuple=5_1_2 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : str=0.0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : List[Any]=False ,lowercase__ : Optional[int]=0 ,lowercase__ : Optional[int]=1 ,lowercase__ : str=2 ,lowercase__ : int=2 ,**lowercase__ : List[str] ,): __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = use_cache __lowercase = encoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,is_encoder_decoder=lowercase__ ,decoder_start_token_id=lowercase__ ,forced_eos_token_id=lowercase__ ,**lowercase__ ,) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Dict ): if self.task in ["default", "seq2seq-lm"]: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase = {0: '''batch'''} __lowercase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase__ ,direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super().outputs else: __lowercase = super(lowercase__ ,self ).outputs if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) # Generate decoder inputs __lowercase = seq_length if not self.use_past else 1 __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __lowercase = dict(**lowercase__ ,**lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape __lowercase = common_inputs['''decoder_input_ids'''].shape[1] __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = decoder_seq_length + 3 __lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase__ ,lowercase__ )] ,dim=1 ) __lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase = self.num_layers __lowercase = min(lowercase__ ,lowercase__ ) __lowercase = max(lowercase__ ,lowercase__ ) - min_num_layers __lowercase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), ) ) # TODO: test this. __lowercase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase__ ,lowercase__ ): common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase , __lowercase = self.num_layers __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = common_inputs['''attention_mask'''].dtype __lowercase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase__ ,lowercase__ ,dtype=lowercase__ )] ,dim=1 ) __lowercase = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ ) ] return common_inputs def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = tokenizer.num_special_tokens_to_add(lowercase__ ) __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowercase__ ) # Generate dummy inputs according to compute batch and sequence __lowercase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase = dict(tokenizer(lowercase__ ,return_tensors=lowercase__ ) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): if self.task in ["default", "seq2seq-lm"]: __lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) elif self.task == "causal-lm": __lowercase = self._generate_dummy_inputs_for_causal_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) else: __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super()._flatten_past_key_values_(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) else: __lowercase = super(lowercase__ ,self )._flatten_past_key_values_( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
41
0
"""simple docstring""" import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __A = False __A = logging.get_logger(__name__) __A = "ybelkada/fonts" def SCREAMING_SNAKE_CASE__ ( ) -> str: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """ '''Pix2StructImageProcessor. Please upgrade torch.''' ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: requires_backends(A__ , ['''torch'''] ) _check_torch_version() lowercase__: List[Any] = image_tensor.unsqueeze(0 ) lowercase__: Optional[int] = torch.nn.functional.unfold(A__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) lowercase__: Dict = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , A__ , A__ , -1 ) lowercase__: Tuple = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase = 3_6 , __UpperCAmelCase = "black" , __UpperCAmelCase = "white" , __UpperCAmelCase = 5 , __UpperCAmelCase = 5 , __UpperCAmelCase = 5 , __UpperCAmelCase = 5 , __UpperCAmelCase = None , __UpperCAmelCase = None , ) -> Any: requires_backends(A__ , '''vision''' ) # Add new lines so that each line is no more than 80 characters. lowercase__: List[str] = textwrap.TextWrapper(width=8_0 ) lowercase__: Any = wrapper.wrap(text=A__ ) lowercase__: int = '''\n'''.join(A__ ) if font_bytes is not None and font_path is None: lowercase__: List[str] = io.BytesIO(A__ ) elif font_path is not None: lowercase__: Optional[int] = font_path else: lowercase__: Optional[Any] = hf_hub_download(A__ , '''Arial.TTF''' ) lowercase__: Union[str, Any] = ImageFont.truetype(A__ , encoding='''UTF-8''' , size=A__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. lowercase__: Union[str, Any] = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , A__ ) ) lowercase__, lowercase__, lowercase__, lowercase__: str = temp_draw.textbbox((0, 0) , A__ , A__ ) # Create the actual image with a bit of padding around the text. lowercase__: str = text_width + left_padding + right_padding lowercase__: str = text_height + top_padding + bottom_padding lowercase__: Dict = Image.new('''RGB''' , (image_width, image_height) , A__ ) lowercase__: Optional[Any] = ImageDraw.Draw(A__ ) draw.text(xy=(left_padding, top_padding) , text=A__ , fill=A__ , font=A__ ) return image def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(A__ , '''vision''' ) # Convert to PIL image if necessary lowercase__: Any = to_pil_image(A__ ) lowercase__: Optional[int] = render_text(A__ , **A__ ) lowercase__: Tuple = max(header_image.width , image.width ) lowercase__: Union[str, Any] = int(image.height * (new_width / image.width) ) lowercase__: Tuple = int(header_image.height * (new_width / header_image.width) ) lowercase__: List[Any] = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary lowercase__: Optional[int] = to_numpy_array(A__ ) if infer_channel_dimension_format(A__ ) == ChannelDimension.LAST: lowercase__: int = to_channel_dimension_format(A__ , ChannelDimension.LAST ) return new_image class UpperCAmelCase (lowerCamelCase__ ): """simple docstring""" _UpperCAmelCase :List[str] = ['flattened_patches'] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = 2048 , _UpperCAmelCase = False , **_UpperCAmelCase , ): super().__init__(**lowercase__ ) lowercase__: Dict = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} lowercase__: List[str] = do_normalize lowercase__: Tuple = do_convert_rgb lowercase__: Dict = max_patches lowercase__: Optional[int] = is_vqa def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self.extract_flattened_patches , '''torch''' ) _check_torch_version() # convert to torch lowercase__: str = to_channel_dimension_format(lowercase__ , ChannelDimension.FIRST ) lowercase__: Dict = torch.from_numpy(lowercase__ ) lowercase__, lowercase__: Optional[int] = patch_size['''height'''], patch_size['''width'''] lowercase__, lowercase__: List[str] = get_image_size(lowercase__ ) # maximize scale s.t. lowercase__: Dict = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) lowercase__: Union[str, Any] = max(min(math.floor(scale * image_height / patch_height ) , lowercase__ ) , 1 ) lowercase__: str = max(min(math.floor(scale * image_width / patch_width ) , lowercase__ ) , 1 ) lowercase__: Optional[int] = max(num_feasible_rows * patch_height , 1 ) lowercase__: str = max(num_feasible_cols * patch_width , 1 ) lowercase__: Optional[Any] = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode='''bilinear''' , align_corners=lowercase__ , antialias=lowercase__ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] lowercase__: Dict = torch_extract_patches(lowercase__ , lowercase__ , lowercase__ ) lowercase__: Tuple = patches.shape lowercase__: int = patches_shape[1] lowercase__: str = patches_shape[2] lowercase__: Dict = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] lowercase__: Union[str, Any] = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] lowercase__: Union[str, Any] = torch.arange(lowercase__ ).reshape([rows, 1] ).repeat(1 , lowercase__ ).reshape([rows * columns, 1] ) lowercase__: Optional[int] = torch.arange(lowercase__ ).reshape([1, columns] ).repeat(lowercase__ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] lowercase__: Tuple = row_ids.to(torch.floataa ) lowercase__: str = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] lowercase__: str = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] lowercase__: Dict = torch.nn.functional.pad(lowercase__ , [0, 0, 0, max_patches - (rows * columns)] ).float() lowercase__: Any = to_numpy_array(lowercase__ ) return result def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase ): if image.dtype == np.uinta: lowercase__: int = image.astype(np.floataa ) # take mean across the whole `image` lowercase__: Optional[Any] = np.mean(lowercase__ ) lowercase__: Union[str, Any] = np.std(lowercase__ ) lowercase__: Union[str, Any] = max(lowercase__ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , **lowercase__ ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ): lowercase__: List[Any] = do_normalize if do_normalize is not None else self.do_normalize lowercase__: Optional[int] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase__: str = patch_size if patch_size is not None else self.patch_size lowercase__: Dict = max_patches if max_patches is not None else self.max_patches lowercase__: Union[str, Any] = self.is_vqa if kwargs.get('''data_format''' , lowercase__ ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) lowercase__: Optional[int] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase__: Union[str, Any] = [convert_to_rgb(lowercase__ ) for image in images] # All transformations expect numpy arrays. lowercase__: int = [to_numpy_array(lowercase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) lowercase__: Dict = kwargs.pop('''font_bytes''' , lowercase__ ) lowercase__: Union[str, Any] = kwargs.pop('''font_path''' , lowercase__ ) if isinstance(lowercase__ , lowercase__ ): lowercase__: Tuple = [header_text] * len(lowercase__ ) lowercase__: Any = [ render_header(lowercase__ , header_text[i] , font_bytes=lowercase__ , font_path=lowercase__ ) for i, image in enumerate(lowercase__ ) ] if do_normalize: lowercase__: Any = [self.normalize(image=lowercase__ ) for image in images] # convert to torch tensor and permute lowercase__: Union[str, Any] = [ self.extract_flattened_patches(image=lowercase__ , max_patches=lowercase__ , patch_size=lowercase__ ) for image in images ] # create attention mask in numpy lowercase__: Optional[Any] = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] lowercase__: Union[str, Any] = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks} , tensor_type=lowercase__ ) return encoded_outputs
586
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" if b == 0: return (1, 0) ((__lowercase) , (__lowercase)) = extended_euclid(A__ , a % b ) __lowercase = a // b return (y, x - k * y) def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m def _A ( A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) if b < 0: __lowercase = (b % n + n) % n return b def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase , __lowercase = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
41
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
338
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _A ( ): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __lowercase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , A__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _A ( ): """simple docstring""" assert _test_patching.open is open __lowercase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , A__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , A__ ): pass def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , A__ ) is None with patch_submodule(_test_patching , '''len''' , A__ ): assert _test_patching.len is mock assert _test_patching.len is len def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_start_and_stop_mock__''' __lowercase = patch_submodule(_test_patching , '''open''' , A__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _A ( ): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __lowercase = '''__test_patch_submodule_successive_join__''' __lowercase = '''__test_patch_submodule_successive_dirname__''' __lowercase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , A__ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , A__ ): pass
41
0
from __future__ import annotations def a_ (__A , __A , __A ) -> Tuple: """simple docstring""" __a : List[Any] = list(range(len(A__ ) ) ) __a : int = [v / w for v, w in zip(A__ , A__ )] index.sort(key=lambda __A : ratio[i] , reverse=A__ ) __a : str = 0 __a : Any = [0] * len(A__ ) for i in index: if weight[i] <= capacity: __a : List[Any] = 1 max_value += value[i] capacity -= weight[i] else: __a : Tuple = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
351
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : """simple docstring""" def __init__( self : Dict ,lowercase__ : Dict ,lowercase__ : int=1_3 ,lowercase__ : List[str]=7 ,lowercase__ : int=True ,lowercase__ : int=True ,lowercase__ : Union[str, Any]=True ,lowercase__ : List[Any]=True ,lowercase__ : str=9_9 ,lowercase__ : Optional[Any]=3_2 ,lowercase__ : Union[str, Any]=5 ,lowercase__ : List[Any]=4 ,lowercase__ : str=3_7 ,lowercase__ : Tuple="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : Dict=0.1 ,lowercase__ : int=1_2_8 ,lowercase__ : Dict=3_2 ,lowercase__ : Dict=1_6 ,lowercase__ : Any=2 ,lowercase__ : int=0.0_2 ,lowercase__ : List[str]=3 ,lowercase__ : Dict=4 ,lowercase__ : Optional[int]=None ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return NezhaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.prepare_config_and_inputs() __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : str ): __lowercase = NezhaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Dict ,lowercase__ : str ,lowercase__ : Optional[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,): __lowercase = True __lowercase = NezhaModel(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,encoder_attention_mask=lowercase__ ,) __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,) __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): __lowercase = NezhaForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): __lowercase = NezhaForNextSentencePrediction(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ): __lowercase = NezhaForPreTraining(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,next_sentence_label=lowercase__ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ): __lowercase = NezhaForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,start_positions=lowercase__ ,end_positions=lowercase__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Tuple ,lowercase__ : str ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : Optional[int] ,lowercase__ : int ): __lowercase = self.num_labels __lowercase = NezhaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Any ,lowercase__ : Optional[Any] ): __lowercase = self.num_labels __lowercase = NezhaForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : str ): __lowercase = self.num_choices __lowercase = NezhaForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : List[str] = True def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : Any=False ): __lowercase = super()._prepare_for_class(lowercase__ ,lowercase__ ,return_labels=lowercase__ ) if return_labels: if model_class in get_values(lowercase__ ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowercase__ ) __lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowercase__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = NezhaModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : int ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): # This regression test was failing with PyTorch < 1.3 ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase = None self.model_tester.create_and_check_model_as_decoder( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = NezhaModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __lowercase = True __lowercase = model_class(config=lowercase__ ) __lowercase = self._prepare_for_class(lowercase__ ,lowercase__ ) __lowercase = torch.jit.trace( lowercase__ ,(inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase__ ,os.path.join(lowercase__ ,'''bert.pt''' ) ) __lowercase = torch.jit.load(os.path.join(lowercase__ ,'''bert.pt''' ) ,map_location=lowercase__ ) loaded(inputs_dict['''input_ids'''].to(lowercase__ ) ,inputs_dict['''attention_mask'''].to(lowercase__ ) ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) )
41
0
"""simple docstring""" import os from datetime import datetime as dt from github import Github A_ : Dict = [ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def __snake_case ( ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = Github(os.environ['GITHUB_TOKEN'] ) SCREAMING_SNAKE_CASE : int = g.get_repo('huggingface/diffusers' ) SCREAMING_SNAKE_CASE : Any = repo.get_issues(state='open' ) for issue in open_issues: SCREAMING_SNAKE_CASE : Dict = sorted(issue.get_comments() , key=lambda __A : i.created_at , reverse=A__ ) SCREAMING_SNAKE_CASE : Any = comments[0] if len(A__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
265
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KEY''') lowerCAmelCase__ = TypeVar('''VAL''') @dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ ) class lowercase_ (Generic[KEY, VAL] ): """simple docstring""" SCREAMING_SNAKE_CASE : KEY SCREAMING_SNAKE_CASE : VAL class lowercase_ (_Item ): """simple docstring""" def __init__( self : Optional[int] ): super().__init__(lowercase__ ,lowercase__ ) def __bool__( self : List[str] ): return False lowerCAmelCase__ = _DeletedItem() class lowercase_ (MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ): __lowercase = initial_block_size __lowercase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowercase = capacity_factor __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ): return hash(lowercase__ ) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ): return (ind + 1) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ): __lowercase = self._buckets[ind] if not stored: __lowercase = _Item(lowercase__ ,lowercase__ ) self._len += 1 return True elif stored.key == key: __lowercase = _Item(lowercase__ ,lowercase__ ) return True else: return False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False __lowercase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ): __lowercase = self._buckets __lowercase = [None] * new_size __lowercase = 0 for item in old_buckets: if item: self._add_item(item.key ,item.val ) def SCREAMING_SNAKE_CASE ( self : str ): self._resize(len(self._buckets ) * 2 ) def SCREAMING_SNAKE_CASE ( self : Tuple ): self._resize(len(self._buckets ) // 2 ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ): __lowercase = self._get_bucket_index(lowercase__ ) for _ in range(len(self._buckets ) ): yield ind __lowercase = self._get_next_ind(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): for ind in self._iterate_buckets(lowercase__ ): if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ): break def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): if self._is_full(): self._size_up() self._add_item(lowercase__ ,lowercase__ ) def __delitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: raise KeyError(lowercase__ ) if item is _deleted: continue if item.key == key: __lowercase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowercase__ ) def __len__( self : Optional[int] ): return self._len def __iter__( self : str ): yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ): __lowercase = ''' ,'''.join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
41
0
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase_ : int = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} UpperCAmelCase_ : Dict = { "vocab_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt", }, "emoji_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json", }, } UpperCAmelCase_ : int = { "abeja/gpt-neox-japanese-2.7b": 2048, } def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): with open(A__ , """r""" , encoding="""utf-8""" ) as f: __magic_name__ : Dict =json.loads(f.read() ) __magic_name__ : Dict =collections.OrderedDict() __magic_name__ : List[Any] =collections.OrderedDict() __magic_name__ : List[Any] =collections.OrderedDict() with open(A__ , """r""" , encoding="""utf-8""" ) as f: __magic_name__ : int =f.readlines() __magic_name__ : int =[[t.rstrip("""\n""" )] if (t == """,""" or """,""" not in t) else t.rstrip("""\n""" ).split(""",""" ) for t in token] for idx, b in enumerate(A__ ): __magic_name__ : str =b __magic_name__ : Dict =idx for wd in b: __magic_name__ : Dict =idx return vocab, raw_vocab, ids_to_tokens, emoji class __A ( lowerCamelCase__ ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['input_ids', 'attention_mask'] def __init__( self :Tuple , __snake_case :Union[str, Any] , __snake_case :Tuple , __snake_case :Any="<|endoftext|>" , __snake_case :Optional[Any]="<|endoftext|>" , __snake_case :int="<|startoftext|>" , __snake_case :Dict="<|endoftext|>" , __snake_case :Tuple=False , **__snake_case :Dict , ): '''simple docstring''' super().__init__( unk_token=lowercase__ , pad_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , do_clean_text=lowercase__ , **lowercase__ , ) if not os.path.isfile(lowercase__ ): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" """ model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) if not os.path.isfile(lowercase__ ): raise ValueError( f"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google" """ pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) __magic_name__ : int =do_clean_text __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] =load_vocab_and_emoji(lowercase__ , lowercase__ ) __magic_name__ : str =SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def A__ ( self :Any ): '''simple docstring''' return len(self.raw_vocab ) def A__ ( self :Any ): '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder ) def A__ ( self :Optional[Any] , __snake_case :int ): '''simple docstring''' return self.subword_tokenizer.tokenize(lowercase__ , clean=self.do_clean_text ) def A__ ( self :Any , __snake_case :List[str] ): '''simple docstring''' return self.vocab.get(lowercase__ , self.vocab.get(self.unk_token ) ) def A__ ( self :Tuple , __snake_case :Union[str, Any] ): '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(lowercase__ ) def A__ ( self :Optional[Any] , __snake_case :Optional[Any] ): '''simple docstring''' __magic_name__ : Optional[int] ="""""".join(lowercase__ ).strip() return out_string def A__ ( self :int , __snake_case :"Conversation" ): '''simple docstring''' __magic_name__ : Union[str, Any] =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: __magic_name__ : Any =input_ids[-self.model_max_length :] return input_ids def A__ ( self :Optional[int] , __snake_case :str , __snake_case :Optional[str] = None ): '''simple docstring''' __magic_name__ : Any =0 if os.path.isdir(lowercase__ ): __magic_name__ : Dict =os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : Optional[Any] =os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""emoji_file"""] ) else: __magic_name__ : Any =( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : str =( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""emoji_file"""] ) with open(lowercase__ , """w""" , encoding="""utf-8""" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." """ Please check that the vocabulary is not corrupted!""" ) __magic_name__ : Union[str, Any] =token_index writer.write(""",""".join(lowercase__ ) + """\n""" ) index += 1 with open(lowercase__ , """w""" , encoding="""utf-8""" ) as writer: json.dump(self.emoji , lowercase__ ) return vocab_file, emoji_file class __A ( lowerCamelCase__ ): def __init__( self :List[str] , __snake_case :Optional[int] , __snake_case :Optional[int] , __snake_case :str ): '''simple docstring''' __magic_name__ : List[str] =vocab # same as swe __magic_name__ : Dict =ids_to_tokens # same as bpe __magic_name__ : List[str] =emoji __magic_name__ : int =np.max([len(lowercase__ ) for w in self.vocab.keys()] ) __magic_name__ : Dict =re.compile(r"""(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)""" ) __magic_name__ : Optional[Any] =re.compile(r"""[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*""" ) __magic_name__ : List[Any] =re.compile(r"""[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}""" ) __magic_name__ : Optional[Any] =re.compile( r"""([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) __magic_name__ : List[str] =re.compile( r"""(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) __magic_name__ : Any =re.compile( r"""((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*""" ) __magic_name__ : Any ="""─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿""" __magic_name__ : str ="""▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟""" __magic_name__ : Union[str, Any] =str.maketrans({k: """<BLOCK>""" for k in keisen + blocks} ) def __len__( self :Dict ): '''simple docstring''' return len(self.ids_to_tokens ) def A__ ( self :int , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : List[Any] =self.content_repattera.sub("""<URL>""" , lowercase__ ) __magic_name__ : int =self.content_repattera.sub("""<EMAIL>""" , lowercase__ ) __magic_name__ : List[str] =self.content_repattera.sub("""<TEL>""" , lowercase__ ) __magic_name__ : Dict =self.content_repattera.sub("""<DATE>""" , lowercase__ ) __magic_name__ : List[str] =self.content_repattera.sub("""<DATE>""" , lowercase__ ) __magic_name__ : Optional[int] =self.content_repattera.sub("""<PRICE>""" , lowercase__ ) __magic_name__ : Optional[int] =content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: __magic_name__ : Union[str, Any] =content.replace("""<BLOCK><BLOCK>""" , """<BLOCK>""" ) return content def A__ ( self :Dict , __snake_case :List[Any] , __snake_case :Union[str, Any]=False ): '''simple docstring''' __magic_name__ : str =text.replace(""" """ , """<SP>""" ) __magic_name__ : Union[str, Any] =text.replace(""" """ , """<SP>""" ) __magic_name__ : Optional[int] =text.replace("""\r\n""" , """<BR>""" ) __magic_name__ : Dict =text.replace("""\n""" , """<BR>""" ) __magic_name__ : List[str] =text.replace("""\r""" , """<BR>""" ) __magic_name__ : Union[str, Any] =text.replace("""\t""" , """<TAB>""" ) __magic_name__ : Optional[int] =text.replace("""—""" , """ー""" ) __magic_name__ : Optional[int] =text.replace("""−""" , """ー""" ) for k, v in self.emoji["emoji"].items(): if k in text: __magic_name__ : Optional[int] =text.replace(lowercase__ , lowercase__ ) if clean: __magic_name__ : Optional[Any] =self.clean_text(lowercase__ ) def check_simbol(__snake_case :str ): __magic_name__ : Union[str, Any] =x.encode() if len(lowercase__ ) == 1 and len(lowercase__ ) == 2: __magic_name__ : int =(int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xC_2_A_1 and c <= 0xC_2_B_F) or (c >= 0xC_7_8_0 and c <= 0xC_7_8_3) or (c >= 0xC_A_B_9 and c <= 0xC_B_B_F) or (c >= 0xC_C_8_0 and c <= 0xC_D_A_2) ): return True return False def checkuae(__snake_case :Dict ): __magic_name__ : Optional[int] =x.encode() if len(lowercase__ ) == 1 and len(lowercase__ ) == 3: __magic_name__ : Union[str, Any] =(int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xE_2_8_0_8_0 and c <= 0xE_2_B_0_7_F: return True return False __magic_name__ : Any =0 __magic_name__ : Optional[Any] =[] while pos < len(lowercase__ ): __magic_name__ : Any =min(len(lowercase__ ) , pos + self.maxlen + 1 ) if text[pos] == """<""" else pos + 3 __magic_name__ : Union[str, Any] =[] # (token_id, token, pos) for e in range(lowercase__ , lowercase__ , -1 ): __magic_name__ : List[Any] =text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(lowercase__ ) > 2: __magic_name__ : Union[str, Any] =[(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(lowercase__ ) > 0: # the smallest token_id is adopted __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] =sorted(lowercase__ , key=lambda __snake_case : x[0] )[0] result.append(lowercase__ ) __magic_name__ : int =e else: __magic_name__ : Dict =pos + 1 __magic_name__ : Dict =text[pos:end] if check_simbol(lowercase__ ): result.append("""<KIGOU>""" ) elif checkuae(lowercase__ ): result.append("""<U2000U2BFF>""" ) else: for i in wd.encode("""utf-8""" ): result.append("""<|byte%d|>""" % i ) __magic_name__ : Any =end return result def A__ ( self :Optional[Any] , __snake_case :int , __snake_case :List[Any]="\n" ): '''simple docstring''' __magic_name__ : Dict =[] __magic_name__ : str =[] __magic_name__ : Any =self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(lowercase__ ) > 0: words.append(bytearray(lowercase__ ).decode("""utf-8""" , errors="""replace""" ) ) __magic_name__ : Any =[] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["""emoji_inv"""][word] ) elif word == "<SP>": words.append(""" """ ) elif word == "<BR>": words.append(lowercase__ ) elif word == "<TAB>": words.append("""\t""" ) elif word == "<BLOCK>": words.append("""▀""" ) elif word == "<KIGOU>": words.append("""ǀ""" ) elif word == "<U2000U2BFF>": words.append("""‖""" ) else: words.append(lowercase__ ) if len(lowercase__ ) > 0: words.append(bytearray(lowercase__ ).decode("""utf-8""" , errors="""replace""" ) ) __magic_name__ : List[Any] ="""""".join(lowercase__ ) return text
21
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ,**lowercase__ : Tuple ): super().__init__(**lowercase__ ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self ,'''vision''' ) self.check_model_type(lowercase__ ) def __call__( self : List[str] ,lowercase__ : Union[str, "Image.Image", List[Dict[str, Any]]] ,lowercase__ : Union[str, List[str]] = None ,**lowercase__ : str ,): if "text_queries" in kwargs: __lowercase = kwargs.pop('''text_queries''' ) if isinstance(lowercase__ ,(str, Image.Image) ): __lowercase = {'''image''': image, '''candidate_labels''': candidate_labels} else: __lowercase = image __lowercase = super().__call__(lowercase__ ,**lowercase__ ) return results def SCREAMING_SNAKE_CASE ( self : int ,**lowercase__ : List[Any] ): __lowercase = {} if "threshold" in kwargs: __lowercase = kwargs['''threshold'''] if "top_k" in kwargs: __lowercase = kwargs['''top_k'''] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[Any] ): __lowercase = load_image(inputs['''image'''] ) __lowercase = inputs['''candidate_labels'''] if isinstance(lowercase__ ,lowercase__ ): __lowercase = candidate_labels.split(''',''' ) __lowercase = torch.tensor([[image.height, image.width]] ,dtype=torch.intaa ) for i, candidate_label in enumerate(lowercase__ ): __lowercase = self.tokenizer(lowercase__ ,return_tensors=self.framework ) __lowercase = self.image_processor(lowercase__ ,return_tensors=self.framework ) yield { "is_last": i == len(lowercase__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ): __lowercase = model_inputs.pop('''target_size''' ) __lowercase = model_inputs.pop('''candidate_label''' ) __lowercase = model_inputs.pop('''is_last''' ) __lowercase = self.model(**lowercase__ ) __lowercase = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : List[Any]=0.1 ,lowercase__ : List[str]=None ): __lowercase = [] for model_output in model_outputs: __lowercase = model_output['''candidate_label'''] __lowercase = BaseModelOutput(lowercase__ ) __lowercase = self.image_processor.post_process_object_detection( outputs=lowercase__ ,threshold=lowercase__ ,target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): __lowercase = outputs['''scores'''][index].item() __lowercase = self._get_bounding_box(outputs['''boxes'''][index][0] ) __lowercase = {'''score''': score, '''label''': label, '''box''': box} results.append(lowercase__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : x["score"] ,reverse=lowercase__ ) if top_k: __lowercase = results[:top_k] return results def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : "torch.Tensor" ): if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) __lowercase , __lowercase , __lowercase , __lowercase = box.int().tolist() __lowercase = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
41
0
"""simple docstring""" import torch from diffusers import StableDiffusionPipeline UpperCAmelCase ="path-to-your-trained-model" UpperCAmelCase =StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("cuda") UpperCAmelCase ="A photo of sks dog in a bucket" UpperCAmelCase =pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("dog-bucket.png")
617
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 'facebook/bart-large-mnli' SCREAMING_SNAKE_CASE : Optional[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) SCREAMING_SNAKE_CASE : Any = 'text_classifier' SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : Tuple = ['text', ['text']] SCREAMING_SNAKE_CASE : List[str] = ['text'] def SCREAMING_SNAKE_CASE ( self : List[Any] ): super().setup() __lowercase = self.model.config __lowercase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): __lowercase = int(lowercase__ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Dict ,lowercase__ : List[Any] ): __lowercase = labels return self.pre_processor( [text] * len(lowercase__ ) ,[F"This example is {label}" for label in labels] ,return_tensors='''pt''' ,padding='''max_length''' ,) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = outputs.logits __lowercase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
41
0
"""simple docstring""" from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' if isinstance(A__ , collections.abc.Iterable ): return x return (x, x) @require_tf class UpperCamelCase_ : def UpperCamelCase_ ( self , snake_case__ , snake_case__ ) -> int: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Any: """simple docstring""" pass def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" pass def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , **snake_case__ ) -> Optional[int]: """simple docstring""" UpperCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase__ , lowercase__ ) UpperCAmelCase = TFVisionTextDualEncoderModel(lowercase__ ) UpperCAmelCase = model(input_ids=lowercase__ , pixel_values=lowercase__ , attention_mask=lowercase__ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , **snake_case__ ) -> int: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.get_vision_text_model(lowercase__ , lowercase__ ) UpperCAmelCase = TFVisionTextDualEncoderModel(vision_model=lowercase__ , text_model=lowercase__ ) UpperCAmelCase = model(input_ids=lowercase__ , pixel_values=lowercase__ , attention_mask=lowercase__ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , **snake_case__ ) -> str: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.get_vision_text_model(lowercase__ , lowercase__ ) UpperCAmelCase = {"""vision_model""": vision_model, """text_model""": text_model} UpperCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase__ ) UpperCAmelCase = model(input_ids=lowercase__ , pixel_values=lowercase__ , attention_mask=lowercase__ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , **snake_case__ ) -> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.get_vision_text_model(lowercase__ , lowercase__ ) UpperCAmelCase = TFVisionTextDualEncoderModel(vision_model=lowercase__ , text_model=lowercase__ ) UpperCAmelCase = model(input_ids=lowercase__ , pixel_values=lowercase__ , attention_mask=lowercase__ ) UpperCAmelCase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase__ ) UpperCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(lowercase__ ) UpperCAmelCase = model(input_ids=lowercase__ , pixel_values=lowercase__ , attention_mask=lowercase__ ) UpperCAmelCase = after_output[0].numpy() UpperCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase__ , 1e-5 ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , **snake_case__ ) -> Dict: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.get_vision_text_model(lowercase__ , lowercase__ ) UpperCAmelCase = TFVisionTextDualEncoderModel(vision_model=lowercase__ , text_model=lowercase__ ) UpperCAmelCase = model( input_ids=lowercase__ , pixel_values=lowercase__ , attention_mask=lowercase__ , output_attentions=lowercase__ ) UpperCAmelCase = output.vision_model_output.attentions self.assertEqual(len(lowercase__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase = to_atuple(vision_model.config.image_size ) UpperCAmelCase = to_atuple(vision_model.config.patch_size ) UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) UpperCAmelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) UpperCAmelCase = output.text_model_output.attentions self.assertEqual(len(lowercase__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Any: """simple docstring""" UpperCAmelCase = np.abs((a - b) ).max() self.assertLessEqual(lowercase__ , lowercase__ , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**lowercase__ ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowercase__ ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowercase__ ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() self.check_save_load(**lowercase__ ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowercase__ ) @slow def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.get_pretrained_model_and_inputs() UpperCAmelCase = model_a(**lowercase__ ) UpperCAmelCase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowercase__ ) UpperCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(lowercase__ ) UpperCAmelCase = model_a(**lowercase__ ) UpperCAmelCase = after_outputs[0].numpy() UpperCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase__ , 1e-5 ) @require_tf class UpperCamelCase_ ( lowerCamelCase__ , unittest.TestCase ): def UpperCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) UpperCAmelCase = 13 UpperCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) UpperCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) UpperCAmelCase = random_attention_mask([batch_size, 4] ) UpperCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def UpperCamelCase_ ( self , snake_case__ , snake_case__ ) -> Tuple: """simple docstring""" UpperCAmelCase = TFViTModel(lowercase__ , name="""vision_model""" ) UpperCAmelCase = TFBertModel(lowercase__ , name="""text_model""" ) return vision_model, text_model def UpperCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = TFViTModelTester(self ) UpperCAmelCase = TFBertModelTester(self ) UpperCAmelCase = vit_model_tester.prepare_config_and_inputs() UpperCAmelCase = bert_model_tester.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = vision_config_and_inputs ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class UpperCamelCase_ ( lowerCamelCase__ , unittest.TestCase ): def UpperCamelCase_ ( self ) -> str: """simple docstring""" UpperCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) UpperCAmelCase = 13 UpperCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) UpperCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) UpperCAmelCase = random_attention_mask([batch_size, 4] ) UpperCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , **snake_case__ ) -> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.get_vision_text_model(lowercase__ , lowercase__ ) UpperCAmelCase = TFVisionTextDualEncoderModel(vision_model=lowercase__ , text_model=lowercase__ ) UpperCAmelCase = model( input_ids=lowercase__ , pixel_values=lowercase__ , attention_mask=lowercase__ , output_attentions=lowercase__ ) UpperCAmelCase = output.vision_model_output.attentions self.assertEqual(len(lowercase__ ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCAmelCase = to_atuple(vision_model.config.image_size ) UpperCAmelCase = to_atuple(vision_model.config.patch_size ) UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) UpperCAmelCase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) UpperCAmelCase = output.text_model_output.attentions self.assertEqual(len(lowercase__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ ) -> Dict: """simple docstring""" UpperCAmelCase = TFDeiTModel(lowercase__ , name="""vision_model""" ) UpperCAmelCase = TFRobertaModel(lowercase__ , name="""text_model""" ) return vision_model, text_model def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = TFDeiTModelTester(self ) UpperCAmelCase = TFRobertaModelTester(self ) UpperCAmelCase = vit_model_tester.prepare_config_and_inputs() UpperCAmelCase = bert_model_tester.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = vision_config_and_inputs ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class UpperCamelCase_ ( lowerCamelCase__ , unittest.TestCase ): def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) UpperCAmelCase = 13 UpperCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) UpperCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) UpperCAmelCase = random_attention_mask([batch_size, 4] ) UpperCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def UpperCamelCase_ ( self , snake_case__ , snake_case__ ) -> Any: """simple docstring""" UpperCAmelCase = TFCLIPVisionModel(lowercase__ , name="""vision_model""" ) UpperCAmelCase = TFBertModel(lowercase__ , name="""text_model""" ) return vision_model, text_model def UpperCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = TFCLIPVisionModelTester(self ) UpperCAmelCase = TFBertModelTester(self ) UpperCAmelCase = clip_model_tester.prepare_config_and_inputs() UpperCAmelCase = bert_model_tester.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = vision_config_and_inputs ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class UpperCamelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=lowercase__ ) UpperCAmelCase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCAmelCase = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=lowercase__ , padding=lowercase__ , return_tensors="""np""" ) UpperCAmelCase = model(**lowercase__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) UpperCAmelCase = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , lowercase__ , atol=1e-3 ) )
673
'''simple docstring''' from collections.abc import Callable class lowercase_ : """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : Callable | None = None ): # Stores actual heap items. __lowercase = [] # Stores indexes of each item for supporting updates and deletion. __lowercase = {} # Stores current size of heap. __lowercase = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __lowercase = key or (lambda lowercase__ : x) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : int ): return int((i - 1) / 2 ) if i > 0 else None def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = int(2 * i + 1 ) return left if 0 < left < self.size else None def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ): __lowercase = int(2 * i + 2 ) return right if 0 < right < self.size else None def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : int ,lowercase__ : int ): __lowercase , __lowercase = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __lowercase , __lowercase = self.arr[j], self.arr[i] def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): return self.arr[i][1] < self.arr[j][1] def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._left(lowercase__ ) __lowercase = self._right(lowercase__ ) __lowercase = i if left is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = left if right is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = right return valid_parent def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._parent(lowercase__ ) while parent is not None and not self._cmp(lowercase__ ,lowercase__ ): self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = parent, self._parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = self._get_valid_parent(lowercase__ ) while valid_parent != index: self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = valid_parent, self._get_valid_parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] __lowercase = [item, self.key(lowercase__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] del self.pos_map[item] __lowercase = self.arr[self.size - 1] __lowercase = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : int ): __lowercase = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(lowercase__ )] ) else: __lowercase = [item, self.key(lowercase__ )] __lowercase = self.size self.size += 1 self._heapify_up(self.size - 1 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): return self.arr[0] if self.size else None def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _A ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
41
0
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING __UpperCamelCase : Any = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : Tuple , *_lowerCamelCase : Optional[int] , **_lowerCamelCase : List[str] ): '''simple docstring''' super().__init__(*lowercase__ , **lowercase__ ) self.check_model_type(lowercase__ ) def _snake_case ( self : str , _lowerCamelCase : List[Any]=None , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : Tuple=None , **_lowerCamelCase : List[str] ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase : Any = {}, {} if padding is not None: __lowerCamelCase : Optional[int] = padding if truncation is not None: __lowerCamelCase : Optional[int] = truncation if top_k is not None: __lowerCamelCase : Optional[int] = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[Any] , _lowerCamelCase : Union["Image.Image", str] , _lowerCamelCase : str = None , **_lowerCamelCase : Any ): '''simple docstring''' if isinstance(lowercase__ , (Image.Image, str) ) and isinstance(lowercase__ , lowercase__ ): __lowerCamelCase : List[str] = {"""image""": image, """question""": question} else: __lowerCamelCase : str = image __lowerCamelCase : List[str] = super().__call__(lowercase__ , **lowercase__ ) return results def _snake_case ( self : Any , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int]=False , _lowerCamelCase : List[str]=False ): '''simple docstring''' __lowerCamelCase : Dict = load_image(inputs["""image"""] ) __lowerCamelCase : int = self.tokenizer( inputs["""question"""] , return_tensors=self.framework , padding=lowercase__ , truncation=lowercase__ ) __lowerCamelCase : Dict = self.image_processor(images=lowercase__ , return_tensors=self.framework ) model_inputs.update(lowercase__ ) return model_inputs def _snake_case ( self : Union[str, Any] , _lowerCamelCase : List[str] ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = self.model(**lowercase__ ) return model_outputs def _snake_case ( self : Dict , _lowerCamelCase : str , _lowerCamelCase : Any=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: __lowerCamelCase : Optional[Any] = self.model.config.num_labels if self.framework == "pt": __lowerCamelCase : str = model_outputs.logits.sigmoid()[0] __lowerCamelCase , __lowerCamelCase : Union[str, Any] = probs.topk(lowercase__ ) else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) __lowerCamelCase : Optional[Any] = scores.tolist() __lowerCamelCase : Optional[Any] = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase__ , lowercase__ )]
519
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ): __lowercase = [] def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : str ,**lowercase__ : Any ): self.events.append('''on_init_end''' ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : int ,**lowercase__ : Optional[int] ): self.events.append('''on_train_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ,**lowercase__ : List[str] ): self.events.append('''on_train_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,**lowercase__ : Optional[Any] ): self.events.append('''on_epoch_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : Any ,**lowercase__ : Optional[int] ): self.events.append('''on_epoch_end''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_step_begin''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : Optional[int] ,**lowercase__ : Dict ): self.events.append('''on_step_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,**lowercase__ : Any ): self.events.append('''on_evaluate''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : int ,**lowercase__ : Optional[Any] ): self.events.append('''on_predict''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,**lowercase__ : int ): self.events.append('''on_save''' ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_log''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : int ,lowercase__ : Dict ,**lowercase__ : str ): self.events.append('''on_prediction_step''' ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): shutil.rmtree(self.output_dir ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any]=0 ,lowercase__ : Any=0 ,lowercase__ : Tuple=6_4 ,lowercase__ : Optional[int]=6_4 ,lowercase__ : Optional[Any]=None ,lowercase__ : str=False ,**lowercase__ : Any ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionModelConfig(a=lowercase__ ,b=lowercase__ ) __lowercase = RegressionPreTrainedModel(lowercase__ ) __lowercase = TrainingArguments(self.output_dir ,disable_tqdm=lowercase__ ,report_to=[] ,**lowercase__ ) return Trainer( lowercase__ ,lowercase__ ,train_dataset=lowercase__ ,eval_dataset=lowercase__ ,callbacks=lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) ) # Order doesn't matter __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) for cba, cba in zip(lowercase__ ,lowercase__ ): if isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,lowercase__ ) elif isinstance(lowercase__ ,lowercase__ ) and not isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,cba.__class__ ) elif not isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(cba.__class__ ,lowercase__ ) else: self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ): __lowercase = ['''on_init_end''', '''on_train_begin'''] __lowercase = 0 __lowercase = len(trainer.get_eval_dataloader() ) __lowercase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(lowercase__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.get_trainer() __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # Callbacks passed at init are added to the default callbacks __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __lowercase = self.get_trainer(disable_tqdm=lowercase__ ) __lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __lowercase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(cb.__class__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # We can also add, pop, or remove by instance __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' ,category=lowercase__ ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # Independent log/save/eval __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='''steps''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='''epoch''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # A bit of everything __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=1_0 ,eval_steps=5 ,evaluation_strategy='''steps''' ,) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,) assert str(lowercase__ ) in warn_mock.call_args[0][0]
41
0
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch __snake_case : Any = random.Random() def a_ ( __a , __a=1.0 , __a=None , __a=None ): if rng is None: A__ = global_rng A__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : str=7 , _lowerCamelCase : List[str]=4_0_0 , _lowerCamelCase : Optional[Any]=2_0_0_0 , _lowerCamelCase : int=1 , _lowerCamelCase : Optional[Any]=0.0 , _lowerCamelCase : Tuple=1_6_0_0_0 , _lowerCamelCase : str=True , _lowerCamelCase : Optional[int]=8_0 , _lowerCamelCase : List[str]=1_6 , _lowerCamelCase : Optional[Any]=6_4 , _lowerCamelCase : Dict="hann_window" , _lowerCamelCase : Tuple=8_0 , _lowerCamelCase : Tuple=7_6_0_0 , _lowerCamelCase : int=1E-10 , _lowerCamelCase : Dict=True , ): A__ = parent A__ = batch_size A__ = min_seq_length A__ = max_seq_length A__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A__ = feature_size A__ = padding_value A__ = sampling_rate A__ = do_normalize A__ = num_mel_bins A__ = hop_length A__ = win_length A__ = win_function A__ = fmin A__ = fmax A__ = mel_floor A__ = return_attention_mask def A__ ( self : Tuple ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def A__ ( self : List[str] , _lowerCamelCase : Optional[int]=False , _lowerCamelCase : Any=False ): def _flatten(_lowerCamelCase : List[str] ): return list(itertools.chain(*lowercase__ ) ) if equal_length: A__ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size A__ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A__ = [np.asarray(lowercase__ ) for x in speech_inputs] return speech_inputs def A__ ( self : Tuple , _lowerCamelCase : Dict=False , _lowerCamelCase : Optional[Any]=False ): if equal_length: A__ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A__ = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A__ = [np.asarray(lowercase__ ) for x in speech_inputs] return speech_inputs @require_torch class UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Optional[Any] =SpeechTaFeatureExtractor def A__ ( self : List[Any] ): A__ = SpeechTaFeatureExtractionTester(self ) def A__ ( self : List[Any] , _lowerCamelCase : int ): self.assertTrue(np.all(np.mean(lowercase__ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowercase__ , axis=0 ) - 1 ) < 1E-3 ) ) def A__ ( self : Dict ): # Tests that all call wrap to encode_plus and batch_encode_plus A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] A__ = [np.asarray(lowercase__ ) for speech_input in speech_inputs] # Test not batched input A__ = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values A__ = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(lowercase__ , lowercase__ , atol=1E-3 ) ) # Test batched A__ = feat_extract(lowercase__ , return_tensors='''np''' ).input_values A__ = feat_extract(lowercase__ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowercase__ , lowercase__ ): self.assertTrue(np.allclose(lowercase__ , lowercase__ , atol=1E-3 ) ) def A__ ( self : Dict ): A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] A__ = ['''longest''', '''max_length''', '''do_not_pad'''] A__ = [None, 1_6_0_0, None] for max_length, padding in zip(lowercase__ , lowercase__ ): A__ = feat_extract(lowercase__ , padding=lowercase__ , max_length=lowercase__ , return_tensors='''np''' ) A__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def A__ ( self : Tuple ): A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ = range(8_0_0 , 1_4_0_0 , 2_0_0 ) A__ = [floats_list((1, x) )[0] for x in lengths] A__ = ['''longest''', '''max_length''', '''do_not_pad'''] A__ = [None, 1_6_0_0, None] for max_length, padding in zip(lowercase__ , lowercase__ ): A__ = feat_extract(lowercase__ , max_length=lowercase__ , padding=lowercase__ ) A__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def A__ ( self : Optional[Any] ): A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] A__ = feat_extract( lowercase__ , truncation=lowercase__ , max_length=1_0_0_0 , padding='''max_length''' , return_tensors='''np''' ) A__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def A__ ( self : int ): A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] A__ = feat_extract( lowercase__ , truncation=lowercase__ , max_length=1_0_0_0 , padding='''longest''' , return_tensors='''np''' ) A__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) A__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] A__ = feat_extract( lowercase__ , truncation=lowercase__ , max_length=2_0_0_0 , padding='''longest''' , return_tensors='''np''' ) A__ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) def A__ ( self : Optional[Any] ): A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ = np.random.rand(1_0_0 ).astype(np.floataa ) A__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A__ = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) A__ = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def A__ ( self : Tuple ): # Tests that all call wrap to encode_plus and batch_encode_plus A__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] A__ = [np.asarray(lowercase__ ) for speech_input in speech_inputs] # Test feature size A__ = feature_extractor(audio_target=lowercase__ , padding=lowercase__ , return_tensors='''np''' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input A__ = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_values A__ = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(lowercase__ , lowercase__ , atol=1E-3 ) ) # Test batched A__ = feature_extractor(lowercase__ , return_tensors='''np''' ).input_values A__ = feature_extractor(lowercase__ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowercase__ , lowercase__ ): self.assertTrue(np.allclose(lowercase__ , lowercase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. A__ = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] A__ = np.asarray(lowercase__ ) A__ = feature_extractor(lowercase__ , return_tensors='''np''' ).input_values A__ = feature_extractor(lowercase__ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowercase__ , lowercase__ ): self.assertTrue(np.allclose(lowercase__ , lowercase__ , atol=1E-3 ) ) def A__ ( self : str ): A__ = self.feat_extract_tester.prepare_inputs_for_target() A__ = self.feature_extraction_class(**self.feat_extract_dict ) A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowercase__ ) == len(lowercase__ ) for x, y in zip(lowercase__ , processed_features[input_name] ) ) ) A__ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowercase__ ) A__ = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) A__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: A__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def A__ ( self : Tuple ): A__ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowercase__ ) A__ = self.feature_extraction_class(**self.feat_extract_dict ) A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) A__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: A__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def A__ ( self : List[Any] ): A__ = self.feature_extraction_class(**self.feat_extract_dict ) A__ = self.feat_extract_tester.prepare_inputs_for_target() A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} ) A__ = feat_extract.num_mel_bins # hack! A__ = feat_extract.pad(lowercase__ , padding='''longest''' , return_tensors='''np''' )[input_name] A__ = feat_extract.pad(lowercase__ , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def A__ ( self : Optional[Any] ): A__ = self.feat_extract_dict A__ = True A__ = self.feature_extraction_class(**lowercase__ ) A__ = self.feat_extract_tester.prepare_inputs_for_target() A__ = [len(lowercase__ ) for x in speech_inputs] A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} ) A__ = feat_extract.num_mel_bins # hack! A__ = feat_extract.pad(lowercase__ , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , lowercase__ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowercase__ ) def A__ ( self : Union[str, Any] ): A__ = self.feat_extract_dict A__ = True A__ = self.feature_extraction_class(**lowercase__ ) A__ = self.feat_extract_tester.prepare_inputs_for_target() A__ = [len(lowercase__ ) for x in speech_inputs] A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} ) A__ = min(lowercase__ ) A__ = feat_extract.num_mel_bins # hack! A__ = feat_extract.pad( lowercase__ , padding='''max_length''' , max_length=lowercase__ , truncation=lowercase__ , return_tensors='''np''' ) self.assertIn('''attention_mask''' , lowercase__ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def A__ ( self : str , _lowerCamelCase : str ): from datasets import load_dataset A__ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech A__ = ds.sort('''id''' ).select(range(lowercase__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def A__ ( self : Optional[Any] ): # fmt: off A__ = torch.tensor( [2.3804E-03, 2.0752E-03, 1.9836E-03, 2.1057E-03, 1.6174E-03, 3.0518E-04, 9.1553E-05, 3.3569E-04, 9.7656E-04, 1.8311E-03, 2.0142E-03, 2.1057E-03, 1.7395E-03, 4.5776E-04, -3.9673E-04, 4.5776E-04, 1.0071E-03, 9.1553E-05, 4.8828E-04, 1.1597E-03, 7.3242E-04, 9.4604E-04, 1.8005E-03, 1.8311E-03, 8.8501E-04, 4.2725E-04, 4.8828E-04, 7.3242E-04, 1.0986E-03, 2.1057E-03] ) # fmt: on A__ = self._load_datasamples(1 ) A__ = SpeechTaFeatureExtractor() A__ = feature_extractor(lowercase__ , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 9_3_6_8_0) ) self.assertTrue(torch.allclose(input_values[0, :3_0] , lowercase__ , atol=1E-6 ) ) def A__ ( self : int ): # fmt: off A__ = torch.tensor( [-2.6_870, -3.0_104, -3.1_356, -3.5_352, -3.0_044, -3.0_353, -3.4_719, -3.6_777, -3.1_520, -2.9_435, -2.6_553, -2.8_795, -2.9_944, -2.5_921, -3.0_279, -3.0_386, -3.0_864, -3.1_291, -3.2_353, -2.7_444, -2.6_831, -2.7_287, -3.1_761, -3.1_571, -3.2_726, -3.0_582, -3.1_007, -3.4_533, -3.4_695, -3.0_998] ) # fmt: on A__ = self._load_datasamples(1 ) A__ = SpeechTaFeatureExtractor() A__ = feature_extractor(audio_target=lowercase__ , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 3_6_6, 8_0) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , lowercase__ , atol=1E-4 ) )
571
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : jnp.ndarray SCREAMING_SNAKE_CASE : jnp.ndarray class lowercase_ (nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __lowercase = [] for i in range(len(self.block_out_channels ) - 1 ): __lowercase = self.block_out_channels[i] __lowercase = self.block_out_channels[i + 1] __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = blocks __lowercase = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : List[str] ,lowercase__ : Optional[int] ): __lowercase = self.conv_in(lowercase__ ) __lowercase = nn.silu(lowercase__ ) for block in self.blocks: __lowercase = block(lowercase__ ) __lowercase = nn.silu(lowercase__ ) __lowercase = self.conv_out(lowercase__ ) return embedding @flax_register_to_config class lowercase_ (nn.Module , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 3_2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False SCREAMING_SNAKE_CASE : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) SCREAMING_SNAKE_CASE : int = 2 SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None SCREAMING_SNAKE_CASE : int = 1_2_8_0 SCREAMING_SNAKE_CASE : float = 0.0 SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = "rgb" SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : jax.random.KeyArray ): # init input tensors __lowercase = (1, self.in_channels, self.sample_size, self.sample_size) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase = jnp.ones((1,) ,dtype=jnp.intaa ) __lowercase = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa ) __lowercase = (1, 3, self.sample_size * 8, self.sample_size * 8) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase , __lowercase = jax.random.split(lowercase__ ) __lowercase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )["params"] def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.block_out_channels __lowercase = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __lowercase = self.num_attention_heads or self.attention_head_dim # input __lowercase = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time __lowercase = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift ) __lowercase = FlaxTimestepEmbedding(lowercase__ ,dtype=self.dtype ) __lowercase = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) __lowercase = self.only_cross_attention if isinstance(lowercase__ ,lowercase__ ): __lowercase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = (num_attention_heads,) * len(self.down_block_types ) # down __lowercase = [] __lowercase = [] __lowercase = block_out_channels[0] __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) for i, down_block_type in enumerate(self.down_block_types ): __lowercase = output_channel __lowercase = block_out_channels[i] __lowercase = i == len(lowercase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": __lowercase = FlaxCrossAttnDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: __lowercase = FlaxDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(lowercase__ ) for _ in range(self.layers_per_block ): __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) if not is_final_block: __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) __lowercase = down_blocks __lowercase = controlnet_down_blocks # mid __lowercase = block_out_channels[-1] __lowercase = FlaxUNetMidBlockaDCrossAttn( in_channels=lowercase__ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : float = 1.0 ,lowercase__ : bool = True ,lowercase__ : bool = False ,): __lowercase = self.controlnet_conditioning_channel_order if channel_order == "bgr": __lowercase = jnp.flip(lowercase__ ,axis=1 ) # 1. time if not isinstance(lowercase__ ,jnp.ndarray ): __lowercase = jnp.array([timesteps] ,dtype=jnp.intaa ) elif isinstance(lowercase__ ,jnp.ndarray ) and len(timesteps.shape ) == 0: __lowercase = timesteps.astype(dtype=jnp.floataa ) __lowercase = jnp.expand_dims(lowercase__ ,0 ) __lowercase = self.time_proj(lowercase__ ) __lowercase = self.time_embedding(lowercase__ ) # 2. pre-process __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.conv_in(lowercase__ ) __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.controlnet_cond_embedding(lowercase__ ) sample += controlnet_cond # 3. down __lowercase = (sample,) for down_block in self.down_blocks: if isinstance(lowercase__ ,lowercase__ ): __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) else: __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,deterministic=not train ) down_block_res_samples += res_samples # 4. mid __lowercase = self.mid_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) # 5. contronet blocks __lowercase = () for down_block_res_sample, controlnet_block in zip(lowercase__ ,self.controlnet_down_blocks ): __lowercase = controlnet_block(lowercase__ ) controlnet_down_block_res_samples += (down_block_res_sample,) __lowercase = controlnet_down_block_res_samples __lowercase = self.controlnet_mid_block(lowercase__ ) # 6. scaling __lowercase = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowercase__ ,mid_block_res_sample=lowercase__ )
41
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class __magic_name__ ( lowerCamelCase__): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
234
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase__ = False lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''ybelkada/fonts''' def _A ( ): """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use " '''Pix2StructImageProcessor. Please upgrade torch.''' ) def _A ( A__ , A__ , A__ ): """simple docstring""" requires_backends(A__ , ['''torch'''] ) _check_torch_version() __lowercase = image_tensor.unsqueeze(0 ) __lowercase = torch.nn.functional.unfold(A__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) __lowercase = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , A__ , A__ , -1 ) __lowercase = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def _A ( A__ , A__ = 36 , A__ = "black" , A__ = "white" , A__ = 5 , A__ = 5 , A__ = 5 , A__ = 5 , A__ = None , A__ = None , ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Add new lines so that each line is no more than 80 characters. __lowercase = textwrap.TextWrapper(width=80 ) __lowercase = wrapper.wrap(text=A__ ) __lowercase = '''\n'''.join(A__ ) if font_bytes is not None and font_path is None: __lowercase = io.BytesIO(A__ ) elif font_path is not None: __lowercase = font_path else: __lowercase = hf_hub_download(A__ , '''Arial.TTF''' ) __lowercase = ImageFont.truetype(A__ , encoding='''UTF-8''' , size=A__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. __lowercase = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , A__ ) ) __lowercase , __lowercase , __lowercase , __lowercase = temp_draw.textbbox((0, 0) , A__ , A__ ) # Create the actual image with a bit of padding around the text. __lowercase = text_width + left_padding + right_padding __lowercase = text_height + top_padding + bottom_padding __lowercase = Image.new('''RGB''' , (image_width, image_height) , A__ ) __lowercase = ImageDraw.Draw(A__ ) draw.text(xy=(left_padding, top_padding) , text=A__ , fill=A__ , font=A__ ) return image def _A ( A__ , A__ , **A__ ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Convert to PIL image if necessary __lowercase = to_pil_image(A__ ) __lowercase = render_text(A__ , **A__ ) __lowercase = max(header_image.width , image.width ) __lowercase = int(image.height * (new_width / image.width) ) __lowercase = int(header_image.height * (new_width / header_image.width) ) __lowercase = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary __lowercase = to_numpy_array(A__ ) if infer_channel_dimension_format(A__ ) == ChannelDimension.LAST: __lowercase = to_channel_dimension_format(A__ , ChannelDimension.LAST ) return new_image class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ['flattened_patches'] def __init__( self : Any ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : int = 2_0_4_8 ,lowercase__ : bool = False ,**lowercase__ : List[str] ,): super().__init__(**lowercase__ ) __lowercase = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6} __lowercase = do_normalize __lowercase = do_convert_rgb __lowercase = max_patches __lowercase = is_vqa def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : np.ndarray ,lowercase__ : int ,lowercase__ : dict ,**lowercase__ : Tuple ): requires_backends(self.extract_flattened_patches ,'''torch''' ) _check_torch_version() # convert to torch __lowercase = to_channel_dimension_format(lowercase__ ,ChannelDimension.FIRST ) __lowercase = torch.from_numpy(lowercase__ ) __lowercase , __lowercase = patch_size['''height'''], patch_size['''width'''] __lowercase , __lowercase = get_image_size(lowercase__ ) # maximize scale s.t. __lowercase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) __lowercase = max(min(math.floor(scale * image_height / patch_height ) ,lowercase__ ) ,1 ) __lowercase = max(min(math.floor(scale * image_width / patch_width ) ,lowercase__ ) ,1 ) __lowercase = max(num_feasible_rows * patch_height ,1 ) __lowercase = max(num_feasible_cols * patch_width ,1 ) __lowercase = torch.nn.functional.interpolate( image.unsqueeze(0 ) ,size=(resized_height, resized_width) ,mode='''bilinear''' ,align_corners=lowercase__ ,antialias=lowercase__ ,).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] __lowercase = torch_extract_patches(lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = patches.shape __lowercase = patches_shape[1] __lowercase = patches_shape[2] __lowercase = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] __lowercase = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] __lowercase = torch.arange(lowercase__ ).reshape([rows, 1] ).repeat(1 ,lowercase__ ).reshape([rows * columns, 1] ) __lowercase = torch.arange(lowercase__ ).reshape([1, columns] ).repeat(lowercase__ ,1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] __lowercase = row_ids.to(torch.floataa ) __lowercase = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] __lowercase = torch.cat([row_ids, col_ids, patches] ,-1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] __lowercase = torch.nn.functional.pad(lowercase__ ,[0, 0, 0, max_patches - (rows * columns)] ).float() __lowercase = to_numpy_array(lowercase__ ) return result def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : np.ndarray ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ): if image.dtype == np.uinta: __lowercase = image.astype(np.floataa ) # take mean across the whole `image` __lowercase = np.mean(lowercase__ ) __lowercase = np.std(lowercase__ ) __lowercase = max(lowercase__ ,1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : ImageInput ,lowercase__ : Optional[str] = None ,lowercase__ : bool = None ,lowercase__ : Optional[bool] = None ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[Dict[str, int]] = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : ChannelDimension = ChannelDimension.FIRST ,**lowercase__ : List[Any] ,): __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = patch_size if patch_size is not None else self.patch_size __lowercase = max_patches if max_patches is not None else self.max_patches __lowercase = self.is_vqa if kwargs.get('''data_format''' ,lowercase__ ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) __lowercase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(lowercase__ ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowercase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) __lowercase = kwargs.pop('''font_bytes''' ,lowercase__ ) __lowercase = kwargs.pop('''font_path''' ,lowercase__ ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = [header_text] * len(lowercase__ ) __lowercase = [ render_header(lowercase__ ,header_text[i] ,font_bytes=lowercase__ ,font_path=lowercase__ ) for i, image in enumerate(lowercase__ ) ] if do_normalize: __lowercase = [self.normalize(image=lowercase__ ) for image in images] # convert to torch tensor and permute __lowercase = [ self.extract_flattened_patches(image=lowercase__ ,max_patches=lowercase__ ,patch_size=lowercase__ ) for image in images ] # create attention mask in numpy __lowercase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] __lowercase = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks} ,tensor_type=lowercase__ ) return encoded_outputs
41
0
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = TextToVideoSDPipeline SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. SCREAMING_SNAKE_CASE = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def _lowerCAmelCase( self ) -> Any: torch.manual_seed(0 ) lowercase__ : int = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=32 , attention_head_dim=4 , ) lowercase__ : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=lowercase__ , set_alpha_to_one=lowercase__ , ) torch.manual_seed(0 ) lowercase__ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase__ : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) lowercase__ : List[str] = CLIPTextModel(lowercase__ ) lowercase__ : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ : List[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=0 ) -> Union[str, Any]: if str(lowercase__ ).startswith('''mps''' ): lowercase__ : Optional[int] = torch.manual_seed(lowercase__ ) else: lowercase__ : Optional[Any] = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) lowercase__ : Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ : Union[str, Any] = self.get_dummy_components() lowercase__ : Dict = TextToVideoSDPipeline(**lowercase__ ) lowercase__ : Optional[Any] = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) lowercase__ : List[str] = self.get_dummy_inputs(lowercase__ ) lowercase__ : Union[str, Any] = '''np''' lowercase__ : Dict = sd_pipe(**lowercase__ ).frames lowercase__ : Optional[Any] = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) lowercase__ : Optional[Any] = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCAmelCase( self ) -> Tuple: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase__ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _lowerCAmelCase( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase__ , expected_max_diff=1E-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def _lowerCAmelCase( self ) -> List[Any]: pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def _lowerCAmelCase( self ) -> Dict: pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def _lowerCAmelCase( self ) -> Any: pass def _lowerCAmelCase( self ) -> int: return super().test_progress_bar() @slow @skip_mps class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> str: lowercase__ : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) lowercase__ : Any = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) lowercase__ : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase__ : Dict = pipe.to('''cuda''' ) lowercase__ : Optional[Any] = '''Spiderman is surfing''' lowercase__ : Dict = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase__ : int = pipe(lowercase__ , generator=lowercase__ , num_inference_steps=25 , output_type='''pt''' ).frames lowercase__ : int = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) lowercase__ : str = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) lowercase__ : str = pipe.to('''cuda''' ) lowercase__ : Dict = '''Spiderman is surfing''' lowercase__ : List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase__ : Union[str, Any] = pipe(lowercase__ , generator=lowercase__ , num_inference_steps=2 , output_type='''pt''' ).frames lowercase__ : Any = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
152
'''simple docstring''' import doctest from collections import deque import numpy as np class lowercase_ : """simple docstring""" def __init__( self : Optional[Any] ): __lowercase = [2, 1, 2, -1] __lowercase = [1, 2, 3, 4] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = len(self.first_signal ) __lowercase = len(self.second_signal ) __lowercase = max(lowercase__ ,lowercase__ ) # create a zero matrix of max_length x max_length __lowercase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __lowercase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __lowercase = np.matmul(np.transpose(lowercase__ ) ,np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ ,2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
41
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase (lowerCamelCase__ ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = DDIMPipeline _UpperCAmelCase :Any = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _UpperCAmelCase :int = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } _UpperCAmelCase :Union[str, Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS _UpperCAmelCase :Union[str, Any] = False def _snake_case ( self ): torch.manual_seed(0 ) lowercase__: str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) lowercase__: Optional[int] = DDIMScheduler() lowercase__: int = {'''unet''': unet, '''scheduler''': scheduler} return components def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): if str(lowercase__ ).startswith('''mps''' ): lowercase__: Dict = torch.manual_seed(lowercase__ ) else: lowercase__: str = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) lowercase__: int = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def _snake_case ( self ): lowercase__: Optional[Any] = '''cpu''' lowercase__: str = self.get_dummy_components() lowercase__: str = self.pipeline_class(**lowercase__ ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) lowercase__: Any = self.get_dummy_inputs(lowercase__ ) lowercase__: List[str] = pipe(**lowercase__ ).images lowercase__: int = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) lowercase__: Union[str, Any] = np.array( [1.0_0_0e0_0, 5.7_1_7e-0_1, 4.7_1_7e-0_1, 1.0_0_0e0_0, 0.0_0_0e0_0, 1.0_0_0e0_0, 3.0_0_0e-0_4, 0.0_0_0e0_0, 9.0_0_0e-0_4] ) lowercase__: Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowercase__ , 1e-3 ) def _snake_case ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def _snake_case ( self ): super().test_save_load_local(expected_max_difference=3e-3 ) def _snake_case ( self ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def _snake_case ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: List[str] = '''google/ddpm-cifar10-32''' lowercase__: List[Any] = UNetaDModel.from_pretrained(lowercase__ ) lowercase__: int = DDIMScheduler() lowercase__: Dict = DDIMPipeline(unet=lowercase__ , scheduler=lowercase__ ) ddim.to(lowercase__ ) ddim.set_progress_bar_config(disable=lowercase__ ) lowercase__: Optional[Any] = torch.manual_seed(0 ) lowercase__: int = ddim(generator=lowercase__ , eta=0.0 , output_type='''numpy''' ).images lowercase__: List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__: str = np.array([0.1_723, 0.1_617, 0.1_600, 0.1_626, 0.1_497, 0.1_513, 0.1_505, 0.1_442, 0.1_453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ): lowercase__: Union[str, Any] = '''google/ddpm-ema-bedroom-256''' lowercase__: Optional[int] = UNetaDModel.from_pretrained(lowercase__ ) lowercase__: str = DDIMScheduler.from_pretrained(lowercase__ ) lowercase__: Any = DDIMPipeline(unet=lowercase__ , scheduler=lowercase__ ) ddpm.to(lowercase__ ) ddpm.set_progress_bar_config(disable=lowercase__ ) lowercase__: List[Any] = torch.manual_seed(0 ) lowercase__: int = ddpm(generator=lowercase__ , output_type='''numpy''' ).images lowercase__: Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowercase__: Any = np.array([0.0_060, 0.0_201, 0.0_344, 0.0_024, 0.0_018, 0.0_002, 0.0_022, 0.0_000, 0.0_069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
586
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
41
0
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowerCAmelCase_ = '''<<<<<<< This should probably be modified because it mentions: ''' lowerCAmelCase_ = '''======= >>>>>>> ''' lowerCAmelCase_ = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] lowerCAmelCase_ = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> List[str]: return ConvertCommand(args.tfds_path , args.datasets_directory ) class _snake_case ( lowerCamelCase__ ): """simple docstring""" @staticmethod def _lowerCAmelCase ( _A : ArgumentParser): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = parser.add_parser( """convert""" , help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" , ) train_parser.add_argument( """--tfds_path""" , type=lowercase__ , required=lowercase__ , help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" , ) train_parser.add_argument( """--datasets_directory""" , type=lowercase__ , required=lowercase__ , help="""Path to the HuggingFace Datasets folder.""") train_parser.set_defaults(func=lowercase__) def __init__( self : Optional[int] , _A : str , _A : str , *_A : Optional[int]): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = get_logger("""datasets-cli/converting""") _SCREAMING_SNAKE_CASE : Tuple = tfds_path _SCREAMING_SNAKE_CASE : int = datasets_directory def _lowerCAmelCase ( self : List[Any]): """simple docstring""" if os.path.isdir(self._tfds_path): _SCREAMING_SNAKE_CASE : Any = os.path.abspath(self._tfds_path) elif os.path.isfile(self._tfds_path): _SCREAMING_SNAKE_CASE : Optional[Any] = os.path.dirname(self._tfds_path) else: raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""") _SCREAMING_SNAKE_CASE : List[str] = os.path.abspath(self._datasets_directory) self._logger.info(f"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""") _SCREAMING_SNAKE_CASE : Optional[int] = [] _SCREAMING_SNAKE_CASE : List[Any] = [] _SCREAMING_SNAKE_CASE : Optional[int] = {} if os.path.isdir(self._tfds_path): _SCREAMING_SNAKE_CASE : Any = os.listdir(lowercase__) else: _SCREAMING_SNAKE_CASE : str = [os.path.basename(self._tfds_path)] for f_name in file_names: self._logger.info(f"""Looking at file {f_name}""") _SCREAMING_SNAKE_CASE : Any = os.path.join(lowercase__ , lowercase__) _SCREAMING_SNAKE_CASE : Tuple = os.path.join(lowercase__ , lowercase__) if not os.path.isfile(lowercase__) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("""Skipping file""") continue with open(lowercase__ , encoding="""utf-8""") as f: _SCREAMING_SNAKE_CASE : Optional[int] = f.readlines() _SCREAMING_SNAKE_CASE : Dict = [] _SCREAMING_SNAKE_CASE : List[str] = False _SCREAMING_SNAKE_CASE : List[Any] = False _SCREAMING_SNAKE_CASE : int = [] for line in lines: _SCREAMING_SNAKE_CASE : List[str] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: _SCREAMING_SNAKE_CASE : List[Any] = """import datasets\n""" elif "import tensorflow" in out_line: # order is important here _SCREAMING_SNAKE_CASE : Dict = """""" continue elif "from absl import logging" in out_line: _SCREAMING_SNAKE_CASE : int = """from datasets import logging\n""" elif "getLogger" in out_line: _SCREAMING_SNAKE_CASE : Optional[int] = out_line.replace("""getLogger""" , """get_logger""") elif any(expression in out_line for expression in TO_HIGHLIGHT): _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : Tuple = list(filter(lambda _A: e in out_line , lowercase__)) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowercase__) + """\n""") out_lines.append(lowercase__) out_lines.append(lowercase__) continue else: for pattern, replacement in TO_CONVERT: _SCREAMING_SNAKE_CASE : Optional[Any] = re.sub(lowercase__ , lowercase__ , lowercase__) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: _SCREAMING_SNAKE_CASE : Union[str, Any] = re.match(r"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" , lowercase__) tfds_imports.extend(imp.strip() for imp in match.group(1).split(""",""")) _SCREAMING_SNAKE_CASE : Any = """from . import """ + match.group(1) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"""Error converting {out_line.strip()}""") if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: _SCREAMING_SNAKE_CASE : int = True out_lines.append(lowercase__) if is_builder or "wmt" in f_name: # We create a new directory for each dataset _SCREAMING_SNAKE_CASE : str = f_name.replace(""".py""" , """""") _SCREAMING_SNAKE_CASE : List[Any] = os.path.join(lowercase__ , lowercase__) _SCREAMING_SNAKE_CASE : Tuple = os.path.join(lowercase__ , lowercase__) os.makedirs(lowercase__ , exist_ok=lowercase__) self._logger.info(f"""Adding directory {output_dir}""") imports_to_builder_map.update({imp: output_dir for imp in tfds_imports}) else: # Utilities will be moved at the end utils_files.append(lowercase__) if needs_manual_update: with_manual_update.append(lowercase__) with open(lowercase__ , """w""" , encoding="""utf-8""") as f: f.writelines(lowercase__) self._logger.info(f"""Converted in {output_file}""") for utils_file in utils_files: try: _SCREAMING_SNAKE_CASE : Optional[Any] = os.path.basename(lowercase__) _SCREAMING_SNAKE_CASE : str = imports_to_builder_map[f_name.replace(""".py""" , """""")] self._logger.info(f"""Moving {dest_folder} to {utils_file}""") shutil.copy(lowercase__ , lowercase__) except KeyError: self._logger.error(f"""Cannot find destination folder for {utils_file}. Please copy manually.""") if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""")
338
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCAmelCase__ = getLogger(__name__) lowerCAmelCase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def _A ( A__ , A__ , A__ , A__ = 8 , A__ = DEFAULT_DEVICE , A__=False , A__="summarization" , A__=None , **A__ , ): """simple docstring""" __lowercase = Path(A__ ).open('''w''' , encoding='''utf-8''' ) __lowercase = str(A__ ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained(A__ ).to(A__ ) if fpaa: __lowercase = model.half() __lowercase = AutoTokenizer.from_pretrained(A__ ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __lowercase = time.time() # update config with task specific params use_task_specific_params(A__ , A__ ) if prefix is None: __lowercase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(A__ , A__ ) ) ): __lowercase = [prefix + text for text in examples_chunk] __lowercase = tokenizer(A__ , return_tensors='''pt''' , truncation=A__ , padding='''longest''' ).to(A__ ) __lowercase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **A__ , ) __lowercase = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __lowercase = int(time.time() - start_time ) # seconds __lowercase = len(A__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _A ( ): """simple docstring""" return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def _A ( A__=True ): """simple docstring""" __lowercase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=A__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=A__ , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=A__ , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=A__ , required=A__ , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=A__ , required=A__ , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=A__ , required=A__ , default=A__ , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=A__ , required=A__ , default=A__ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=A__ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=A__ , default=8 , required=A__ , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=A__ , default=-1 , required=A__ , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=A__ , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowercase , __lowercase = parser.parse_known_args() __lowercase = parse_numeric_n_bool_cl_kwargs(A__ ) if parsed_args and verbose: print(F"parsed the following generate kwargs: {parsed_args}" ) __lowercase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowercase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=A__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __lowercase = generate_summaries_or_translations( A__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **A__ , ) if args.reference_path is None: return {} # Compute scores __lowercase = calculate_bleu if '''translation''' in args.task else calculate_rouge __lowercase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowercase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(A__ )] __lowercase = score_fn(A__ , A__ ) scores.update(A__ ) if args.dump_args: scores.update(A__ ) if args.info: __lowercase = args.info if verbose: print(A__ ) if args.score_path is not None: json.dump(A__ , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
41
0
def a_ (__A , __A ) -> List[Any]: """simple docstring""" __a : Optional[Any] = [1] for i in range(2 , A__ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __a : Any = [] __a : List[str] = list(range(A__ ) ) # Find permutation while factorials: __a : Union[str, Any] = factorials.pop() __a , __a : Any = divmod(A__ , A__ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
351
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(A__ ): print(F"{i}\t\t{d}" ) def _A ( A__ , A__ , A__ ): """simple docstring""" for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = [float('''inf''' )] * vertex_count __lowercase = 0.0 for _ in range(vertex_count - 1 ): for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: __lowercase = distance[u] + w __lowercase = check_negative_cycle(A__ , A__ , A__ ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = int(input('''Enter number of vertices: ''').strip()) lowerCAmelCase__ = int(input('''Enter number of edges: ''').strip()) lowerCAmelCase__ = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) lowerCAmelCase__ = {'''src''': src, '''dst''': dest, '''weight''': weight} lowerCAmelCase__ = int(input('''\nEnter shortest path source:''').strip()) lowerCAmelCase__ = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
41
0
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : List[Any] = { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowerCAmelCase__ ( lowerCamelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Dict = 'blenderbot-small' _SCREAMING_SNAKE_CASE : int = ['past_key_values'] _SCREAMING_SNAKE_CASE : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] , _SCREAMING_SNAKE_CASE : List[str]=50_265 , _SCREAMING_SNAKE_CASE : Optional[Any]=512 , _SCREAMING_SNAKE_CASE : Optional[int]=8 , _SCREAMING_SNAKE_CASE : List[Any]=2_048 , _SCREAMING_SNAKE_CASE : List[str]=16 , _SCREAMING_SNAKE_CASE : str=8 , _SCREAMING_SNAKE_CASE : Any=2_048 , _SCREAMING_SNAKE_CASE : Tuple=16 , _SCREAMING_SNAKE_CASE : Tuple=0.0 , _SCREAMING_SNAKE_CASE : List[str]=0.0 , _SCREAMING_SNAKE_CASE : Any=True , _SCREAMING_SNAKE_CASE : str=True , _SCREAMING_SNAKE_CASE : int="gelu" , _SCREAMING_SNAKE_CASE : Tuple=512 , _SCREAMING_SNAKE_CASE : List[Any]=0.1 , _SCREAMING_SNAKE_CASE : Tuple=0.0 , _SCREAMING_SNAKE_CASE : str=0.0 , _SCREAMING_SNAKE_CASE : Any=0.0_2 , _SCREAMING_SNAKE_CASE : Union[str, Any]=1 , _SCREAMING_SNAKE_CASE : List[Any]=False , _SCREAMING_SNAKE_CASE : Optional[int]=0 , _SCREAMING_SNAKE_CASE : Optional[int]=1 , _SCREAMING_SNAKE_CASE : str=2 , _SCREAMING_SNAKE_CASE : int=2 , **_SCREAMING_SNAKE_CASE : List[str] , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[int] = d_model SCREAMING_SNAKE_CASE : str = encoder_ffn_dim SCREAMING_SNAKE_CASE : Any = encoder_layers SCREAMING_SNAKE_CASE : List[Any] = encoder_attention_heads SCREAMING_SNAKE_CASE : int = decoder_ffn_dim SCREAMING_SNAKE_CASE : Optional[int] = decoder_layers SCREAMING_SNAKE_CASE : int = decoder_attention_heads SCREAMING_SNAKE_CASE : Dict = dropout SCREAMING_SNAKE_CASE : Dict = attention_dropout SCREAMING_SNAKE_CASE : Optional[int] = activation_dropout SCREAMING_SNAKE_CASE : str = activation_function SCREAMING_SNAKE_CASE : Tuple = init_std SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE : Tuple = decoder_layerdrop SCREAMING_SNAKE_CASE : Tuple = use_cache SCREAMING_SNAKE_CASE : int = encoder_layers SCREAMING_SNAKE_CASE : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , ) class lowerCAmelCase__ ( lowerCamelCase__ ): '''simple docstring''' @property def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Union[str, Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: SCREAMING_SNAKE_CASE : Tuple = {0: 'batch'} SCREAMING_SNAKE_CASE : Dict = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: SCREAMING_SNAKE_CASE : Union[str, Any] = {0: 'batch', 1: 'decoder_sequence'} SCREAMING_SNAKE_CASE : Union[str, Any] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase__ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. SCREAMING_SNAKE_CASE : Any = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.num_layers for i in range(lowercase__ ): SCREAMING_SNAKE_CASE : int = {0: 'batch', 2: 'past_sequence + sequence'} SCREAMING_SNAKE_CASE : List[Any] = {0: 'batch', 2: 'past_sequence + sequence'} else: SCREAMING_SNAKE_CASE : str = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : str = super().outputs else: SCREAMING_SNAKE_CASE : List[Any] = super(lowercase__ , self ).outputs if self.use_past: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.num_layers for i in range(lowercase__ ): SCREAMING_SNAKE_CASE : Tuple = {0: 'batch', 2: 'past_sequence + sequence'} SCREAMING_SNAKE_CASE : Optional[int] = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def _lowerCAmelCase ( self : Dict , _SCREAMING_SNAKE_CASE : PreTrainedTokenizer , _SCREAMING_SNAKE_CASE : int = -1 , _SCREAMING_SNAKE_CASE : int = -1 , _SCREAMING_SNAKE_CASE : bool = False , _SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Generate decoder inputs SCREAMING_SNAKE_CASE : Any = seq_length if not self.use_past else 1 SCREAMING_SNAKE_CASE : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE : str = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} SCREAMING_SNAKE_CASE : Tuple = dict(**lowercase__ , **lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = common_inputs['input_ids'].shape SCREAMING_SNAKE_CASE : Tuple = common_inputs['decoder_input_ids'].shape[1] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE : List[Any] = decoder_seq_length + 3 SCREAMING_SNAKE_CASE : int = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) SCREAMING_SNAKE_CASE : str = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(lowercase__ , lowercase__ )] , dim=1 ) SCREAMING_SNAKE_CASE : Tuple = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.num_layers SCREAMING_SNAKE_CASE : Any = min(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE : List[str] = max(lowercase__ , lowercase__ ) - min_num_layers SCREAMING_SNAKE_CASE : Optional[int] = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(lowercase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), ) ) # TODO: test this. SCREAMING_SNAKE_CASE : Optional[Any] = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(lowercase__ , lowercase__ ): common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) ) return common_inputs def _lowerCAmelCase ( self : Any , _SCREAMING_SNAKE_CASE : PreTrainedTokenizer , _SCREAMING_SNAKE_CASE : int = -1 , _SCREAMING_SNAKE_CASE : int = -1 , _SCREAMING_SNAKE_CASE : bool = False , _SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = common_inputs['input_ids'].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE : str = seqlen + 2 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.num_layers SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.num_attention_heads SCREAMING_SNAKE_CASE : Dict = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE : Dict = common_inputs['attention_mask'].dtype SCREAMING_SNAKE_CASE : Tuple = torch.cat( [common_inputs['attention_mask'], torch.ones(lowercase__ , lowercase__ , dtype=lowercase__ )] , dim=1 ) SCREAMING_SNAKE_CASE : Optional[Any] = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ ) ] return common_inputs def _lowerCAmelCase ( self : List[str] , _SCREAMING_SNAKE_CASE : PreTrainedTokenizer , _SCREAMING_SNAKE_CASE : int = -1 , _SCREAMING_SNAKE_CASE : int = -1 , _SCREAMING_SNAKE_CASE : bool = False , _SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = compute_effective_axis_dimension( lowercase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE : int = tokenizer.num_special_tokens_to_add(lowercase__ ) SCREAMING_SNAKE_CASE : Optional[int] = compute_effective_axis_dimension( lowercase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase__ ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE : Any = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE : str = dict(tokenizer(lowercase__ , return_tensors=lowercase__ ) ) return common_inputs def _lowerCAmelCase ( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : PreTrainedTokenizer , _SCREAMING_SNAKE_CASE : int = -1 , _SCREAMING_SNAKE_CASE : int = -1 , _SCREAMING_SNAKE_CASE : bool = False , _SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> Optional[Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : List[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__ ) elif self.task == "causal-lm": SCREAMING_SNAKE_CASE : List[str] = self._generate_dummy_inputs_for_causal_lm( lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__ ) else: SCREAMING_SNAKE_CASE : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__ ) return common_inputs def _lowerCAmelCase ( self : Tuple , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Union[str, Any] = super()._flatten_past_key_values_(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) else: SCREAMING_SNAKE_CASE : Dict = super(lowercase__ , self )._flatten_past_key_values_( lowercase__ , lowercase__ , lowercase__ , lowercase__ )
265
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[Any] ,*lowercase__ : Optional[Any] ,**lowercase__ : int ): warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' ,lowercase__ ,) super().__init__(*lowercase__ ,**lowercase__ )
41
0
import math from numpy import inf from scipy.integrate import quad def lowerCAmelCase_ ( lowerCamelCase ): if num <= 0: raise ValueError("""math domain error""" ) return quad(A__ , 0 , A__ , args=(A__) )[0] def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return math.pow(A__ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
21
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _A ( A__ ): """simple docstring""" __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = 0.0_1 with locka.acquire(): with pytest.raises(A__ ): __lowercase = time.time() locka.acquire(A__ ) assert time.time() - _start > timeout def _A ( A__ ): """simple docstring""" __lowercase = '''a''' * 1000 + '''.lock''' __lowercase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(A__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __lowercase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(A__ ): locka.acquire(0 )
41
0
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCAmelCase =logging.get_logger(__name__) UpperCAmelCase ={"vocab_file": "spiece.model"} UpperCAmelCase ={ "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase ={ "t5-small": 512, "t5-base": 512, "t5-large": 512, "t5-3b": 512, "t5-11b": 512, } UpperCAmelCase ="▁" class lowerCamelCase__ ( lowerCamelCase__ ): '''simple docstring''' _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['input_ids', 'attention_mask'] def __init__( self ,lowerCamelCase_ ,lowerCamelCase_="</s>" ,lowerCamelCase_="<unk>" ,lowerCamelCase_="<pad>" ,lowerCamelCase_=1_0_0 ,lowerCamelCase_=None ,lowerCamelCase_ = None ,lowerCamelCase_=True ,**lowerCamelCase_ ,) -> List[str]: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: A = [f'<extra_id_{i}>' for i in range(lowercase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens A = len(set(filter(lambda lowerCamelCase_ : bool("""extra_id""" in str(lowercase__ ) ) ,lowercase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) if legacy: logger.warning_once( f'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to' """ read the related pull request available at https://github.com/huggingface/transformers/pull/24565""" ) A = legacy A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase__ ,unk_token=lowercase__ ,pad_token=lowercase__ ,extra_ids=lowercase__ ,additional_special_tokens=lowercase__ ,sp_model_kwargs=self.sp_model_kwargs ,legacy=lowercase__ ,**lowercase__ ,) A = vocab_file A = extra_ids A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase__ ) @staticmethod def UpperCamelCase__ ( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Optional[int]: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: A = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" f' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" f' {pretrained_model_name_or_path} automatically truncating your input to' f' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' f' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" ,lowercase__ ,) return max_model_length @property def UpperCamelCase__ ( self ) -> int: return self.sp_model.get_piece_size() + self._extra_ids def UpperCamelCase__ ( self ) -> int: A = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ,lowerCamelCase_ = False ) -> Any: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ ,token_ids_a=lowercase__ ,already_has_special_tokens=lowercase__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowercase__ )) + [1] return ([0] * len(lowercase__ )) + [1] + ([0] * len(lowercase__ )) + [1] def UpperCamelCase__ ( self ) -> Union[str, Any]: return list( set(filter(lambda lowerCamelCase_ : bool(re.search(r"""<extra_id_\d+>""" ,lowercase__ ) ) is not None ,self.additional_special_tokens ) ) ) def UpperCamelCase__ ( self ) -> str: return [self._convert_token_to_id(lowercase__ ) for token in self.get_sentinel_tokens()] def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> Union[str, Any]: if len(lowercase__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ) -> Optional[Any]: A = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ) -> Optional[Any]: A = self._add_eos_if_not_present(lowercase__ ) if token_ids_a is None: return token_ids_a else: A = self._add_eos_if_not_present(lowercase__ ) return token_ids_a + token_ids_a def __getstate__( self ) -> Optional[int]: A = self.__dict__.copy() A = None return state def __setstate__( self ,lowerCamelCase_ ) -> Any: A = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,**lowerCamelCase_ ) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: A = SPIECE_UNDERLINE + text.replace(lowercase__ ,""" """ ) return super().tokenize(lowercase__ ,**lowercase__ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,**lowerCamelCase_ ) -> Optional[Any]: if not self.legacy: A = text.startswith(lowercase__ ) if is_first: A = text[1:] A = self.sp_model.encode(lowercase__ ,out_type=lowercase__ ) if not self.legacy and not is_first and not text.startswith(""" """ ) and tokens[0].startswith(lowercase__ ): A = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> Tuple: if token.startswith("""<extra_id_""" ): A = re.match(r"""<extra_id_(\d+)>""" ,lowercase__ ) A = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(lowercase__ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> List[str]: if index < self.sp_model.get_piece_size(): A = self.sp_model.IdToPiece(lowercase__ ) else: A = f'<extra_id_{self.vocab_size - 1 - index}>' return token def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> Union[str, Any]: A = [] A = """""" A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase__ ) + token A = True A = [] else: current_sub_tokens.append(lowercase__ ) A = False out_string += self.sp_model.decode(lowercase__ ) return out_string.strip() def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ) -> str: if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( lowercase__ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ ,"""wb""" ) as fi: A = self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,)
617
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase__ = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
0
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class UpperCamelCase_ : def __init__( self , snake_case__ = "cpu" , snake_case__ = "openai/clip-vit-large-patch14" ) -> List[Any]: """simple docstring""" UpperCAmelCase = device UpperCAmelCase = CLIPTokenizerFast.from_pretrained(lowercase__ ) UpperCAmelCase = [0.48_145_466, 0.4_578_275, 0.40_821_073] UpperCAmelCase = [0.26_862_954, 0.26_130_258, 0.27_577_711] UpperCAmelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) UpperCAmelCase = torchvision.transforms.Resize(2_24 ) UpperCAmelCase = torchvision.transforms.CenterCrop(2_24 ) def UpperCamelCase_ ( self , snake_case__ ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.resize(lowercase__ ) UpperCAmelCase = self.center_crop(lowercase__ ) UpperCAmelCase = self.normalize(lowercase__ ) return images def __call__( self , snake_case__=None , snake_case__=None , **snake_case__ ) -> Any: """simple docstring""" UpperCAmelCase = self.tokenizer(text=lowercase__ , **lowercase__ ) UpperCAmelCase = self.preprocess_img(lowercase__ ) UpperCAmelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class UpperCamelCase_ ( nn.Module ): def __init__( self , snake_case__=10 , snake_case__=0.01 , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=False , snake_case__=True , snake_case__="image" , snake_case__=True , snake_case__=False , snake_case__=False , snake_case__=False , ) -> Optional[Any]: """simple docstring""" super().__init__() UpperCAmelCase = None UpperCAmelCase = device if device else get_device() if vqgan: UpperCAmelCase = vqgan else: UpperCAmelCase = load_vqgan(self.device , conf_path=lowercase__ , ckpt_path=lowercase__ ) self.vqgan.eval() if clip: UpperCAmelCase = clip else: UpperCAmelCase = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) UpperCAmelCase = ProcessorGradientFlow(device=self.device ) UpperCAmelCase = iterations UpperCAmelCase = lr UpperCAmelCase = log UpperCAmelCase = make_grid UpperCAmelCase = return_val UpperCAmelCase = quantize UpperCAmelCase = self.vqgan.decoder.z_shape def UpperCamelCase_ ( self , snake_case__=None , snake_case__=None , snake_case__=5 , snake_case__=True ) -> Tuple: """simple docstring""" UpperCAmelCase = [] if output_path is None: UpperCAmelCase = """./animation.gif""" if input_path is None: UpperCAmelCase = self.save_path UpperCAmelCase = sorted(glob(input_path + """/*""" ) ) if not len(lowercase__ ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(lowercase__ ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) UpperCAmelCase = total_duration / len(lowercase__ ) UpperCAmelCase = [frame_duration] * len(lowercase__ ) if extend_frames: UpperCAmelCase = 1.5 UpperCAmelCase = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(lowercase__ ) ) imageio.mimsave(lowercase__ , lowercase__ , duration=lowercase__ ) print(f'''gif saved to {output_path}''' ) def UpperCamelCase_ ( self , snake_case__=None , snake_case__=None ) -> str: """simple docstring""" if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError UpperCAmelCase = preprocess(Image.open(lowercase__ ) , target_image_size=2_56 ).to(self.device ) UpperCAmelCase = preprocess_vqgan(lowercase__ ) UpperCAmelCase , *UpperCAmelCase = self.vqgan.encode(lowercase__ ) return z def UpperCamelCase_ ( self , snake_case__ ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.latent.detach().requires_grad_() UpperCAmelCase = base_latent + transform_vector if self.quantize: UpperCAmelCase , *UpperCAmelCase = self.vqgan.quantize(lowercase__ ) else: UpperCAmelCase = trans_latent return self.vqgan.decode(lowercase__ ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__=None ) -> Dict: """simple docstring""" UpperCAmelCase = self.clip_preprocessor(text=lowercase__ , images=lowercase__ , return_tensors="""pt""" , padding=lowercase__ ) UpperCAmelCase = self.clip(**lowercase__ ) UpperCAmelCase = clip_outputs.logits_per_image if weights is not None: UpperCAmelCase = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ ) -> str: """simple docstring""" UpperCAmelCase = self._get_clip_similarity(pos_prompts["""prompts"""] , lowercase__ , weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: UpperCAmelCase = self._get_clip_similarity(neg_prompts["""prompts"""] , lowercase__ , weights=neg_prompts["""weights"""] ) else: UpperCAmelCase = torch.tensor([1] , device=self.device ) UpperCAmelCase = -torch.log(lowercase__ ) + torch.log(lowercase__ ) return loss def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Any: """simple docstring""" UpperCAmelCase = torch.randn_like(self.latent , requires_grad=lowercase__ , device=self.device ) UpperCAmelCase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() UpperCAmelCase = self._add_vector(lowercase__ ) UpperCAmelCase = loop_post_process(lowercase__ ) UpperCAmelCase = self._get_CLIP_loss(lowercase__ , lowercase__ , lowercase__ ) print("""CLIP loss""" , lowercase__ ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=lowercase__ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Tuple: """simple docstring""" wandb.init(reinit=lowercase__ , project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: UpperCAmelCase = Image.open(lowercase__ ) UpperCAmelCase = image.resize((2_56, 2_56) ) wandb.log("""Original Image""" , wandb.Image(lowercase__ ) ) def UpperCamelCase_ ( self , snake_case__ ) -> str: """simple docstring""" if not prompts: return [] UpperCAmelCase = [] UpperCAmelCase = [] if isinstance(lowercase__ , lowercase__ ): UpperCAmelCase = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(lowercase__ , (tuple, list) ): UpperCAmelCase = prompt[0] UpperCAmelCase = float(prompt[1] ) elif ":" in prompt: UpperCAmelCase , UpperCAmelCase = prompt.split(""":""" ) UpperCAmelCase = float(lowercase__ ) else: UpperCAmelCase = prompt UpperCAmelCase = 1.0 processed_prompts.append(lowercase__ ) weights.append(lowercase__ ) return { "prompts": processed_prompts, "weights": torch.tensor(lowercase__ , device=self.device ), } def UpperCamelCase_ ( self , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=True , snake_case__=False , snake_case__=True , snake_case__=True , snake_case__=None , ) -> Tuple: """simple docstring""" if image_path: UpperCAmelCase = self._get_latent(lowercase__ ) else: UpperCAmelCase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(lowercase__ , lowercase__ , lowercase__ ) assert pos_prompts, "You must provide at least one positive prompt." UpperCAmelCase = self.process_prompts(lowercase__ ) UpperCAmelCase = self.process_prompts(lowercase__ ) if save_final and save_path is None: UpperCAmelCase = os.path.join("""./outputs/""" , """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(lowercase__ ): os.makedirs(lowercase__ ) else: UpperCAmelCase = save_path + """_""" + get_timestamp() os.makedirs(lowercase__ ) UpperCAmelCase = save_path UpperCAmelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(lowercase__ ) ) UpperCAmelCase = loop_post_process(lowercase__ ) for iter, transformed_img in enumerate(self._optimize_CLIP(lowercase__ , lowercase__ , lowercase__ ) ): if show_intermediate: show_pil(lowercase__ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({"""Image""": wandb.Image(lowercase__ )} ) if show_final: show_pil(lowercase__ ) if save_final: transformed_img.save(os.path.join(self.save_path , f'''iter_{iter:03d}_final.png''' ) )
673
'''simple docstring''' import argparse import os import re lowerCAmelCase__ = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(R'''\[([^\]]+)\]''') def _A ( A__ ): """simple docstring""" __lowercase = _re_indent.search(A__ ) return "" if search is None else search.groups()[0] def _A ( A__ , A__="" , A__=None , A__=None ): """simple docstring""" __lowercase = 0 __lowercase = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(A__ ): index += 1 __lowercase = ['''\n'''.join(lines[:index] )] else: __lowercase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowercase = [lines[index]] index += 1 while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(A__ ) ) if index < len(A__ ) - 1: __lowercase = [lines[index + 1]] index += 1 else: __lowercase = [] else: blocks.append('''\n'''.join(A__ ) ) __lowercase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A__ ) > 0: blocks.append('''\n'''.join(A__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def _A ( A__ ): """simple docstring""" def _inner(A__ ): return key(A__ ).lower().replace('''_''' , '''''' ) return _inner def _A ( A__ , A__=None ): """simple docstring""" def noop(A__ ): return x if key is None: __lowercase = noop # Constants are all uppercase, they go first. __lowercase = [obj for obj in objects if key(A__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowercase = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()] # Functions begin with a lowercase, they go last. __lowercase = [obj for obj in objects if not key(A__ )[0].isupper()] __lowercase = ignore_underscore(A__ ) return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) def _A ( A__ ): """simple docstring""" def _replace(A__ ): __lowercase = match.groups()[0] if "," not in imports: return F"[{imports}]" __lowercase = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) + "]" __lowercase = import_statement.split('''\n''' ) if len(A__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowercase = 2 if lines[1].strip() == '''[''' else 1 __lowercase = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowercase = sort_objects(A__ , key=lambda A__ : x[1] ) __lowercase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowercase = _re_bracket_content.sub(_replace , lines[1] ) else: __lowercase = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] __lowercase = get_indent(lines[1] ) + ''', '''.join([F"\"{k}\"" for k in sort_objects(A__ )] ) return "\n".join(A__ ) else: # Finally we have to deal with imports fitting on one line __lowercase = _re_bracket_content.sub(_replace , A__ ) return import_statement def _A ( A__ , A__=True ): """simple docstring""" with open(A__ , '''r''' ) as f: __lowercase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowercase = split_code_in_indented_blocks( A__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowercase = main_blocks[block_idx] __lowercase = block.split('''\n''' ) # Get to the start of the imports. __lowercase = 0 while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowercase = len(A__ ) else: line_idx += 1 if line_idx >= len(A__ ): continue # Ignore beginning and last line: they don't contain anything. __lowercase = '''\n'''.join(block_lines[line_idx:-1] ) __lowercase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowercase = split_code_in_indented_blocks(A__ , indent_level=A__ ) # We have two categories of import key: list or _import_structure[key].append/extend __lowercase = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowercase = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowercase = [(i, key) for i, key in enumerate(A__ ) if key is not None] __lowercase = [x[0] for x in sorted(A__ , key=lambda A__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowercase = 0 __lowercase = [] for i in range(len(A__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __lowercase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(A__ ) count += 1 # And we put our main block back together with its first and last line. __lowercase = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(A__ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(A__ , '''w''' ) as f: f.write('''\n'''.join(A__ ) ) def _A ( A__=True ): """simple docstring""" __lowercase = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: __lowercase = sort_imports(os.path.join(A__ , '''__init__.py''' ) , check_only=A__ ) if result: __lowercase = [os.path.join(A__ , '''__init__.py''' )] if len(A__ ) > 0: raise ValueError(F"Would overwrite {len(A__ )} files, run `make style`." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
41
0
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class _UpperCamelCase ( lowerCamelCase__,lowerCamelCase__ ): '''simple docstring''' @register_to_config def __init__( self : List[Any] , _lowerCamelCase : int = 1_2_8 , _lowerCamelCase : int = 2_5_6 , _lowerCamelCase : float = 2_0_0_0.0 , _lowerCamelCase : int = 7_6_8 , _lowerCamelCase : int = 1_2 , _lowerCamelCase : int = 1_2 , _lowerCamelCase : int = 6_4 , _lowerCamelCase : int = 2_0_4_8 , _lowerCamelCase : float = 0.1 , ): '''simple docstring''' super().__init__() __lowerCamelCase : Any = nn.Sequential( nn.Linear(lowercase__ , d_model * 4 , bias=lowercase__ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=lowercase__ ) , nn.SiLU() , ) __lowerCamelCase : Dict = nn.Embedding(lowercase__ , lowercase__ ) __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = nn.Linear(lowercase__ , lowercase__ , bias=lowercase__ ) __lowerCamelCase : Optional[Any] = nn.Dropout(p=lowercase__ ) __lowerCamelCase : Optional[int] = nn.ModuleList() for lyr_num in range(lowercase__ ): # FiLM conditional T5 decoder __lowerCamelCase : Any = DecoderLayer(d_model=lowercase__ , d_kv=lowercase__ , num_heads=lowercase__ , d_ff=lowercase__ , dropout_rate=lowercase__ ) self.decoders.append(lowercase__ ) __lowerCamelCase : int = TaLayerNorm(lowercase__ ) __lowerCamelCase : Optional[int] = nn.Dropout(p=lowercase__ ) __lowerCamelCase : Optional[Any] = nn.Linear(lowercase__ , lowercase__ , bias=lowercase__ ) def _snake_case ( self : List[str] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] ): '''simple docstring''' __lowerCamelCase : Optional[Any] = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def _snake_case ( self : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : int ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. __lowerCamelCase : Any = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) __lowerCamelCase : Tuple = self.conditioning_emb(lowercase__ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) __lowerCamelCase : Optional[Any] = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. __lowerCamelCase : List[Any] = torch.broadcast_to( torch.arange(lowercase__ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) __lowerCamelCase : List[str] = self.position_encoding(lowercase__ ) __lowerCamelCase : Any = self.continuous_inputs_projection(lowercase__ ) inputs += position_encodings __lowerCamelCase : List[Any] = self.dropout(lowercase__ ) # decoder: No padding present. __lowerCamelCase : Optional[Any] = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. __lowerCamelCase : Union[str, Any] = [(x, self.encoder_decoder_mask(lowercase__ , lowercase__ )) for x, y in encodings_and_masks] # cross attend style: concat encodings __lowerCamelCase : Optional[int] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) __lowerCamelCase : Tuple = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: __lowerCamelCase : int = lyr( lowercase__ , conditioning_emb=lowercase__ , encoder_hidden_states=lowercase__ , encoder_attention_mask=lowercase__ , )[0] __lowerCamelCase : Dict = self.decoder_norm(lowercase__ ) __lowerCamelCase : List[str] = self.post_dropout(lowercase__ ) __lowerCamelCase : int = self.spec_out(lowercase__ ) return spec_out class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : List[Any]=1E-6 ): '''simple docstring''' super().__init__() __lowerCamelCase : Optional[int] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=lowercase__ , d_kv=lowercase__ , num_heads=lowercase__ , dropout_rate=lowercase__ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=lowercase__ , d_kv=lowercase__ , num_heads=lowercase__ , dropout_rate=lowercase__ , layer_norm_epsilon=lowercase__ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=lowercase__ , d_ff=lowercase__ , dropout_rate=lowercase__ , layer_norm_epsilon=lowercase__ ) ) def _snake_case ( self : Optional[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple=None , _lowerCamelCase : List[Any]=None , _lowerCamelCase : Any=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Tuple=None , ): '''simple docstring''' __lowerCamelCase : Optional[int] = self.layer[0]( lowercase__ , conditioning_emb=lowercase__ , attention_mask=lowercase__ , ) if encoder_hidden_states is not None: __lowerCamelCase : Tuple = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) __lowerCamelCase : List[Any] = self.layer[1]( lowercase__ , key_value_states=lowercase__ , attention_mask=lowercase__ , ) # Apply Film Conditional Feed Forward layer __lowerCamelCase : Union[str, Any] = self.layer[-1](lowercase__ , lowercase__ ) return (hidden_states,) class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , _lowerCamelCase : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__init__() __lowerCamelCase : Optional[int] = TaLayerNorm(lowercase__ ) __lowerCamelCase : List[Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=lowercase__ ) __lowerCamelCase : List[Any] = Attention(query_dim=lowercase__ , heads=lowercase__ , dim_head=lowercase__ , out_bias=lowercase__ , scale_qk=lowercase__ ) __lowerCamelCase : List[Any] = nn.Dropout(lowercase__ ) def _snake_case ( self : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int=None , _lowerCamelCase : List[Any]=None , ): '''simple docstring''' __lowerCamelCase : Tuple = self.layer_norm(lowercase__ ) if conditioning_emb is not None: __lowerCamelCase : Optional[Any] = self.FiLMLayer(lowercase__ , lowercase__ ) # Self-attention block __lowerCamelCase : int = self.attention(lowercase__ ) __lowerCamelCase : str = hidden_states + self.dropout(lowercase__ ) return hidden_states class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : Optional[int] , _lowerCamelCase : Any ): '''simple docstring''' super().__init__() __lowerCamelCase : str = Attention(query_dim=lowercase__ , heads=lowercase__ , dim_head=lowercase__ , out_bias=lowercase__ , scale_qk=lowercase__ ) __lowerCamelCase : Any = TaLayerNorm(lowercase__ , eps=lowercase__ ) __lowerCamelCase : Optional[int] = nn.Dropout(lowercase__ ) def _snake_case ( self : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : Dict=None , _lowerCamelCase : Any=None , ): '''simple docstring''' __lowerCamelCase : Optional[Any] = self.layer_norm(lowercase__ ) __lowerCamelCase : str = self.attention( lowercase__ , encoder_hidden_states=lowercase__ , attention_mask=attention_mask.squeeze(1 ) , ) __lowerCamelCase : Union[str, Any] = hidden_states + self.dropout(lowercase__ ) return layer_output class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , _lowerCamelCase : str , _lowerCamelCase : List[Any] , _lowerCamelCase : int , _lowerCamelCase : int ): '''simple docstring''' super().__init__() __lowerCamelCase : Dict = TaDenseGatedActDense(d_model=lowercase__ , d_ff=lowercase__ , dropout_rate=lowercase__ ) __lowerCamelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 , out_features=lowercase__ ) __lowerCamelCase : Tuple = TaLayerNorm(lowercase__ , eps=lowercase__ ) __lowerCamelCase : List[str] = nn.Dropout(lowercase__ ) def _snake_case ( self : Union[str, Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Tuple=None ): '''simple docstring''' __lowerCamelCase : List[Any] = self.layer_norm(lowercase__ ) if conditioning_emb is not None: __lowerCamelCase : Tuple = self.film(lowercase__ , lowercase__ ) __lowerCamelCase : Tuple = self.DenseReluDense(lowercase__ ) __lowerCamelCase : Optional[int] = hidden_states + self.dropout(lowercase__ ) return hidden_states class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[str] ): '''simple docstring''' super().__init__() __lowerCamelCase : Optional[int] = nn.Linear(lowercase__ , lowercase__ , bias=lowercase__ ) __lowerCamelCase : Tuple = nn.Linear(lowercase__ , lowercase__ , bias=lowercase__ ) __lowerCamelCase : Tuple = nn.Linear(lowercase__ , lowercase__ , bias=lowercase__ ) __lowerCamelCase : int = nn.Dropout(lowercase__ ) __lowerCamelCase : Any = NewGELUActivation() def _snake_case ( self : List[str] , _lowerCamelCase : List[str] ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = self.act(self.wi_a(lowercase__ ) ) __lowerCamelCase : Optional[Any] = self.wi_a(lowercase__ ) __lowerCamelCase : Any = hidden_gelu * hidden_linear __lowerCamelCase : str = self.dropout(lowercase__ ) __lowerCamelCase : List[str] = self.wo(lowercase__ ) return hidden_states class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : str=1E-6 ): '''simple docstring''' super().__init__() __lowerCamelCase : List[Any] = nn.Parameter(torch.ones(lowercase__ ) ) __lowerCamelCase : int = eps def _snake_case ( self : Optional[int] , _lowerCamelCase : List[str] ): '''simple docstring''' __lowerCamelCase : Optional[int] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=lowercase__ ) __lowerCamelCase : Any = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: __lowerCamelCase : List[Any] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class _UpperCamelCase ( nn.Module ): '''simple docstring''' def _snake_case ( self : List[Any] , _lowerCamelCase : torch.Tensor ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(lowercase__ , 3.0 )) )) class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] ): '''simple docstring''' super().__init__() __lowerCamelCase : Optional[Any] = nn.Linear(lowercase__ , out_features * 2 , bias=lowercase__ ) def _snake_case ( self : int , _lowerCamelCase : Dict , _lowerCamelCase : Tuple ): '''simple docstring''' __lowerCamelCase : Dict = self.scale_bias(lowercase__ ) __lowerCamelCase , __lowerCamelCase : Union[str, Any] = torch.chunk(lowercase__ , 2 , -1 ) __lowerCamelCase : Union[str, Any] = x * (1 + scale) + shift return x
519
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = TextToVideoSDPipeline SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. SCREAMING_SNAKE_CASE : Optional[int] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') ,up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') ,cross_attention_dim=3_2 ,attention_head_dim=4 ,) __lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,clip_sample=lowercase__ ,set_alpha_to_one=lowercase__ ,) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=1_2_8 ,) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''gelu''' ,projection_dim=5_1_2 ,) __lowercase = CLIPTextModel(lowercase__ ) __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : List[str]=0 ): if str(lowercase__ ).startswith('''mps''' ): __lowercase = torch.manual_seed(lowercase__ ) else: __lowercase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = TextToVideoSDPipeline(**lowercase__ ) __lowercase = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs(lowercase__ ) __lowercase = '''np''' __lowercase = sd_pipe(**lowercase__ ).frames __lowercase = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) __lowercase = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def SCREAMING_SNAKE_CASE ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=1e-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass def SCREAMING_SNAKE_CASE ( self : List[str] ): return super().test_progress_bar() @slow @skip_mps class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2_5 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
41
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : Dict = '▁' __snake_case : List[str] = {'vocab_file': 'sentencepiece.bpe.model'} __snake_case : Dict = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } __snake_case : str = { 'facebook/nllb-200-distilled-600M': 1_024, } # fmt: off __snake_case : List[Any] = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class UpperCamelCase ( lowerCamelCase__ ): """simple docstring""" _lowerCamelCase : Optional[int] =VOCAB_FILES_NAMES _lowerCamelCase : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : str =PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Optional[int] =['input_ids', 'attention_mask'] _lowerCamelCase : List[int] =[] _lowerCamelCase : List[int] =[] def __init__( self : List[str] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any]="<s>" , _lowerCamelCase : str="</s>" , _lowerCamelCase : Union[str, Any]="</s>" , _lowerCamelCase : List[Any]="<s>" , _lowerCamelCase : List[str]="<unk>" , _lowerCamelCase : Dict="<pad>" , _lowerCamelCase : int="<mask>" , _lowerCamelCase : Tuple=None , _lowerCamelCase : List[str]=None , _lowerCamelCase : Union[str, Any]=None , _lowerCamelCase : Optional[Dict[str, Any]] = None , _lowerCamelCase : Any=None , _lowerCamelCase : Any=False , **_lowerCamelCase : Optional[int] , ): # Mask token behave like a normal word, i.e. include the space before it A__ = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token A__ = {} if sp_model_kwargs is None else sp_model_kwargs A__ = legacy_behaviour super().__init__( bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , tokenizer_file=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowercase__ , **lowercase__ , ) A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase__ ) ) A__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token A__ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab A__ = 1 A__ = len(self.sp_model ) A__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowercase__ ) } A__ = {v: k for k, v in self.lang_code_to_id.items()} A__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) A__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} A__ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) A__ = src_lang if src_lang is not None else '''eng_Latn''' A__ = self.lang_code_to_id[self._src_lang] A__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Optional[int] ): A__ = self.__dict__.copy() A__ = None A__ = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict , _lowerCamelCase : List[str] ): A__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def A__ ( self : Tuple ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def A__ ( self : Optional[Any] ): return self._src_lang @src_lang.setter def A__ ( self : Tuple , _lowerCamelCase : str ): A__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A__ ( self : Optional[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None , _lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ ) A__ = [1] * len(self.prefix_tokens ) A__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowercase__ )) + suffix_ones return prefix_ones + ([0] * len(lowercase__ )) + ([0] * len(lowercase__ )) + suffix_ones def A__ ( self : Optional[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A__ ( self : int , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : Optional[str] , _lowerCamelCase : Optional[str] , **_lowerCamelCase : str ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) A__ = src_lang A__ = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) A__ = self.convert_tokens_to_ids(lowercase__ ) A__ = tgt_lang_id return inputs def A__ ( self : Any ): A__ = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A__ ( self : List[Any] , _lowerCamelCase : str ): return self.sp_model.encode(lowercase__ , out_type=lowercase__ ) def A__ ( self : Optional[Any] , _lowerCamelCase : int ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A__ = self.sp_model.PieceToId(lowercase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ ( self : str , _lowerCamelCase : Tuple ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A__ ( self : Optional[int] , _lowerCamelCase : Tuple ): A__ = ''''''.join(lowercase__ ).replace(lowercase__ , ''' ''' ).strip() return out_string def A__ ( self : int , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): if not os.path.isdir(lowercase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return A__ = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ , '''wb''' ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,) def A__ ( self : Optional[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : str = "eng_Latn" , _lowerCamelCase : Optional[List[str]] = None , _lowerCamelCase : str = "fra_Latn" , **_lowerCamelCase : Union[str, Any] , ): A__ = src_lang A__ = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def A__ ( self : int ): return self.set_src_lang_special_tokens(self.src_lang ) def A__ ( self : Optional[Any] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A__ ( self : Any , _lowerCamelCase : Optional[Any] ): A__ = self.lang_code_to_id[src_lang] if self.legacy_behaviour: A__ = [] A__ = [self.eos_token_id, self.cur_lang_code] else: A__ = [self.cur_lang_code] A__ = [self.eos_token_id] def A__ ( self : List[Any] , _lowerCamelCase : str ): A__ = self.lang_code_to_id[lang] if self.legacy_behaviour: A__ = [] A__ = [self.eos_token_id, self.cur_lang_code] else: A__ = [self.cur_lang_code] A__ = [self.eos_token_id]
571
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _A ( A__ ): """simple docstring""" __lowercase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def _A ( A__ ): """simple docstring""" __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(A__ , A__ , bias=A__ ) __lowercase = emb.weight.data return lin_layer def _A ( A__ , A__="facebook/mbart-large-en-ro" , A__=False , A__=False ): """simple docstring""" __lowercase = torch.load(A__ , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A__ ) __lowercase = state_dict['''encoder.embed_tokens.weight'''].shape[0] __lowercase = MBartConfig.from_pretrained(A__ , vocab_size=A__ ) if mbart_aa and finetuned: __lowercase = '''relu''' __lowercase = state_dict['''decoder.embed_tokens.weight'''] __lowercase = MBartForConditionalGeneration(A__ ) model.model.load_state_dict(A__ ) if finetuned: __lowercase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
41
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __magic_name__ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : Node | None = None SCREAMING_SNAKE_CASE__ : Node | None = None def a (): SCREAMING_SNAKE_CASE_ = Node(1 ) SCREAMING_SNAKE_CASE_ = Node(2 ) SCREAMING_SNAKE_CASE_ = Node(3 ) SCREAMING_SNAKE_CASE_ = Node(4 ) SCREAMING_SNAKE_CASE_ = Node(5 ) return tree def a (_lowerCAmelCase ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def a (_lowerCAmelCase ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def a (_lowerCAmelCase ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def a (_lowerCAmelCase ): return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def a (_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = [] if root is None: return output SCREAMING_SNAKE_CASE_ = deque([root] ) while process_queue: SCREAMING_SNAKE_CASE_ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def a (_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = [] def populate_output(_lowerCAmelCase , _lowerCAmelCase ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(A__ , A__ ) return output def a (_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = [] def populate_output(_lowerCAmelCase , _lowerCAmelCase ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(A__ , A__ ) return output def a (_lowerCAmelCase ): if root is None: return [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = height(A__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(A__ , A__ ) ) SCREAMING_SNAKE_CASE_ = 1 else: output.append(get_nodes_from_right_to_left(A__ , A__ ) ) SCREAMING_SNAKE_CASE_ = 0 return output def a (): # Main function for testing. SCREAMING_SNAKE_CASE_ = make_tree() print(F"In-order Traversal: {inorder(A__ )}" ) print(F"Pre-order Traversal: {preorder(A__ )}" ) print(F"Post-order Traversal: {postorder(A__ )}" , '''\n''' ) print(F"Height of Tree: {height(A__ )}" , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(A__ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(A__ ) + 1 ): print(F"Level {level}:" , get_nodes_from_left_to_right(A__ , level=A__ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
234
'''simple docstring''' import os from math import logaa def _A ( A__ = "base_exp.txt" ): """simple docstring""" __lowercase = 0 __lowercase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowercase , __lowercase = list(map(A__ , line.split(''',''' ) ) ) if x * logaa(A__ ) > largest: __lowercase = x * logaa(A__ ) __lowercase = i + 1 return result if __name__ == "__main__": print(solution())
41
0