code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('''socket.socket''' ) @patch('''builtins.open''' ) def _A ( A__ , A__ ): """simple docstring""" __lowercase = Mock() __lowercase = conn, Mock() __lowercase = iter([1, None] ) __lowercase = lambda A__ : next(A__ ) # ===== invoke ===== send_file(filename='''mytext.txt''' , testing=A__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
41
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _A ( A__ ): """simple docstring""" __lowercase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def _A ( A__ ): """simple docstring""" __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(A__ , A__ , bias=A__ ) __lowercase = emb.weight.data return lin_layer def _A ( A__ , A__="facebook/mbart-large-en-ro" , A__=False , A__=False ): """simple docstring""" __lowercase = torch.load(A__ , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A__ ) __lowercase = state_dict['''encoder.embed_tokens.weight'''].shape[0] __lowercase = MBartConfig.from_pretrained(A__ , vocab_size=A__ ) if mbart_aa and finetuned: __lowercase = '''relu''' __lowercase = state_dict['''decoder.embed_tokens.weight'''] __lowercase = MBartForConditionalGeneration(A__ ) model.model.load_state_dict(A__ ) if finetuned: __lowercase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
41
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCAmelCase__ = { '''configuration_gpt_neo''': ['''GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoConfig''', '''GPTNeoOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoForCausalLM''', '''GPTNeoForQuestionAnswering''', '''GPTNeoForSequenceClassification''', '''GPTNeoForTokenClassification''', '''GPTNeoModel''', '''GPTNeoPreTrainedModel''', '''load_tf_weights_in_gpt_neo''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''FlaxGPTNeoForCausalLM''', '''FlaxGPTNeoModel''', '''FlaxGPTNeoPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
'''simple docstring''' import os from math import logaa def _A ( A__ = "base_exp.txt" ): """simple docstring""" __lowercase = 0 __lowercase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowercase , __lowercase = list(map(A__ , line.split(''',''' ) ) ) if x * logaa(A__ ) > largest: __lowercase = x * logaa(A__ ) __lowercase = i + 1 return result if __name__ == "__main__": print(solution())
41
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase__ = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'blenderbot-small' SCREAMING_SNAKE_CASE : int = ['past_key_values'] SCREAMING_SNAKE_CASE : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] ,lowercase__ : List[str]=5_0_2_6_5 ,lowercase__ : Optional[Any]=5_1_2 ,lowercase__ : Optional[int]=8 ,lowercase__ : List[Any]=2_0_4_8 ,lowercase__ : List[str]=1_6 ,lowercase__ : str=8 ,lowercase__ : Any=2_0_4_8 ,lowercase__ : Tuple=1_6 ,lowercase__ : Tuple=0.0 ,lowercase__ : List[str]=0.0 ,lowercase__ : Any=True ,lowercase__ : str=True ,lowercase__ : int="gelu" ,lowercase__ : Tuple=5_1_2 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : str=0.0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : List[Any]=False ,lowercase__ : Optional[int]=0 ,lowercase__ : Optional[int]=1 ,lowercase__ : str=2 ,lowercase__ : int=2 ,**lowercase__ : List[str] ,): __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = use_cache __lowercase = encoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,is_encoder_decoder=lowercase__ ,decoder_start_token_id=lowercase__ ,forced_eos_token_id=lowercase__ ,**lowercase__ ,) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Dict ): if self.task in ["default", "seq2seq-lm"]: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase = {0: '''batch'''} __lowercase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase__ ,direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super().outputs else: __lowercase = super(lowercase__ ,self ).outputs if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) # Generate decoder inputs __lowercase = seq_length if not self.use_past else 1 __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __lowercase = dict(**lowercase__ ,**lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape __lowercase = common_inputs['''decoder_input_ids'''].shape[1] __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = decoder_seq_length + 3 __lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase__ ,lowercase__ )] ,dim=1 ) __lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase = self.num_layers __lowercase = min(lowercase__ ,lowercase__ ) __lowercase = max(lowercase__ ,lowercase__ ) - min_num_layers __lowercase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), ) ) # TODO: test this. __lowercase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase__ ,lowercase__ ): common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase , __lowercase = self.num_layers __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = common_inputs['''attention_mask'''].dtype __lowercase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase__ ,lowercase__ ,dtype=lowercase__ )] ,dim=1 ) __lowercase = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ ) ] return common_inputs def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = tokenizer.num_special_tokens_to_add(lowercase__ ) __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowercase__ ) # Generate dummy inputs according to compute batch and sequence __lowercase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase = dict(tokenizer(lowercase__ ,return_tensors=lowercase__ ) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): if self.task in ["default", "seq2seq-lm"]: __lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) elif self.task == "causal-lm": __lowercase = self._generate_dummy_inputs_for_causal_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) else: __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super()._flatten_past_key_values_(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) else: __lowercase = super(lowercase__ ,self )._flatten_past_key_values_( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
41
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCAmelCase__ = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = 'albert' def __init__( self : Any ,lowercase__ : Any=3_0_0_0_0 ,lowercase__ : Dict=1_2_8 ,lowercase__ : List[Any]=4_0_9_6 ,lowercase__ : Tuple=1_2 ,lowercase__ : Dict=1 ,lowercase__ : List[str]=6_4 ,lowercase__ : Dict=1_6_3_8_4 ,lowercase__ : List[Any]=1 ,lowercase__ : List[str]="gelu_new" ,lowercase__ : Optional[Any]=0 ,lowercase__ : Optional[Any]=0 ,lowercase__ : Optional[int]=5_1_2 ,lowercase__ : Union[str, Any]=2 ,lowercase__ : Dict=0.0_2 ,lowercase__ : Dict=1e-1_2 ,lowercase__ : List[str]=0.1 ,lowercase__ : List[Any]="absolute" ,lowercase__ : Union[str, Any]=0 ,lowercase__ : Optional[Any]=2 ,lowercase__ : List[Any]=3 ,**lowercase__ : Dict ,): super().__init__(pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,**lowercase__ ) __lowercase = vocab_size __lowercase = embedding_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_hidden_groups __lowercase = num_attention_heads __lowercase = inner_group_num __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = classifier_dropout_prob __lowercase = position_embedding_type class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): if self.task == "multiple-choice": __lowercase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowercase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
41
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" if b == 0: return (1, 0) ((__lowercase) , (__lowercase)) = extended_euclid(A__ , a % b ) __lowercase = a // b return (y, x - k * y) def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m def _A ( A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) if b < 0: __lowercase = (b % n + n) % n return b def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase , __lowercase = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
41
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class lowercase_ : """simple docstring""" def __init__( self : List[Any] ,lowercase__ : Union[str, Any] ,): __lowercase = parent __lowercase = 1_3 __lowercase = 7 __lowercase = True __lowercase = True __lowercase = False __lowercase = True __lowercase = 9_9 __lowercase = 3_2 __lowercase = 2 __lowercase = 4 __lowercase = 3_7 __lowercase = '''gelu''' __lowercase = 0.1 __lowercase = 0.1 __lowercase = 5_1_2 __lowercase = 1_6 __lowercase = 2 __lowercase = 0.0_2 __lowercase = 3 __lowercase = 4 __lowercase = None def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : Optional[int] ,lowercase__ : Optional[Any] ,lowercase__ : str ): __lowercase = TFDistilBertModel(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __lowercase = model(lowercase__ ) __lowercase = [input_ids, input_mask] __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : Union[str, Any] ,lowercase__ : str ,lowercase__ : str ,lowercase__ : Union[str, Any] ): __lowercase = TFDistilBertForMaskedLM(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : List[Any] ,lowercase__ : str ): __lowercase = TFDistilBertForQuestionAnswering(config=lowercase__ ) __lowercase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } __lowercase = model(lowercase__ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ): __lowercase = self.num_labels __lowercase = TFDistilBertForSequenceClassification(lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Optional[int] ): __lowercase = self.num_choices __lowercase = TFDistilBertForMultipleChoice(lowercase__ ) __lowercase = tf.tile(tf.expand_dims(lowercase__ ,1 ) ,(1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(lowercase__ ,1 ) ,(1, self.num_choices, 1) ) __lowercase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : List[Any] ,lowercase__ : List[str] ,lowercase__ : int ): __lowercase = self.num_labels __lowercase = TFDistilBertForTokenClassification(lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.prepare_config_and_inputs() ((__lowercase) , (__lowercase) , (__lowercase) , (__lowercase) , (__lowercase) , (__lowercase)) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) SCREAMING_SNAKE_CASE : List[Any] = ( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : Optional[Any] = False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = TFDistilBertModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,dim=3_7 ) def SCREAMING_SNAKE_CASE ( self : Any ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ): for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __lowercase = TFDistilBertModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @require_tf class lowercase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase = model(lowercase__ )[0] __lowercase = [1, 6, 7_6_8] self.assertEqual(output.shape ,lowercase__ ) __lowercase = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] ,lowercase__ ,atol=1e-4 )
41
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _A ( ): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __lowercase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , A__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _A ( ): """simple docstring""" assert _test_patching.open is open __lowercase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , A__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , A__ ): pass def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , A__ ) is None with patch_submodule(_test_patching , '''len''' , A__ ): assert _test_patching.len is mock assert _test_patching.len is len def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_start_and_stop_mock__''' __lowercase = patch_submodule(_test_patching , '''open''' , A__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _A ( ): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __lowercase = '''__test_patch_submodule_successive_join__''' __lowercase = '''__test_patch_submodule_successive_dirname__''' __lowercase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , A__ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , A__ ): pass
41
1
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class lowercase_ : """simple docstring""" def __init__( self : str ,lowercase__ : str = "cpu" ,lowercase__ : str = "openai/clip-vit-large-patch14" ): __lowercase = device __lowercase = CLIPTokenizerFast.from_pretrained(lowercase__ ) __lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] __lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] __lowercase = torchvision.transforms.Normalize(self.image_mean ,self.image_std ) __lowercase = torchvision.transforms.Resize(2_2_4 ) __lowercase = torchvision.transforms.CenterCrop(2_2_4 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Dict ): __lowercase = self.resize(lowercase__ ) __lowercase = self.center_crop(lowercase__ ) __lowercase = self.normalize(lowercase__ ) return images def __call__( self : List[Any] ,lowercase__ : str=None ,lowercase__ : Any=None ,**lowercase__ : List[Any] ): __lowercase = self.tokenizer(text=lowercase__ ,**lowercase__ ) __lowercase = self.preprocess_img(lowercase__ ) __lowercase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Any ,lowercase__ : Optional[int]=1_0 ,lowercase__ : Optional[Any]=0.0_1 ,lowercase__ : Optional[int]=None ,lowercase__ : Optional[Any]=None ,lowercase__ : str=None ,lowercase__ : Any=None ,lowercase__ : Optional[Any]=None ,lowercase__ : Union[str, Any]=None ,lowercase__ : Union[str, Any]=False ,lowercase__ : Optional[int]=True ,lowercase__ : Optional[Any]="image" ,lowercase__ : Tuple=True ,lowercase__ : Any=False ,lowercase__ : Optional[int]=False ,lowercase__ : Optional[int]=False ,): super().__init__() __lowercase = None __lowercase = device if device else get_device() if vqgan: __lowercase = vqgan else: __lowercase = load_vqgan(self.device ,conf_path=lowercase__ ,ckpt_path=lowercase__ ) self.vqgan.eval() if clip: __lowercase = clip else: __lowercase = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) __lowercase = ProcessorGradientFlow(device=self.device ) __lowercase = iterations __lowercase = lr __lowercase = log __lowercase = make_grid __lowercase = return_val __lowercase = quantize __lowercase = self.vqgan.decoder.z_shape def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[Any]=None ,lowercase__ : Tuple=None ,lowercase__ : Dict=5 ,lowercase__ : Any=True ): __lowercase = [] if output_path is None: __lowercase = '''./animation.gif''' if input_path is None: __lowercase = self.save_path __lowercase = sorted(glob(input_path + '''/*''' ) ) if not len(lowercase__ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(lowercase__ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) __lowercase = total_duration / len(lowercase__ ) __lowercase = [frame_duration] * len(lowercase__ ) if extend_frames: __lowercase = 1.5 __lowercase = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(lowercase__ ) ) imageio.mimsave(lowercase__ ,lowercase__ ,duration=lowercase__ ) print(F"gif saved to {output_path}" ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[Any]=None ,lowercase__ : str=None ): if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError __lowercase = preprocess(Image.open(lowercase__ ) ,target_image_size=2_5_6 ).to(self.device ) __lowercase = preprocess_vqgan(lowercase__ ) __lowercase , *__lowercase = self.vqgan.encode(lowercase__ ) return z def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Dict ): __lowercase = self.latent.detach().requires_grad_() __lowercase = base_latent + transform_vector if self.quantize: __lowercase , *__lowercase = self.vqgan.quantize(lowercase__ ) else: __lowercase = trans_latent return self.vqgan.decode(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ,lowercase__ : List[Any] ,lowercase__ : Optional[int]=None ): __lowercase = self.clip_preprocessor(text=lowercase__ ,images=lowercase__ ,return_tensors='''pt''' ,padding=lowercase__ ) __lowercase = self.clip(**lowercase__ ) __lowercase = clip_outputs.logits_per_image if weights is not None: __lowercase = similarity_logits * weights return similarity_logits.sum() def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Optional[Any] ,lowercase__ : Optional[int] ,lowercase__ : Optional[int] ): __lowercase = self._get_clip_similarity(pos_prompts['''prompts'''] ,lowercase__ ,weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: __lowercase = self._get_clip_similarity(neg_prompts['''prompts'''] ,lowercase__ ,weights=neg_prompts['''weights'''] ) else: __lowercase = torch.tensor([1] ,device=self.device ) __lowercase = -torch.log(lowercase__ ) + torch.log(lowercase__ ) return loss def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ,lowercase__ : str ): __lowercase = torch.randn_like(self.latent ,requires_grad=lowercase__ ,device=self.device ) __lowercase = torch.optim.Adam([vector] ,lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() __lowercase = self._add_vector(lowercase__ ) __lowercase = loop_post_process(lowercase__ ) __lowercase = self._get_CLIP_loss(lowercase__ ,lowercase__ ,lowercase__ ) print('''CLIP loss''' ,lowercase__ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=lowercase__ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Union[str, Any] ): wandb.init(reinit=lowercase__ ,project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: __lowercase = Image.open(lowercase__ ) __lowercase = image.resize((2_5_6, 2_5_6) ) wandb.log('''Original Image''' ,wandb.Image(lowercase__ ) ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Any ): if not prompts: return [] __lowercase = [] __lowercase = [] if isinstance(lowercase__ ,lowercase__ ): __lowercase = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(lowercase__ ,(tuple, list) ): __lowercase = prompt[0] __lowercase = float(prompt[1] ) elif ":" in prompt: __lowercase , __lowercase = prompt.split(''':''' ) __lowercase = float(lowercase__ ) else: __lowercase = prompt __lowercase = 1.0 processed_prompts.append(lowercase__ ) weights.append(lowercase__ ) return { "prompts": processed_prompts, "weights": torch.tensor(lowercase__ ,device=self.device ), } def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Any ,lowercase__ : List[Any]=None ,lowercase__ : Dict=None ,lowercase__ : Optional[int]=True ,lowercase__ : str=False ,lowercase__ : Any=True ,lowercase__ : List[str]=True ,lowercase__ : int=None ,): if image_path: __lowercase = self._get_latent(lowercase__ ) else: __lowercase = torch.randn(self.latent_dim ,device=self.device ) if self.log: self._init_logging(lowercase__ ,lowercase__ ,lowercase__ ) assert pos_prompts, "You must provide at least one positive prompt." __lowercase = self.process_prompts(lowercase__ ) __lowercase = self.process_prompts(lowercase__ ) if save_final and save_path is None: __lowercase = os.path.join('''./outputs/''' ,'''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(lowercase__ ): os.makedirs(lowercase__ ) else: __lowercase = save_path + '''_''' + get_timestamp() os.makedirs(lowercase__ ) __lowercase = save_path __lowercase = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(lowercase__ ) ) __lowercase = loop_post_process(lowercase__ ) for iter, transformed_img in enumerate(self._optimize_CLIP(lowercase__ ,lowercase__ ,lowercase__ ) ): if show_intermediate: show_pil(lowercase__ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path ,F"iter_{iter:03d}.png" ) ) if self.log: wandb.log({'''Image''': wandb.Image(lowercase__ )} ) if show_final: show_pil(lowercase__ ) if save_final: transformed_img.save(os.path.join(self.save_path ,F"iter_{iter:03d}_final.png" ) )
41
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : """simple docstring""" def __init__( self : Dict ,lowercase__ : Dict ,lowercase__ : int=1_3 ,lowercase__ : List[str]=7 ,lowercase__ : int=True ,lowercase__ : int=True ,lowercase__ : Union[str, Any]=True ,lowercase__ : List[Any]=True ,lowercase__ : str=9_9 ,lowercase__ : Optional[Any]=3_2 ,lowercase__ : Union[str, Any]=5 ,lowercase__ : List[Any]=4 ,lowercase__ : str=3_7 ,lowercase__ : Tuple="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : Dict=0.1 ,lowercase__ : int=1_2_8 ,lowercase__ : Dict=3_2 ,lowercase__ : Dict=1_6 ,lowercase__ : Any=2 ,lowercase__ : int=0.0_2 ,lowercase__ : List[str]=3 ,lowercase__ : Dict=4 ,lowercase__ : Optional[int]=None ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return NezhaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.prepare_config_and_inputs() __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : str ): __lowercase = NezhaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Dict ,lowercase__ : str ,lowercase__ : Optional[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,): __lowercase = True __lowercase = NezhaModel(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,encoder_attention_mask=lowercase__ ,) __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,) __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): __lowercase = NezhaForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): __lowercase = NezhaForNextSentencePrediction(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ): __lowercase = NezhaForPreTraining(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,next_sentence_label=lowercase__ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ): __lowercase = NezhaForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,start_positions=lowercase__ ,end_positions=lowercase__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Tuple ,lowercase__ : str ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : Optional[int] ,lowercase__ : int ): __lowercase = self.num_labels __lowercase = NezhaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Any ,lowercase__ : Optional[Any] ): __lowercase = self.num_labels __lowercase = NezhaForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : str ): __lowercase = self.num_choices __lowercase = NezhaForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : List[str] = True def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : Any=False ): __lowercase = super()._prepare_for_class(lowercase__ ,lowercase__ ,return_labels=lowercase__ ) if return_labels: if model_class in get_values(lowercase__ ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowercase__ ) __lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowercase__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = NezhaModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : int ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): # This regression test was failing with PyTorch < 1.3 ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase = None self.model_tester.create_and_check_model_as_decoder( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = NezhaModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __lowercase = True __lowercase = model_class(config=lowercase__ ) __lowercase = self._prepare_for_class(lowercase__ ,lowercase__ ) __lowercase = torch.jit.trace( lowercase__ ,(inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase__ ,os.path.join(lowercase__ ,'''bert.pt''' ) ) __lowercase = torch.jit.load(os.path.join(lowercase__ ,'''bert.pt''' ) ,map_location=lowercase__ ) loaded(inputs_dict['''input_ids'''].to(lowercase__ ) ,inputs_dict['''attention_mask'''].to(lowercase__ ) ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) )
41
1
'''simple docstring''' def _A ( A__ , A__ ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def _A ( ): """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
41
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KEY''') lowerCAmelCase__ = TypeVar('''VAL''') @dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ ) class lowercase_ (Generic[KEY, VAL] ): """simple docstring""" SCREAMING_SNAKE_CASE : KEY SCREAMING_SNAKE_CASE : VAL class lowercase_ (_Item ): """simple docstring""" def __init__( self : Optional[int] ): super().__init__(lowercase__ ,lowercase__ ) def __bool__( self : List[str] ): return False lowerCAmelCase__ = _DeletedItem() class lowercase_ (MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ): __lowercase = initial_block_size __lowercase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowercase = capacity_factor __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ): return hash(lowercase__ ) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ): return (ind + 1) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ): __lowercase = self._buckets[ind] if not stored: __lowercase = _Item(lowercase__ ,lowercase__ ) self._len += 1 return True elif stored.key == key: __lowercase = _Item(lowercase__ ,lowercase__ ) return True else: return False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False __lowercase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ): __lowercase = self._buckets __lowercase = [None] * new_size __lowercase = 0 for item in old_buckets: if item: self._add_item(item.key ,item.val ) def SCREAMING_SNAKE_CASE ( self : str ): self._resize(len(self._buckets ) * 2 ) def SCREAMING_SNAKE_CASE ( self : Tuple ): self._resize(len(self._buckets ) // 2 ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ): __lowercase = self._get_bucket_index(lowercase__ ) for _ in range(len(self._buckets ) ): yield ind __lowercase = self._get_next_ind(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): for ind in self._iterate_buckets(lowercase__ ): if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ): break def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): if self._is_full(): self._size_up() self._add_item(lowercase__ ,lowercase__ ) def __delitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: raise KeyError(lowercase__ ) if item is _deleted: continue if item.key == key: __lowercase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowercase__ ) def __len__( self : Optional[int] ): return self._len def __iter__( self : str ): yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ): __lowercase = ''' ,'''.join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
41
1
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } lowerCAmelCase__ = { '''b0''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 224, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 240, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 1408, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 260, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 1536, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 300, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 1792, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 380, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2048, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 456, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 2304, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 528, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 2560, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 600, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def _A ( A__ ): """simple docstring""" __lowercase = EfficientNetConfig() __lowercase = CONFIG_MAP[model_name]['''hidden_dim'''] __lowercase = CONFIG_MAP[model_name]['''width_coef'''] __lowercase = CONFIG_MAP[model_name]['''depth_coef'''] __lowercase = CONFIG_MAP[model_name]['''image_size'''] __lowercase = CONFIG_MAP[model_name]['''dropout_rate'''] __lowercase = CONFIG_MAP[model_name]['''dw_padding'''] __lowercase = '''huggingface/label-files''' __lowercase = '''imagenet-1k-id2label.json''' __lowercase = 1000 __lowercase = json.load(open(hf_hub_download(A__ , A__ , repo_type='''dataset''' ) , '''r''' ) ) __lowercase = {int(A__ ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def _A ( ): """simple docstring""" __lowercase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowercase = Image.open(requests.get(A__ , stream=A__ ).raw ) return im def _A ( A__ ): """simple docstring""" __lowercase = CONFIG_MAP[model_name]['''image_size'''] __lowercase = EfficientNetImageProcessor( size={'''height''': size, '''width''': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=A__ , ) return preprocessor def _A ( A__ ): """simple docstring""" __lowercase = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] __lowercase = sorted(set(A__ ) ) __lowercase = len(A__ ) __lowercase = {b: str(A__ ) for b, i in zip(A__ , range(A__ ) )} __lowercase = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: __lowercase = block_name_mapping[b] rename_keys.append((F"block{b}_expand_conv/kernel:0", F"encoder.blocks.{hf_b}.expansion.expand_conv.weight") ) rename_keys.append((F"block{b}_expand_bn/gamma:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.weight") ) rename_keys.append((F"block{b}_expand_bn/beta:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.bias") ) rename_keys.append( (F"block{b}_expand_bn/moving_mean:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") ) rename_keys.append( (F"block{b}_expand_bn/moving_variance:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") ) rename_keys.append( (F"block{b}_dwconv/depthwise_kernel:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") ) rename_keys.append((F"block{b}_bn/gamma:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight") ) rename_keys.append((F"block{b}_bn/beta:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias") ) rename_keys.append( (F"block{b}_bn/moving_mean:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") ) rename_keys.append( (F"block{b}_bn/moving_variance:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") ) rename_keys.append((F"block{b}_se_reduce/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight") ) rename_keys.append((F"block{b}_se_reduce/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias") ) rename_keys.append((F"block{b}_se_expand/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.weight") ) rename_keys.append((F"block{b}_se_expand/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.bias") ) rename_keys.append( (F"block{b}_project_conv/kernel:0", F"encoder.blocks.{hf_b}.projection.project_conv.weight") ) rename_keys.append((F"block{b}_project_bn/gamma:0", F"encoder.blocks.{hf_b}.projection.project_bn.weight") ) rename_keys.append((F"block{b}_project_bn/beta:0", F"encoder.blocks.{hf_b}.projection.project_bn.bias") ) rename_keys.append( (F"block{b}_project_bn/moving_mean:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_mean") ) rename_keys.append( (F"block{b}_project_bn/moving_variance:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_var") ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) __lowercase = {} for item in rename_keys: if item[0] in original_param_names: __lowercase = '''efficientnet.''' + item[1] __lowercase = '''classifier.weight''' __lowercase = '''classifier.bias''' return key_mapping def _A ( A__ , A__ , A__ ): """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue __lowercase = key_mapping[key] if "_conv" in key and "kernel" in key: __lowercase = torch.from_numpy(A__ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __lowercase = torch.from_numpy(A__ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __lowercase = torch.from_numpy(np.transpose(A__ ) ) else: __lowercase = torch.from_numpy(A__ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(A__ ) @torch.no_grad() def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = model_classes[model_name]( include_top=A__ , weights='''imagenet''' , input_tensor=A__ , input_shape=A__ , pooling=A__ , classes=1000 , classifier_activation='''softmax''' , ) __lowercase = original_model.trainable_variables __lowercase = original_model.non_trainable_variables __lowercase = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __lowercase = param.numpy() __lowercase = list(tf_params.keys() ) # Load HuggingFace model __lowercase = get_efficientnet_config(A__ ) __lowercase = EfficientNetForImageClassification(A__ ).eval() __lowercase = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) __lowercase = rename_keys(A__ ) replace_params(A__ , A__ , A__ ) # Initialize preprocessor and preprocess input image __lowercase = convert_image_processor(A__ ) __lowercase = preprocessor(images=prepare_img() , return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): __lowercase = hf_model(**A__ ) __lowercase = outputs.logits.detach().numpy() # Original model inference __lowercase = False __lowercase = CONFIG_MAP[model_name]['''image_size'''] __lowercase = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __lowercase = image.img_to_array(A__ ) __lowercase = np.expand_dims(A__ , axis=0 ) __lowercase = original_model.predict(A__ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(A__ , A__ , atol=1e-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(A__ ): os.mkdir(A__ ) # Save converted model and image processor hf_model.save_pretrained(A__ ) preprocessor.save_pretrained(A__ ) if push_to_hub: # Push model and image processor to hub print(F"Pushing converted {model_name} to the hub..." ) __lowercase = F"efficientnet-{model_name}" preprocessor.push_to_hub(A__ ) hf_model.push_to_hub(A__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') lowerCAmelCase__ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
41
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ,**lowercase__ : Tuple ): super().__init__(**lowercase__ ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self ,'''vision''' ) self.check_model_type(lowercase__ ) def __call__( self : List[str] ,lowercase__ : Union[str, "Image.Image", List[Dict[str, Any]]] ,lowercase__ : Union[str, List[str]] = None ,**lowercase__ : str ,): if "text_queries" in kwargs: __lowercase = kwargs.pop('''text_queries''' ) if isinstance(lowercase__ ,(str, Image.Image) ): __lowercase = {'''image''': image, '''candidate_labels''': candidate_labels} else: __lowercase = image __lowercase = super().__call__(lowercase__ ,**lowercase__ ) return results def SCREAMING_SNAKE_CASE ( self : int ,**lowercase__ : List[Any] ): __lowercase = {} if "threshold" in kwargs: __lowercase = kwargs['''threshold'''] if "top_k" in kwargs: __lowercase = kwargs['''top_k'''] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[Any] ): __lowercase = load_image(inputs['''image'''] ) __lowercase = inputs['''candidate_labels'''] if isinstance(lowercase__ ,lowercase__ ): __lowercase = candidate_labels.split(''',''' ) __lowercase = torch.tensor([[image.height, image.width]] ,dtype=torch.intaa ) for i, candidate_label in enumerate(lowercase__ ): __lowercase = self.tokenizer(lowercase__ ,return_tensors=self.framework ) __lowercase = self.image_processor(lowercase__ ,return_tensors=self.framework ) yield { "is_last": i == len(lowercase__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ): __lowercase = model_inputs.pop('''target_size''' ) __lowercase = model_inputs.pop('''candidate_label''' ) __lowercase = model_inputs.pop('''is_last''' ) __lowercase = self.model(**lowercase__ ) __lowercase = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : List[Any]=0.1 ,lowercase__ : List[str]=None ): __lowercase = [] for model_output in model_outputs: __lowercase = model_output['''candidate_label'''] __lowercase = BaseModelOutput(lowercase__ ) __lowercase = self.image_processor.post_process_object_detection( outputs=lowercase__ ,threshold=lowercase__ ,target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): __lowercase = outputs['''scores'''][index].item() __lowercase = self._get_bounding_box(outputs['''boxes'''][index][0] ) __lowercase = {'''score''': score, '''label''': label, '''box''': box} results.append(lowercase__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : x["score"] ,reverse=lowercase__ ) if top_k: __lowercase = results[:top_k] return results def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : "torch.Tensor" ): if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) __lowercase , __lowercase , __lowercase , __lowercase = box.int().tolist() __lowercase = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
41
1
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = FlaxAutoencoderKL @property def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = 4 __lowercase = 3 __lowercase = (3_2, 3_2) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.uniform(lowercase__ ,((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = { '''block_out_channels''': [3_2, 6_4], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } __lowercase = self.dummy_input return init_dict, inputs_dict
41
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 'facebook/bart-large-mnli' SCREAMING_SNAKE_CASE : Optional[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) SCREAMING_SNAKE_CASE : Any = 'text_classifier' SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : Tuple = ['text', ['text']] SCREAMING_SNAKE_CASE : List[str] = ['text'] def SCREAMING_SNAKE_CASE ( self : List[Any] ): super().setup() __lowercase = self.model.config __lowercase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): __lowercase = int(lowercase__ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Dict ,lowercase__ : List[Any] ): __lowercase = labels return self.pre_processor( [text] * len(lowercase__ ) ,[F"This example is {label}" for label in labels] ,return_tensors='''pt''' ,padding='''max_length''' ,) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = outputs.logits __lowercase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
41
1
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : str ,lowercase__ : int=0.0_1 ,lowercase__ : List[Any]=1_0_0_0 ): __lowercase = p_stop __lowercase = max_length def __iter__( self : List[str] ): __lowercase = 0 __lowercase = False while not stop and count < self.max_length: yield count count += 1 __lowercase = random.random() < self.p_stop class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Dict ,lowercase__ : int ,lowercase__ : Tuple=False ,lowercase__ : Optional[Any]=True ): __lowercase = [ BatchSamplerShard(lowercase__ ,2 ,lowercase__ ,split_batches=lowercase__ ,even_batches=lowercase__ ) for i in range(2 ) ] __lowercase = [list(lowercase__ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(lowercase__ ) for shard in batch_sampler_shards] ,[len(lowercase__ ) for e in expected] ) self.assertListEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): # Check the shards when the dataset is a round multiple of total batch size. __lowercase = BatchSampler(range(2_4 ) ,batch_size=3 ,drop_last=lowercase__ ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ) __lowercase = BatchSampler(range(2_4 ) ,batch_size=3 ,drop_last=lowercase__ ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase__ ,lowercase__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowercase = BatchSampler(range(2_1 ) ,batch_size=3 ,drop_last=lowercase__ ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [0, 1, 2]], ] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ) __lowercase = BatchSampler(range(2_1 ) ,batch_size=3 ,drop_last=lowercase__ ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowercase = BatchSampler(range(2_2 ) ,batch_size=3 ,drop_last=lowercase__ ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 0, 1]], ] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ) __lowercase = BatchSampler(range(2_2 ) ,batch_size=3 ,drop_last=lowercase__ ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowercase = BatchSampler(range(2_0 ) ,batch_size=3 ,drop_last=lowercase__ ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [1, 2, 3]], ] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ) __lowercase = BatchSampler(range(2_0 ) ,batch_size=3 ,drop_last=lowercase__ ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ) # Check the shards when the dataset is very small. __lowercase = BatchSampler(range(2 ) ,batch_size=3 ,drop_last=lowercase__ ) __lowercase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ) __lowercase = BatchSampler(range(2 ) ,batch_size=3 ,drop_last=lowercase__ ) __lowercase = [[], []] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ): # Check the shards when the dataset is a round multiple of batch size. __lowercase = BatchSampler(range(2_4 ) ,batch_size=4 ,drop_last=lowercase__ ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ,split_batches=lowercase__ ) __lowercase = BatchSampler(range(2_4 ) ,batch_size=4 ,drop_last=lowercase__ ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase__ ,lowercase__ ,split_batches=lowercase__ ) # Check the shards when the dataset is not a round multiple of batch size. __lowercase = BatchSampler(range(2_2 ) ,batch_size=4 ,drop_last=lowercase__ ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [0, 1]], ] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ,split_batches=lowercase__ ) __lowercase = BatchSampler(range(2_2 ) ,batch_size=4 ,drop_last=lowercase__ ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ,split_batches=lowercase__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowercase = BatchSampler(range(2_1 ) ,batch_size=4 ,drop_last=lowercase__ ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [1, 2]], ] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ,split_batches=lowercase__ ) __lowercase = BatchSampler(range(2_1 ) ,batch_size=4 ,drop_last=lowercase__ ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ,split_batches=lowercase__ ) # Check the shards when the dataset is very small. __lowercase = BatchSampler(range(2 ) ,batch_size=4 ,drop_last=lowercase__ ) __lowercase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ,split_batches=lowercase__ ) __lowercase = BatchSampler(range(2 ) ,batch_size=4 ,drop_last=lowercase__ ) __lowercase = [[], []] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ,split_batches=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): # Check the shards when the dataset is a round multiple of total batch size. __lowercase = BatchSampler(range(2_4 ) ,batch_size=3 ,drop_last=lowercase__ ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ,even_batches=lowercase__ ) __lowercase = BatchSampler(range(2_4 ) ,batch_size=3 ,drop_last=lowercase__ ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase__ ,lowercase__ ,even_batches=lowercase__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowercase = BatchSampler(range(2_1 ) ,batch_size=3 ,drop_last=lowercase__ ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ,even_batches=lowercase__ ) __lowercase = BatchSampler(range(2_1 ) ,batch_size=3 ,drop_last=lowercase__ ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ,even_batches=lowercase__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowercase = BatchSampler(range(2_2 ) ,batch_size=3 ,drop_last=lowercase__ ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1]], ] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ,even_batches=lowercase__ ) __lowercase = BatchSampler(range(2_2 ) ,batch_size=3 ,drop_last=lowercase__ ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ,even_batches=lowercase__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowercase = BatchSampler(range(2_0 ) ,batch_size=3 ,drop_last=lowercase__ ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ,even_batches=lowercase__ ) __lowercase = BatchSampler(range(2_0 ) ,batch_size=3 ,drop_last=lowercase__ ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ,even_batches=lowercase__ ) # Check the shards when the dataset is very small. __lowercase = BatchSampler(range(2 ) ,batch_size=3 ,drop_last=lowercase__ ) __lowercase = [[[0, 1]], []] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ,even_batches=lowercase__ ) __lowercase = BatchSampler(range(2 ) ,batch_size=3 ,drop_last=lowercase__ ) __lowercase = [[], []] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ,even_batches=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): # Check the shards when the dataset is a round multiple of batch size. __lowercase = BatchSampler(range(2_4 ) ,batch_size=4 ,drop_last=lowercase__ ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ,split_batches=lowercase__ ,even_batches=lowercase__ ) __lowercase = BatchSampler(range(2_4 ) ,batch_size=4 ,drop_last=lowercase__ ) # Expected shouldn't change self.check_batch_sampler_shards(lowercase__ ,lowercase__ ,split_batches=lowercase__ ,even_batches=lowercase__ ) # Check the shards when the dataset is not a round multiple of batch size. __lowercase = BatchSampler(range(2_2 ) ,batch_size=4 ,drop_last=lowercase__ ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ,split_batches=lowercase__ ,even_batches=lowercase__ ) __lowercase = BatchSampler(range(2_2 ) ,batch_size=4 ,drop_last=lowercase__ ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ,split_batches=lowercase__ ,even_batches=lowercase__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowercase = BatchSampler(range(2_1 ) ,batch_size=4 ,drop_last=lowercase__ ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ,split_batches=lowercase__ ,even_batches=lowercase__ ) __lowercase = BatchSampler(range(2_1 ) ,batch_size=4 ,drop_last=lowercase__ ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ,split_batches=lowercase__ ,even_batches=lowercase__ ) # Check the shards when the dataset is very small. __lowercase = BatchSampler(range(2 ) ,batch_size=4 ,drop_last=lowercase__ ) __lowercase = [[[0, 1]], []] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ,split_batches=lowercase__ ,even_batches=lowercase__ ) __lowercase = BatchSampler(range(2 ) ,batch_size=4 ,drop_last=lowercase__ ) __lowercase = [[], []] self.check_batch_sampler_shards(lowercase__ ,lowercase__ ,split_batches=lowercase__ ,even_batches=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 1_0, 1_1], [1_2, 1_3]] __lowercase = [BatchSamplerShard(lowercase__ ,2 ,lowercase__ ,even_batches=lowercase__ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) ,3 ) self.assertEqual(len(batch_sampler_shards[1] ) ,2 ) self.assertListEqual(list(batch_sampler_shards[0] ) ,[[0, 1, 2], [5, 6, 7, 8], [1_2, 1_3]] ) self.assertListEqual(list(batch_sampler_shards[1] ) ,[[3, 4], [9, 1_0, 1_1]] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Any ,lowercase__ : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Tuple=False ,lowercase__ : int=2 ,lowercase__ : Tuple=False ): random.seed(lowercase__ ) __lowercase = list(lowercase__ ) __lowercase = [ IterableDatasetShard( lowercase__ ,batch_size=lowercase__ ,drop_last=lowercase__ ,num_processes=lowercase__ ,process_index=lowercase__ ,split_batches=lowercase__ ,) for i in range(lowercase__ ) ] __lowercase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(lowercase__ ) iterable_dataset_lists.append(list(lowercase__ ) ) __lowercase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __lowercase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) ) self.assertTrue(len(lowercase__ ) % shard_batch_size == 0 ) __lowercase = [] for idx in range(0 ,len(lowercase__ ) ,lowercase__ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(lowercase__ ) < len(lowercase__ ): reference += reference self.assertListEqual(lowercase__ ,reference[: len(lowercase__ )] ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = 4_2 __lowercase = RandomIterableDataset() self.check_iterable_dataset_shards(lowercase__ ,lowercase__ ,batch_size=4 ,drop_last=lowercase__ ,split_batches=lowercase__ ) self.check_iterable_dataset_shards(lowercase__ ,lowercase__ ,batch_size=4 ,drop_last=lowercase__ ,split_batches=lowercase__ ) self.check_iterable_dataset_shards(lowercase__ ,lowercase__ ,batch_size=4 ,drop_last=lowercase__ ,split_batches=lowercase__ ) self.check_iterable_dataset_shards(lowercase__ ,lowercase__ ,batch_size=4 ,drop_last=lowercase__ ,split_batches=lowercase__ ) # Edge case with a very small dataset __lowercase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(lowercase__ ,lowercase__ ,batch_size=4 ,drop_last=lowercase__ ,split_batches=lowercase__ ) self.check_iterable_dataset_shards(lowercase__ ,lowercase__ ,batch_size=4 ,drop_last=lowercase__ ,split_batches=lowercase__ ) self.check_iterable_dataset_shards(lowercase__ ,lowercase__ ,batch_size=4 ,drop_last=lowercase__ ,split_batches=lowercase__ ) self.check_iterable_dataset_shards(lowercase__ ,lowercase__ ,batch_size=4 ,drop_last=lowercase__ ,split_batches=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = BatchSampler(range(1_6 ) ,batch_size=4 ,drop_last=lowercase__ ) __lowercase = SkipBatchSampler(lowercase__ ,2 ) self.assertListEqual(list(lowercase__ ) ,[[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = SkipDataLoader(list(range(1_6 ) ) ,batch_size=4 ,skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] ,[[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = DataLoader(list(range(1_6 ) ) ,batch_size=4 ) __lowercase = skip_first_batches(lowercase__ ,num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] ,[[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = DataLoaderShard(list(range(1_6 ) ) ,batch_size=4 ) for idx, _ in enumerate(lowercase__ ): self.assertEqual(dataloader.end_of_dataloader ,idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowercase__ ): self.assertEqual(dataloader.end_of_dataloader ,idx == 3 ) def SCREAMING_SNAKE_CASE ( self : str ): Accelerator() __lowercase = DataLoaderDispatcher(range(1_6 ) ,batch_size=4 ) for idx, _ in enumerate(lowercase__ ): self.assertEqual(dataloader.end_of_dataloader ,idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowercase__ ): self.assertEqual(dataloader.end_of_dataloader ,idx == 3 )
41
'''simple docstring''' from collections.abc import Callable class lowercase_ : """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : Callable | None = None ): # Stores actual heap items. __lowercase = [] # Stores indexes of each item for supporting updates and deletion. __lowercase = {} # Stores current size of heap. __lowercase = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __lowercase = key or (lambda lowercase__ : x) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : int ): return int((i - 1) / 2 ) if i > 0 else None def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = int(2 * i + 1 ) return left if 0 < left < self.size else None def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ): __lowercase = int(2 * i + 2 ) return right if 0 < right < self.size else None def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : int ,lowercase__ : int ): __lowercase , __lowercase = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __lowercase , __lowercase = self.arr[j], self.arr[i] def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): return self.arr[i][1] < self.arr[j][1] def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._left(lowercase__ ) __lowercase = self._right(lowercase__ ) __lowercase = i if left is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = left if right is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = right return valid_parent def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._parent(lowercase__ ) while parent is not None and not self._cmp(lowercase__ ,lowercase__ ): self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = parent, self._parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = self._get_valid_parent(lowercase__ ) while valid_parent != index: self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = valid_parent, self._get_valid_parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] __lowercase = [item, self.key(lowercase__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] del self.pos_map[item] __lowercase = self.arr[self.size - 1] __lowercase = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : int ): __lowercase = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(lowercase__ )] ) else: __lowercase = [item, self.key(lowercase__ )] __lowercase = self.size self.size += 1 self._heapify_up(self.size - 1 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): return self.arr[0] if self.size else None def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _A ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
41
1
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) lowerCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def _A ( A__ ): """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: __lowercase = model_type_to_module_name(A__ ) __lowercase = importlib.import_module(F".{module_name}" , '''transformers.models''' ) try: return getattr(A__ , A__ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(A__ , '''__name__''' , A__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __lowercase = importlib.import_module('''transformers''' ) if hasattr(A__ , A__ ): return getattr(A__ , A__ ) return None def _A ( A__ , A__ = None , A__ = False , A__ = False , A__ = None , A__ = None , A__ = None , A__ = False , **A__ , ): """simple docstring""" __lowercase = get_file_from_repo( A__ , A__ , cache_dir=A__ , force_download=A__ , resume_download=A__ , proxies=A__ , use_auth_token=A__ , revision=A__ , local_files_only=A__ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(A__ , encoding='''utf-8''' ) as reader: return json.load(A__ ) class lowercase_ : """simple docstring""" def __init__( self : int ): raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(lowercase__ ) def SCREAMING_SNAKE_CASE ( cls : str ,lowercase__ : str ,**lowercase__ : int ): __lowercase = kwargs.pop('''config''' ,lowercase__ ) __lowercase = kwargs.pop('''trust_remote_code''' ,lowercase__ ) __lowercase = True __lowercase , __lowercase = ImageProcessingMixin.get_image_processor_dict(lowercase__ ,**lowercase__ ) __lowercase = config_dict.get('''image_processor_type''' ,lowercase__ ) __lowercase = None if "AutoImageProcessor" in config_dict.get('''auto_map''' ,{} ): __lowercase = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: __lowercase = config_dict.pop('''feature_extractor_type''' ,lowercase__ ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) __lowercase = feature_extractor_class.replace('''FeatureExtractor''' ,'''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' ,{} ): __lowercase = config_dict['''auto_map''']['''AutoFeatureExtractor'''] __lowercase = feature_extractor_auto_map.replace('''FeatureExtractor''' ,'''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(lowercase__ ,lowercase__ ): __lowercase = AutoConfig.from_pretrained(lowercase__ ,**lowercase__ ) # It could be in `config.image_processor_type`` __lowercase = getattr(lowercase__ ,'''image_processor_type''' ,lowercase__ ) if hasattr(lowercase__ ,'''auto_map''' ) and "AutoImageProcessor" in config.auto_map: __lowercase = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: __lowercase = image_processor_class_from_name(lowercase__ ) __lowercase = image_processor_auto_map is not None __lowercase = image_processor_class is not None or type(lowercase__ ) in IMAGE_PROCESSOR_MAPPING __lowercase = resolve_trust_remote_code( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) if has_remote_code and trust_remote_code: __lowercase = get_class_from_dynamic_module( lowercase__ ,lowercase__ ,**lowercase__ ) __lowercase = kwargs.pop('''code_revision''' ,lowercase__ ) if os.path.isdir(lowercase__ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(lowercase__ ,**lowercase__ ) elif image_processor_class is not None: return image_processor_class.from_dict(lowercase__ ,**lowercase__ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(lowercase__ ) in IMAGE_PROCESSOR_MAPPING: __lowercase = IMAGE_PROCESSOR_MAPPING[type(lowercase__ )] return image_processor_class.from_dict(lowercase__ ,**lowercase__ ) raise ValueError( F"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a " F"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following " F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}" ) @staticmethod def SCREAMING_SNAKE_CASE ( lowercase__ : Tuple ,lowercase__ : Any ): IMAGE_PROCESSOR_MAPPING.register(lowercase__ ,lowercase__ )
41
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ): __lowercase = [] def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : str ,**lowercase__ : Any ): self.events.append('''on_init_end''' ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : int ,**lowercase__ : Optional[int] ): self.events.append('''on_train_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ,**lowercase__ : List[str] ): self.events.append('''on_train_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,**lowercase__ : Optional[Any] ): self.events.append('''on_epoch_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : Any ,**lowercase__ : Optional[int] ): self.events.append('''on_epoch_end''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_step_begin''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : Optional[int] ,**lowercase__ : Dict ): self.events.append('''on_step_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,**lowercase__ : Any ): self.events.append('''on_evaluate''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : int ,**lowercase__ : Optional[Any] ): self.events.append('''on_predict''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,**lowercase__ : int ): self.events.append('''on_save''' ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_log''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : int ,lowercase__ : Dict ,**lowercase__ : str ): self.events.append('''on_prediction_step''' ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): shutil.rmtree(self.output_dir ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any]=0 ,lowercase__ : Any=0 ,lowercase__ : Tuple=6_4 ,lowercase__ : Optional[int]=6_4 ,lowercase__ : Optional[Any]=None ,lowercase__ : str=False ,**lowercase__ : Any ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionModelConfig(a=lowercase__ ,b=lowercase__ ) __lowercase = RegressionPreTrainedModel(lowercase__ ) __lowercase = TrainingArguments(self.output_dir ,disable_tqdm=lowercase__ ,report_to=[] ,**lowercase__ ) return Trainer( lowercase__ ,lowercase__ ,train_dataset=lowercase__ ,eval_dataset=lowercase__ ,callbacks=lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) ) # Order doesn't matter __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) for cba, cba in zip(lowercase__ ,lowercase__ ): if isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,lowercase__ ) elif isinstance(lowercase__ ,lowercase__ ) and not isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,cba.__class__ ) elif not isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(cba.__class__ ,lowercase__ ) else: self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ): __lowercase = ['''on_init_end''', '''on_train_begin'''] __lowercase = 0 __lowercase = len(trainer.get_eval_dataloader() ) __lowercase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(lowercase__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.get_trainer() __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # Callbacks passed at init are added to the default callbacks __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __lowercase = self.get_trainer(disable_tqdm=lowercase__ ) __lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __lowercase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(cb.__class__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # We can also add, pop, or remove by instance __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' ,category=lowercase__ ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # Independent log/save/eval __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='''steps''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='''epoch''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # A bit of everything __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=1_0 ,eval_steps=5 ,evaluation_strategy='''steps''' ,) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,) assert str(lowercase__ ) in warn_mock.call_args[0][0]
41
1
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def _A ( A__ = 2000000 ): """simple docstring""" __lowercase = [0] __lowercase = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __lowercase = 0 # the area corresponding to the grid that gives the product closest to target __lowercase = 0 # an estimate of b, using the quadratic formula __lowercase = 42 # the largest integer less than b_estimate __lowercase = 42 # the largest integer less than b_estimate __lowercase = 42 # the triangle number corresponding to b_floor __lowercase = 42 # the triangle number corresponding to b_ceil __lowercase = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __lowercase = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __lowercase = floor(A__ ) __lowercase = ceil(A__ ) __lowercase = triangle_numbers[b_floor] __lowercase = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __lowercase = triangle_b_first_guess * triangle_a __lowercase = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __lowercase = triangle_b_second_guess * triangle_a __lowercase = idx_a * b_ceil return area if __name__ == "__main__": print(f'{solution() = }')
41
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : jnp.ndarray SCREAMING_SNAKE_CASE : jnp.ndarray class lowercase_ (nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __lowercase = [] for i in range(len(self.block_out_channels ) - 1 ): __lowercase = self.block_out_channels[i] __lowercase = self.block_out_channels[i + 1] __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = blocks __lowercase = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : List[str] ,lowercase__ : Optional[int] ): __lowercase = self.conv_in(lowercase__ ) __lowercase = nn.silu(lowercase__ ) for block in self.blocks: __lowercase = block(lowercase__ ) __lowercase = nn.silu(lowercase__ ) __lowercase = self.conv_out(lowercase__ ) return embedding @flax_register_to_config class lowercase_ (nn.Module , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 3_2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False SCREAMING_SNAKE_CASE : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) SCREAMING_SNAKE_CASE : int = 2 SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None SCREAMING_SNAKE_CASE : int = 1_2_8_0 SCREAMING_SNAKE_CASE : float = 0.0 SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = "rgb" SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : jax.random.KeyArray ): # init input tensors __lowercase = (1, self.in_channels, self.sample_size, self.sample_size) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase = jnp.ones((1,) ,dtype=jnp.intaa ) __lowercase = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa ) __lowercase = (1, 3, self.sample_size * 8, self.sample_size * 8) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase , __lowercase = jax.random.split(lowercase__ ) __lowercase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )["params"] def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.block_out_channels __lowercase = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __lowercase = self.num_attention_heads or self.attention_head_dim # input __lowercase = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time __lowercase = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift ) __lowercase = FlaxTimestepEmbedding(lowercase__ ,dtype=self.dtype ) __lowercase = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) __lowercase = self.only_cross_attention if isinstance(lowercase__ ,lowercase__ ): __lowercase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = (num_attention_heads,) * len(self.down_block_types ) # down __lowercase = [] __lowercase = [] __lowercase = block_out_channels[0] __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) for i, down_block_type in enumerate(self.down_block_types ): __lowercase = output_channel __lowercase = block_out_channels[i] __lowercase = i == len(lowercase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": __lowercase = FlaxCrossAttnDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: __lowercase = FlaxDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(lowercase__ ) for _ in range(self.layers_per_block ): __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) if not is_final_block: __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) __lowercase = down_blocks __lowercase = controlnet_down_blocks # mid __lowercase = block_out_channels[-1] __lowercase = FlaxUNetMidBlockaDCrossAttn( in_channels=lowercase__ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : float = 1.0 ,lowercase__ : bool = True ,lowercase__ : bool = False ,): __lowercase = self.controlnet_conditioning_channel_order if channel_order == "bgr": __lowercase = jnp.flip(lowercase__ ,axis=1 ) # 1. time if not isinstance(lowercase__ ,jnp.ndarray ): __lowercase = jnp.array([timesteps] ,dtype=jnp.intaa ) elif isinstance(lowercase__ ,jnp.ndarray ) and len(timesteps.shape ) == 0: __lowercase = timesteps.astype(dtype=jnp.floataa ) __lowercase = jnp.expand_dims(lowercase__ ,0 ) __lowercase = self.time_proj(lowercase__ ) __lowercase = self.time_embedding(lowercase__ ) # 2. pre-process __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.conv_in(lowercase__ ) __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.controlnet_cond_embedding(lowercase__ ) sample += controlnet_cond # 3. down __lowercase = (sample,) for down_block in self.down_blocks: if isinstance(lowercase__ ,lowercase__ ): __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) else: __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,deterministic=not train ) down_block_res_samples += res_samples # 4. mid __lowercase = self.mid_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) # 5. contronet blocks __lowercase = () for down_block_res_sample, controlnet_block in zip(lowercase__ ,self.controlnet_down_blocks ): __lowercase = controlnet_block(lowercase__ ) controlnet_down_block_res_samples += (down_block_res_sample,) __lowercase = controlnet_down_block_res_samples __lowercase = self.controlnet_mid_block(lowercase__ ) # 6. scaling __lowercase = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowercase__ ,mid_block_res_sample=lowercase__ )
41
1
'''simple docstring''' from __future__ import annotations def _A ( A__ ): """simple docstring""" __lowercase = str(A__ ) return len(A__ ) == 9 and set(A__ ) == set('''123456789''' ) def _A ( ): """simple docstring""" for base_num in range(9999 , 4999 , -1 ): __lowercase = 100002 * base_num if is_9_pandigital(A__ ): return candidate for base_num in range(333 , 99 , -1 ): __lowercase = 1002003 * base_num if is_9_pandigital(A__ ): return candidate return None if __name__ == "__main__": print(f'{solution() = }')
41
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase__ = False lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''ybelkada/fonts''' def _A ( ): """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use " '''Pix2StructImageProcessor. Please upgrade torch.''' ) def _A ( A__ , A__ , A__ ): """simple docstring""" requires_backends(A__ , ['''torch'''] ) _check_torch_version() __lowercase = image_tensor.unsqueeze(0 ) __lowercase = torch.nn.functional.unfold(A__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) __lowercase = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , A__ , A__ , -1 ) __lowercase = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def _A ( A__ , A__ = 36 , A__ = "black" , A__ = "white" , A__ = 5 , A__ = 5 , A__ = 5 , A__ = 5 , A__ = None , A__ = None , ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Add new lines so that each line is no more than 80 characters. __lowercase = textwrap.TextWrapper(width=80 ) __lowercase = wrapper.wrap(text=A__ ) __lowercase = '''\n'''.join(A__ ) if font_bytes is not None and font_path is None: __lowercase = io.BytesIO(A__ ) elif font_path is not None: __lowercase = font_path else: __lowercase = hf_hub_download(A__ , '''Arial.TTF''' ) __lowercase = ImageFont.truetype(A__ , encoding='''UTF-8''' , size=A__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. __lowercase = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , A__ ) ) __lowercase , __lowercase , __lowercase , __lowercase = temp_draw.textbbox((0, 0) , A__ , A__ ) # Create the actual image with a bit of padding around the text. __lowercase = text_width + left_padding + right_padding __lowercase = text_height + top_padding + bottom_padding __lowercase = Image.new('''RGB''' , (image_width, image_height) , A__ ) __lowercase = ImageDraw.Draw(A__ ) draw.text(xy=(left_padding, top_padding) , text=A__ , fill=A__ , font=A__ ) return image def _A ( A__ , A__ , **A__ ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Convert to PIL image if necessary __lowercase = to_pil_image(A__ ) __lowercase = render_text(A__ , **A__ ) __lowercase = max(header_image.width , image.width ) __lowercase = int(image.height * (new_width / image.width) ) __lowercase = int(header_image.height * (new_width / header_image.width) ) __lowercase = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary __lowercase = to_numpy_array(A__ ) if infer_channel_dimension_format(A__ ) == ChannelDimension.LAST: __lowercase = to_channel_dimension_format(A__ , ChannelDimension.LAST ) return new_image class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ['flattened_patches'] def __init__( self : Any ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : int = 2_0_4_8 ,lowercase__ : bool = False ,**lowercase__ : List[str] ,): super().__init__(**lowercase__ ) __lowercase = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6} __lowercase = do_normalize __lowercase = do_convert_rgb __lowercase = max_patches __lowercase = is_vqa def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : np.ndarray ,lowercase__ : int ,lowercase__ : dict ,**lowercase__ : Tuple ): requires_backends(self.extract_flattened_patches ,'''torch''' ) _check_torch_version() # convert to torch __lowercase = to_channel_dimension_format(lowercase__ ,ChannelDimension.FIRST ) __lowercase = torch.from_numpy(lowercase__ ) __lowercase , __lowercase = patch_size['''height'''], patch_size['''width'''] __lowercase , __lowercase = get_image_size(lowercase__ ) # maximize scale s.t. __lowercase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) __lowercase = max(min(math.floor(scale * image_height / patch_height ) ,lowercase__ ) ,1 ) __lowercase = max(min(math.floor(scale * image_width / patch_width ) ,lowercase__ ) ,1 ) __lowercase = max(num_feasible_rows * patch_height ,1 ) __lowercase = max(num_feasible_cols * patch_width ,1 ) __lowercase = torch.nn.functional.interpolate( image.unsqueeze(0 ) ,size=(resized_height, resized_width) ,mode='''bilinear''' ,align_corners=lowercase__ ,antialias=lowercase__ ,).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] __lowercase = torch_extract_patches(lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = patches.shape __lowercase = patches_shape[1] __lowercase = patches_shape[2] __lowercase = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] __lowercase = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] __lowercase = torch.arange(lowercase__ ).reshape([rows, 1] ).repeat(1 ,lowercase__ ).reshape([rows * columns, 1] ) __lowercase = torch.arange(lowercase__ ).reshape([1, columns] ).repeat(lowercase__ ,1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] __lowercase = row_ids.to(torch.floataa ) __lowercase = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] __lowercase = torch.cat([row_ids, col_ids, patches] ,-1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] __lowercase = torch.nn.functional.pad(lowercase__ ,[0, 0, 0, max_patches - (rows * columns)] ).float() __lowercase = to_numpy_array(lowercase__ ) return result def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : np.ndarray ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ): if image.dtype == np.uinta: __lowercase = image.astype(np.floataa ) # take mean across the whole `image` __lowercase = np.mean(lowercase__ ) __lowercase = np.std(lowercase__ ) __lowercase = max(lowercase__ ,1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : ImageInput ,lowercase__ : Optional[str] = None ,lowercase__ : bool = None ,lowercase__ : Optional[bool] = None ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[Dict[str, int]] = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : ChannelDimension = ChannelDimension.FIRST ,**lowercase__ : List[Any] ,): __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = patch_size if patch_size is not None else self.patch_size __lowercase = max_patches if max_patches is not None else self.max_patches __lowercase = self.is_vqa if kwargs.get('''data_format''' ,lowercase__ ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) __lowercase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(lowercase__ ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowercase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) __lowercase = kwargs.pop('''font_bytes''' ,lowercase__ ) __lowercase = kwargs.pop('''font_path''' ,lowercase__ ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = [header_text] * len(lowercase__ ) __lowercase = [ render_header(lowercase__ ,header_text[i] ,font_bytes=lowercase__ ,font_path=lowercase__ ) for i, image in enumerate(lowercase__ ) ] if do_normalize: __lowercase = [self.normalize(image=lowercase__ ) for image in images] # convert to torch tensor and permute __lowercase = [ self.extract_flattened_patches(image=lowercase__ ,max_patches=lowercase__ ,patch_size=lowercase__ ) for image in images ] # create attention mask in numpy __lowercase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] __lowercase = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks} ,tensor_type=lowercase__ ) return encoded_outputs
41
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase__ = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
'''simple docstring''' import doctest from collections import deque import numpy as np class lowercase_ : """simple docstring""" def __init__( self : Optional[Any] ): __lowercase = [2, 1, 2, -1] __lowercase = [1, 2, 3, 4] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = len(self.first_signal ) __lowercase = len(self.second_signal ) __lowercase = max(lowercase__ ,lowercase__ ) # create a zero matrix of max_length x max_length __lowercase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __lowercase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __lowercase = np.matmul(np.transpose(lowercase__ ) ,np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ ,2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
41
1
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : int ,lowercase__ : Union[str, "sqlalchemy.sql.Selectable"] ,lowercase__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] ,lowercase__ : Optional[Features] = None ,lowercase__ : str = None ,lowercase__ : bool = False ,**lowercase__ : Union[str, Any] ,): super().__init__(features=lowercase__ ,cache_dir=lowercase__ ,keep_in_memory=lowercase__ ,**lowercase__ ) __lowercase = Sql( cache_dir=lowercase__ ,features=lowercase__ ,sql=lowercase__ ,con=lowercase__ ,**lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = None __lowercase = None __lowercase = None __lowercase = None self.builder.download_and_prepare( download_config=lowercase__ ,download_mode=lowercase__ ,verification_mode=lowercase__ ,base_path=lowercase__ ,) # Build dataset for splits __lowercase = self.builder.as_dataset( split='''train''' ,verification_mode=lowercase__ ,in_memory=self.keep_in_memory ) return dataset class lowercase_ : """simple docstring""" def __init__( self : List[str] ,lowercase__ : Dataset ,lowercase__ : str ,lowercase__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[int] = None ,**lowercase__ : str ,): if num_proc is not None and num_proc <= 0: raise ValueError(F"num_proc {num_proc} must be an integer > 0." ) __lowercase = dataset __lowercase = name __lowercase = con __lowercase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __lowercase = num_proc __lowercase = to_sql_kwargs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.to_sql_kwargs.pop('''sql''' ,lowercase__ ) __lowercase = self.to_sql_kwargs.pop('''con''' ,lowercase__ ) __lowercase = self.to_sql_kwargs.pop('''index''' ,lowercase__ ) __lowercase = self._write(index=lowercase__ ,**self.to_sql_kwargs ) return written def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ): __lowercase , __lowercase , __lowercase = args __lowercase = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __lowercase = query_table( table=self.dataset.data ,key=slice(lowercase__ ,offset + self.batch_size ) ,indices=self.dataset._indices ,) __lowercase = batch.to_pandas() __lowercase = df.to_sql(self.name ,self.con ,index=lowercase__ ,**lowercase__ ) return num_rows or len(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Optional[int] ,**lowercase__ : Optional[int] ): __lowercase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 ,len(self.dataset ) ,self.batch_size ) ,unit='''ba''' ,disable=not logging.is_progress_bar_enabled() ,desc='''Creating SQL from Arrow format''' ,): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __lowercase , __lowercase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql ,[(offset, index, to_sql_kwargs) for offset in range(0 ,lowercase__ ,lowercase__ )] ,) ,total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size ,unit='''ba''' ,disable=not logging.is_progress_bar_enabled() ,desc='''Creating SQL from Arrow format''' ,): written += num_rows return written
41
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
41
1
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''https://openaipublic.azureedge.net/jukebox/models/''' lowerCAmelCase__ = { '''jukebox-1b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''1b_lyrics/prior_level_2.pth.tar''', ], '''jukebox-5b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''5b_lyrics/prior_level_2.pth.tar''', ], } def _A ( A__ ): """simple docstring""" if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: __lowercase = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: __lowercase = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: __lowercase = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: __lowercase = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: __lowercase = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: __lowercase = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: __lowercase = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: __lowercase = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = {} import re __lowercase = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) __lowercase = re.compile( R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __lowercase = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) __lowercase = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) __lowercase = re.compile( R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __lowercase = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) __lowercase = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) __lowercase = re.compile( R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __lowercase = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(A__ ): __lowercase = re_encoder_block_conv_in.match(A__ ) __lowercase = regex_match.groups() __lowercase = int(groups[2] ) * 2 + int(groups[3] ) __lowercase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" __lowercase = re_encoder_block_conv_in.sub(A__ , A__ ) elif re_encoder_block_resnet.fullmatch(A__ ): __lowercase = re_encoder_block_resnet.match(A__ ) __lowercase = regex_match.groups() __lowercase = int(groups[2] ) * 2 + int(groups[3] ) __lowercase = {'''1''': 1, '''3''': 2}[groups[-2]] __lowercase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." __lowercase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" __lowercase = prefix + resnet_block __lowercase = re_encoder_block_resnet.sub(A__ , A__ ) elif re_encoder_block_proj_out.fullmatch(A__ ): __lowercase = re_encoder_block_proj_out.match(A__ ) __lowercase = regex_match.groups() __lowercase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" __lowercase = re_encoder_block_proj_out.sub(A__ , A__ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(A__ ): __lowercase = re_decoder_block_conv_out.match(A__ ) __lowercase = regex_match.groups() __lowercase = int(groups[2] ) * 2 + int(groups[3] ) - 2 __lowercase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" __lowercase = re_decoder_block_conv_out.sub(A__ , A__ ) elif re_decoder_block_resnet.fullmatch(A__ ): __lowercase = re_decoder_block_resnet.match(A__ ) __lowercase = regex_match.groups() __lowercase = int(groups[2] ) * 2 + int(groups[3] ) - 2 __lowercase = {'''1''': 1, '''3''': 2}[groups[-2]] __lowercase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." __lowercase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" __lowercase = prefix + resnet_block __lowercase = re_decoder_block_resnet.sub(A__ , A__ ) elif re_decoder_block_proj_in.fullmatch(A__ ): __lowercase = re_decoder_block_proj_in.match(A__ ) __lowercase = regex_match.groups() __lowercase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" __lowercase = re_decoder_block_proj_in.sub(A__ , A__ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(A__ ): __lowercase = re_prior_cond_conv_out.match(A__ ) __lowercase = regex_match.groups() __lowercase = int(groups[1] ) * 2 + int(groups[2] ) - 2 __lowercase = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" __lowercase = re_prior_cond_conv_out.sub(A__ , A__ ) elif re_prior_cond_resnet.fullmatch(A__ ): __lowercase = re_prior_cond_resnet.match(A__ ) __lowercase = regex_match.groups() __lowercase = int(groups[1] ) * 2 + int(groups[2] ) - 2 __lowercase = {'''1''': 1, '''3''': 2}[groups[-2]] __lowercase = F"conditioner_blocks.upsampler.upsample_block.{block_index}." __lowercase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" __lowercase = prefix + resnet_block __lowercase = re_prior_cond_resnet.sub(A__ , A__ ) elif re_prior_cond_proj_in.fullmatch(A__ ): __lowercase = re_prior_cond_proj_in.match(A__ ) __lowercase = regex_match.groups() __lowercase = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" __lowercase = re_prior_cond_proj_in.sub(A__ , A__ ) # keep original key else: __lowercase = original_key __lowercase = replace_key(A__ ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: __lowercase = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) __lowercase = original_key __lowercase = original_key __lowercase = value return new_dict @torch.no_grad() def _A ( A__=None , A__=None ): """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): __lowercase = requests.get(F"{PREFIX}{file}" , allow_redirects=A__ ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=A__ ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , '''wb''' ).write(r.content ) __lowercase = MODEL_MAPPING[model_name.split('''/''' )[-1]] __lowercase = JukeboxConfig.from_pretrained(A__ ) __lowercase = JukeboxModel(A__ ) __lowercase = [] __lowercase = {} for i, dict_name in enumerate(A__ ): __lowercase = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )['''model'''] __lowercase = {} for k in old_dic.keys(): if k.endswith('''.b''' ): __lowercase = old_dic[k] elif k.endswith('''.w''' ): __lowercase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: __lowercase = old_dic[k] else: __lowercase = old_dic[k] __lowercase = '''vqvae''' if i == 0 else F"priors.{3 - i}" __lowercase = fix_jukebox_keys(A__ , model.state_dict() , A__ , A__ ) weight_dict.append(A__ ) __lowercase = weight_dict.pop(0 ) model.vqvae.load_state_dict(A__ ) for i in range(len(A__ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(A__ ).mkdir(exist_ok=A__ ) with open(F"{pytorch_dump_folder_path}/mapping.json" , '''w''' ) as txtfile: json.dump(A__ , A__ ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(A__ ) return weight_dict if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''jukebox-5b-lyrics''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''jukebox-5b-lyrics-converted''', type=str, help='''Path to the output PyTorch model directory.''', ) lowerCAmelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
41
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCAmelCase__ = getLogger(__name__) lowerCAmelCase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def _A ( A__ , A__ , A__ , A__ = 8 , A__ = DEFAULT_DEVICE , A__=False , A__="summarization" , A__=None , **A__ , ): """simple docstring""" __lowercase = Path(A__ ).open('''w''' , encoding='''utf-8''' ) __lowercase = str(A__ ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained(A__ ).to(A__ ) if fpaa: __lowercase = model.half() __lowercase = AutoTokenizer.from_pretrained(A__ ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __lowercase = time.time() # update config with task specific params use_task_specific_params(A__ , A__ ) if prefix is None: __lowercase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(A__ , A__ ) ) ): __lowercase = [prefix + text for text in examples_chunk] __lowercase = tokenizer(A__ , return_tensors='''pt''' , truncation=A__ , padding='''longest''' ).to(A__ ) __lowercase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **A__ , ) __lowercase = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __lowercase = int(time.time() - start_time ) # seconds __lowercase = len(A__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _A ( ): """simple docstring""" return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def _A ( A__=True ): """simple docstring""" __lowercase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=A__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=A__ , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=A__ , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=A__ , required=A__ , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=A__ , required=A__ , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=A__ , required=A__ , default=A__ , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=A__ , required=A__ , default=A__ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=A__ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=A__ , default=8 , required=A__ , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=A__ , default=-1 , required=A__ , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=A__ , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowercase , __lowercase = parser.parse_known_args() __lowercase = parse_numeric_n_bool_cl_kwargs(A__ ) if parsed_args and verbose: print(F"parsed the following generate kwargs: {parsed_args}" ) __lowercase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowercase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=A__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __lowercase = generate_summaries_or_translations( A__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **A__ , ) if args.reference_path is None: return {} # Compute scores __lowercase = calculate_bleu if '''translation''' in args.task else calculate_rouge __lowercase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowercase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(A__ )] __lowercase = score_fn(A__ , A__ ) scores.update(A__ ) if args.dump_args: scores.update(A__ ) if args.info: __lowercase = args.info if verbose: print(A__ ) if args.score_path is not None: json.dump(A__ , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
41
1
'''simple docstring''' import heapq def _A ( A__ ): """simple docstring""" __lowercase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A__ , [-1 * len(A__ ), (key, value)] ) # chosen_vertices = set of chosen vertices __lowercase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __lowercase = heapq.heappop(A__ )[1][0] chosen_vertices.add(A__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __lowercase = elem[1][1].index(A__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f'Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}')
41
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(A__ ): print(F"{i}\t\t{d}" ) def _A ( A__ , A__ , A__ ): """simple docstring""" for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = [float('''inf''' )] * vertex_count __lowercase = 0.0 for _ in range(vertex_count - 1 ): for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: __lowercase = distance[u] + w __lowercase = check_negative_cycle(A__ , A__ , A__ ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = int(input('''Enter number of vertices: ''').strip()) lowerCAmelCase__ = int(input('''Enter number of edges: ''').strip()) lowerCAmelCase__ = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) lowerCAmelCase__ = {'''src''': src, '''dst''': dest, '''weight''': weight} lowerCAmelCase__ = int(input('''\nEnter shortest path source:''').strip()) lowerCAmelCase__ = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
41
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
41
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[Any] ,*lowercase__ : Optional[Any] ,**lowercase__ : int ): warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' ,lowercase__ ,) super().__init__(*lowercase__ ,**lowercase__ )
41
1
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint lowerCAmelCase__ = { '''169M''': 12, '''430M''': 24, '''1B5''': 24, '''3B''': 32, '''7B''': 32, '''14B''': 40, } lowerCAmelCase__ = { '''169M''': 768, '''430M''': 1024, '''1B5''': 2048, '''3B''': 2560, '''7B''': 4096, '''14B''': 5120, } def _A ( A__ ): """simple docstring""" __lowercase = list(state_dict.keys() ) for name in state_dict_keys: __lowercase = state_dict.pop(A__ ) # emb -> embedding if name.startswith('''emb.''' ): __lowercase = name.replace('''emb.''' , '''embeddings.''' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('''blocks.0.ln0''' ): __lowercase = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' ) # att -> attention __lowercase = re.sub(R'''blocks\.(\d+)\.att''' , R'''blocks.\1.attention''' , A__ ) # ffn -> feed_forward __lowercase = re.sub(R'''blocks\.(\d+)\.ffn''' , R'''blocks.\1.feed_forward''' , A__ ) # time_mix_k -> time_mix_key and reshape if name.endswith('''.time_mix_k''' ): __lowercase = name.replace('''.time_mix_k''' , '''.time_mix_key''' ) # time_mix_v -> time_mix_value and reshape if name.endswith('''.time_mix_v''' ): __lowercase = name.replace('''.time_mix_v''' , '''.time_mix_value''' ) # time_mix_r -> time_mix_key and reshape if name.endswith('''.time_mix_r''' ): __lowercase = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' ) if name != "head.weight": __lowercase = '''rwkv.''' + name __lowercase = weight return state_dict def _A ( A__ , A__ , A__ , A__=None , A__=None , A__=False , A__=None ): """simple docstring""" if tokenizer_file is None: print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' ) __lowercase = 50277 __lowercase = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' ) else: __lowercase = PreTrainedTokenizerFast(tokenizer_file=A__ ) __lowercase = len(A__ ) tokenizer.save_pretrained(A__ ) # 2. Build the config __lowercase = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: __lowercase = candidate break if size is None: raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' ) if size not in possible_sizes: raise ValueError(F"`size` should be one of {possible_sizes}, got {size}." ) __lowercase = RwkvConfig( vocab_size=A__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(A__ ) # 3. Download model file then convert state_dict __lowercase = hf_hub_download(A__ , A__ ) __lowercase = torch.load(A__ , map_location='''cpu''' ) __lowercase = convert_state_dict(A__ ) # 4. Split in shards and save __lowercase , __lowercase = shard_checkpoint(A__ ) for shard_file, shard in shards.items(): torch.save(A__ , os.path.join(A__ , A__ ) ) if index is not None: __lowercase = os.path.join(A__ , A__ ) # Save the index as well with open(A__ , '''w''' , encoding='''utf-8''' ) as f: __lowercase = json.dumps(A__ , indent=2 , sort_keys=A__ ) + '''\n''' f.write(A__ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( '''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' ) __lowercase = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: __lowercase = torch.load(os.path.join(A__ , A__ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(A__ , A__ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' ) __lowercase = AutoModelForCausalLM.from_pretrained(A__ ) model.push_to_hub(A__ , max_shard_size='''2GB''' ) tokenizer.push_to_hub(A__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) lowerCAmelCase__ = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
41
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _A ( A__ ): """simple docstring""" __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = 0.0_1 with locka.acquire(): with pytest.raises(A__ ): __lowercase = time.time() locka.acquire(A__ ) assert time.time() - _start > timeout def _A ( A__ ): """simple docstring""" __lowercase = '''a''' * 1000 + '''.lock''' __lowercase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(A__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __lowercase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(A__ ): locka.acquire(0 )
41
1
'''simple docstring''' import os from datetime import datetime as dt from github import Github lowerCAmelCase__ = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def _A ( ): """simple docstring""" __lowercase = Github(os.environ['''GITHUB_TOKEN'''] ) __lowercase = g.get_repo('''huggingface/diffusers''' ) __lowercase = repo.get_issues(state='''open''' ) for issue in open_issues: __lowercase = sorted(issue.get_comments() , key=lambda A__ : i.created_at , reverse=A__ ) __lowercase = comments[0] if len(A__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
41
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase__ = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
1
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(A__ ): print(F"{i}\t\t{d}" ) def _A ( A__ , A__ , A__ ): """simple docstring""" for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = [float('''inf''' )] * vertex_count __lowercase = 0.0 for _ in range(vertex_count - 1 ): for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: __lowercase = distance[u] + w __lowercase = check_negative_cycle(A__ , A__ , A__ ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = int(input('''Enter number of vertices: ''').strip()) lowerCAmelCase__ = int(input('''Enter number of edges: ''').strip()) lowerCAmelCase__ = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) lowerCAmelCase__ = {'''src''': src, '''dst''': dest, '''weight''': weight} lowerCAmelCase__ = int(input('''\nEnter shortest path source:''').strip()) lowerCAmelCase__ = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
41
'''simple docstring''' import argparse import os import re lowerCAmelCase__ = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(R'''\[([^\]]+)\]''') def _A ( A__ ): """simple docstring""" __lowercase = _re_indent.search(A__ ) return "" if search is None else search.groups()[0] def _A ( A__ , A__="" , A__=None , A__=None ): """simple docstring""" __lowercase = 0 __lowercase = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(A__ ): index += 1 __lowercase = ['''\n'''.join(lines[:index] )] else: __lowercase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowercase = [lines[index]] index += 1 while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(A__ ) ) if index < len(A__ ) - 1: __lowercase = [lines[index + 1]] index += 1 else: __lowercase = [] else: blocks.append('''\n'''.join(A__ ) ) __lowercase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A__ ) > 0: blocks.append('''\n'''.join(A__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def _A ( A__ ): """simple docstring""" def _inner(A__ ): return key(A__ ).lower().replace('''_''' , '''''' ) return _inner def _A ( A__ , A__=None ): """simple docstring""" def noop(A__ ): return x if key is None: __lowercase = noop # Constants are all uppercase, they go first. __lowercase = [obj for obj in objects if key(A__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowercase = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()] # Functions begin with a lowercase, they go last. __lowercase = [obj for obj in objects if not key(A__ )[0].isupper()] __lowercase = ignore_underscore(A__ ) return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) def _A ( A__ ): """simple docstring""" def _replace(A__ ): __lowercase = match.groups()[0] if "," not in imports: return F"[{imports}]" __lowercase = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) + "]" __lowercase = import_statement.split('''\n''' ) if len(A__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowercase = 2 if lines[1].strip() == '''[''' else 1 __lowercase = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowercase = sort_objects(A__ , key=lambda A__ : x[1] ) __lowercase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowercase = _re_bracket_content.sub(_replace , lines[1] ) else: __lowercase = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] __lowercase = get_indent(lines[1] ) + ''', '''.join([F"\"{k}\"" for k in sort_objects(A__ )] ) return "\n".join(A__ ) else: # Finally we have to deal with imports fitting on one line __lowercase = _re_bracket_content.sub(_replace , A__ ) return import_statement def _A ( A__ , A__=True ): """simple docstring""" with open(A__ , '''r''' ) as f: __lowercase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowercase = split_code_in_indented_blocks( A__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowercase = main_blocks[block_idx] __lowercase = block.split('''\n''' ) # Get to the start of the imports. __lowercase = 0 while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowercase = len(A__ ) else: line_idx += 1 if line_idx >= len(A__ ): continue # Ignore beginning and last line: they don't contain anything. __lowercase = '''\n'''.join(block_lines[line_idx:-1] ) __lowercase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowercase = split_code_in_indented_blocks(A__ , indent_level=A__ ) # We have two categories of import key: list or _import_structure[key].append/extend __lowercase = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowercase = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowercase = [(i, key) for i, key in enumerate(A__ ) if key is not None] __lowercase = [x[0] for x in sorted(A__ , key=lambda A__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowercase = 0 __lowercase = [] for i in range(len(A__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __lowercase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(A__ ) count += 1 # And we put our main block back together with its first and last line. __lowercase = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(A__ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(A__ , '''w''' ) as f: f.write('''\n'''.join(A__ ) ) def _A ( A__=True ): """simple docstring""" __lowercase = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: __lowercase = sort_imports(os.path.join(A__ , '''__init__.py''' ) , check_only=A__ ) if result: __lowercase = [os.path.join(A__ , '''__init__.py''' )] if len(A__ ) > 0: raise ValueError(F"Would overwrite {len(A__ )} files, run `make style`." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
41
1
'''simple docstring''' # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''T''') class lowercase_ (Generic[T] ): """simple docstring""" def __init__( self : int ,lowercase__ : bool = True ): __lowercase = {} # dictionary of lists __lowercase = directed def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : T ,lowercase__ : T ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase__ ) self.adj_list[destination_vertex].append(lowercase__ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase__ ) __lowercase = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(lowercase__ ) __lowercase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: __lowercase = [destination_vertex] __lowercase = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase__ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowercase__ ) __lowercase = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: __lowercase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: __lowercase = [destination_vertex] __lowercase = [] return self def __repr__( self : Optional[int] ): return pformat(self.adj_list )
41
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = TextToVideoSDPipeline SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. SCREAMING_SNAKE_CASE : Optional[int] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') ,up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') ,cross_attention_dim=3_2 ,attention_head_dim=4 ,) __lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,clip_sample=lowercase__ ,set_alpha_to_one=lowercase__ ,) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=1_2_8 ,) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''gelu''' ,projection_dim=5_1_2 ,) __lowercase = CLIPTextModel(lowercase__ ) __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : List[str]=0 ): if str(lowercase__ ).startswith('''mps''' ): __lowercase = torch.manual_seed(lowercase__ ) else: __lowercase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = TextToVideoSDPipeline(**lowercase__ ) __lowercase = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs(lowercase__ ) __lowercase = '''np''' __lowercase = sd_pipe(**lowercase__ ).frames __lowercase = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) __lowercase = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def SCREAMING_SNAKE_CASE ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=1e-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass def SCREAMING_SNAKE_CASE ( self : List[str] ): return super().test_progress_bar() @slow @skip_mps class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2_5 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
41
1
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def _A ( A__ ): # picklable for multiprocessing """simple docstring""" return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def _A ( ): """simple docstring""" with parallel_backend('''spark''' ): assert ParallelBackendConfig.backend_name == "spark" __lowercase = [1, 2, 3] with pytest.raises(A__ ): with parallel_backend('''unsupported backend''' ): map_nested(A__ , A__ , num_proc=2 ) with pytest.raises(A__ ): with parallel_backend('''unsupported backend''' ): map_nested(A__ , A__ , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' , [2, -1] ) def _A ( A__ ): """simple docstring""" __lowercase = [1, 2] __lowercase = {'''a''': 1, '''b''': 2} __lowercase = {'''a''': [1, 2], '''b''': [3, 4]} __lowercase = {'''a''': {'''1''': 1}, '''b''': 2} __lowercase = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} __lowercase = [2, 3] __lowercase = {'''a''': 2, '''b''': 3} __lowercase = {'''a''': [2, 3], '''b''': [4, 5]} __lowercase = {'''a''': {'''1''': 2}, '''b''': 3} __lowercase = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend('''spark''' ): assert map_nested(A__ , A__ , num_proc=A__ ) == expected_map_nested_sa assert map_nested(A__ , A__ , num_proc=A__ ) == expected_map_nested_sa assert map_nested(A__ , A__ , num_proc=A__ ) == expected_map_nested_sa assert map_nested(A__ , A__ , num_proc=A__ ) == expected_map_nested_sa assert map_nested(A__ , A__ , num_proc=A__ ) == expected_map_nested_sa
41
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _A ( A__ ): """simple docstring""" __lowercase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def _A ( A__ ): """simple docstring""" __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(A__ , A__ , bias=A__ ) __lowercase = emb.weight.data return lin_layer def _A ( A__ , A__="facebook/mbart-large-en-ro" , A__=False , A__=False ): """simple docstring""" __lowercase = torch.load(A__ , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A__ ) __lowercase = state_dict['''encoder.embed_tokens.weight'''].shape[0] __lowercase = MBartConfig.from_pretrained(A__ , vocab_size=A__ ) if mbart_aa and finetuned: __lowercase = '''relu''' __lowercase = state_dict['''decoder.embed_tokens.weight'''] __lowercase = MBartForConditionalGeneration(A__ ) model.model.load_state_dict(A__ ) if finetuned: __lowercase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
41
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase__ = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
'''simple docstring''' import os from math import logaa def _A ( A__ = "base_exp.txt" ): """simple docstring""" __lowercase = 0 __lowercase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowercase , __lowercase = list(map(A__ , line.split(''',''' ) ) ) if x * logaa(A__ ) > largest: __lowercase = x * logaa(A__ ) __lowercase = i + 1 return result if __name__ == "__main__": print(solution())
41
1
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) lowerCAmelCase__ = logging.getLogger(__name__) lowerCAmelCase__ = '''Hello world! cécé herlolip''' lowerCAmelCase__ = namedtuple( '''BertAbsConfig''', [ '''temp_dir''', '''large''', '''use_bert_emb''', '''finetune_bert''', '''encoder''', '''share_emb''', '''max_pos''', '''enc_layers''', '''enc_hidden_size''', '''enc_heads''', '''enc_ff_size''', '''enc_dropout''', '''dec_layers''', '''dec_hidden_size''', '''dec_heads''', '''dec_ff_size''', '''dec_dropout''', ], ) def _A ( A__ , A__ ): """simple docstring""" __lowercase = BertAbsConfig( temp_dir='''.''' , finetune_bert=A__ , large=A__ , share_emb=A__ , use_bert_emb=A__ , encoder='''bert''' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __lowercase = torch.load(A__ , lambda A__ , A__ : storage ) __lowercase = AbsSummarizer(A__ , torch.device('''cpu''' ) , A__ ) original.eval() __lowercase = BertAbsSummarizer(A__ , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) __lowercase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs __lowercase = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(A__ )) ) __lowercase = torch.tensor(A__ ).unsqueeze(0 ) __lowercase = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(A__ )) ) __lowercase = torch.tensor(A__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __lowercase = encoder_input_ids __lowercase = decoder_input_ids __lowercase = __lowercase = None __lowercase = None __lowercase = __lowercase = None __lowercase = __lowercase = None __lowercase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __lowercase = original(A__ , A__ , A__ , A__ , A__ , A__ , A__ )[0] __lowercase = original.generator(A__ ) __lowercase = new_model( A__ , A__ , A__ , A__ , A__ )[0] __lowercase = new_model.generator(A__ ) __lowercase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(A__ ) ) __lowercase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(A__ ) ) __lowercase = torch.allclose(A__ , A__ , atol=1e-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--bertabs_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''', ) lowerCAmelCase__ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
41
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'blenderbot-small' SCREAMING_SNAKE_CASE : int = ['past_key_values'] SCREAMING_SNAKE_CASE : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] ,lowercase__ : List[str]=5_0_2_6_5 ,lowercase__ : Optional[Any]=5_1_2 ,lowercase__ : Optional[int]=8 ,lowercase__ : List[Any]=2_0_4_8 ,lowercase__ : List[str]=1_6 ,lowercase__ : str=8 ,lowercase__ : Any=2_0_4_8 ,lowercase__ : Tuple=1_6 ,lowercase__ : Tuple=0.0 ,lowercase__ : List[str]=0.0 ,lowercase__ : Any=True ,lowercase__ : str=True ,lowercase__ : int="gelu" ,lowercase__ : Tuple=5_1_2 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : str=0.0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : List[Any]=False ,lowercase__ : Optional[int]=0 ,lowercase__ : Optional[int]=1 ,lowercase__ : str=2 ,lowercase__ : int=2 ,**lowercase__ : List[str] ,): __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = use_cache __lowercase = encoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,is_encoder_decoder=lowercase__ ,decoder_start_token_id=lowercase__ ,forced_eos_token_id=lowercase__ ,**lowercase__ ,) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Dict ): if self.task in ["default", "seq2seq-lm"]: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase = {0: '''batch'''} __lowercase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase__ ,direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super().outputs else: __lowercase = super(lowercase__ ,self ).outputs if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) # Generate decoder inputs __lowercase = seq_length if not self.use_past else 1 __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __lowercase = dict(**lowercase__ ,**lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape __lowercase = common_inputs['''decoder_input_ids'''].shape[1] __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = decoder_seq_length + 3 __lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase__ ,lowercase__ )] ,dim=1 ) __lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase = self.num_layers __lowercase = min(lowercase__ ,lowercase__ ) __lowercase = max(lowercase__ ,lowercase__ ) - min_num_layers __lowercase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), ) ) # TODO: test this. __lowercase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase__ ,lowercase__ ): common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase , __lowercase = self.num_layers __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = common_inputs['''attention_mask'''].dtype __lowercase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase__ ,lowercase__ ,dtype=lowercase__ )] ,dim=1 ) __lowercase = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ ) ] return common_inputs def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = tokenizer.num_special_tokens_to_add(lowercase__ ) __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowercase__ ) # Generate dummy inputs according to compute batch and sequence __lowercase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase = dict(tokenizer(lowercase__ ,return_tensors=lowercase__ ) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): if self.task in ["default", "seq2seq-lm"]: __lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) elif self.task == "causal-lm": __lowercase = self._generate_dummy_inputs_for_causal_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) else: __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super()._flatten_past_key_values_(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) else: __lowercase = super(lowercase__ ,self )._flatten_past_key_values_( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
41
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_swinv2''': ['''SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Swinv2Config'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Swinv2ForImageClassification''', '''Swinv2ForMaskedImageModeling''', '''Swinv2Model''', '''Swinv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" if b == 0: return (1, 0) ((__lowercase) , (__lowercase)) = extended_euclid(A__ , a % b ) __lowercase = a // b return (y, x - k * y) def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m def _A ( A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) if b < 0: __lowercase = (b % n + n) % n return b def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase , __lowercase = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
41
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _A ( ): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __lowercase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , A__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _A ( ): """simple docstring""" assert _test_patching.open is open __lowercase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , A__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , A__ ): pass def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , A__ ) is None with patch_submodule(_test_patching , '''len''' , A__ ): assert _test_patching.len is mock assert _test_patching.len is len def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_start_and_stop_mock__''' __lowercase = patch_submodule(_test_patching , '''open''' , A__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _A ( ): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __lowercase = '''__test_patch_submodule_successive_join__''' __lowercase = '''__test_patch_submodule_successive_dirname__''' __lowercase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , A__ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , A__ ): pass
41
1
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ,**lowercase__ : Tuple ): super().__init__(**lowercase__ ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self ,'''vision''' ) self.check_model_type(lowercase__ ) def __call__( self : List[str] ,lowercase__ : Union[str, "Image.Image", List[Dict[str, Any]]] ,lowercase__ : Union[str, List[str]] = None ,**lowercase__ : str ,): if "text_queries" in kwargs: __lowercase = kwargs.pop('''text_queries''' ) if isinstance(lowercase__ ,(str, Image.Image) ): __lowercase = {'''image''': image, '''candidate_labels''': candidate_labels} else: __lowercase = image __lowercase = super().__call__(lowercase__ ,**lowercase__ ) return results def SCREAMING_SNAKE_CASE ( self : int ,**lowercase__ : List[Any] ): __lowercase = {} if "threshold" in kwargs: __lowercase = kwargs['''threshold'''] if "top_k" in kwargs: __lowercase = kwargs['''top_k'''] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[Any] ): __lowercase = load_image(inputs['''image'''] ) __lowercase = inputs['''candidate_labels'''] if isinstance(lowercase__ ,lowercase__ ): __lowercase = candidate_labels.split(''',''' ) __lowercase = torch.tensor([[image.height, image.width]] ,dtype=torch.intaa ) for i, candidate_label in enumerate(lowercase__ ): __lowercase = self.tokenizer(lowercase__ ,return_tensors=self.framework ) __lowercase = self.image_processor(lowercase__ ,return_tensors=self.framework ) yield { "is_last": i == len(lowercase__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ): __lowercase = model_inputs.pop('''target_size''' ) __lowercase = model_inputs.pop('''candidate_label''' ) __lowercase = model_inputs.pop('''is_last''' ) __lowercase = self.model(**lowercase__ ) __lowercase = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : List[Any]=0.1 ,lowercase__ : List[str]=None ): __lowercase = [] for model_output in model_outputs: __lowercase = model_output['''candidate_label'''] __lowercase = BaseModelOutput(lowercase__ ) __lowercase = self.image_processor.post_process_object_detection( outputs=lowercase__ ,threshold=lowercase__ ,target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): __lowercase = outputs['''scores'''][index].item() __lowercase = self._get_bounding_box(outputs['''boxes'''][index][0] ) __lowercase = {'''score''': score, '''label''': label, '''box''': box} results.append(lowercase__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : x["score"] ,reverse=lowercase__ ) if top_k: __lowercase = results[:top_k] return results def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : "torch.Tensor" ): if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) __lowercase , __lowercase , __lowercase , __lowercase = box.int().tolist() __lowercase = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
41
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : """simple docstring""" def __init__( self : Dict ,lowercase__ : Dict ,lowercase__ : int=1_3 ,lowercase__ : List[str]=7 ,lowercase__ : int=True ,lowercase__ : int=True ,lowercase__ : Union[str, Any]=True ,lowercase__ : List[Any]=True ,lowercase__ : str=9_9 ,lowercase__ : Optional[Any]=3_2 ,lowercase__ : Union[str, Any]=5 ,lowercase__ : List[Any]=4 ,lowercase__ : str=3_7 ,lowercase__ : Tuple="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : Dict=0.1 ,lowercase__ : int=1_2_8 ,lowercase__ : Dict=3_2 ,lowercase__ : Dict=1_6 ,lowercase__ : Any=2 ,lowercase__ : int=0.0_2 ,lowercase__ : List[str]=3 ,lowercase__ : Dict=4 ,lowercase__ : Optional[int]=None ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return NezhaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.prepare_config_and_inputs() __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : str ): __lowercase = NezhaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Dict ,lowercase__ : str ,lowercase__ : Optional[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,): __lowercase = True __lowercase = NezhaModel(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,encoder_attention_mask=lowercase__ ,) __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,) __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): __lowercase = NezhaForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): __lowercase = NezhaForNextSentencePrediction(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ): __lowercase = NezhaForPreTraining(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,next_sentence_label=lowercase__ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ): __lowercase = NezhaForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,start_positions=lowercase__ ,end_positions=lowercase__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Tuple ,lowercase__ : str ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : Optional[int] ,lowercase__ : int ): __lowercase = self.num_labels __lowercase = NezhaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Any ,lowercase__ : Optional[Any] ): __lowercase = self.num_labels __lowercase = NezhaForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : str ): __lowercase = self.num_choices __lowercase = NezhaForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : List[str] = True def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : Any=False ): __lowercase = super()._prepare_for_class(lowercase__ ,lowercase__ ,return_labels=lowercase__ ) if return_labels: if model_class in get_values(lowercase__ ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowercase__ ) __lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowercase__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = NezhaModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : int ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): # This regression test was failing with PyTorch < 1.3 ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase = None self.model_tester.create_and_check_model_as_decoder( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = NezhaModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __lowercase = True __lowercase = model_class(config=lowercase__ ) __lowercase = self._prepare_for_class(lowercase__ ,lowercase__ ) __lowercase = torch.jit.trace( lowercase__ ,(inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase__ ,os.path.join(lowercase__ ,'''bert.pt''' ) ) __lowercase = torch.jit.load(os.path.join(lowercase__ ,'''bert.pt''' ) ,map_location=lowercase__ ) loaded(inputs_dict['''input_ids'''].to(lowercase__ ) ,inputs_dict['''attention_mask'''].to(lowercase__ ) ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) )
41
1
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = ['''a''', '''b''', '''c'''] # Defaults to last layer if both are None __lowercase , __lowercase = get_aligned_output_features_output_indices(lowercase__ ,lowercase__ ,lowercase__ ) self.assertEqual(lowercase__ ,['''c'''] ) self.assertEqual(lowercase__ ,[2] ) # Out indices set to match out features __lowercase , __lowercase = get_aligned_output_features_output_indices(['''a''', '''c'''] ,lowercase__ ,lowercase__ ) self.assertEqual(lowercase__ ,['''a''', '''c'''] ) self.assertEqual(lowercase__ ,[0, 2] ) # Out features set to match out indices __lowercase , __lowercase = get_aligned_output_features_output_indices(lowercase__ ,[0, 2] ,lowercase__ ) self.assertEqual(lowercase__ ,['''a''', '''c'''] ) self.assertEqual(lowercase__ ,[0, 2] ) # Out features selected from negative indices __lowercase , __lowercase = get_aligned_output_features_output_indices(lowercase__ ,[-3, -1] ,lowercase__ ) self.assertEqual(lowercase__ ,['''a''', '''c'''] ) self.assertEqual(lowercase__ ,[-3, -1] ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): # Stage names must be set with self.assertRaises(lowercase__ ): verify_out_features_out_indices(['''a''', '''b'''] ,(0, 1) ,lowercase__ ) # Out features must be a list with self.assertRaises(lowercase__ ): verify_out_features_out_indices(('''a''', '''b''') ,(0, 1) ,['''a''', '''b'''] ) # Out features must be a subset of stage names with self.assertRaises(lowercase__ ): verify_out_features_out_indices(['''a''', '''b'''] ,(0, 1) ,['''a'''] ) # Out indices must be a list or tuple with self.assertRaises(lowercase__ ): verify_out_features_out_indices(lowercase__ ,0 ,['''a''', '''b'''] ) # Out indices must be a subset of stage names with self.assertRaises(lowercase__ ): verify_out_features_out_indices(lowercase__ ,(0, 1) ,['''a'''] ) # Out features and out indices must be the same length with self.assertRaises(lowercase__ ): verify_out_features_out_indices(['''a''', '''b'''] ,(0,) ,['''a''', '''b''', '''c'''] ) # Out features should match out indices with self.assertRaises(lowercase__ ): verify_out_features_out_indices(['''a''', '''b'''] ,(0, 2) ,['''a''', '''b''', '''c'''] ) # Out features and out indices should be in order with self.assertRaises(lowercase__ ): verify_out_features_out_indices(['''b''', '''a'''] ,(0, 1) ,['''a''', '''b'''] ) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] ,(0, 1, -1) ,['''a''', '''b''', '''c''', '''d'''] ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = BackboneMixin() __lowercase = ['''a''', '''b''', '''c'''] __lowercase = ['''a''', '''c'''] __lowercase = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features ,['''a''', '''c'''] ) self.assertEqual(backbone.out_indices ,[0, 2] ) # Check out features and indices are updated correctly __lowercase = ['''a''', '''b'''] self.assertEqual(backbone.out_features ,['''a''', '''b'''] ) self.assertEqual(backbone.out_indices ,[0, 1] ) __lowercase = [-3, -1] self.assertEqual(backbone.out_features ,['''a''', '''c'''] ) self.assertEqual(backbone.out_indices ,[-3, -1] )
41
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KEY''') lowerCAmelCase__ = TypeVar('''VAL''') @dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ ) class lowercase_ (Generic[KEY, VAL] ): """simple docstring""" SCREAMING_SNAKE_CASE : KEY SCREAMING_SNAKE_CASE : VAL class lowercase_ (_Item ): """simple docstring""" def __init__( self : Optional[int] ): super().__init__(lowercase__ ,lowercase__ ) def __bool__( self : List[str] ): return False lowerCAmelCase__ = _DeletedItem() class lowercase_ (MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ): __lowercase = initial_block_size __lowercase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowercase = capacity_factor __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ): return hash(lowercase__ ) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ): return (ind + 1) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ): __lowercase = self._buckets[ind] if not stored: __lowercase = _Item(lowercase__ ,lowercase__ ) self._len += 1 return True elif stored.key == key: __lowercase = _Item(lowercase__ ,lowercase__ ) return True else: return False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False __lowercase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ): __lowercase = self._buckets __lowercase = [None] * new_size __lowercase = 0 for item in old_buckets: if item: self._add_item(item.key ,item.val ) def SCREAMING_SNAKE_CASE ( self : str ): self._resize(len(self._buckets ) * 2 ) def SCREAMING_SNAKE_CASE ( self : Tuple ): self._resize(len(self._buckets ) // 2 ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ): __lowercase = self._get_bucket_index(lowercase__ ) for _ in range(len(self._buckets ) ): yield ind __lowercase = self._get_next_ind(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): for ind in self._iterate_buckets(lowercase__ ): if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ): break def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): if self._is_full(): self._size_up() self._add_item(lowercase__ ,lowercase__ ) def __delitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: raise KeyError(lowercase__ ) if item is _deleted: continue if item.key == key: __lowercase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowercase__ ) def __len__( self : Optional[int] ): return self._len def __iter__( self : str ): yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ): __lowercase = ''' ,'''.join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
41
1
'''simple docstring''' from collections.abc import Sequence def _A ( A__ = None ): """simple docstring""" if nums is None or not nums: raise ValueError('''Input sequence should not be empty''' ) __lowercase = nums[0] for i in range(1 , len(A__ ) ): __lowercase = nums[i] __lowercase = max(A__ , ans + num , A__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowerCAmelCase__ = int(input('''Enter number of elements : ''').strip()) lowerCAmelCase__ = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
41
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ,**lowercase__ : Tuple ): super().__init__(**lowercase__ ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self ,'''vision''' ) self.check_model_type(lowercase__ ) def __call__( self : List[str] ,lowercase__ : Union[str, "Image.Image", List[Dict[str, Any]]] ,lowercase__ : Union[str, List[str]] = None ,**lowercase__ : str ,): if "text_queries" in kwargs: __lowercase = kwargs.pop('''text_queries''' ) if isinstance(lowercase__ ,(str, Image.Image) ): __lowercase = {'''image''': image, '''candidate_labels''': candidate_labels} else: __lowercase = image __lowercase = super().__call__(lowercase__ ,**lowercase__ ) return results def SCREAMING_SNAKE_CASE ( self : int ,**lowercase__ : List[Any] ): __lowercase = {} if "threshold" in kwargs: __lowercase = kwargs['''threshold'''] if "top_k" in kwargs: __lowercase = kwargs['''top_k'''] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[Any] ): __lowercase = load_image(inputs['''image'''] ) __lowercase = inputs['''candidate_labels'''] if isinstance(lowercase__ ,lowercase__ ): __lowercase = candidate_labels.split(''',''' ) __lowercase = torch.tensor([[image.height, image.width]] ,dtype=torch.intaa ) for i, candidate_label in enumerate(lowercase__ ): __lowercase = self.tokenizer(lowercase__ ,return_tensors=self.framework ) __lowercase = self.image_processor(lowercase__ ,return_tensors=self.framework ) yield { "is_last": i == len(lowercase__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ): __lowercase = model_inputs.pop('''target_size''' ) __lowercase = model_inputs.pop('''candidate_label''' ) __lowercase = model_inputs.pop('''is_last''' ) __lowercase = self.model(**lowercase__ ) __lowercase = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : List[Any]=0.1 ,lowercase__ : List[str]=None ): __lowercase = [] for model_output in model_outputs: __lowercase = model_output['''candidate_label'''] __lowercase = BaseModelOutput(lowercase__ ) __lowercase = self.image_processor.post_process_object_detection( outputs=lowercase__ ,threshold=lowercase__ ,target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): __lowercase = outputs['''scores'''][index].item() __lowercase = self._get_bounding_box(outputs['''boxes'''][index][0] ) __lowercase = {'''score''': score, '''label''': label, '''box''': box} results.append(lowercase__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : x["score"] ,reverse=lowercase__ ) if top_k: __lowercase = results[:top_k] return results def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : "torch.Tensor" ): if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) __lowercase , __lowercase , __lowercase , __lowercase = box.int().tolist() __lowercase = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
41
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) lowerCAmelCase__ = logging.getLogger(__name__) @dataclass class lowercase_ : """simple docstring""" SCREAMING_SNAKE_CASE : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=lowerCamelCase__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=lowerCamelCase__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=lowerCamelCase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) SCREAMING_SNAKE_CASE : bool = field(default=lowerCamelCase__ , metadata={'help': 'Whether tp freeze the encoder.'} ) SCREAMING_SNAKE_CASE : bool = field(default=lowerCamelCase__ , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class lowercase_ : """simple docstring""" SCREAMING_SNAKE_CASE : str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=1_0_2_4 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=1_4_2 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=1_4_2 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE : Optional[int] = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) SCREAMING_SNAKE_CASE : Optional[int] = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) SCREAMING_SNAKE_CASE : Optional[int] = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) SCREAMING_SNAKE_CASE : Optional[str] = field(default=lowerCamelCase__ , metadata={'help': 'Source language id for translation.'} ) SCREAMING_SNAKE_CASE : Optional[str] = field(default=lowerCamelCase__ , metadata={'help': 'Target language id for translation.'} ) SCREAMING_SNAKE_CASE : Optional[int] = field(default=lowerCamelCase__ , metadata={'help': '# num_beams to use for evaluation.'} ) SCREAMING_SNAKE_CASE : bool = field( default=lowerCamelCase__ , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def _A ( A__ , A__ , A__ ): """simple docstring""" logger.info(F"***** {split} metrics *****" ) for key in sorted(metrics.keys() ): logger.info(F" {key} = {metrics[key]}" ) save_json(A__ , os.path.join(A__ , F"{split}_results.json" ) ) def _A ( ): """simple docstring""" __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowercase , __lowercase , __lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() check_output_dir(A__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , A__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowercase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(A__ , A__ , A__ ): assert hasattr(A__ , A__ ), F"({config.__class__.__name__}) doesn't have a `{p}` attribute" setattr(A__ , A__ , getattr(A__ , A__ ) ) __lowercase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=A__ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(A__ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __lowercase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(A__ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(A__ , A__ ): __lowercase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __lowercase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(A__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __lowercase = SeqaSeqDataset # Get datasets __lowercase = ( dataset_class( A__ , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) __lowercase = ( dataset_class( A__ , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __lowercase = ( dataset_class( A__ , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer __lowercase = ( build_compute_metrics_fn(data_args.task , A__ ) if training_args.predict_with_generate else None ) __lowercase = SeqaSeqTrainer( model=A__ , args=A__ , data_args=A__ , train_dataset=A__ , eval_dataset=A__ , data_collator=SeqaSeqDataCollator( A__ , A__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=A__ , tokenizer=A__ , ) __lowercase = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) __lowercase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __lowercase = train_result.metrics __lowercase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , A__ , training_args.output_dir ) all_metrics.update(A__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowercase = trainer.evaluate(metric_key_prefix='''val''' ) __lowercase = data_args.n_val __lowercase = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , A__ , training_args.output_dir ) all_metrics.update(A__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) __lowercase = trainer.predict(test_dataset=A__ , metric_key_prefix='''test''' ) __lowercase = test_output.metrics __lowercase = data_args.n_test if trainer.is_world_process_zero(): __lowercase = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , A__ , training_args.output_dir ) all_metrics.update(A__ ) if training_args.predict_with_generate: __lowercase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) __lowercase = lmap(str.strip , A__ ) write_txt_file(A__ , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(A__ , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def _A ( A__ ): """simple docstring""" main() if __name__ == "__main__": main()
41
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 'facebook/bart-large-mnli' SCREAMING_SNAKE_CASE : Optional[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) SCREAMING_SNAKE_CASE : Any = 'text_classifier' SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : Tuple = ['text', ['text']] SCREAMING_SNAKE_CASE : List[str] = ['text'] def SCREAMING_SNAKE_CASE ( self : List[Any] ): super().setup() __lowercase = self.model.config __lowercase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): __lowercase = int(lowercase__ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Dict ,lowercase__ : List[Any] ): __lowercase = labels return self.pre_processor( [text] * len(lowercase__ ) ,[F"This example is {label}" for label in labels] ,return_tensors='''pt''' ,padding='''max_length''' ,) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = outputs.logits __lowercase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
41
1
'''simple docstring''' import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration lowerCAmelCase__ = 5_0000 lowerCAmelCase__ = 5000 lowerCAmelCase__ , lowerCAmelCase__ = os.path.split(__file__) lowerCAmelCase__ = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def _A ( A__ , A__ ): """simple docstring""" for i in range(A__ ): __lowercase = dataset[i] @get_duration def _A ( A__ , A__ , A__ ): """simple docstring""" for i in range(0 , len(A__ ) , A__ ): __lowercase = dataset[i : i + batch_size] @get_duration def _A ( A__ , A__ , A__ ): """simple docstring""" with dataset.formatted_as(type=A__ ): for i in range(A__ ): __lowercase = dataset[i] @get_duration def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" with dataset.formatted_as(type=A__ ): for i in range(0 , A__ , A__ ): __lowercase = dataset[i : i + batch_size] def _A ( ): """simple docstring""" __lowercase = {'''num examples''': SPEED_TEST_N_EXAMPLES} __lowercase = [ (read, {'''length''': SMALL_TEST}), (read, {'''length''': SPEED_TEST_N_EXAMPLES}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 10}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 100}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1000}), (read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''pandas''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''torch''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''tensorflow''', '''length''': SMALL_TEST}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 10}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1000}), ] __lowercase = [ (read, {'''length''': SMALL_TEST}), (read, {'''length''': SPEED_TEST_N_EXAMPLES}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 10}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 100}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1000}), (read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 10}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('''generating dataset''' ) __lowercase = datasets.Features( {'''list''': datasets.Sequence(datasets.Value('''float32''' ) ), '''numbers''': datasets.Value('''float32''' )} ) __lowercase = generate_example_dataset( os.path.join(A__ , '''dataset.arrow''' ) , A__ , num_examples=A__ , seq_shapes={'''list''': (100,)} , ) print('''first set of iterations''' ) for func, kwargs in functions: print(func.__name__ , str(A__ ) ) __lowercase = func(A__ , **A__ ) print('''shuffling dataset''' ) __lowercase = dataset.shuffle() print('''Second set of iterations (after shuffling''' ) for func, kwargs in functions_shuffled: print('''shuffled ''' , func.__name__ , str(A__ ) ) __lowercase = func( A__ , **A__ ) with open(A__ , '''wb''' ) as f: f.write(json.dumps(A__ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
41
'''simple docstring''' from collections.abc import Callable class lowercase_ : """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : Callable | None = None ): # Stores actual heap items. __lowercase = [] # Stores indexes of each item for supporting updates and deletion. __lowercase = {} # Stores current size of heap. __lowercase = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __lowercase = key or (lambda lowercase__ : x) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : int ): return int((i - 1) / 2 ) if i > 0 else None def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = int(2 * i + 1 ) return left if 0 < left < self.size else None def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ): __lowercase = int(2 * i + 2 ) return right if 0 < right < self.size else None def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : int ,lowercase__ : int ): __lowercase , __lowercase = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __lowercase , __lowercase = self.arr[j], self.arr[i] def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): return self.arr[i][1] < self.arr[j][1] def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._left(lowercase__ ) __lowercase = self._right(lowercase__ ) __lowercase = i if left is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = left if right is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = right return valid_parent def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._parent(lowercase__ ) while parent is not None and not self._cmp(lowercase__ ,lowercase__ ): self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = parent, self._parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = self._get_valid_parent(lowercase__ ) while valid_parent != index: self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = valid_parent, self._get_valid_parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] __lowercase = [item, self.key(lowercase__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] del self.pos_map[item] __lowercase = self.arr[self.size - 1] __lowercase = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : int ): __lowercase = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(lowercase__ )] ) else: __lowercase = [item, self.key(lowercase__ )] __lowercase = self.size self.size += 1 self._heapify_up(self.size - 1 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): return self.arr[0] if self.size else None def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _A ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
41
1
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def _A ( A__ ): """simple docstring""" __lowercase = torch.load(A__ , map_location='''cpu''' ) if "model" in sd.keys(): __lowercase = torch.load(A__ , map_location='''cpu''' )['''model'''] # pop unnecessary weights __lowercase = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(A__ ) __lowercase = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __lowercase = sd.pop(A__ ) __lowercase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __lowercase = sd[key] # We split QKV in separate Q,K,V __lowercase = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __lowercase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __lowercase , __lowercase , __lowercase = torch.split(A__ , depth // 3 , dim=0 ) __lowercase = q __lowercase = k __lowercase = v del sd[key] return sd @torch.no_grad() def _A ( A__ , A__ , A__=None ): """simple docstring""" __lowercase = load_checkpoint(A__ ) if config is not None: __lowercase = OPTConfig.from_pretrained(A__ ) else: __lowercase = OPTConfig() __lowercase = OPTModel(A__ ).half().eval() model.load_state_dict(A__ ) # Check results Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') lowerCAmelCase__ = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
41
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ): __lowercase = [] def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : str ,**lowercase__ : Any ): self.events.append('''on_init_end''' ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : int ,**lowercase__ : Optional[int] ): self.events.append('''on_train_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ,**lowercase__ : List[str] ): self.events.append('''on_train_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,**lowercase__ : Optional[Any] ): self.events.append('''on_epoch_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : Any ,**lowercase__ : Optional[int] ): self.events.append('''on_epoch_end''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_step_begin''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : Optional[int] ,**lowercase__ : Dict ): self.events.append('''on_step_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,**lowercase__ : Any ): self.events.append('''on_evaluate''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : int ,**lowercase__ : Optional[Any] ): self.events.append('''on_predict''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,**lowercase__ : int ): self.events.append('''on_save''' ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_log''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : int ,lowercase__ : Dict ,**lowercase__ : str ): self.events.append('''on_prediction_step''' ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): shutil.rmtree(self.output_dir ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any]=0 ,lowercase__ : Any=0 ,lowercase__ : Tuple=6_4 ,lowercase__ : Optional[int]=6_4 ,lowercase__ : Optional[Any]=None ,lowercase__ : str=False ,**lowercase__ : Any ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionModelConfig(a=lowercase__ ,b=lowercase__ ) __lowercase = RegressionPreTrainedModel(lowercase__ ) __lowercase = TrainingArguments(self.output_dir ,disable_tqdm=lowercase__ ,report_to=[] ,**lowercase__ ) return Trainer( lowercase__ ,lowercase__ ,train_dataset=lowercase__ ,eval_dataset=lowercase__ ,callbacks=lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) ) # Order doesn't matter __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) for cba, cba in zip(lowercase__ ,lowercase__ ): if isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,lowercase__ ) elif isinstance(lowercase__ ,lowercase__ ) and not isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,cba.__class__ ) elif not isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(cba.__class__ ,lowercase__ ) else: self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ): __lowercase = ['''on_init_end''', '''on_train_begin'''] __lowercase = 0 __lowercase = len(trainer.get_eval_dataloader() ) __lowercase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(lowercase__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.get_trainer() __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # Callbacks passed at init are added to the default callbacks __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __lowercase = self.get_trainer(disable_tqdm=lowercase__ ) __lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __lowercase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(cb.__class__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # We can also add, pop, or remove by instance __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' ,category=lowercase__ ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # Independent log/save/eval __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='''steps''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='''epoch''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # A bit of everything __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=1_0 ,eval_steps=5 ,evaluation_strategy='''steps''' ,) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,) assert str(lowercase__ ) in warn_mock.call_args[0][0]
41
1
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule lowerCAmelCase__ = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : jnp.ndarray SCREAMING_SNAKE_CASE : jnp.ndarray class lowercase_ (nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __lowercase = [] for i in range(len(self.block_out_channels ) - 1 ): __lowercase = self.block_out_channels[i] __lowercase = self.block_out_channels[i + 1] __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = blocks __lowercase = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : List[str] ,lowercase__ : Optional[int] ): __lowercase = self.conv_in(lowercase__ ) __lowercase = nn.silu(lowercase__ ) for block in self.blocks: __lowercase = block(lowercase__ ) __lowercase = nn.silu(lowercase__ ) __lowercase = self.conv_out(lowercase__ ) return embedding @flax_register_to_config class lowercase_ (nn.Module , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 3_2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False SCREAMING_SNAKE_CASE : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) SCREAMING_SNAKE_CASE : int = 2 SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None SCREAMING_SNAKE_CASE : int = 1_2_8_0 SCREAMING_SNAKE_CASE : float = 0.0 SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = "rgb" SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : jax.random.KeyArray ): # init input tensors __lowercase = (1, self.in_channels, self.sample_size, self.sample_size) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase = jnp.ones((1,) ,dtype=jnp.intaa ) __lowercase = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa ) __lowercase = (1, 3, self.sample_size * 8, self.sample_size * 8) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase , __lowercase = jax.random.split(lowercase__ ) __lowercase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )["params"] def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.block_out_channels __lowercase = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __lowercase = self.num_attention_heads or self.attention_head_dim # input __lowercase = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time __lowercase = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift ) __lowercase = FlaxTimestepEmbedding(lowercase__ ,dtype=self.dtype ) __lowercase = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) __lowercase = self.only_cross_attention if isinstance(lowercase__ ,lowercase__ ): __lowercase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = (num_attention_heads,) * len(self.down_block_types ) # down __lowercase = [] __lowercase = [] __lowercase = block_out_channels[0] __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) for i, down_block_type in enumerate(self.down_block_types ): __lowercase = output_channel __lowercase = block_out_channels[i] __lowercase = i == len(lowercase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": __lowercase = FlaxCrossAttnDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: __lowercase = FlaxDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(lowercase__ ) for _ in range(self.layers_per_block ): __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) if not is_final_block: __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) __lowercase = down_blocks __lowercase = controlnet_down_blocks # mid __lowercase = block_out_channels[-1] __lowercase = FlaxUNetMidBlockaDCrossAttn( in_channels=lowercase__ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : float = 1.0 ,lowercase__ : bool = True ,lowercase__ : bool = False ,): __lowercase = self.controlnet_conditioning_channel_order if channel_order == "bgr": __lowercase = jnp.flip(lowercase__ ,axis=1 ) # 1. time if not isinstance(lowercase__ ,jnp.ndarray ): __lowercase = jnp.array([timesteps] ,dtype=jnp.intaa ) elif isinstance(lowercase__ ,jnp.ndarray ) and len(timesteps.shape ) == 0: __lowercase = timesteps.astype(dtype=jnp.floataa ) __lowercase = jnp.expand_dims(lowercase__ ,0 ) __lowercase = self.time_proj(lowercase__ ) __lowercase = self.time_embedding(lowercase__ ) # 2. pre-process __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.conv_in(lowercase__ ) __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.controlnet_cond_embedding(lowercase__ ) sample += controlnet_cond # 3. down __lowercase = (sample,) for down_block in self.down_blocks: if isinstance(lowercase__ ,lowercase__ ): __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) else: __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,deterministic=not train ) down_block_res_samples += res_samples # 4. mid __lowercase = self.mid_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) # 5. contronet blocks __lowercase = () for down_block_res_sample, controlnet_block in zip(lowercase__ ,self.controlnet_down_blocks ): __lowercase = controlnet_block(lowercase__ ) controlnet_down_block_res_samples += (down_block_res_sample,) __lowercase = controlnet_down_block_res_samples __lowercase = self.controlnet_mid_block(lowercase__ ) # 6. scaling __lowercase = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowercase__ ,mid_block_res_sample=lowercase__ )
41
1
'''simple docstring''' lowerCAmelCase__ = 8.3_144_598 def _A ( A__ , A__ ): """simple docstring""" if temperature < 0: raise Exception('''Temperature cannot be less than 0 K''' ) if molar_mass <= 0: raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example lowerCAmelCase__ = 300 lowerCAmelCase__ = 28 lowerCAmelCase__ = rms_speed_of_molecule(temperature, molar_mass) print(f'Vrms of Nitrogen gas at 300 K is {vrms} m/s')
41
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase__ = False lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''ybelkada/fonts''' def _A ( ): """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use " '''Pix2StructImageProcessor. Please upgrade torch.''' ) def _A ( A__ , A__ , A__ ): """simple docstring""" requires_backends(A__ , ['''torch'''] ) _check_torch_version() __lowercase = image_tensor.unsqueeze(0 ) __lowercase = torch.nn.functional.unfold(A__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) __lowercase = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , A__ , A__ , -1 ) __lowercase = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def _A ( A__ , A__ = 36 , A__ = "black" , A__ = "white" , A__ = 5 , A__ = 5 , A__ = 5 , A__ = 5 , A__ = None , A__ = None , ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Add new lines so that each line is no more than 80 characters. __lowercase = textwrap.TextWrapper(width=80 ) __lowercase = wrapper.wrap(text=A__ ) __lowercase = '''\n'''.join(A__ ) if font_bytes is not None and font_path is None: __lowercase = io.BytesIO(A__ ) elif font_path is not None: __lowercase = font_path else: __lowercase = hf_hub_download(A__ , '''Arial.TTF''' ) __lowercase = ImageFont.truetype(A__ , encoding='''UTF-8''' , size=A__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. __lowercase = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , A__ ) ) __lowercase , __lowercase , __lowercase , __lowercase = temp_draw.textbbox((0, 0) , A__ , A__ ) # Create the actual image with a bit of padding around the text. __lowercase = text_width + left_padding + right_padding __lowercase = text_height + top_padding + bottom_padding __lowercase = Image.new('''RGB''' , (image_width, image_height) , A__ ) __lowercase = ImageDraw.Draw(A__ ) draw.text(xy=(left_padding, top_padding) , text=A__ , fill=A__ , font=A__ ) return image def _A ( A__ , A__ , **A__ ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Convert to PIL image if necessary __lowercase = to_pil_image(A__ ) __lowercase = render_text(A__ , **A__ ) __lowercase = max(header_image.width , image.width ) __lowercase = int(image.height * (new_width / image.width) ) __lowercase = int(header_image.height * (new_width / header_image.width) ) __lowercase = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary __lowercase = to_numpy_array(A__ ) if infer_channel_dimension_format(A__ ) == ChannelDimension.LAST: __lowercase = to_channel_dimension_format(A__ , ChannelDimension.LAST ) return new_image class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ['flattened_patches'] def __init__( self : Any ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : int = 2_0_4_8 ,lowercase__ : bool = False ,**lowercase__ : List[str] ,): super().__init__(**lowercase__ ) __lowercase = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6} __lowercase = do_normalize __lowercase = do_convert_rgb __lowercase = max_patches __lowercase = is_vqa def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : np.ndarray ,lowercase__ : int ,lowercase__ : dict ,**lowercase__ : Tuple ): requires_backends(self.extract_flattened_patches ,'''torch''' ) _check_torch_version() # convert to torch __lowercase = to_channel_dimension_format(lowercase__ ,ChannelDimension.FIRST ) __lowercase = torch.from_numpy(lowercase__ ) __lowercase , __lowercase = patch_size['''height'''], patch_size['''width'''] __lowercase , __lowercase = get_image_size(lowercase__ ) # maximize scale s.t. __lowercase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) __lowercase = max(min(math.floor(scale * image_height / patch_height ) ,lowercase__ ) ,1 ) __lowercase = max(min(math.floor(scale * image_width / patch_width ) ,lowercase__ ) ,1 ) __lowercase = max(num_feasible_rows * patch_height ,1 ) __lowercase = max(num_feasible_cols * patch_width ,1 ) __lowercase = torch.nn.functional.interpolate( image.unsqueeze(0 ) ,size=(resized_height, resized_width) ,mode='''bilinear''' ,align_corners=lowercase__ ,antialias=lowercase__ ,).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] __lowercase = torch_extract_patches(lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = patches.shape __lowercase = patches_shape[1] __lowercase = patches_shape[2] __lowercase = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] __lowercase = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] __lowercase = torch.arange(lowercase__ ).reshape([rows, 1] ).repeat(1 ,lowercase__ ).reshape([rows * columns, 1] ) __lowercase = torch.arange(lowercase__ ).reshape([1, columns] ).repeat(lowercase__ ,1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] __lowercase = row_ids.to(torch.floataa ) __lowercase = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] __lowercase = torch.cat([row_ids, col_ids, patches] ,-1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] __lowercase = torch.nn.functional.pad(lowercase__ ,[0, 0, 0, max_patches - (rows * columns)] ).float() __lowercase = to_numpy_array(lowercase__ ) return result def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : np.ndarray ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ): if image.dtype == np.uinta: __lowercase = image.astype(np.floataa ) # take mean across the whole `image` __lowercase = np.mean(lowercase__ ) __lowercase = np.std(lowercase__ ) __lowercase = max(lowercase__ ,1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : ImageInput ,lowercase__ : Optional[str] = None ,lowercase__ : bool = None ,lowercase__ : Optional[bool] = None ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[Dict[str, int]] = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : ChannelDimension = ChannelDimension.FIRST ,**lowercase__ : List[Any] ,): __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = patch_size if patch_size is not None else self.patch_size __lowercase = max_patches if max_patches is not None else self.max_patches __lowercase = self.is_vqa if kwargs.get('''data_format''' ,lowercase__ ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) __lowercase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(lowercase__ ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowercase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) __lowercase = kwargs.pop('''font_bytes''' ,lowercase__ ) __lowercase = kwargs.pop('''font_path''' ,lowercase__ ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = [header_text] * len(lowercase__ ) __lowercase = [ render_header(lowercase__ ,header_text[i] ,font_bytes=lowercase__ ,font_path=lowercase__ ) for i, image in enumerate(lowercase__ ) ] if do_normalize: __lowercase = [self.normalize(image=lowercase__ ) for image in images] # convert to torch tensor and permute __lowercase = [ self.extract_flattened_patches(image=lowercase__ ,max_patches=lowercase__ ,patch_size=lowercase__ ) for image in images ] # create attention mask in numpy __lowercase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] __lowercase = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks} ,tensor_type=lowercase__ ) return encoded_outputs
41
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 'yolos' def __init__( self : Union[str, Any] ,lowercase__ : Any=7_6_8 ,lowercase__ : Optional[Any]=1_2 ,lowercase__ : Optional[Any]=1_2 ,lowercase__ : List[Any]=3_0_7_2 ,lowercase__ : List[Any]="gelu" ,lowercase__ : Optional[int]=0.0 ,lowercase__ : Tuple=0.0 ,lowercase__ : str=0.0_2 ,lowercase__ : Any=1e-1_2 ,lowercase__ : Optional[Any]=[5_1_2, 8_6_4] ,lowercase__ : Union[str, Any]=1_6 ,lowercase__ : Optional[int]=3 ,lowercase__ : Any=True ,lowercase__ : str=1_0_0 ,lowercase__ : int=True ,lowercase__ : str=False ,lowercase__ : List[Any]=1 ,lowercase__ : List[Any]=5 ,lowercase__ : Dict=2 ,lowercase__ : int=5 ,lowercase__ : int=2 ,lowercase__ : Optional[Any]=0.1 ,**lowercase__ : int ,): super().__init__(**lowercase__ ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias __lowercase = num_detection_tokens __lowercase = use_mid_position_embeddings __lowercase = auxiliary_loss # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = eos_coefficient class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE ( self : str ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE ( self : str ): return 1e-4 @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): return 1_2
41
'''simple docstring''' import doctest from collections import deque import numpy as np class lowercase_ : """simple docstring""" def __init__( self : Optional[Any] ): __lowercase = [2, 1, 2, -1] __lowercase = [1, 2, 3, 4] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = len(self.first_signal ) __lowercase = len(self.second_signal ) __lowercase = max(lowercase__ ,lowercase__ ) # create a zero matrix of max_length x max_length __lowercase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __lowercase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __lowercase = np.matmul(np.transpose(lowercase__ ) ,np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ ,2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
41
1
'''simple docstring''' from __future__ import annotations lowerCAmelCase__ = 1.6_021e-19 # units = C def _A ( A__ , A__ , A__ , ): """simple docstring""" if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
41
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
41
1
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = (PNDMScheduler,) SCREAMING_SNAKE_CASE : str = (('num_inference_steps', 5_0),) def SCREAMING_SNAKE_CASE ( self : List[Any] ,**lowercase__ : List[Any] ): __lowercase = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', } config.update(**lowercase__ ) return config def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str]=0 ,**lowercase__ : Tuple ): __lowercase = dict(self.forward_default_kwargs ) __lowercase = kwargs.pop('''num_inference_steps''' ,lowercase__ ) __lowercase = self.dummy_sample __lowercase = 0.1 * sample __lowercase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: __lowercase = self.get_scheduler_config(**lowercase__ ) __lowercase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __lowercase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __lowercase = scheduler_class.from_pretrained(lowercase__ ) new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __lowercase = dummy_past_residuals[:] __lowercase = scheduler.step_prk(lowercase__ ,lowercase__ ,lowercase__ ,**lowercase__ ).prev_sample __lowercase = new_scheduler.step_prk(lowercase__ ,lowercase__ ,lowercase__ ,**lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __lowercase = scheduler.step_plms(lowercase__ ,lowercase__ ,lowercase__ ,**lowercase__ ).prev_sample __lowercase = new_scheduler.step_plms(lowercase__ ,lowercase__ ,lowercase__ ,**lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : int ): pass def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Optional[Any]=0 ,**lowercase__ : Any ): __lowercase = dict(self.forward_default_kwargs ) __lowercase = kwargs.pop('''num_inference_steps''' ,lowercase__ ) __lowercase = self.dummy_sample __lowercase = 0.1 * sample __lowercase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals (must be after setting timesteps) __lowercase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __lowercase = scheduler_class.from_pretrained(lowercase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residual (must be after setting timesteps) __lowercase = dummy_past_residuals[:] __lowercase = scheduler.step_prk(lowercase__ ,lowercase__ ,lowercase__ ,**lowercase__ ).prev_sample __lowercase = new_scheduler.step_prk(lowercase__ ,lowercase__ ,lowercase__ ,**lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __lowercase = scheduler.step_plms(lowercase__ ,lowercase__ ,lowercase__ ,**lowercase__ ).prev_sample __lowercase = new_scheduler.step_plms(lowercase__ ,lowercase__ ,lowercase__ ,**lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : Any ,**lowercase__ : Dict ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(**lowercase__ ) __lowercase = scheduler_class(**lowercase__ ) __lowercase = 1_0 __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter scheduler.set_timesteps(lowercase__ ) for i, t in enumerate(scheduler.prk_timesteps ): __lowercase = model(lowercase__ ,lowercase__ ) __lowercase = scheduler.step_prk(lowercase__ ,lowercase__ ,lowercase__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): __lowercase = model(lowercase__ ,lowercase__ ) __lowercase = scheduler.step_plms(lowercase__ ,lowercase__ ,lowercase__ ).prev_sample return sample def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = dict(self.forward_default_kwargs ) __lowercase = kwargs.pop('''num_inference_steps''' ,lowercase__ ) for scheduler_class in self.scheduler_classes: __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowercase__ ) __lowercase = self.dummy_sample __lowercase = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase__ ,'''set_timesteps''' ): scheduler.set_timesteps(lowercase__ ) elif num_inference_steps is not None and not hasattr(lowercase__ ,'''set_timesteps''' ): __lowercase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __lowercase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] __lowercase = dummy_past_residuals[:] __lowercase = scheduler.step_prk(lowercase__ ,0 ,lowercase__ ,**lowercase__ ).prev_sample __lowercase = scheduler.step_prk(lowercase__ ,1 ,lowercase__ ,**lowercase__ ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) __lowercase = scheduler.step_plms(lowercase__ ,0 ,lowercase__ ,**lowercase__ ).prev_sample __lowercase = scheduler.step_plms(lowercase__ ,1 ,lowercase__ ,**lowercase__ ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase__ ) __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(steps_offset=1 ) __lowercase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(1_0 ) assert torch.equal( scheduler.timesteps ,torch.LongTensor( [9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ) ,) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] ,[0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=lowercase__ ,beta_end=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): for t in [1, 5, 1_0]: self.check_over_forward(time_step=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): for t, num_inference_steps in zip([1, 5, 1_0] ,[1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 __lowercase = 2_7 for scheduler_class in self.scheduler_classes: __lowercase = self.dummy_sample __lowercase = 0.1 * sample __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): __lowercase = scheduler.step_prk(lowercase__ ,lowercase__ ,lowercase__ ).prev_sample def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): with self.assertRaises(lowercase__ ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowercase__ ) scheduler.step_plms(self.dummy_sample ,1 ,self.dummy_sample ).prev_sample def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.full_loop() __lowercase = torch.sum(torch.abs(lowercase__ ) ) __lowercase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1e-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.full_loop(prediction_type='''v_prediction''' ) __lowercase = torch.sum(torch.abs(lowercase__ ) ) __lowercase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1e-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : int ): # We specify different beta, so that the first alpha is 0.99 __lowercase = self.full_loop(set_alpha_to_one=lowercase__ ,beta_start=0.0_1 ) __lowercase = torch.sum(torch.abs(lowercase__ ) ) __lowercase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1e-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Tuple ): # We specify different beta, so that the first alpha is 0.99 __lowercase = self.full_loop(set_alpha_to_one=lowercase__ ,beta_start=0.0_1 ) __lowercase = torch.sum(torch.abs(lowercase__ ) ) __lowercase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1e-3
41
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCAmelCase__ = getLogger(__name__) lowerCAmelCase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def _A ( A__ , A__ , A__ , A__ = 8 , A__ = DEFAULT_DEVICE , A__=False , A__="summarization" , A__=None , **A__ , ): """simple docstring""" __lowercase = Path(A__ ).open('''w''' , encoding='''utf-8''' ) __lowercase = str(A__ ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained(A__ ).to(A__ ) if fpaa: __lowercase = model.half() __lowercase = AutoTokenizer.from_pretrained(A__ ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __lowercase = time.time() # update config with task specific params use_task_specific_params(A__ , A__ ) if prefix is None: __lowercase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(A__ , A__ ) ) ): __lowercase = [prefix + text for text in examples_chunk] __lowercase = tokenizer(A__ , return_tensors='''pt''' , truncation=A__ , padding='''longest''' ).to(A__ ) __lowercase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **A__ , ) __lowercase = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __lowercase = int(time.time() - start_time ) # seconds __lowercase = len(A__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _A ( ): """simple docstring""" return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def _A ( A__=True ): """simple docstring""" __lowercase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=A__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=A__ , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=A__ , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=A__ , required=A__ , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=A__ , required=A__ , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=A__ , required=A__ , default=A__ , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=A__ , required=A__ , default=A__ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=A__ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=A__ , default=8 , required=A__ , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=A__ , default=-1 , required=A__ , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=A__ , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowercase , __lowercase = parser.parse_known_args() __lowercase = parse_numeric_n_bool_cl_kwargs(A__ ) if parsed_args and verbose: print(F"parsed the following generate kwargs: {parsed_args}" ) __lowercase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowercase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=A__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __lowercase = generate_summaries_or_translations( A__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **A__ , ) if args.reference_path is None: return {} # Compute scores __lowercase = calculate_bleu if '''translation''' in args.task else calculate_rouge __lowercase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowercase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(A__ )] __lowercase = score_fn(A__ , A__ ) scores.update(A__ ) if args.dump_args: scores.update(A__ ) if args.info: __lowercase = args.info if verbose: print(A__ ) if args.score_path is not None: json.dump(A__ , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
41
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = UnCLIPImageVariationPipeline SCREAMING_SNAKE_CASE : str = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} SCREAMING_SNAKE_CASE : List[str] = IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE : List[str] = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] SCREAMING_SNAKE_CASE : int = False @property def SCREAMING_SNAKE_CASE ( self : Dict ): return 3_2 @property def SCREAMING_SNAKE_CASE ( self : str ): return 3_2 @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return self.time_input_dim @property def SCREAMING_SNAKE_CASE ( self : Tuple ): return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE ( self : str ): return 1_0_0 @property def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def SCREAMING_SNAKE_CASE ( self : List[str] ): torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,) return CLIPTextModelWithProjection(lowercase__ ) @property def SCREAMING_SNAKE_CASE ( self : Any ): torch.manual_seed(0 ) __lowercase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,num_hidden_layers=5 ,num_attention_heads=4 ,image_size=3_2 ,intermediate_size=3_7 ,patch_size=1 ,) return CLIPVisionModelWithProjection(lowercase__ ) @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): torch.manual_seed(0 ) __lowercase = { '''clip_embeddings_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''cross_attention_dim''': self.cross_attention_dim, } __lowercase = UnCLIPTextProjModel(**lowercase__ ) return model @property def SCREAMING_SNAKE_CASE ( self : Dict ): torch.manual_seed(0 ) __lowercase = { '''sample_size''': 3_2, # RGB in channels '''in_channels''': 3, # Out channels is double in channels because predicts mean and variance '''out_channels''': 6, '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': '''identity''', } __lowercase = UNetaDConditionModel(**lowercase__ ) return model @property def SCREAMING_SNAKE_CASE ( self : Tuple ): return { "sample_size": 6_4, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def SCREAMING_SNAKE_CASE ( self : Tuple ): torch.manual_seed(0 ) __lowercase = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def SCREAMING_SNAKE_CASE ( self : Tuple ): # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) __lowercase = UNetaDModel(**self.dummy_super_res_kwargs ) return model def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.dummy_decoder __lowercase = self.dummy_text_proj __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_super_res_first __lowercase = self.dummy_super_res_last __lowercase = UnCLIPScheduler( variance_type='''learned_range''' ,prediction_type='''epsilon''' ,num_train_timesteps=1_0_0_0 ,) __lowercase = UnCLIPScheduler( variance_type='''fixed_small_log''' ,prediction_type='''epsilon''' ,num_train_timesteps=1_0_0_0 ,) __lowercase = CLIPImageProcessor(crop_size=3_2 ,size=3_2 ) __lowercase = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : List[Any]=0 ,lowercase__ : List[Any]=True ): __lowercase = floats_tensor((1, 3, 3_2, 3_2) ,rng=random.Random(lowercase__ ) ).to(lowercase__ ) if str(lowercase__ ).startswith('''mps''' ): __lowercase = torch.manual_seed(lowercase__ ) else: __lowercase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) if pil_image: __lowercase = input_image * 0.5 + 0.5 __lowercase = input_image.clamp(0 ,1 ) __lowercase = input_image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() __lowercase = DiffusionPipeline.numpy_to_pil(lowercase__ )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = '''cpu''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowercase__ ) __lowercase = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs(lowercase__ ,pil_image=lowercase__ ) __lowercase = pipe(**lowercase__ ) __lowercase = output.images __lowercase = self.get_dummy_inputs(lowercase__ ,pil_image=lowercase__ ) __lowercase = pipe( **lowercase__ ,return_dict=lowercase__ ,)[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowercase = np.array( [ 0.9_9_9_7, 0.0_0_0_2, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_6_9, 0.0_0_2_3, 0.9_9_9_7, 0.9_9_6_9, 0.9_9_7_0, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = '''cpu''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowercase__ ) __lowercase = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs(lowercase__ ,pil_image=lowercase__ ) __lowercase = pipe(**lowercase__ ) __lowercase = output.images __lowercase = self.get_dummy_inputs(lowercase__ ,pil_image=lowercase__ ) __lowercase = pipe( **lowercase__ ,return_dict=lowercase__ ,)[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowercase = np.array([0.9_9_9_7, 0.0_0_0_3, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_7_0, 0.0_0_2_4, 0.9_9_9_7, 0.9_9_7_1, 0.9_9_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = '''cpu''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowercase__ ) __lowercase = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs(lowercase__ ,pil_image=lowercase__ ) __lowercase = [ pipeline_inputs['''image'''], pipeline_inputs['''image'''], ] __lowercase = pipe(**lowercase__ ) __lowercase = output.images __lowercase = self.get_dummy_inputs(lowercase__ ,pil_image=lowercase__ ) __lowercase = [ tuple_pipeline_inputs['''image'''], tuple_pipeline_inputs['''image'''], ] __lowercase = pipe( **lowercase__ ,return_dict=lowercase__ ,)[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 6_4, 6_4, 3) __lowercase = np.array( [ 0.9_9_9_7, 0.9_9_8_9, 0.0_0_0_8, 0.0_0_2_1, 0.9_9_6_0, 0.0_0_1_8, 0.0_0_1_4, 0.0_0_0_2, 0.9_9_3_3, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = torch.device('''cpu''' ) class lowercase_ : """simple docstring""" SCREAMING_SNAKE_CASE : str = 1 __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowercase__ ) __lowercase = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = torch.Generator(device=lowercase__ ).manual_seed(0 ) __lowercase = pipe.decoder.dtype __lowercase = 1 __lowercase = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) __lowercase = pipe.prepare_latents( lowercase__ ,dtype=lowercase__ ,device=lowercase__ ,generator=lowercase__ ,latents=lowercase__ ,scheduler=DummyScheduler() ) __lowercase = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) __lowercase = pipe.prepare_latents( lowercase__ ,dtype=lowercase__ ,device=lowercase__ ,generator=lowercase__ ,latents=lowercase__ ,scheduler=DummyScheduler() ) __lowercase = self.get_dummy_inputs(lowercase__ ,pil_image=lowercase__ ) __lowercase = pipe( **lowercase__ ,decoder_latents=lowercase__ ,super_res_latents=lowercase__ ).images __lowercase = self.get_dummy_inputs(lowercase__ ,pil_image=lowercase__ ) # Don't pass image, instead pass embedding __lowercase = pipeline_inputs.pop('''image''' ) __lowercase = pipe.image_encoder(lowercase__ ).image_embeds __lowercase = pipe( **lowercase__ ,decoder_latents=lowercase__ ,super_res_latents=lowercase__ ,image_embeddings=lowercase__ ,).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1e-4 @skip_mps def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = torch_device == '''cpu''' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor __lowercase = 1e-2 self._test_attention_slicing_forward_pass( test_max_difference=lowercase__ ,expected_max_diff=lowercase__ ) @skip_mps def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = torch_device == '''cpu''' __lowercase = True __lowercase = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] self._test_inference_batch_single_identical( test_max_difference=lowercase__ ,relax_max_difference=lowercase__ ,additional_params_copy_to_batched_inputs=lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes __lowercase = [2, 3] self._test_inference_batch_consistent( batch_sizes=lowercase__ ,additional_params_copy_to_batched_inputs=lowercase__ ,) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=lowercase__ ) @skip_mps def SCREAMING_SNAKE_CASE ( self : List[str] ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return super().test_save_load_local() @skip_mps def SCREAMING_SNAKE_CASE ( self : str ): return super().test_save_load_optional_components() @slow @require_torch_gpu class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png''' ) __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/unclip/karlo_v1_alpha_cat_variation_fp16.npy''' ) __lowercase = UnCLIPImageVariationPipeline.from_pretrained( '''kakaobrain/karlo-v1-alpha-image-variations''' ,torch_dtype=torch.floataa ) __lowercase = pipeline.to(lowercase__ ) pipeline.set_progress_bar_config(disable=lowercase__ ) __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipeline( lowercase__ ,generator=lowercase__ ,output_type='''np''' ,) __lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert_mean_pixel_difference(lowercase__ ,lowercase__ ,1_5 )
41
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(A__ ): print(F"{i}\t\t{d}" ) def _A ( A__ , A__ , A__ ): """simple docstring""" for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = [float('''inf''' )] * vertex_count __lowercase = 0.0 for _ in range(vertex_count - 1 ): for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: __lowercase = distance[u] + w __lowercase = check_negative_cycle(A__ , A__ , A__ ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = int(input('''Enter number of vertices: ''').strip()) lowerCAmelCase__ = int(input('''Enter number of edges: ''').strip()) lowerCAmelCase__ = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) lowerCAmelCase__ = {'''src''': src, '''dst''': dest, '''weight''': weight} lowerCAmelCase__ = int(input('''\nEnter shortest path source:''').strip()) lowerCAmelCase__ = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
41
1
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KEY''') lowerCAmelCase__ = TypeVar('''VAL''') @dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ ) class lowercase_ (Generic[KEY, VAL] ): """simple docstring""" SCREAMING_SNAKE_CASE : KEY SCREAMING_SNAKE_CASE : VAL class lowercase_ (_Item ): """simple docstring""" def __init__( self : Optional[int] ): super().__init__(lowercase__ ,lowercase__ ) def __bool__( self : List[str] ): return False lowerCAmelCase__ = _DeletedItem() class lowercase_ (MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ): __lowercase = initial_block_size __lowercase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowercase = capacity_factor __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ): return hash(lowercase__ ) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ): return (ind + 1) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ): __lowercase = self._buckets[ind] if not stored: __lowercase = _Item(lowercase__ ,lowercase__ ) self._len += 1 return True elif stored.key == key: __lowercase = _Item(lowercase__ ,lowercase__ ) return True else: return False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False __lowercase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ): __lowercase = self._buckets __lowercase = [None] * new_size __lowercase = 0 for item in old_buckets: if item: self._add_item(item.key ,item.val ) def SCREAMING_SNAKE_CASE ( self : str ): self._resize(len(self._buckets ) * 2 ) def SCREAMING_SNAKE_CASE ( self : Tuple ): self._resize(len(self._buckets ) // 2 ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ): __lowercase = self._get_bucket_index(lowercase__ ) for _ in range(len(self._buckets ) ): yield ind __lowercase = self._get_next_ind(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): for ind in self._iterate_buckets(lowercase__ ): if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ): break def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): if self._is_full(): self._size_up() self._add_item(lowercase__ ,lowercase__ ) def __delitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: raise KeyError(lowercase__ ) if item is _deleted: continue if item.key == key: __lowercase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowercase__ ) def __len__( self : Optional[int] ): return self._len def __iter__( self : str ): yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ): __lowercase = ''' ,'''.join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
41
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[Any] ,*lowercase__ : Optional[Any] ,**lowercase__ : int ): warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' ,lowercase__ ,) super().__init__(*lowercase__ ,**lowercase__ )
41
1
'''simple docstring''' import argparse import struct import unittest class lowercase_ : """simple docstring""" def __init__( self : Any ,lowercase__ : bytes ): __lowercase = data # Initialize hash values __lowercase = [ 0x6a_09e_667, 0xbb_67a_e85, 0x3c_6ef_372, 0xa5_4ff_53a, 0x51_0e5_27f, 0x9b_056_88c, 0x1f_83d_9ab, 0x5b_e0c_d19, ] # Initialize round constants __lowercase = [ 0x42_8a2_f98, 0x71_374_491, 0xb5_c0f_bcf, 0xe9_b5d_ba5, 0x39_56c_25b, 0x59_f11_1f1, 0x92_3f8_2a4, 0xab_1c5_ed5, 0xd8_07a_a98, 0x12_835_b01, 0x24_318_5be, 0x55_0c7_dc3, 0x72_be5_d74, 0x80_deb_1fe, 0x9b_dc0_6a7, 0xc1_9bf_174, 0xe4_9b6_9c1, 0xef_be4_786, 0x0f_c19_dc6, 0x24_0ca_1cc, 0x2d_e92_c6f, 0x4a_748_4aa, 0x5c_b0a_9dc, 0x76_f98_8da, 0x98_3e5_152, 0xa8_31c_66d, 0xb0_032_7c8, 0xbf_597_fc7, 0xc6_e00_bf3, 0xd5_a79_147, 0x06_ca6_351, 0x14_292_967, 0x27_b70_a85, 0x2e_1b2_138, 0x4d_2c6_dfc, 0x53_380_d13, 0x65_0a7_354, 0x76_6a0_abb, 0x81_c2c_92e, 0x92_722_c85, 0xa2_bfe_8a1, 0xa8_1a6_64b, 0xc2_4b8_b70, 0xc7_6c5_1a3, 0xd1_92e_819, 0xd6_990_624, 0xf4_0e3_585, 0x10_6aa_070, 0x19_a4c_116, 0x1e_376_c08, 0x27_487_74c, 0x34_b0b_cb5, 0x39_1c0_cb3, 0x4e_d8a_a4a, 0x5b_9cc_a4f, 0x68_2e6_ff3, 0x74_8f8_2ee, 0x78_a56_36f, 0x84_c87_814, 0x8c_c70_208, 0x90_bef_ffa, 0xa4_506_ceb, 0xbe_f9a_3f7, 0xc6_717_8f2, ] __lowercase = self.preprocessing(self.data ) self.final_hash() @staticmethod def SCREAMING_SNAKE_CASE ( lowercase__ : bytes ): __lowercase = b'''\x80''' + (b'''\x00''' * (6_3 - (len(lowercase__ ) + 8) % 6_4)) __lowercase = struct.pack('''>Q''' ,(len(lowercase__ ) * 8) ) return data + padding + big_endian_integer def SCREAMING_SNAKE_CASE ( self : Tuple ): # Convert into blocks of 64 bytes __lowercase = [ self.preprocessed_data[x : x + 6_4] for x in range(0 ,len(self.preprocessed_data ) ,6_4 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers __lowercase = list(struct.unpack('''>16L''' ,lowercase__ ) ) # add 48 0-ed integers words += [0] * 4_8 __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = self.hashes for index in range(0 ,6_4 ): if index > 1_5: # modify the zero-ed indexes at the end of the array __lowercase = ( self.ror(words[index - 1_5] ,7 ) ^ self.ror(words[index - 1_5] ,1_8 ) ^ (words[index - 1_5] >> 3) ) __lowercase = ( self.ror(words[index - 2] ,1_7 ) ^ self.ror(words[index - 2] ,1_9 ) ^ (words[index - 2] >> 1_0) ) __lowercase = ( words[index - 1_6] + sa + words[index - 7] + sa ) % 0x100_000_000 # Compression __lowercase = self.ror(lowercase__ ,6 ) ^ self.ror(lowercase__ ,1_1 ) ^ self.ror(lowercase__ ,2_5 ) __lowercase = (e & f) ^ ((~e & 0xff_fff_fff) & g) __lowercase = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x100_000_000 __lowercase = self.ror(lowercase__ ,2 ) ^ self.ror(lowercase__ ,1_3 ) ^ self.ror(lowercase__ ,2_2 ) __lowercase = (a & b) ^ (a & c) ^ (b & c) __lowercase = (sa + maj) % 0x100_000_000 __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = ( g, f, e, ((d + tempa) % 0x100_000_000), c, b, a, ((tempa + tempa) % 0x100_000_000), ) __lowercase = [a, b, c, d, e, f, g, h] # Modify final values __lowercase = [ ((element + mutated_hash_values[index]) % 0x100_000_000) for index, element in enumerate(self.hashes ) ] __lowercase = ''''''.join([hex(lowercase__ )[2:].zfill(8 ) for value in self.hashes] ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ,lowercase__ : int ): return 0xff_fff_fff & (value << (3_2 - rotations)) | (value >> rotations) class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[Any] ): import hashlib __lowercase = bytes('''Test String''' ,'''utf-8''' ) self.assertEqual(SHAaaa(lowercase__ ).hash ,hashlib.shaaaa(lowercase__ ).hexdigest() ) def _A ( ): """simple docstring""" import doctest doctest.testmod() __lowercase = argparse.ArgumentParser() parser.add_argument( '''-s''' , '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument( '''-f''' , '''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) __lowercase = parser.parse_args() __lowercase = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: __lowercase = f.read() else: __lowercase = bytes(A__ , '''utf-8''' ) print(SHAaaa(A__ ).hash ) if __name__ == "__main__": main()
41
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _A ( A__ ): """simple docstring""" __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = 0.0_1 with locka.acquire(): with pytest.raises(A__ ): __lowercase = time.time() locka.acquire(A__ ) assert time.time() - _start > timeout def _A ( A__ ): """simple docstring""" __lowercase = '''a''' * 1000 + '''.lock''' __lowercase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(A__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __lowercase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(A__ ): locka.acquire(0 )
41
1
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('''Googling.....''') lowerCAmelCase__ = '''https://www.google.com/search?q=''' + ''' '''.join(sys.argv[1:]) lowerCAmelCase__ = requests.get(url, headers={'''UserAgent''': UserAgent().random}) # res.raise_for_status() with open('''project1a.html''', '''wb''') as out_file: # only for knowing the class for data in res.iter_content(1_0000): out_file.write(data) lowerCAmelCase__ = BeautifulSoup(res.text, '''html.parser''') lowerCAmelCase__ = list(soup.select('''.eZt8xd'''))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('''href''')) else: webbrowser.open(f'https://google.com{link.get("href")}')
41
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase__ = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = KandinskyVaaImgaImgPipeline SCREAMING_SNAKE_CASE : List[str] = ['image_embeds', 'negative_image_embeds', 'image'] SCREAMING_SNAKE_CASE : List[Any] = [ 'image_embeds', 'negative_image_embeds', 'image', ] SCREAMING_SNAKE_CASE : int = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] SCREAMING_SNAKE_CASE : int = False @property def SCREAMING_SNAKE_CASE ( self : int ): return 3_2 @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return 3_2 @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): return self.time_input_dim @property def SCREAMING_SNAKE_CASE ( self : Tuple ): return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE ( self : Dict ): return 1_0_0 @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): torch.manual_seed(0 ) __lowercase = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __lowercase = UNetaDConditionModel(**lowercase__ ) return model @property def SCREAMING_SNAKE_CASE ( self : Dict ): return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): torch.manual_seed(0 ) __lowercase = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.dummy_unet __lowercase = self.dummy_movq __lowercase = { '''num_train_timesteps''': 1_0_0_0, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } __lowercase = DDIMScheduler(**lowercase__ ) __lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : str ,lowercase__ : List[str]=0 ): __lowercase = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(lowercase__ ) ).to(lowercase__ ) __lowercase = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( lowercase__ ) # create init_image __lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(lowercase__ ) ).to(lowercase__ ) __lowercase = image.cpu().permute(0 ,2 ,3 ,1 )[0] __lowercase = Image.fromarray(np.uinta(lowercase__ ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) if str(lowercase__ ).startswith('''mps''' ): __lowercase = torch.manual_seed(lowercase__ ) else: __lowercase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __lowercase = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 1_0, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = '''cpu''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowercase__ ) __lowercase = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = pipe(**self.get_dummy_inputs(lowercase__ ) ) __lowercase = output.images __lowercase = pipe( **self.get_dummy_inputs(lowercase__ ) ,return_dict=lowercase__ ,)[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowercase = np.array( [0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) __lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) __lowercase = '''A red cartoon frog, 4k''' __lowercase = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' ,torch_dtype=torch.floataa ) pipe_prior.to(lowercase__ ) __lowercase = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' ,torch_dtype=torch.floataa ) __lowercase = pipeline.to(lowercase__ ) pipeline.set_progress_bar_config(disable=lowercase__ ) __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase , __lowercase = pipe_prior( lowercase__ ,generator=lowercase__ ,num_inference_steps=5 ,negative_prompt='''''' ,).to_tuple() __lowercase = pipeline( image=lowercase__ ,image_embeds=lowercase__ ,negative_image_embeds=lowercase__ ,generator=lowercase__ ,num_inference_steps=1_0_0 ,height=7_6_8 ,width=7_6_8 ,strength=0.2 ,output_type='''np''' ,) __lowercase = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowercase__ ,lowercase__ )
41
'''simple docstring''' import argparse import os import re lowerCAmelCase__ = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(R'''\[([^\]]+)\]''') def _A ( A__ ): """simple docstring""" __lowercase = _re_indent.search(A__ ) return "" if search is None else search.groups()[0] def _A ( A__ , A__="" , A__=None , A__=None ): """simple docstring""" __lowercase = 0 __lowercase = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(A__ ): index += 1 __lowercase = ['''\n'''.join(lines[:index] )] else: __lowercase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowercase = [lines[index]] index += 1 while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(A__ ) ) if index < len(A__ ) - 1: __lowercase = [lines[index + 1]] index += 1 else: __lowercase = [] else: blocks.append('''\n'''.join(A__ ) ) __lowercase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A__ ) > 0: blocks.append('''\n'''.join(A__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def _A ( A__ ): """simple docstring""" def _inner(A__ ): return key(A__ ).lower().replace('''_''' , '''''' ) return _inner def _A ( A__ , A__=None ): """simple docstring""" def noop(A__ ): return x if key is None: __lowercase = noop # Constants are all uppercase, they go first. __lowercase = [obj for obj in objects if key(A__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowercase = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()] # Functions begin with a lowercase, they go last. __lowercase = [obj for obj in objects if not key(A__ )[0].isupper()] __lowercase = ignore_underscore(A__ ) return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) def _A ( A__ ): """simple docstring""" def _replace(A__ ): __lowercase = match.groups()[0] if "," not in imports: return F"[{imports}]" __lowercase = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) + "]" __lowercase = import_statement.split('''\n''' ) if len(A__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowercase = 2 if lines[1].strip() == '''[''' else 1 __lowercase = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowercase = sort_objects(A__ , key=lambda A__ : x[1] ) __lowercase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowercase = _re_bracket_content.sub(_replace , lines[1] ) else: __lowercase = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] __lowercase = get_indent(lines[1] ) + ''', '''.join([F"\"{k}\"" for k in sort_objects(A__ )] ) return "\n".join(A__ ) else: # Finally we have to deal with imports fitting on one line __lowercase = _re_bracket_content.sub(_replace , A__ ) return import_statement def _A ( A__ , A__=True ): """simple docstring""" with open(A__ , '''r''' ) as f: __lowercase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowercase = split_code_in_indented_blocks( A__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowercase = main_blocks[block_idx] __lowercase = block.split('''\n''' ) # Get to the start of the imports. __lowercase = 0 while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowercase = len(A__ ) else: line_idx += 1 if line_idx >= len(A__ ): continue # Ignore beginning and last line: they don't contain anything. __lowercase = '''\n'''.join(block_lines[line_idx:-1] ) __lowercase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowercase = split_code_in_indented_blocks(A__ , indent_level=A__ ) # We have two categories of import key: list or _import_structure[key].append/extend __lowercase = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowercase = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowercase = [(i, key) for i, key in enumerate(A__ ) if key is not None] __lowercase = [x[0] for x in sorted(A__ , key=lambda A__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowercase = 0 __lowercase = [] for i in range(len(A__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __lowercase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(A__ ) count += 1 # And we put our main block back together with its first and last line. __lowercase = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(A__ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(A__ , '''w''' ) as f: f.write('''\n'''.join(A__ ) ) def _A ( A__=True ): """simple docstring""" __lowercase = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: __lowercase = sort_imports(os.path.join(A__ , '''__init__.py''' ) , check_only=A__ ) if result: __lowercase = [os.path.join(A__ , '''__init__.py''' )] if len(A__ ) > 0: raise ValueError(F"Would overwrite {len(A__ )} files, run `make style`." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
41
1
'''simple docstring''' import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = LxmertConfig.from_json_file(A__ ) print(F"Building PyTorch model from configuration: {config}" ) __lowercase = LxmertForPreTraining(A__ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(A__ , A__ , A__ ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
41
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = TextToVideoSDPipeline SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. SCREAMING_SNAKE_CASE : Optional[int] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') ,up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') ,cross_attention_dim=3_2 ,attention_head_dim=4 ,) __lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,clip_sample=lowercase__ ,set_alpha_to_one=lowercase__ ,) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=1_2_8 ,) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''gelu''' ,projection_dim=5_1_2 ,) __lowercase = CLIPTextModel(lowercase__ ) __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : List[str]=0 ): if str(lowercase__ ).startswith('''mps''' ): __lowercase = torch.manual_seed(lowercase__ ) else: __lowercase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = TextToVideoSDPipeline(**lowercase__ ) __lowercase = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs(lowercase__ ) __lowercase = '''np''' __lowercase = sd_pipe(**lowercase__ ).frames __lowercase = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) __lowercase = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def SCREAMING_SNAKE_CASE ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=1e-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass def SCREAMING_SNAKE_CASE ( self : List[str] ): return super().test_progress_bar() @slow @skip_mps class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2_5 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
41
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase__ = logging.get_logger(__name__) def _A ( A__ , A__ ): """simple docstring""" __lowercase = b.T __lowercase = np.sum(np.square(A__ ) , axis=1 ) __lowercase = np.sum(np.square(A__ ) , axis=0 ) __lowercase = np.matmul(A__ , A__ ) __lowercase = aa[:, None] - 2 * ab + ba[None, :] return d def _A ( A__ , A__ ): """simple docstring""" __lowercase = x.reshape(-1 , 3 ) __lowercase = squared_euclidean_distance(A__ , A__ ) return np.argmin(A__ , axis=1 ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ['pixel_values'] def __init__( self : Any ,lowercase__ : Optional[Union[List[List[int]], np.ndarray]] = None ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : PILImageResampling = PILImageResampling.BILINEAR ,lowercase__ : bool = True ,lowercase__ : bool = True ,**lowercase__ : Optional[Any] ,): super().__init__(**lowercase__ ) __lowercase = size if size is not None else {'''height''': 2_5_6, '''width''': 2_5_6} __lowercase = get_size_dict(lowercase__ ) __lowercase = np.array(lowercase__ ) if clusters is not None else None __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_normalize __lowercase = do_color_quantize def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : np.ndarray ,lowercase__ : Dict[str, int] ,lowercase__ : PILImageResampling = PILImageResampling.BILINEAR ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : str ,): __lowercase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F"Size dictionary must contain both height and width keys. Got {size.keys()}" ) return resize( lowercase__ ,size=(size['''height'''], size['''width''']) ,resample=lowercase__ ,data_format=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : np.ndarray ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,): __lowercase = rescale(image=lowercase__ ,scale=1 / 1_2_7.5 ,data_format=lowercase__ ) __lowercase = image - 1 return image def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : ImageInput ,lowercase__ : bool = None ,lowercase__ : Dict[str, int] = None ,lowercase__ : PILImageResampling = None ,lowercase__ : bool = None ,lowercase__ : Optional[bool] = None ,lowercase__ : Optional[Union[List[List[int]], np.ndarray]] = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST ,**lowercase__ : Any ,): __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = size if size is not None else self.size __lowercase = get_size_dict(lowercase__ ) __lowercase = resample if resample is not None else self.resample __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __lowercase = clusters if clusters is not None else self.clusters __lowercase = np.array(lowercase__ ) __lowercase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowercase__ ) for image in images] if do_resize: __lowercase = [self.resize(image=lowercase__ ,size=lowercase__ ,resample=lowercase__ ) for image in images] if do_normalize: __lowercase = [self.normalize(image=lowercase__ ) for image in images] if do_color_quantize: __lowercase = [to_channel_dimension_format(lowercase__ ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __lowercase = np.array(lowercase__ ) __lowercase = color_quantize(lowercase__ ,lowercase__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __lowercase = images.shape[0] __lowercase = images.reshape(lowercase__ ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __lowercase = list(lowercase__ ) else: __lowercase = [to_channel_dimension_format(lowercase__ ,lowercase__ ) for image in images] __lowercase = {'''input_ids''': images} return BatchFeature(data=lowercase__ ,tensor_type=lowercase__ )
41
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _A ( A__ ): """simple docstring""" __lowercase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def _A ( A__ ): """simple docstring""" __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(A__ , A__ , bias=A__ ) __lowercase = emb.weight.data return lin_layer def _A ( A__ , A__="facebook/mbart-large-en-ro" , A__=False , A__=False ): """simple docstring""" __lowercase = torch.load(A__ , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A__ ) __lowercase = state_dict['''encoder.embed_tokens.weight'''].shape[0] __lowercase = MBartConfig.from_pretrained(A__ , vocab_size=A__ ) if mbart_aa and finetuned: __lowercase = '''relu''' __lowercase = state_dict['''decoder.embed_tokens.weight'''] __lowercase = MBartForConditionalGeneration(A__ ) model.model.load_state_dict(A__ ) if finetuned: __lowercase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
41
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''ViTFeatureExtractor'''] lowerCAmelCase__ = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
'''simple docstring''' import os from math import logaa def _A ( A__ = "base_exp.txt" ): """simple docstring""" __lowercase = 0 __lowercase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowercase , __lowercase = list(map(A__ , line.split(''',''' ) ) ) if x * logaa(A__ ) > largest: __lowercase = x * logaa(A__ ) __lowercase = i + 1 return result if __name__ == "__main__": print(solution())
41
1
'''simple docstring''' def _A ( A__ ): """simple docstring""" if not isinstance(A__ , A__ ): raise ValueError('''check_bouncy() accepts only integer arguments''' ) __lowercase = str(A__ ) __lowercase = ''''''.join(sorted(A__ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def _A ( A__ = 99 ): """simple docstring""" if not 0 < percent < 100: raise ValueError('''solution() only accepts values from 0 to 100''' ) __lowercase = 0 __lowercase = 1 while True: if check_bouncy(A__ ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'{solution(99)}')
41
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'blenderbot-small' SCREAMING_SNAKE_CASE : int = ['past_key_values'] SCREAMING_SNAKE_CASE : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] ,lowercase__ : List[str]=5_0_2_6_5 ,lowercase__ : Optional[Any]=5_1_2 ,lowercase__ : Optional[int]=8 ,lowercase__ : List[Any]=2_0_4_8 ,lowercase__ : List[str]=1_6 ,lowercase__ : str=8 ,lowercase__ : Any=2_0_4_8 ,lowercase__ : Tuple=1_6 ,lowercase__ : Tuple=0.0 ,lowercase__ : List[str]=0.0 ,lowercase__ : Any=True ,lowercase__ : str=True ,lowercase__ : int="gelu" ,lowercase__ : Tuple=5_1_2 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : str=0.0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : List[Any]=False ,lowercase__ : Optional[int]=0 ,lowercase__ : Optional[int]=1 ,lowercase__ : str=2 ,lowercase__ : int=2 ,**lowercase__ : List[str] ,): __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = use_cache __lowercase = encoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,is_encoder_decoder=lowercase__ ,decoder_start_token_id=lowercase__ ,forced_eos_token_id=lowercase__ ,**lowercase__ ,) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Dict ): if self.task in ["default", "seq2seq-lm"]: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase = {0: '''batch'''} __lowercase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase__ ,direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super().outputs else: __lowercase = super(lowercase__ ,self ).outputs if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) # Generate decoder inputs __lowercase = seq_length if not self.use_past else 1 __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __lowercase = dict(**lowercase__ ,**lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape __lowercase = common_inputs['''decoder_input_ids'''].shape[1] __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = decoder_seq_length + 3 __lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase__ ,lowercase__ )] ,dim=1 ) __lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase = self.num_layers __lowercase = min(lowercase__ ,lowercase__ ) __lowercase = max(lowercase__ ,lowercase__ ) - min_num_layers __lowercase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), ) ) # TODO: test this. __lowercase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase__ ,lowercase__ ): common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase , __lowercase = self.num_layers __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = common_inputs['''attention_mask'''].dtype __lowercase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase__ ,lowercase__ ,dtype=lowercase__ )] ,dim=1 ) __lowercase = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ ) ] return common_inputs def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = tokenizer.num_special_tokens_to_add(lowercase__ ) __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowercase__ ) # Generate dummy inputs according to compute batch and sequence __lowercase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase = dict(tokenizer(lowercase__ ,return_tensors=lowercase__ ) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): if self.task in ["default", "seq2seq-lm"]: __lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) elif self.task == "causal-lm": __lowercase = self._generate_dummy_inputs_for_causal_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) else: __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super()._flatten_past_key_values_(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) else: __lowercase = super(lowercase__ ,self )._flatten_past_key_values_( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
41
1
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = FunnelConfig.from_json_file(A__ ) print(F"Building PyTorch model from configuration: {config}" ) __lowercase = FunnelBaseModel(A__ ) if base_model else FunnelModel(A__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(A__ , A__ , A__ ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether you want just the base model (no decoder) or not.''' ) lowerCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
41
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" if b == 0: return (1, 0) ((__lowercase) , (__lowercase)) = extended_euclid(A__ , a % b ) __lowercase = a // b return (y, x - k * y) def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m def _A ( A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) if b < 0: __lowercase = (b % n + n) % n return b def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase , __lowercase = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
41
1
'''simple docstring''' def _A ( A__ , A__ ): """simple docstring""" __lowercase = [1] for i in range(2 , A__ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __lowercase = [] __lowercase = list(range(A__ ) ) # Find permutation while factorials: __lowercase = factorials.pop() __lowercase , __lowercase = divmod(A__ , A__ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
41
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _A ( ): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __lowercase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , A__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _A ( ): """simple docstring""" assert _test_patching.open is open __lowercase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , A__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , A__ ): pass def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , A__ ) is None with patch_submodule(_test_patching , '''len''' , A__ ): assert _test_patching.len is mock assert _test_patching.len is len def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_start_and_stop_mock__''' __lowercase = patch_submodule(_test_patching , '''open''' , A__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _A ( ): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __lowercase = '''__test_patch_submodule_successive_join__''' __lowercase = '''__test_patch_submodule_successive_dirname__''' __lowercase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , A__ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , A__ ): pass
41
1
'''simple docstring''' class lowercase_ : """simple docstring""" def __init__( self : Optional[int] ): __lowercase = 0 __lowercase = 0 __lowercase = {} def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : str ): if vertex not in self.adjacency: __lowercase = {} self.num_vertices += 1 def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Any ): self.add_vertex(lowercase__ ) self.add_vertex(lowercase__ ) if head == tail: return __lowercase = weight __lowercase = weight def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.get_edges() for edge in edges: __lowercase , __lowercase , __lowercase = edge edges.remove((tail, head, weight) ) for i in range(len(lowercase__ ) ): __lowercase = list(edges[i] ) edges.sort(key=lambda lowercase__ : e[2] ) for i in range(len(lowercase__ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: __lowercase = edges[i][2] + 1 for edge in edges: __lowercase , __lowercase , __lowercase = edge __lowercase = weight __lowercase = weight def __str__( self : Union[str, Any] ): __lowercase = '''''' for tail in self.adjacency: for head in self.adjacency[tail]: __lowercase = self.adjacency[head][tail] string += F"{head} -> {tail} == {weight}\n" return string.rstrip('''\n''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def SCREAMING_SNAKE_CASE ( self : Optional[int] ): return self.adjacency.keys() @staticmethod def SCREAMING_SNAKE_CASE ( lowercase__ : str=None ,lowercase__ : Any=None ): __lowercase = Graph() if vertices is None: __lowercase = [] if edges is None: __lowercase = [] for vertex in vertices: g.add_vertex(lowercase__ ) for edge in edges: g.add_edge(*lowercase__ ) return g class lowercase_ : """simple docstring""" def __init__( self : List[str] ): __lowercase = {} __lowercase = {} def __len__( self : Dict ): return len(self.parent ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Any ): if item in self.parent: return self.find(lowercase__ ) __lowercase = item __lowercase = 0 return item def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Dict ): if item not in self.parent: return self.make_set(lowercase__ ) if item != self.parent[item]: __lowercase = self.find(self.parent[item] ) return self.parent[item] def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Tuple ,lowercase__ : Dict ): __lowercase = self.find(lowercase__ ) __lowercase = self.find(lowercase__ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: __lowercase = roota return roota if self.rank[roota] < self.rank[roota]: __lowercase = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 __lowercase = roota return roota return None @staticmethod def SCREAMING_SNAKE_CASE ( lowercase__ : Optional[int] ): __lowercase = graph.num_vertices __lowercase = Graph.UnionFind() __lowercase = [] while num_components > 1: __lowercase = {} for vertex in graph.get_vertices(): __lowercase = -1 __lowercase = graph.get_edges() for edge in edges: __lowercase , __lowercase , __lowercase = edge edges.remove((tail, head, weight) ) for edge in edges: __lowercase , __lowercase , __lowercase = edge __lowercase = union_find.find(lowercase__ ) __lowercase = union_find.find(lowercase__ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __lowercase = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __lowercase = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: __lowercase , __lowercase , __lowercase = cheap_edge[vertex] if union_find.find(lowercase__ ) != union_find.find(lowercase__ ): union_find.union(lowercase__ ,lowercase__ ) mst_edges.append(cheap_edge[vertex] ) __lowercase = num_components - 1 __lowercase = Graph.build(edges=lowercase__ ) return mst
41
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : """simple docstring""" def __init__( self : Dict ,lowercase__ : Dict ,lowercase__ : int=1_3 ,lowercase__ : List[str]=7 ,lowercase__ : int=True ,lowercase__ : int=True ,lowercase__ : Union[str, Any]=True ,lowercase__ : List[Any]=True ,lowercase__ : str=9_9 ,lowercase__ : Optional[Any]=3_2 ,lowercase__ : Union[str, Any]=5 ,lowercase__ : List[Any]=4 ,lowercase__ : str=3_7 ,lowercase__ : Tuple="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : Dict=0.1 ,lowercase__ : int=1_2_8 ,lowercase__ : Dict=3_2 ,lowercase__ : Dict=1_6 ,lowercase__ : Any=2 ,lowercase__ : int=0.0_2 ,lowercase__ : List[str]=3 ,lowercase__ : Dict=4 ,lowercase__ : Optional[int]=None ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return NezhaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.prepare_config_and_inputs() __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : str ): __lowercase = NezhaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Dict ,lowercase__ : str ,lowercase__ : Optional[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,): __lowercase = True __lowercase = NezhaModel(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,encoder_attention_mask=lowercase__ ,) __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,) __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): __lowercase = NezhaForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): __lowercase = NezhaForNextSentencePrediction(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ): __lowercase = NezhaForPreTraining(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,next_sentence_label=lowercase__ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ): __lowercase = NezhaForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,start_positions=lowercase__ ,end_positions=lowercase__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Tuple ,lowercase__ : str ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : Optional[int] ,lowercase__ : int ): __lowercase = self.num_labels __lowercase = NezhaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Any ,lowercase__ : Optional[Any] ): __lowercase = self.num_labels __lowercase = NezhaForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : str ): __lowercase = self.num_choices __lowercase = NezhaForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : List[str] = True def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : Any=False ): __lowercase = super()._prepare_for_class(lowercase__ ,lowercase__ ,return_labels=lowercase__ ) if return_labels: if model_class in get_values(lowercase__ ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowercase__ ) __lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowercase__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = NezhaModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : int ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): # This regression test was failing with PyTorch < 1.3 ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase = None self.model_tester.create_and_check_model_as_decoder( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = NezhaModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __lowercase = True __lowercase = model_class(config=lowercase__ ) __lowercase = self._prepare_for_class(lowercase__ ,lowercase__ ) __lowercase = torch.jit.trace( lowercase__ ,(inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase__ ,os.path.join(lowercase__ ,'''bert.pt''' ) ) __lowercase = torch.jit.load(os.path.join(lowercase__ ,'''bert.pt''' ) ,map_location=lowercase__ ) loaded(inputs_dict['''input_ids'''].to(lowercase__ ) ,inputs_dict['''attention_mask'''].to(lowercase__ ) ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) )
41
1
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def _A ( A__ ): """simple docstring""" for param in module.parameters(): __lowercase = False def _A ( ): """simple docstring""" __lowercase = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __lowercase = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def _A ( A__ ): """simple docstring""" __lowercase = plt.imshow(A__ ) fig.axes.get_xaxis().set_visible(A__ ) fig.axes.get_yaxis().set_visible(A__ ) plt.show() def _A ( ): """simple docstring""" __lowercase = datetime.now() __lowercase = current_time.strftime('''%H:%M:%S''' ) return timestamp
41
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KEY''') lowerCAmelCase__ = TypeVar('''VAL''') @dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ ) class lowercase_ (Generic[KEY, VAL] ): """simple docstring""" SCREAMING_SNAKE_CASE : KEY SCREAMING_SNAKE_CASE : VAL class lowercase_ (_Item ): """simple docstring""" def __init__( self : Optional[int] ): super().__init__(lowercase__ ,lowercase__ ) def __bool__( self : List[str] ): return False lowerCAmelCase__ = _DeletedItem() class lowercase_ (MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ): __lowercase = initial_block_size __lowercase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowercase = capacity_factor __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ): return hash(lowercase__ ) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ): return (ind + 1) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ): __lowercase = self._buckets[ind] if not stored: __lowercase = _Item(lowercase__ ,lowercase__ ) self._len += 1 return True elif stored.key == key: __lowercase = _Item(lowercase__ ,lowercase__ ) return True else: return False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False __lowercase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ): __lowercase = self._buckets __lowercase = [None] * new_size __lowercase = 0 for item in old_buckets: if item: self._add_item(item.key ,item.val ) def SCREAMING_SNAKE_CASE ( self : str ): self._resize(len(self._buckets ) * 2 ) def SCREAMING_SNAKE_CASE ( self : Tuple ): self._resize(len(self._buckets ) // 2 ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ): __lowercase = self._get_bucket_index(lowercase__ ) for _ in range(len(self._buckets ) ): yield ind __lowercase = self._get_next_ind(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): for ind in self._iterate_buckets(lowercase__ ): if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ): break def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): if self._is_full(): self._size_up() self._add_item(lowercase__ ,lowercase__ ) def __delitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: raise KeyError(lowercase__ ) if item is _deleted: continue if item.key == key: __lowercase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowercase__ ) def __len__( self : Optional[int] ): return self._len def __iter__( self : str ): yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ): __lowercase = ''' ,'''.join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
41
1
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''spiece.model'''} lowerCAmelCase__ = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } lowerCAmelCase__ = { '''google/bigbird-roberta-base''': 4096, '''google/bigbird-roberta-large''': 4096, '''google/bigbird-base-trivia-itc''': 4096, } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : str ,lowercase__ : int ,lowercase__ : Optional[Any]="<unk>" ,lowercase__ : str="<s>" ,lowercase__ : List[Any]="</s>" ,lowercase__ : Dict="<pad>" ,lowercase__ : int="[SEP]" ,lowercase__ : str="[MASK]" ,lowercase__ : Tuple="[CLS]" ,lowercase__ : Optional[Dict[str, Any]] = None ,**lowercase__ : str ,): __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else bos_token __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else eos_token __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else unk_token __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else pad_token __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else cls_token __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else mask_token __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase__ ,eos_token=lowercase__ ,unk_token=lowercase__ ,pad_token=lowercase__ ,sep_token=lowercase__ ,mask_token=lowercase__ ,cls_token=lowercase__ ,sp_model_kwargs=self.sp_model_kwargs ,**lowercase__ ,) __lowercase = vocab_file __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase__ ) @property def SCREAMING_SNAKE_CASE ( self : List[str] ): return self.sp_model.get_piece_size() def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ): __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__( self : str ,lowercase__ : Optional[int] ): __lowercase = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : str ): return self.sp_model.encode(lowercase__ ,out_type=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Dict ): return self.sp_model.piece_to_id(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ): __lowercase = self.sp_model.IdToPiece(lowercase__ ) return token def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Tuple ): __lowercase = [] __lowercase = '''''' __lowercase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase__ ) + token __lowercase = True __lowercase = [] else: current_sub_tokens.append(lowercase__ ) __lowercase = False out_string += self.sp_model.decode(lowercase__ ) return out_string.strip() def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[int] ,lowercase__ : bool = False ,lowercase__ : bool = None ,lowercase__ : bool = True ,**lowercase__ : Optional[Any] ,): __lowercase = kwargs.pop('''use_source_tokenizer''' ,lowercase__ ) __lowercase = self.convert_ids_to_tokens(lowercase__ ,skip_special_tokens=lowercase__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __lowercase = [] __lowercase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowercase__ ) ) __lowercase = [] sub_texts.append(lowercase__ ) else: current_sub_text.append(lowercase__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowercase__ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: __lowercase = re.sub(r''' (\[(MASK|SEP)\])''' ,r'''\1''' ,''' '''.join(lowercase__ ) ) else: __lowercase = ''''''.join(lowercase__ ) __lowercase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __lowercase = self.clean_up_tokenization(lowercase__ ) return clean_text else: return text def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : str ,lowercase__ : Optional[str] = None ): if not os.path.isdir(lowercase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase = os.path.join( lowercase__ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ ,'''wb''' ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ,lowercase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ ,token_ids_a=lowercase__ ,already_has_special_tokens=lowercase__ ) if token_ids_a is None: return [1] + ([0] * len(lowercase__ )) + [1] return [1] + ([0] * len(lowercase__ )) + [1] + ([0] * len(lowercase__ )) + [1] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ): __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
41
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ,**lowercase__ : Tuple ): super().__init__(**lowercase__ ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self ,'''vision''' ) self.check_model_type(lowercase__ ) def __call__( self : List[str] ,lowercase__ : Union[str, "Image.Image", List[Dict[str, Any]]] ,lowercase__ : Union[str, List[str]] = None ,**lowercase__ : str ,): if "text_queries" in kwargs: __lowercase = kwargs.pop('''text_queries''' ) if isinstance(lowercase__ ,(str, Image.Image) ): __lowercase = {'''image''': image, '''candidate_labels''': candidate_labels} else: __lowercase = image __lowercase = super().__call__(lowercase__ ,**lowercase__ ) return results def SCREAMING_SNAKE_CASE ( self : int ,**lowercase__ : List[Any] ): __lowercase = {} if "threshold" in kwargs: __lowercase = kwargs['''threshold'''] if "top_k" in kwargs: __lowercase = kwargs['''top_k'''] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[Any] ): __lowercase = load_image(inputs['''image'''] ) __lowercase = inputs['''candidate_labels'''] if isinstance(lowercase__ ,lowercase__ ): __lowercase = candidate_labels.split(''',''' ) __lowercase = torch.tensor([[image.height, image.width]] ,dtype=torch.intaa ) for i, candidate_label in enumerate(lowercase__ ): __lowercase = self.tokenizer(lowercase__ ,return_tensors=self.framework ) __lowercase = self.image_processor(lowercase__ ,return_tensors=self.framework ) yield { "is_last": i == len(lowercase__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ): __lowercase = model_inputs.pop('''target_size''' ) __lowercase = model_inputs.pop('''candidate_label''' ) __lowercase = model_inputs.pop('''is_last''' ) __lowercase = self.model(**lowercase__ ) __lowercase = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : List[Any]=0.1 ,lowercase__ : List[str]=None ): __lowercase = [] for model_output in model_outputs: __lowercase = model_output['''candidate_label'''] __lowercase = BaseModelOutput(lowercase__ ) __lowercase = self.image_processor.post_process_object_detection( outputs=lowercase__ ,threshold=lowercase__ ,target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): __lowercase = outputs['''scores'''][index].item() __lowercase = self._get_bounding_box(outputs['''boxes'''][index][0] ) __lowercase = {'''score''': score, '''label''': label, '''box''': box} results.append(lowercase__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : x["score"] ,reverse=lowercase__ ) if top_k: __lowercase = results[:top_k] return results def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : "torch.Tensor" ): if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) __lowercase , __lowercase , __lowercase , __lowercase = box.int().tolist() __lowercase = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
41
1
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = XGLMTokenizer SCREAMING_SNAKE_CASE : int = XGLMTokenizerFast SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Tuple = True def SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing __lowercase = XGLMTokenizer(lowercase__ ,keep_accents=lowercase__ ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = '''<pad>''' __lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) ,lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''<s>''' ) self.assertEqual(vocab_keys[1] ,'''<pad>''' ) self.assertEqual(len(lowercase__ ) ,1_0_0_8 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self.assertEqual(self.get_tokenizer().vocab_size ,1_0_0_8 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = XGLMTokenizer(lowercase__ ,keep_accents=lowercase__ ) __lowercase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowercase__ ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase__ ) ,[value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] ,) __lowercase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowercase__ ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] ,) __lowercase = tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual( lowercase__ ,[ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] ,) __lowercase = tokenizer.convert_ids_to_tokens(lowercase__ ) self.assertListEqual( lowercase__ ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] ,) @cached_property def SCREAMING_SNAKE_CASE ( self : int ): return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowercase__ ,f.name ) __lowercase = XGLMTokenizer(f.name ,keep_accents=lowercase__ ) __lowercase = pickle.dumps(lowercase__ ) pickle.loads(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): if not self.test_rust_tokenizer: return __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer() __lowercase = '''I was born in 92000, and this is falsé.''' __lowercase = tokenizer.tokenize(lowercase__ ) __lowercase = rust_tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) __lowercase = tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ) __lowercase = rust_tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) __lowercase = self.get_rust_tokenizer() __lowercase = tokenizer.encode(lowercase__ ) __lowercase = rust_tokenizer.encode(lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''Hello World!''' __lowercase = [2, 3_1_2_2_7, 4_4_4_7, 3_5] self.assertListEqual(lowercase__ ,self.big_tokenizer.encode(lowercase__ ) ) @slow def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth''' ) # fmt: off __lowercase = [2, 1_0_1_8, 6_7, 1_1, 1_9_8_8, 2_6_1_7, 5_6_3_1, 2_7_8, 1_1, 3_4_0_7, 4_8, 7_1_6_3_0, 2_8_0_8_5, 4, 3_2_3_4, 1_5_7, 1_3, 6, 5, 6, 4, 3_5_2_6, 7_6_8, 1_5, 6_5_9, 5_7, 2_9_8, 3_9_8_3, 8_6_4, 1_2_9, 2_1, 6, 5, 1_3_6_7_5, 3_7_7, 6_5_2, 7_5_8_0, 1_0_3_4_1, 1_5_5, 2_8_1_7, 4_2_2, 1_6_6_6, 7, 1_6_7_4, 5_3, 1_1_3, 2_0_2_2_7_7, 1_7_8_9_2, 3_3, 6_0, 8_7, 4, 3_2_3_4, 1_5_7, 6_1, 2_6_6_7, 5_2_3_7_6, 1_9, 8_8, 2_3, 7_3_5] # fmt: on self.assertListEqual(lowercase__ ,self.big_tokenizer.encode(lowercase__ ) ) @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ): # fmt: off __lowercase = { '''input_ids''': [[2, 1_0_8_8_2_5, 1_1_6_3, 1_5, 8_8_0_1_0, 4_7_3, 1_5_8_9_8, 1_5_7, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 2_3_8_0_2_1, 1_1_6_3, 5_3, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 5_3_2_8_3, 1_8_2_3_9_6, 8, 1_8_5_6_6, 1_6, 3_6_7_3_3, 4_1_0_1, 8, 2_3_0, 2_4_4_0_1_7, 1_2_2_5_5_3, 7, 1_5, 1_3_2_5_9_7, 4, 2_9_3, 1_2_5_1_1, 7_6_1_0, 4, 3_4_1_4, 1_3_2_5_9_7, 9, 4, 3_2_3_6_1, 3_6_2, 4, 7_3_4, 2_8_5_1_2, 3_2_5_6_9, 1_8, 4, 3_2_3_6_1, 2_6_0_9_6, 1_4_9_8_2, 7_3, 1_8_7_1_5, 2_1_4_3_3, 2_3_5_2_6_1, 1_5, 4_9_2, 1_2_4_2_7, 1_6, 5_3, 1_8_7_1_5, 2_1_4_3_3, 6_5_4_5_4, 1_5, 2_3_6_5_9, 5_6_3, 1_6, 2_7_8, 5_9_7, 2_8_4_3, 5_9_5, 7_9_3_1, 1_8_2_3_9_6, 6_4_1_8_6, 2_2, 8_8_6, 5_9_5, 1_3_2_9_8_1, 5_3, 2_5_5_4_0, 3_4_4_9, 4_3_9_8_2, 3_9_9_0_1, 5_9_5_1, 8_7_8, 3_3_0, 4, 2_7_6_9_4, 8_0_2_6_9, 3_1_2, 5_3, 6_5_1_7, 1_1_7_8_0, 6_1_1, 2_0_4_0_8, 5], [2, 6, 1_3_2_5_9_7, 6_7, 4_2_8_9_7, 3_3, 5_9_2, 8, 1_6_3_7_2_9, 2_5_5_4_0, 3_6_1, 1_3_6_9_9_7, 1_0_9_5_1_4, 1_7_3_2_3_0, 7, 5_0_1, 6_0, 1_0_2_9_1_3, 1_9_6, 5_6_3_1, 2_3_5, 6_3_2_4_3, 4_7_3, 6, 2_3_1_7_5_7, 7_4, 5_2_7_7, 7_9_0_5, 5_3, 3_0_9_5, 3_7_3_1_7, 2_2, 4_5_4, 1_8_3_8_7_4, 5], [2, 2_6_8, 3_1_2_9_8, 4_6_5_3_0, 6, 1_3_2_9_3_5, 4_3_8_3_1, 7, 5_9_7, 3_2, 2_4, 3_6_8_8, 9_8_6_5, 5]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ ,model_name='''facebook/xglm-564M''' ,padding=lowercase__ ,)
41
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 'facebook/bart-large-mnli' SCREAMING_SNAKE_CASE : Optional[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) SCREAMING_SNAKE_CASE : Any = 'text_classifier' SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : Tuple = ['text', ['text']] SCREAMING_SNAKE_CASE : List[str] = ['text'] def SCREAMING_SNAKE_CASE ( self : List[Any] ): super().setup() __lowercase = self.model.config __lowercase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): __lowercase = int(lowercase__ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Dict ,lowercase__ : List[Any] ): __lowercase = labels return self.pre_processor( [text] * len(lowercase__ ) ,[F"This example is {label}" for label in labels] ,return_tensors='''pt''' ,padding='''max_length''' ,) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = outputs.logits __lowercase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
41
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCAmelCase__ = {'''tokenization_byt5''': ['''ByT5Tokenizer''']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
'''simple docstring''' from collections.abc import Callable class lowercase_ : """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : Callable | None = None ): # Stores actual heap items. __lowercase = [] # Stores indexes of each item for supporting updates and deletion. __lowercase = {} # Stores current size of heap. __lowercase = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __lowercase = key or (lambda lowercase__ : x) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : int ): return int((i - 1) / 2 ) if i > 0 else None def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = int(2 * i + 1 ) return left if 0 < left < self.size else None def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ): __lowercase = int(2 * i + 2 ) return right if 0 < right < self.size else None def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : int ,lowercase__ : int ): __lowercase , __lowercase = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __lowercase , __lowercase = self.arr[j], self.arr[i] def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): return self.arr[i][1] < self.arr[j][1] def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._left(lowercase__ ) __lowercase = self._right(lowercase__ ) __lowercase = i if left is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = left if right is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = right return valid_parent def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._parent(lowercase__ ) while parent is not None and not self._cmp(lowercase__ ,lowercase__ ): self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = parent, self._parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = self._get_valid_parent(lowercase__ ) while valid_parent != index: self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = valid_parent, self._get_valid_parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] __lowercase = [item, self.key(lowercase__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] del self.pos_map[item] __lowercase = self.arr[self.size - 1] __lowercase = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : int ): __lowercase = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(lowercase__ )] ) else: __lowercase = [item, self.key(lowercase__ )] __lowercase = self.size self.size += 1 self._heapify_up(self.size - 1 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): return self.arr[0] if self.size else None def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _A ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
41
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCAmelCase__ = {'''processing_wav2vec2_with_lm''': ['''Wav2Vec2ProcessorWithLM''']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ): __lowercase = [] def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : str ,**lowercase__ : Any ): self.events.append('''on_init_end''' ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : int ,**lowercase__ : Optional[int] ): self.events.append('''on_train_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ,**lowercase__ : List[str] ): self.events.append('''on_train_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,**lowercase__ : Optional[Any] ): self.events.append('''on_epoch_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : Any ,**lowercase__ : Optional[int] ): self.events.append('''on_epoch_end''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_step_begin''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : Optional[int] ,**lowercase__ : Dict ): self.events.append('''on_step_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,**lowercase__ : Any ): self.events.append('''on_evaluate''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : int ,**lowercase__ : Optional[Any] ): self.events.append('''on_predict''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,**lowercase__ : int ): self.events.append('''on_save''' ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_log''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : int ,lowercase__ : Dict ,**lowercase__ : str ): self.events.append('''on_prediction_step''' ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): shutil.rmtree(self.output_dir ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any]=0 ,lowercase__ : Any=0 ,lowercase__ : Tuple=6_4 ,lowercase__ : Optional[int]=6_4 ,lowercase__ : Optional[Any]=None ,lowercase__ : str=False ,**lowercase__ : Any ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionModelConfig(a=lowercase__ ,b=lowercase__ ) __lowercase = RegressionPreTrainedModel(lowercase__ ) __lowercase = TrainingArguments(self.output_dir ,disable_tqdm=lowercase__ ,report_to=[] ,**lowercase__ ) return Trainer( lowercase__ ,lowercase__ ,train_dataset=lowercase__ ,eval_dataset=lowercase__ ,callbacks=lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) ) # Order doesn't matter __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) for cba, cba in zip(lowercase__ ,lowercase__ ): if isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,lowercase__ ) elif isinstance(lowercase__ ,lowercase__ ) and not isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,cba.__class__ ) elif not isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(cba.__class__ ,lowercase__ ) else: self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ): __lowercase = ['''on_init_end''', '''on_train_begin'''] __lowercase = 0 __lowercase = len(trainer.get_eval_dataloader() ) __lowercase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(lowercase__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.get_trainer() __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # Callbacks passed at init are added to the default callbacks __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __lowercase = self.get_trainer(disable_tqdm=lowercase__ ) __lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __lowercase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(cb.__class__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # We can also add, pop, or remove by instance __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' ,category=lowercase__ ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # Independent log/save/eval __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='''steps''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='''epoch''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # A bit of everything __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=1_0 ,eval_steps=5 ,evaluation_strategy='''steps''' ,) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,) assert str(lowercase__ ) in warn_mock.call_args[0][0]
41
1
'''simple docstring''' import os from math import logaa def _A ( A__ = "base_exp.txt" ): """simple docstring""" __lowercase = 0 __lowercase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowercase , __lowercase = list(map(A__ , line.split(''',''' ) ) ) if x * logaa(A__ ) > largest: __lowercase = x * logaa(A__ ) __lowercase = i + 1 return result if __name__ == "__main__": print(solution())
41
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : jnp.ndarray SCREAMING_SNAKE_CASE : jnp.ndarray class lowercase_ (nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __lowercase = [] for i in range(len(self.block_out_channels ) - 1 ): __lowercase = self.block_out_channels[i] __lowercase = self.block_out_channels[i + 1] __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = blocks __lowercase = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : List[str] ,lowercase__ : Optional[int] ): __lowercase = self.conv_in(lowercase__ ) __lowercase = nn.silu(lowercase__ ) for block in self.blocks: __lowercase = block(lowercase__ ) __lowercase = nn.silu(lowercase__ ) __lowercase = self.conv_out(lowercase__ ) return embedding @flax_register_to_config class lowercase_ (nn.Module , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 3_2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False SCREAMING_SNAKE_CASE : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) SCREAMING_SNAKE_CASE : int = 2 SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None SCREAMING_SNAKE_CASE : int = 1_2_8_0 SCREAMING_SNAKE_CASE : float = 0.0 SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = "rgb" SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : jax.random.KeyArray ): # init input tensors __lowercase = (1, self.in_channels, self.sample_size, self.sample_size) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase = jnp.ones((1,) ,dtype=jnp.intaa ) __lowercase = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa ) __lowercase = (1, 3, self.sample_size * 8, self.sample_size * 8) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase , __lowercase = jax.random.split(lowercase__ ) __lowercase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )["params"] def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.block_out_channels __lowercase = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __lowercase = self.num_attention_heads or self.attention_head_dim # input __lowercase = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time __lowercase = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift ) __lowercase = FlaxTimestepEmbedding(lowercase__ ,dtype=self.dtype ) __lowercase = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) __lowercase = self.only_cross_attention if isinstance(lowercase__ ,lowercase__ ): __lowercase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = (num_attention_heads,) * len(self.down_block_types ) # down __lowercase = [] __lowercase = [] __lowercase = block_out_channels[0] __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) for i, down_block_type in enumerate(self.down_block_types ): __lowercase = output_channel __lowercase = block_out_channels[i] __lowercase = i == len(lowercase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": __lowercase = FlaxCrossAttnDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: __lowercase = FlaxDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(lowercase__ ) for _ in range(self.layers_per_block ): __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) if not is_final_block: __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) __lowercase = down_blocks __lowercase = controlnet_down_blocks # mid __lowercase = block_out_channels[-1] __lowercase = FlaxUNetMidBlockaDCrossAttn( in_channels=lowercase__ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : float = 1.0 ,lowercase__ : bool = True ,lowercase__ : bool = False ,): __lowercase = self.controlnet_conditioning_channel_order if channel_order == "bgr": __lowercase = jnp.flip(lowercase__ ,axis=1 ) # 1. time if not isinstance(lowercase__ ,jnp.ndarray ): __lowercase = jnp.array([timesteps] ,dtype=jnp.intaa ) elif isinstance(lowercase__ ,jnp.ndarray ) and len(timesteps.shape ) == 0: __lowercase = timesteps.astype(dtype=jnp.floataa ) __lowercase = jnp.expand_dims(lowercase__ ,0 ) __lowercase = self.time_proj(lowercase__ ) __lowercase = self.time_embedding(lowercase__ ) # 2. pre-process __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.conv_in(lowercase__ ) __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.controlnet_cond_embedding(lowercase__ ) sample += controlnet_cond # 3. down __lowercase = (sample,) for down_block in self.down_blocks: if isinstance(lowercase__ ,lowercase__ ): __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) else: __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,deterministic=not train ) down_block_res_samples += res_samples # 4. mid __lowercase = self.mid_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) # 5. contronet blocks __lowercase = () for down_block_res_sample, controlnet_block in zip(lowercase__ ,self.controlnet_down_blocks ): __lowercase = controlnet_block(lowercase__ ) controlnet_down_block_res_samples += (down_block_res_sample,) __lowercase = controlnet_down_block_res_samples __lowercase = self.controlnet_mid_block(lowercase__ ) # 6. scaling __lowercase = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowercase__ ,mid_block_res_sample=lowercase__ )
41
1
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class lowercase_ : """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : list[tuple[float, float]] ): __lowercase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __lowercase = len(lowercase__ ) - 1 def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree ,lowercase__ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(lowercase__ ) ,5 ) == 1 return output_values def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = self.basis_function(lowercase__ ) __lowercase = 0.0 __lowercase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : float = 0.0_1 ): from matplotlib import pyplot as plt # type: ignore __lowercase = [] # x coordinates of points to plot __lowercase = [] # y coordinates of points to plot __lowercase = 0.0 while t <= 1: __lowercase = self.bezier_curve_function(lowercase__ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __lowercase = [i[0] for i in self.list_of_points] __lowercase = [i[1] for i in self.list_of_points] plt.plot( lowercase__ ,lowercase__ ,color='''blue''' ,label='''Curve of Degree ''' + str(self.degree ) ,) plt.scatter(lowercase__ ,lowercase__ ,color='''red''' ,label='''Control Points''' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
41
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase__ = False lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''ybelkada/fonts''' def _A ( ): """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use " '''Pix2StructImageProcessor. Please upgrade torch.''' ) def _A ( A__ , A__ , A__ ): """simple docstring""" requires_backends(A__ , ['''torch'''] ) _check_torch_version() __lowercase = image_tensor.unsqueeze(0 ) __lowercase = torch.nn.functional.unfold(A__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) __lowercase = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , A__ , A__ , -1 ) __lowercase = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def _A ( A__ , A__ = 36 , A__ = "black" , A__ = "white" , A__ = 5 , A__ = 5 , A__ = 5 , A__ = 5 , A__ = None , A__ = None , ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Add new lines so that each line is no more than 80 characters. __lowercase = textwrap.TextWrapper(width=80 ) __lowercase = wrapper.wrap(text=A__ ) __lowercase = '''\n'''.join(A__ ) if font_bytes is not None and font_path is None: __lowercase = io.BytesIO(A__ ) elif font_path is not None: __lowercase = font_path else: __lowercase = hf_hub_download(A__ , '''Arial.TTF''' ) __lowercase = ImageFont.truetype(A__ , encoding='''UTF-8''' , size=A__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. __lowercase = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , A__ ) ) __lowercase , __lowercase , __lowercase , __lowercase = temp_draw.textbbox((0, 0) , A__ , A__ ) # Create the actual image with a bit of padding around the text. __lowercase = text_width + left_padding + right_padding __lowercase = text_height + top_padding + bottom_padding __lowercase = Image.new('''RGB''' , (image_width, image_height) , A__ ) __lowercase = ImageDraw.Draw(A__ ) draw.text(xy=(left_padding, top_padding) , text=A__ , fill=A__ , font=A__ ) return image def _A ( A__ , A__ , **A__ ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Convert to PIL image if necessary __lowercase = to_pil_image(A__ ) __lowercase = render_text(A__ , **A__ ) __lowercase = max(header_image.width , image.width ) __lowercase = int(image.height * (new_width / image.width) ) __lowercase = int(header_image.height * (new_width / header_image.width) ) __lowercase = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary __lowercase = to_numpy_array(A__ ) if infer_channel_dimension_format(A__ ) == ChannelDimension.LAST: __lowercase = to_channel_dimension_format(A__ , ChannelDimension.LAST ) return new_image class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ['flattened_patches'] def __init__( self : Any ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : int = 2_0_4_8 ,lowercase__ : bool = False ,**lowercase__ : List[str] ,): super().__init__(**lowercase__ ) __lowercase = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6} __lowercase = do_normalize __lowercase = do_convert_rgb __lowercase = max_patches __lowercase = is_vqa def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : np.ndarray ,lowercase__ : int ,lowercase__ : dict ,**lowercase__ : Tuple ): requires_backends(self.extract_flattened_patches ,'''torch''' ) _check_torch_version() # convert to torch __lowercase = to_channel_dimension_format(lowercase__ ,ChannelDimension.FIRST ) __lowercase = torch.from_numpy(lowercase__ ) __lowercase , __lowercase = patch_size['''height'''], patch_size['''width'''] __lowercase , __lowercase = get_image_size(lowercase__ ) # maximize scale s.t. __lowercase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) __lowercase = max(min(math.floor(scale * image_height / patch_height ) ,lowercase__ ) ,1 ) __lowercase = max(min(math.floor(scale * image_width / patch_width ) ,lowercase__ ) ,1 ) __lowercase = max(num_feasible_rows * patch_height ,1 ) __lowercase = max(num_feasible_cols * patch_width ,1 ) __lowercase = torch.nn.functional.interpolate( image.unsqueeze(0 ) ,size=(resized_height, resized_width) ,mode='''bilinear''' ,align_corners=lowercase__ ,antialias=lowercase__ ,).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] __lowercase = torch_extract_patches(lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = patches.shape __lowercase = patches_shape[1] __lowercase = patches_shape[2] __lowercase = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] __lowercase = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] __lowercase = torch.arange(lowercase__ ).reshape([rows, 1] ).repeat(1 ,lowercase__ ).reshape([rows * columns, 1] ) __lowercase = torch.arange(lowercase__ ).reshape([1, columns] ).repeat(lowercase__ ,1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] __lowercase = row_ids.to(torch.floataa ) __lowercase = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] __lowercase = torch.cat([row_ids, col_ids, patches] ,-1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] __lowercase = torch.nn.functional.pad(lowercase__ ,[0, 0, 0, max_patches - (rows * columns)] ).float() __lowercase = to_numpy_array(lowercase__ ) return result def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : np.ndarray ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ): if image.dtype == np.uinta: __lowercase = image.astype(np.floataa ) # take mean across the whole `image` __lowercase = np.mean(lowercase__ ) __lowercase = np.std(lowercase__ ) __lowercase = max(lowercase__ ,1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : ImageInput ,lowercase__ : Optional[str] = None ,lowercase__ : bool = None ,lowercase__ : Optional[bool] = None ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[Dict[str, int]] = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : ChannelDimension = ChannelDimension.FIRST ,**lowercase__ : List[Any] ,): __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = patch_size if patch_size is not None else self.patch_size __lowercase = max_patches if max_patches is not None else self.max_patches __lowercase = self.is_vqa if kwargs.get('''data_format''' ,lowercase__ ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) __lowercase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(lowercase__ ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowercase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) __lowercase = kwargs.pop('''font_bytes''' ,lowercase__ ) __lowercase = kwargs.pop('''font_path''' ,lowercase__ ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = [header_text] * len(lowercase__ ) __lowercase = [ render_header(lowercase__ ,header_text[i] ,font_bytes=lowercase__ ,font_path=lowercase__ ) for i, image in enumerate(lowercase__ ) ] if do_normalize: __lowercase = [self.normalize(image=lowercase__ ) for image in images] # convert to torch tensor and permute __lowercase = [ self.extract_flattened_patches(image=lowercase__ ,max_patches=lowercase__ ,patch_size=lowercase__ ) for image in images ] # create attention mask in numpy __lowercase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] __lowercase = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks} ,tensor_type=lowercase__ ) return encoded_outputs
41
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class lowercase_ (unittest.TestCase ): """simple docstring""" def __init__( self : Union[str, Any] ,lowercase__ : int ,lowercase__ : Any=7 ,lowercase__ : Optional[Any]=3 ,lowercase__ : Any=1_8 ,lowercase__ : Optional[Any]=3_0 ,lowercase__ : Any=4_0_0 ,lowercase__ : str=True ,lowercase__ : Union[str, Any]=3_2 ,lowercase__ : Tuple=True ,): __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size_divisor __lowercase = do_rescale def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = GLPNImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = GLPNImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self : str ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ ,'''do_resize''' ) ) self.assertTrue(hasattr(lowercase__ ,'''size_divisor''' ) ) self.assertTrue(hasattr(lowercase__ ,'''resample''' ) ) self.assertTrue(hasattr(lowercase__ ,'''do_rescale''' ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): pass def SCREAMING_SNAKE_CASE ( self : List[str] ): # Initialize image_processing __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ ,Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): # Initialize image_processing __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase__ ,numpify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ ,np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def SCREAMING_SNAKE_CASE ( self : Dict ): # Initialize image_processing __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase__ ,torchify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ ,torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
41
'''simple docstring''' import doctest from collections import deque import numpy as np class lowercase_ : """simple docstring""" def __init__( self : Optional[Any] ): __lowercase = [2, 1, 2, -1] __lowercase = [1, 2, 3, 4] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = len(self.first_signal ) __lowercase = len(self.second_signal ) __lowercase = max(lowercase__ ,lowercase__ ) # create a zero matrix of max_length x max_length __lowercase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __lowercase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __lowercase = np.matmul(np.transpose(lowercase__ ) ,np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ ,2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
41
1
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = list(range(len(A__ ) ) ) __lowercase = [v / w for v, w in zip(A__ , A__ )] index.sort(key=lambda A__ : ratio[i] , reverse=A__ ) __lowercase = 0 __lowercase = [0] * len(A__ ) for i in index: if weight[i] <= capacity: __lowercase = 1 max_value += value[i] capacity -= weight[i] else: __lowercase = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
41
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
41
1
'''simple docstring''' import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowercase_ : """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : Tuple ,lowercase__ : Optional[Any]=1_3 ,lowercase__ : Optional[Any]=7 ,lowercase__ : Tuple=True ,lowercase__ : Optional[Any]=True ,lowercase__ : Tuple=True ,lowercase__ : int=True ,lowercase__ : Any=9_9 ,lowercase__ : Optional[Any]=6_4 ,lowercase__ : Dict=3_2 ,lowercase__ : Tuple=5 ,lowercase__ : Optional[Any]=4 ,lowercase__ : Union[str, Any]=3_7 ,lowercase__ : List[str]="gelu" ,lowercase__ : Optional[Any]=0.1 ,lowercase__ : str=0.1 ,lowercase__ : Optional[Any]=5_1_2 ,lowercase__ : List[str]=1_6 ,lowercase__ : Optional[int]=2 ,lowercase__ : int=0.0_2 ,lowercase__ : Any=3 ,lowercase__ : Optional[Any]=4 ,lowercase__ : List[Any]=None ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = embedding_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return MegatronBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,embedding_size=self.embedding_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : List[Any] ,lowercase__ : Dict ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : Any ,lowercase__ : Union[str, Any] ): __lowercase = MegatronBertModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Any ,lowercase__ : Optional[int] ,lowercase__ : Any ,lowercase__ : str ,lowercase__ : str ,lowercase__ : Tuple ,lowercase__ : int ): __lowercase = MegatronBertForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : str ): __lowercase = MegatronBertForCausalLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Optional[int] ,lowercase__ : Dict ,lowercase__ : str ,lowercase__ : Any ,lowercase__ : Any ): __lowercase = MegatronBertForNextSentencePrediction(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Optional[int] ,lowercase__ : Optional[Any] ,lowercase__ : str ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : List[Any] ,lowercase__ : Any ): __lowercase = MegatronBertForPreTraining(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,next_sentence_label=lowercase__ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Dict ,lowercase__ : Any ): __lowercase = MegatronBertForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,start_positions=lowercase__ ,end_positions=lowercase__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Optional[int] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ): __lowercase = self.num_labels __lowercase = MegatronBertForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Union[str, Any] ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : Dict ): __lowercase = self.num_labels __lowercase = MegatronBertForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : Tuple ,lowercase__ : str ,lowercase__ : Dict ): __lowercase = self.num_choices __lowercase = MegatronBertForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : List[Any] = ( { 'feature-extraction': MegatronBertModel, 'fill-mask': MegatronBertForMaskedLM, 'question-answering': MegatronBertForQuestionAnswering, 'text-classification': MegatronBertForSequenceClassification, 'text-generation': MegatronBertForCausalLM, 'token-classification': MegatronBertForTokenClassification, 'zero-shot': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Optional[int] = True # test_resize_embeddings = False SCREAMING_SNAKE_CASE : str = False def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Union[str, Any] ,lowercase__ : str ,lowercase__ : Dict=False ): __lowercase = super()._prepare_for_class(lowercase__ ,lowercase__ ,return_labels=lowercase__ ) if return_labels: if model_class in get_values(lowercase__ ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowercase__ ) __lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowercase__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = MegatronBertModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : str ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowercase__ ) def _A ( A__ ): """simple docstring""" return torch.tensor( A__ , dtype=torch.long , device=A__ , ) lowerCAmelCase__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class lowercase_ (unittest.TestCase ): """simple docstring""" @slow @unittest.skip('''Model is not available.''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: __lowercase = os.path.join(os.environ['''MYDIR'''] ,lowercase__ ) __lowercase = MegatronBertModel.from_pretrained(lowercase__ ) model.to(lowercase__ ) model.half() __lowercase = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): __lowercase = model(lowercase__ )[0] __lowercase = torch.Size((1, 9, 1_0_2_4) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3 ): for jj in range(3 ): __lowercase = output[0, ii, jj] __lowercase = expected[3 * ii + jj] __lowercase = '''ii={} jj={} a={} b={}'''.format(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) self.assertTrue(math.isclose(lowercase__ ,lowercase__ ,rel_tol=lowercase__ ,abs_tol=lowercase__ ) ,msg=lowercase__ )
41
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCAmelCase__ = getLogger(__name__) lowerCAmelCase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def _A ( A__ , A__ , A__ , A__ = 8 , A__ = DEFAULT_DEVICE , A__=False , A__="summarization" , A__=None , **A__ , ): """simple docstring""" __lowercase = Path(A__ ).open('''w''' , encoding='''utf-8''' ) __lowercase = str(A__ ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained(A__ ).to(A__ ) if fpaa: __lowercase = model.half() __lowercase = AutoTokenizer.from_pretrained(A__ ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __lowercase = time.time() # update config with task specific params use_task_specific_params(A__ , A__ ) if prefix is None: __lowercase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(A__ , A__ ) ) ): __lowercase = [prefix + text for text in examples_chunk] __lowercase = tokenizer(A__ , return_tensors='''pt''' , truncation=A__ , padding='''longest''' ).to(A__ ) __lowercase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **A__ , ) __lowercase = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __lowercase = int(time.time() - start_time ) # seconds __lowercase = len(A__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _A ( ): """simple docstring""" return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def _A ( A__=True ): """simple docstring""" __lowercase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=A__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=A__ , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=A__ , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=A__ , required=A__ , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=A__ , required=A__ , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=A__ , required=A__ , default=A__ , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=A__ , required=A__ , default=A__ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=A__ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=A__ , default=8 , required=A__ , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=A__ , default=-1 , required=A__ , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=A__ , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowercase , __lowercase = parser.parse_known_args() __lowercase = parse_numeric_n_bool_cl_kwargs(A__ ) if parsed_args and verbose: print(F"parsed the following generate kwargs: {parsed_args}" ) __lowercase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowercase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=A__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __lowercase = generate_summaries_or_translations( A__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **A__ , ) if args.reference_path is None: return {} # Compute scores __lowercase = calculate_bleu if '''translation''' in args.task else calculate_rouge __lowercase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowercase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(A__ )] __lowercase = score_fn(A__ , A__ ) scores.update(A__ ) if args.dump_args: scores.update(A__ ) if args.info: __lowercase = args.info if verbose: print(A__ ) if args.score_path is not None: json.dump(A__ , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
41
1
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def __lowercase ( snake_case, snake_case, snake_case, snake_case ): """simple docstring""" __magic_name__ :List[str] = BigBirdConfig.from_json_file(snake_case ) print(f'''Building PyTorch model from configuration: {config}''' ) if is_trivia_qa: __magic_name__ :List[Any] = BigBirdForQuestionAnswering(snake_case ) else: __magic_name__ :List[Any] = BigBirdForPreTraining(snake_case ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(snake_case, snake_case, is_trivia_qa=snake_case ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) SCREAMING_SNAKE_CASE__ : Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
0
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(A__ ): print(F"{i}\t\t{d}" ) def _A ( A__ , A__ , A__ ): """simple docstring""" for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = [float('''inf''' )] * vertex_count __lowercase = 0.0 for _ in range(vertex_count - 1 ): for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: __lowercase = distance[u] + w __lowercase = check_negative_cycle(A__ , A__ , A__ ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = int(input('''Enter number of vertices: ''').strip()) lowerCAmelCase__ = int(input('''Enter number of edges: ''').strip()) lowerCAmelCase__ = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) lowerCAmelCase__ = {'''src''': src, '''dst''': dest, '''weight''': weight} lowerCAmelCase__ = int(input('''\nEnter shortest path source:''').strip()) lowerCAmelCase__ = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
41
0
from __future__ import annotations from collections.abc import Callable __snake_case = list[list[float | int]] def _A ( _lowercase , _lowercase ) -> Matrix: """simple docstring""" __UpperCamelCase = len(_lowercase ) __UpperCamelCase = [[0 for _ in range(size + 1 )] for _ in range(_lowercase )] __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 for row in range(_lowercase ): for col in range(_lowercase ): __UpperCamelCase = matrix[row][col] __UpperCamelCase = vector[row][0] __UpperCamelCase = 0 __UpperCamelCase = 0 while row < size and col < size: # pivoting __UpperCamelCase = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowercase , _lowercase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __UpperCamelCase, __UpperCamelCase = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowercase ): __UpperCamelCase = augmented[rowa][col] / augmented[row][col] __UpperCamelCase = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowercase ): for row in range(_lowercase ): __UpperCamelCase = augmented[row][col] / augmented[col][col] for cola in range(_lowercase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowercase ) ] def _A ( _lowercase ) -> Callable[[int], int]: """simple docstring""" __UpperCamelCase = len(_lowercase ) __UpperCamelCase = [[0 for _ in range(_lowercase )] for _ in range(_lowercase )] __UpperCamelCase = [[0] for _ in range(_lowercase )] __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 for x_val, y_val in enumerate(_lowercase ): for col in range(_lowercase ): __UpperCamelCase = (x_val + 1) ** (size - col - 1) __UpperCamelCase = y_val __UpperCamelCase = solve(_lowercase , _lowercase ) def interpolated_func(_lowercase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowercase ) ) return interpolated_func def _A ( _lowercase ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def _A ( _lowercase = question_function , _lowercase = 10 ) -> int: """simple docstring""" __UpperCamelCase = [func(_lowercase ) for x_val in range(1 , order + 1 )] __UpperCamelCase = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] __UpperCamelCase = 0 __UpperCamelCase = 42 __UpperCamelCase = 42 for poly in polynomials: __UpperCamelCase = 1 while func(_lowercase ) == poly(_lowercase ): x_val += 1 ret += poly(_lowercase ) return ret if __name__ == "__main__": print(f"""{solution() = }""")
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[Any] ,*lowercase__ : Optional[Any] ,**lowercase__ : int ): warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' ,lowercase__ ,) super().__init__(*lowercase__ ,**lowercase__ )
41
0
def SCREAMING_SNAKE_CASE_ ( _snake_case :list[int] , _snake_case :list[int] , _snake_case :int ) -> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(_snake_case ) ) def SCREAMING_SNAKE_CASE_ ( _snake_case :list[list[int]] , _snake_case :int , _snake_case :list[int] , _snake_case :int ) -> bool: # Base Case if index == len(_snake_case ): return True # Recursive Step for i in range(_snake_case ): if valid_coloring(graph[index] , _snake_case , _snake_case ): # Color current vertex _A = i # Validate coloring if util_color(_snake_case , _snake_case , _snake_case , index + 1 ): return True # Backtrack _A = -1 return False def SCREAMING_SNAKE_CASE_ ( _snake_case :list[list[int]] , _snake_case :int ) -> list[int]: _A = [-1] * len(_snake_case ) if util_color(_snake_case , _snake_case , _snake_case , 0 ): return colored_vertices return []
2
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _A ( A__ ): """simple docstring""" __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = 0.0_1 with locka.acquire(): with pytest.raises(A__ ): __lowercase = time.time() locka.acquire(A__ ) assert time.time() - _start > timeout def _A ( A__ ): """simple docstring""" __lowercase = '''a''' * 1000 + '''.lock''' __lowercase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(A__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __lowercase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(A__ ): locka.acquire(0 )
41
0
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class SCREAMING_SNAKE_CASE__ : def __init__( self )-> Dict: '''simple docstring''' UpperCamelCase = '' UpperCamelCase = '' UpperCamelCase = [] UpperCamelCase = 0 UpperCamelCase = 256 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 def UpperCAmelCase_ ( self , A_ )-> str: '''simple docstring''' UpperCamelCase = cva.imread(A_ , 0 ) UpperCamelCase = copy.deepcopy(self.img ) UpperCamelCase , UpperCamelCase , UpperCamelCase = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) UpperCamelCase = np.sum(A_ ) for i in range(len(A_ ) ): UpperCamelCase = x[i] / self.k self.sk += prk UpperCamelCase = (self.L - 1) * self.sk if self.rem != 0: UpperCamelCase = int(last % last ) UpperCamelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(A_ ) UpperCamelCase = int(np.ma.count(self.img ) / self.img[1].size ) UpperCamelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCamelCase = self.img[j][i] if num != self.last_list[num]: UpperCamelCase = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCAmelCase : Union[str, Any] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') lowerCAmelCase : str = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
3
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase__ = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
0
"""simple docstring""" import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) __UpperCamelCase : Optional[Any] = logging.getLogger() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] ): lowerCAmelCase = {} lowerCAmelCase = os.path.join(_UpperCAmelCase , 'all_results.json' ) if os.path.exists(_UpperCAmelCase ): with open(_UpperCAmelCase , 'r' ) as f: lowerCAmelCase = json.load(_UpperCAmelCase ) else: raise ValueError(F'can\'t find {path}' ) return results __UpperCamelCase : Union[str, Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" import xla_spawn lowerCAmelCase = self.get_auto_remove_tmp_dir() lowerCAmelCase = F'\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split() with patch.object(_snake_case , 'argv' , _snake_case ): lowerCAmelCase = time() xla_spawn.main() lowerCAmelCase = time() lowerCAmelCase = get_results(_snake_case ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_00 ) def UpperCamelCase__ ( self ): """simple docstring""" import xla_spawn lowerCAmelCase = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(_snake_case , 'argv' , _snake_case ): xla_spawn.main()
4
'''simple docstring''' import argparse import os import re lowerCAmelCase__ = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(R'''\[([^\]]+)\]''') def _A ( A__ ): """simple docstring""" __lowercase = _re_indent.search(A__ ) return "" if search is None else search.groups()[0] def _A ( A__ , A__="" , A__=None , A__=None ): """simple docstring""" __lowercase = 0 __lowercase = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(A__ ): index += 1 __lowercase = ['''\n'''.join(lines[:index] )] else: __lowercase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowercase = [lines[index]] index += 1 while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(A__ ) ) if index < len(A__ ) - 1: __lowercase = [lines[index + 1]] index += 1 else: __lowercase = [] else: blocks.append('''\n'''.join(A__ ) ) __lowercase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A__ ) > 0: blocks.append('''\n'''.join(A__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def _A ( A__ ): """simple docstring""" def _inner(A__ ): return key(A__ ).lower().replace('''_''' , '''''' ) return _inner def _A ( A__ , A__=None ): """simple docstring""" def noop(A__ ): return x if key is None: __lowercase = noop # Constants are all uppercase, they go first. __lowercase = [obj for obj in objects if key(A__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowercase = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()] # Functions begin with a lowercase, they go last. __lowercase = [obj for obj in objects if not key(A__ )[0].isupper()] __lowercase = ignore_underscore(A__ ) return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) def _A ( A__ ): """simple docstring""" def _replace(A__ ): __lowercase = match.groups()[0] if "," not in imports: return F"[{imports}]" __lowercase = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) + "]" __lowercase = import_statement.split('''\n''' ) if len(A__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowercase = 2 if lines[1].strip() == '''[''' else 1 __lowercase = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowercase = sort_objects(A__ , key=lambda A__ : x[1] ) __lowercase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowercase = _re_bracket_content.sub(_replace , lines[1] ) else: __lowercase = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] __lowercase = get_indent(lines[1] ) + ''', '''.join([F"\"{k}\"" for k in sort_objects(A__ )] ) return "\n".join(A__ ) else: # Finally we have to deal with imports fitting on one line __lowercase = _re_bracket_content.sub(_replace , A__ ) return import_statement def _A ( A__ , A__=True ): """simple docstring""" with open(A__ , '''r''' ) as f: __lowercase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowercase = split_code_in_indented_blocks( A__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowercase = main_blocks[block_idx] __lowercase = block.split('''\n''' ) # Get to the start of the imports. __lowercase = 0 while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowercase = len(A__ ) else: line_idx += 1 if line_idx >= len(A__ ): continue # Ignore beginning and last line: they don't contain anything. __lowercase = '''\n'''.join(block_lines[line_idx:-1] ) __lowercase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowercase = split_code_in_indented_blocks(A__ , indent_level=A__ ) # We have two categories of import key: list or _import_structure[key].append/extend __lowercase = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowercase = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowercase = [(i, key) for i, key in enumerate(A__ ) if key is not None] __lowercase = [x[0] for x in sorted(A__ , key=lambda A__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowercase = 0 __lowercase = [] for i in range(len(A__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __lowercase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(A__ ) count += 1 # And we put our main block back together with its first and last line. __lowercase = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(A__ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(A__ , '''w''' ) as f: f.write('''\n'''.join(A__ ) ) def _A ( A__=True ): """simple docstring""" __lowercase = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: __lowercase = sort_imports(os.path.join(A__ , '''__init__.py''' ) , check_only=A__ ) if result: __lowercase = [os.path.join(A__ , '''__init__.py''' )] if len(A__ ) > 0: raise ValueError(F"Would overwrite {len(A__ )} files, run `make style`." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
41
0
'''simple docstring''' from __future__ import annotations class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = text, pattern _lowerCAmelCase , _lowerCAmelCase = len(_lowercase ), len(_lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _lowercase ( self , _lowercase ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = [] for i in range(self.textLen - self.patLen + 1 ): _lowerCAmelCase = self.mismatch_in_text(_lowercase ) if mismatch_index == -1: positions.append(_lowercase ) else: _lowerCAmelCase = self.match_in_pattern(self.text[mismatch_index] ) _lowerCAmelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _lowercase = """ABAABA""" _lowercase = """AB""" _lowercase = BoyerMooreSearch(text, pattern) _lowercase = bms.bad_character_heuristic() if len(positions) == 0: print("""No match found""") else: print("""Pattern found in following positions: """) print(positions)
5
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = TextToVideoSDPipeline SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. SCREAMING_SNAKE_CASE : Optional[int] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') ,up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') ,cross_attention_dim=3_2 ,attention_head_dim=4 ,) __lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,clip_sample=lowercase__ ,set_alpha_to_one=lowercase__ ,) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=1_2_8 ,) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''gelu''' ,projection_dim=5_1_2 ,) __lowercase = CLIPTextModel(lowercase__ ) __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : List[str]=0 ): if str(lowercase__ ).startswith('''mps''' ): __lowercase = torch.manual_seed(lowercase__ ) else: __lowercase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = TextToVideoSDPipeline(**lowercase__ ) __lowercase = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs(lowercase__ ) __lowercase = '''np''' __lowercase = sd_pipe(**lowercase__ ).frames __lowercase = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) __lowercase = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def SCREAMING_SNAKE_CASE ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=1e-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass def SCREAMING_SNAKE_CASE ( self : List[str] ): return super().test_progress_bar() @slow @skip_mps class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2_5 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
41
0
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class UpperCamelCase_ ( UpperCamelCase__ ): def __get__( self :Any , __A :Dict , __A :List[Any]=None ) -> List[Any]: """simple docstring""" if obj is None: return self if self.fget is None: raise AttributeError("""unreadable attribute""" ) SCREAMING_SNAKE_CASE__ = """__cached_""" + self.fget.__name__ SCREAMING_SNAKE_CASE__ = getattr(__A , __A , __A ) if cached is None: SCREAMING_SNAKE_CASE__ = self.fget(__A ) setattr(__A , __A , __A ) return cached def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] ): SCREAMING_SNAKE_CASE__ = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'''invalid truth value {val!r}''' ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int ): if is_torch_fx_proxy(UpperCamelCase__ ): return True if is_torch_available(): import torch if isinstance(UpperCamelCase__ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(UpperCamelCase__ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(UpperCamelCase__ , (jnp.ndarray, Tracer) ): return True return isinstance(UpperCamelCase__ , np.ndarray ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple ): return isinstance(UpperCamelCase__ , np.ndarray ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): return _is_numpy(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict ): import torch return isinstance(UpperCamelCase__ , torch.Tensor ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ): return False if not is_torch_available() else _is_torch(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict ): import torch return isinstance(UpperCamelCase__ , torch.device ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): return False if not is_torch_available() else _is_torch_device(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): import torch if isinstance(UpperCamelCase__ , UpperCamelCase__ ): if hasattr(UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = getattr(UpperCamelCase__ , UpperCamelCase__ ) else: return False return isinstance(UpperCamelCase__ , torch.dtype ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple ): return False if not is_torch_available() else _is_torch_dtype(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] ): import tensorflow as tf return isinstance(UpperCamelCase__ , tf.Tensor ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int ): return False if not is_tf_available() else _is_tensorflow(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple ): import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(UpperCamelCase__ , """is_symbolic_tensor""" ): return tf.is_symbolic_tensor(UpperCamelCase__ ) return type(UpperCamelCase__ ) == tf.Tensor def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] ): return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any ): import jax.numpy as jnp # noqa: F811 return isinstance(UpperCamelCase__ , jnp.ndarray ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ): return False if not is_flax_available() else _is_jax(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[int] ): if isinstance(UpperCamelCase__ , (dict, UserDict) ): return {k: to_py_obj(UpperCamelCase__ ) for k, v in obj.items()} elif isinstance(UpperCamelCase__ , (list, tuple) ): return [to_py_obj(UpperCamelCase__ ) for o in obj] elif is_tf_tensor(UpperCamelCase__ ): return obj.numpy().tolist() elif is_torch_tensor(UpperCamelCase__ ): return obj.detach().cpu().tolist() elif is_jax_tensor(UpperCamelCase__ ): return np.asarray(UpperCamelCase__ ).tolist() elif isinstance(UpperCamelCase__ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple ): if isinstance(UpperCamelCase__ , (dict, UserDict) ): return {k: to_numpy(UpperCamelCase__ ) for k, v in obj.items()} elif isinstance(UpperCamelCase__ , (list, tuple) ): return np.array(UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): return obj.numpy() elif is_torch_tensor(UpperCamelCase__ ): return obj.detach().cpu().numpy() elif is_jax_tensor(UpperCamelCase__ ): return np.asarray(UpperCamelCase__ ) else: return obj class UpperCamelCase_ ( UpperCamelCase__ ): def _snake_case ( self :List[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = fields(self ) # Safety and consistency checks if not len(__A ): raise ValueError(f'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f'''{self.__class__.__name__} should not have more than one required field.''' ) SCREAMING_SNAKE_CASE__ = getattr(self , class_fields[0].name ) SCREAMING_SNAKE_CASE__ = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__A ): if isinstance(__A , __A ): SCREAMING_SNAKE_CASE__ = first_field.items() SCREAMING_SNAKE_CASE__ = True else: try: SCREAMING_SNAKE_CASE__ = iter(__A ) SCREAMING_SNAKE_CASE__ = True except TypeError: SCREAMING_SNAKE_CASE__ = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__A ): if ( not isinstance(__A , (list, tuple) ) or not len(__A ) == 2 or not isinstance(element[0] , __A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute SCREAMING_SNAKE_CASE__ = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: SCREAMING_SNAKE_CASE__ = element[1] elif first_field is not None: SCREAMING_SNAKE_CASE__ = first_field else: for field in class_fields: SCREAMING_SNAKE_CASE__ = getattr(self , field.name ) if v is not None: SCREAMING_SNAKE_CASE__ = v def __delitem__( self :List[str] , *__A :Tuple , **__A :str ) -> List[str]: """simple docstring""" raise Exception(f'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def _snake_case ( self :Union[str, Any] , *__A :Union[str, Any] , **__A :List[Any] ) -> Optional[Any]: """simple docstring""" raise Exception(f'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def _snake_case ( self :Union[str, Any] , *__A :List[Any] , **__A :Union[str, Any] ) -> Tuple: """simple docstring""" raise Exception(f'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def _snake_case ( self :Optional[Any] , *__A :Union[str, Any] , **__A :Optional[int] ) -> int: """simple docstring""" raise Exception(f'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self :List[str] , __A :List[str] ) -> str: """simple docstring""" if isinstance(__A , __A ): SCREAMING_SNAKE_CASE__ = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self :List[str] , __A :Dict , __A :Union[str, Any] ) -> Any: """simple docstring""" if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__A , __A ) super().__setattr__(__A , __A ) def __setitem__( self :Optional[int] , __A :int , __A :Any ) -> Tuple: """simple docstring""" super().__setitem__(__A , __A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__A , __A ) def _snake_case ( self :Union[str, Any] ) -> Tuple[Any]: """simple docstring""" return tuple(self[k] for k in self.keys() ) class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ ): @classmethod def _snake_case ( cls :Union[str, Any] , __A :str ) -> str: """simple docstring""" raise ValueError( f'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "longest" lowerCamelCase_ = "max_length" lowerCamelCase_ = "do_not_pad" class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "pt" lowerCamelCase_ = "tf" lowerCamelCase_ = "np" lowerCamelCase_ = "jax" class UpperCamelCase_ : def __init__( self :Union[str, Any] , __A :List[ContextManager] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = context_managers SCREAMING_SNAKE_CASE__ = ExitStack() def __enter__( self :Any ) -> Any: """simple docstring""" for context_manager in self.context_managers: self.stack.enter_context(__A ) def __exit__( self :Any , *__A :Union[str, Any] , **__A :Dict ) -> Tuple: """simple docstring""" self.stack.__exit__(*__A , **__A ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] ): SCREAMING_SNAKE_CASE__ = infer_framework(UpperCamelCase__ ) if framework == "tf": SCREAMING_SNAKE_CASE__ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": SCREAMING_SNAKE_CASE__ = inspect.signature(model_class.forward ) # PyTorch models else: SCREAMING_SNAKE_CASE__ = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int ): SCREAMING_SNAKE_CASE__ = model_class.__name__ SCREAMING_SNAKE_CASE__ = infer_framework(UpperCamelCase__ ) if framework == "tf": SCREAMING_SNAKE_CASE__ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": SCREAMING_SNAKE_CASE__ = inspect.signature(model_class.forward ) # PyTorch models else: SCREAMING_SNAKE_CASE__ = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: MutableMapping , UpperCamelCase__: str = "" , UpperCamelCase__: str = "." ): def _flatten_dict(UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple="" , UpperCamelCase__: Optional[Any]="." ): for k, v in d.items(): SCREAMING_SNAKE_CASE__ = str(UpperCamelCase__ ) + delimiter + str(UpperCamelCase__ ) if parent_key else k if v and isinstance(UpperCamelCase__ , UpperCamelCase__ ): yield from flatten_dict(UpperCamelCase__ , UpperCamelCase__ , delimiter=UpperCamelCase__ ).items() else: yield key, v return dict(_flatten_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) @contextmanager def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: bool = False ): if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Optional[int]=None ): if is_numpy_array(UpperCamelCase__ ): return np.transpose(UpperCamelCase__ , axes=UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.T if axes is None else array.permute(*UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.transpose(UpperCamelCase__ , perm=UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return jnp.transpose(UpperCamelCase__ , axes=UpperCamelCase__ ) else: raise ValueError(f'''Type not supported for transpose: {type(UpperCamelCase__ )}.''' ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: str ): if is_numpy_array(UpperCamelCase__ ): return np.reshape(UpperCamelCase__ , UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.reshape(*UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.reshape(UpperCamelCase__ , UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return jnp.reshape(UpperCamelCase__ , UpperCamelCase__ ) else: raise ValueError(f'''Type not supported for reshape: {type(UpperCamelCase__ )}.''' ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: Optional[Any]=None ): if is_numpy_array(UpperCamelCase__ ): return np.squeeze(UpperCamelCase__ , axis=UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.squeeze() if axis is None else array.squeeze(dim=UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.squeeze(UpperCamelCase__ , axis=UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return jnp.squeeze(UpperCamelCase__ , axis=UpperCamelCase__ ) else: raise ValueError(f'''Type not supported for squeeze: {type(UpperCamelCase__ )}.''' ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: str ): if is_numpy_array(UpperCamelCase__ ): return np.expand_dims(UpperCamelCase__ , UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.unsqueeze(dim=UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.expand_dims(UpperCamelCase__ , axis=UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return jnp.expand_dims(UpperCamelCase__ , axis=UpperCamelCase__ ) else: raise ValueError(f'''Type not supported for expand_dims: {type(UpperCamelCase__ )}.''' ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ): if is_numpy_array(UpperCamelCase__ ): return np.size(UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.numel() elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.size(UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return array.size else: raise ValueError(f'''Type not supported for expand_dims: {type(UpperCamelCase__ )}.''' ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: Optional[Any] ): for key, value in auto_map.items(): if isinstance(UpperCamelCase__ , (tuple, list) ): SCREAMING_SNAKE_CASE__ = [f'''{repo_id}--{v}''' if (v is not None and """--""" not in v) else v for v in value] elif value is not None and "--" not in value: SCREAMING_SNAKE_CASE__ = f'''{repo_id}--{value}''' return auto_map def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict ): for base_class in inspect.getmro(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = base_class.__module__ SCREAMING_SNAKE_CASE__ = base_class.__name__ if module.startswith("""tensorflow""" ) or module.startswith("""keras""" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("""torch""" ) or name == "PreTrainedModel": return "pt" elif module.startswith("""flax""" ) or module.startswith("""jax""" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'''Could not infer framework from class {model_class}.''' )
6
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _A ( A__ ): """simple docstring""" __lowercase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def _A ( A__ ): """simple docstring""" __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(A__ , A__ , bias=A__ ) __lowercase = emb.weight.data return lin_layer def _A ( A__ , A__="facebook/mbart-large-en-ro" , A__=False , A__=False ): """simple docstring""" __lowercase = torch.load(A__ , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A__ ) __lowercase = state_dict['''encoder.embed_tokens.weight'''].shape[0] __lowercase = MBartConfig.from_pretrained(A__ , vocab_size=A__ ) if mbart_aa and finetuned: __lowercase = '''relu''' __lowercase = state_dict['''decoder.embed_tokens.weight'''] __lowercase = MBartForConditionalGeneration(A__ ) model.model.load_state_dict(A__ ) if finetuned: __lowercase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
41
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging a = logging.get_logger(__name__) a = { '''speechbrain/m-ctc-t-large''': '''https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json''', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[Any] = '''mctct''' def __init__( self : Optional[Any] , _UpperCAmelCase : str=8_065 , _UpperCAmelCase : int=1_536 , _UpperCAmelCase : Tuple=36 , _UpperCAmelCase : int=6_144 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[str]=384 , _UpperCAmelCase : Dict=920 , _UpperCAmelCase : Tuple=1E-5 , _UpperCAmelCase : Optional[Any]=0.3 , _UpperCAmelCase : Any="relu" , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Optional[int]=0.3 , _UpperCAmelCase : int=0.3 , _UpperCAmelCase : Dict=1 , _UpperCAmelCase : List[Any]=0 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Optional[Any]=1 , _UpperCAmelCase : Tuple=0.3 , _UpperCAmelCase : Any=1 , _UpperCAmelCase : str=(7,) , _UpperCAmelCase : Tuple=(3,) , _UpperCAmelCase : Any=80 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[str]="sum" , _UpperCAmelCase : List[str]=False , **_UpperCAmelCase : Union[str, Any] , ): super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = intermediate_size _A = num_attention_heads _A = attention_head_dim _A = max_position_embeddings _A = layer_norm_eps _A = layerdrop _A = hidden_act _A = initializer_range _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = pad_token_id _A = bos_token_id _A = eos_token_id _A = conv_glu_dim _A = conv_dropout _A = num_conv_layers _A = input_feat_per_channel _A = input_channels _A = conv_channels _A = ctc_loss_reduction _A = ctc_zero_infinity # prevents config testing fail with exporting to json _A = list(_UpperCAmelCase ) _A = list(_UpperCAmelCase ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ' F'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
7
'''simple docstring''' import os from math import logaa def _A ( A__ = "base_exp.txt" ): """simple docstring""" __lowercase = 0 __lowercase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowercase , __lowercase = list(map(A__ , line.split(''',''' ) ) ) if x * logaa(A__ ) > largest: __lowercase = x * logaa(A__ ) __lowercase = i + 1 return result if __name__ == "__main__": print(solution())
41
0
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase__ : List[str] = logging.getLogger(__name__) def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : List[Any] ) -> int: # save results if os.path.exists(__snake_case ): if os.path.exists(os.path.join(__snake_case , 'config.json' ) ) and os.path.isfile( os.path.join(__snake_case , 'config.json' ) ): os.remove(os.path.join(__snake_case , 'config.json' ) ) if os.path.exists(os.path.join(__snake_case , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(__snake_case , 'pytorch_model.bin' ) ): os.remove(os.path.join(__snake_case , 'pytorch_model.bin' ) ) else: os.makedirs(__snake_case ) model.save_pretrained(__snake_case ) def _lowerCAmelCase ( __snake_case : Dict , __snake_case : List[Any]=False ) -> Any: __A : Optional[Any] = 2 if unlogit: __A : Optional[Any] = torch.pow(__snake_case , __snake_case ) __A : Tuple = p * torch.log(__snake_case ) __A : Any = 0 return -plogp.sum(dim=-1 ) def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Optional[int]: logger.info('lv, h >\t' + '\t'.join(f'{x + 1}' for x in range(len(__snake_case ) ) ) ) for row in range(len(__snake_case ) ): if tensor.dtype != torch.long: logger.info(f'layer {row + 1}:\t' + '\t'.join(f'{x:.5f}' for x in tensor[row].cpu().data ) ) else: logger.info(f'layer {row + 1}:\t' + '\t'.join(f'{x:d}' for x in tensor[row].cpu().data ) ) def _lowerCAmelCase ( __snake_case : Any , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[Any]=True , __snake_case : str=True , __snake_case : List[Any]=None , __snake_case : Union[str, Any]=False ) -> Optional[Any]: __A ,__A : str = model.config.num_hidden_layers, model.config.num_attention_heads __A : Dict = torch.zeros(__snake_case , __snake_case ).to(args.device ) __A : str = torch.zeros(__snake_case , __snake_case ).to(args.device ) if head_mask is None: __A : List[Any] = torch.ones(__snake_case , __snake_case ).to(args.device ) head_mask.requires_grad_(requires_grad=__snake_case ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: __A : int = None __A : int = 0.0 __A : Optional[Any] = 0.0 for step, inputs in enumerate(tqdm(__snake_case , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): __A : Dict = tuple(t.to(args.device ) for t in inputs ) ((__A) ,) : Union[str, Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) __A : Any = model(__snake_case , labels=__snake_case , head_mask=__snake_case ) # (loss), lm_logits, presents, (all hidden_states), (attentions) __A ,__A ,__A : Union[str, Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__snake_case ): __A : List[Any] = entropy(attn.detach() , __snake_case ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__snake_case ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: __A : Tuple = 2 __A : Dict = torch.pow(torch.pow(__snake_case , __snake_case ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-2_0 if not args.dont_normalize_global_importance: __A : Any = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(__snake_case ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(__snake_case ) logger.info('Head ranked by importance scores' ) __A : Any = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) __A : int = torch.arange( head_importance.numel() , device=args.device ) __A : Tuple = head_ranks.view_as(__snake_case ) print_ad_tensor(__snake_case ) return attn_entropy, head_importance, total_loss def _lowerCAmelCase ( __snake_case : Any , __snake_case : Optional[Any] , __snake_case : Any ) -> Tuple: __A ,__A ,__A : List[Any] = compute_heads_importance(__snake_case , __snake_case , __snake_case , compute_entropy=__snake_case ) __A : Union[str, Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , __snake_case , original_score * args.masking_threshold ) __A : Optional[int] = torch.ones_like(__snake_case ) __A : Union[str, Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) __A : List[str] = original_score while current_score >= original_score * args.masking_threshold: __A : Any = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads __A : Dict = float('Inf' ) __A : List[str] = head_importance.view(-1 ).sort()[1] if len(__snake_case ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads __A : List[Any] = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) __A : Optional[Any] = new_head_mask.view(-1 ) __A : Dict = 0.0 __A : Union[str, Any] = new_head_mask.view_as(__snake_case ) __A : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(__snake_case ) # Compute metric and head importance again __A ,__A ,__A : Tuple = compute_heads_importance( __snake_case , __snake_case , __snake_case , compute_entropy=__snake_case , head_mask=__snake_case ) __A : Tuple = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , __snake_case , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('Final head mask' ) print_ad_tensor(__snake_case ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : str , __snake_case : int ) -> int: __A : Any = datetime.now() __A ,__A ,__A : Union[str, Any] = compute_heads_importance( __snake_case , __snake_case , __snake_case , compute_entropy=__snake_case , compute_importance=__snake_case , head_mask=__snake_case ) __A : Tuple = 1 / loss __A : str = datetime.now() - before_time __A : Union[str, Any] = sum(p.numel() for p in model.parameters() ) __A : str = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__snake_case ) ) } for k, v in heads_to_prune.items(): if isinstance(__snake_case , __snake_case ): __A : Optional[int] = [ v, ] assert sum(len(__snake_case ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__snake_case ) __A : int = sum(p.numel() for p in model.parameters() ) __A : Dict = datetime.now() __A ,__A ,__A : Any = compute_heads_importance( __snake_case , __snake_case , __snake_case , compute_entropy=__snake_case , compute_importance=__snake_case , head_mask=__snake_case , actually_pruned=__snake_case , ) __A : Dict = 1 / loss __A : Optional[Any] = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , __snake_case , __snake_case , pruned_num_params / original_num_params * 1_00 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , __snake_case , __snake_case ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_00 ) save_model(__snake_case , args.output_dir ) def _lowerCAmelCase ( ) -> Optional[int]: __A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=__snake_case , type=__snake_case , required=__snake_case , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=__snake_case , type=__snake_case , required=__snake_case , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=__snake_case , type=__snake_case , required=__snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=__snake_case , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=__snake_case , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=__snake_case , type=__snake_case , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=__snake_case , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=__snake_case , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=__snake_case , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=__snake_case , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_28 , type=__snake_case , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=__snake_case , help='Batch size.' ) parser.add_argument('--seed' , type=__snake_case , default=42 ) parser.add_argument('--local_rank' , type=__snake_case , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=__snake_case , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__snake_case , default='' , help='Can be used for distant debugging.' ) __A : Tuple = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__snake_case ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: __A : Optional[int] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) __A : Optional[Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) __A : Dict = torch.device('cuda' , args.local_rank ) __A : int = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) __A : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: __A : List[str] = nn.parallel.DistributedDataParallel( __snake_case , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__snake_case ) elif args.n_gpu > 1: __A : Tuple = nn.DataParallel(__snake_case ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__snake_case ) torch.save(__snake_case , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , __snake_case ) # Prepare dataset __A : Any = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) __A : List[Any] = (torch.from_numpy(__snake_case ),) __A : List[str] = TensorDataset(*__snake_case ) __A : Any = RandomSampler(__snake_case ) __A : List[str] = DataLoader(__snake_case , sampler=__snake_case , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__snake_case , __snake_case , __snake_case ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: __A : Optional[int] = mask_heads(__snake_case , __snake_case , __snake_case ) prune_heads(__snake_case , __snake_case , __snake_case , __snake_case ) if __name__ == "__main__": main()
8
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'blenderbot-small' SCREAMING_SNAKE_CASE : int = ['past_key_values'] SCREAMING_SNAKE_CASE : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] ,lowercase__ : List[str]=5_0_2_6_5 ,lowercase__ : Optional[Any]=5_1_2 ,lowercase__ : Optional[int]=8 ,lowercase__ : List[Any]=2_0_4_8 ,lowercase__ : List[str]=1_6 ,lowercase__ : str=8 ,lowercase__ : Any=2_0_4_8 ,lowercase__ : Tuple=1_6 ,lowercase__ : Tuple=0.0 ,lowercase__ : List[str]=0.0 ,lowercase__ : Any=True ,lowercase__ : str=True ,lowercase__ : int="gelu" ,lowercase__ : Tuple=5_1_2 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : str=0.0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : List[Any]=False ,lowercase__ : Optional[int]=0 ,lowercase__ : Optional[int]=1 ,lowercase__ : str=2 ,lowercase__ : int=2 ,**lowercase__ : List[str] ,): __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = use_cache __lowercase = encoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,is_encoder_decoder=lowercase__ ,decoder_start_token_id=lowercase__ ,forced_eos_token_id=lowercase__ ,**lowercase__ ,) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Dict ): if self.task in ["default", "seq2seq-lm"]: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase = {0: '''batch'''} __lowercase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase__ ,direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super().outputs else: __lowercase = super(lowercase__ ,self ).outputs if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) # Generate decoder inputs __lowercase = seq_length if not self.use_past else 1 __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __lowercase = dict(**lowercase__ ,**lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape __lowercase = common_inputs['''decoder_input_ids'''].shape[1] __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = decoder_seq_length + 3 __lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase__ ,lowercase__ )] ,dim=1 ) __lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase = self.num_layers __lowercase = min(lowercase__ ,lowercase__ ) __lowercase = max(lowercase__ ,lowercase__ ) - min_num_layers __lowercase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), ) ) # TODO: test this. __lowercase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase__ ,lowercase__ ): common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase , __lowercase = self.num_layers __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = common_inputs['''attention_mask'''].dtype __lowercase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase__ ,lowercase__ ,dtype=lowercase__ )] ,dim=1 ) __lowercase = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ ) ] return common_inputs def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = tokenizer.num_special_tokens_to_add(lowercase__ ) __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowercase__ ) # Generate dummy inputs according to compute batch and sequence __lowercase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase = dict(tokenizer(lowercase__ ,return_tensors=lowercase__ ) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): if self.task in ["default", "seq2seq-lm"]: __lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) elif self.task == "causal-lm": __lowercase = self._generate_dummy_inputs_for_causal_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) else: __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super()._flatten_past_key_values_(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) else: __lowercase = super(lowercase__ ,self )._flatten_past_key_values_( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
41
0
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE__ = { '''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''' } def A ( __UpperCamelCase = "dhaka" , __UpperCamelCase = 5 ) -> int: A__ = min(__UpperCamelCase , 50 ) # Prevent abuse! A__ = { 'q': query, 'tbm': 'isch', 'hl': 'en', 'ijn': '0', } A__ = requests.get('https://www.google.com/search' , params=__UpperCamelCase , headers=__UpperCamelCase ) A__ = BeautifulSoup(html.text , 'html.parser' ) A__ = ''.join( re.findall(r'AF_initDataCallback\(([^<]+)\);' , str(soup.select('script' ) ) ) ) A__ = json.dumps(__UpperCamelCase ) A__ = json.loads(__UpperCamelCase ) A__ = re.findall( r'\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",' , __UpperCamelCase , ) if not matched_google_image_data: return 0 A__ = re.sub( r'\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]' , '' , str(__UpperCamelCase ) , ) A__ = re.findall( r'(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]' , __UpperCamelCase , ) for index, fixed_full_res_image in enumerate(__UpperCamelCase ): if index >= max_images: return index A__ = bytes(__UpperCamelCase , 'ascii' ).decode( 'unicode-escape' ) A__ = bytes(__UpperCamelCase , 'ascii' ).decode( 'unicode-escape' ) A__ = urllib.request.build_opener() A__ = [ ( 'User-Agent', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582', ) ] urllib.request.install_opener(__UpperCamelCase ) A__ = f'''query_{query.replace(" " , "_" )}''' if not os.path.exists(__UpperCamelCase ): os.makedirs(__UpperCamelCase ) urllib.request.urlretrieve( # noqa: S310 __UpperCamelCase , f'''{path_name}/original_size_img_{index}.jpg''' ) return index if __name__ == "__main__": try: SCREAMING_SNAKE_CASE__ = download_images_from_google_query(sys.argv[1]) print(f'{image_count} images were downloaded to disk.') except IndexError: print('''Please provide a search term.''') raise
9
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" if b == 0: return (1, 0) ((__lowercase) , (__lowercase)) = extended_euclid(A__ , a % b ) __lowercase = a // b return (y, x - k * y) def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m def _A ( A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) if b < 0: __lowercase = (b % n + n) % n return b def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase , __lowercase = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
41
0
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): _UpperCamelCase = multiprocessing.Manager() _UpperCamelCase = manager.list() _UpperCamelCase = multiprocessing.Process(target=__snake_case , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def _snake_case ( __snake_case , __snake_case , __snake_case ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil _UpperCamelCase = shutil.rmtree _UpperCamelCase = os.rmdir _UpperCamelCase = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: _UpperCamelCase = {} with swallow_io(): with time_limit(__snake_case ): exec(__snake_case , __snake_case ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(f"""failed: {e}""" ) # Needed for cleaning up. _UpperCamelCase = rmtree _UpperCamelCase = rmdir _UpperCamelCase = chdir @contextlib.contextmanager def _snake_case ( __snake_case ): def signal_handler(__snake_case , __snake_case ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __snake_case ) signal.signal(signal.SIGALRM , __snake_case ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def _snake_case ( ): _UpperCamelCase = WriteOnlyStringIO() with contextlib.redirect_stdout(__snake_case ): with contextlib.redirect_stderr(__snake_case ): with redirect_stdin(__snake_case ): yield @contextlib.contextmanager def _snake_case ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__snake_case ): yield dirname class lowerCAmelCase_ ( __lowercase ): pass class lowerCAmelCase_ ( io.StringIO ): def UpperCamelCase_ ( self : str , *_A : Tuple , **_A : int ): raise OSError def UpperCamelCase_ ( self : int , *_A : List[Any] , **_A : Optional[Any] ): raise OSError def UpperCamelCase_ ( self : Optional[int] , *_A : Any , **_A : Dict ): raise OSError def UpperCamelCase_ ( self : int , *_A : Tuple , **_A : str ): return False class lowerCAmelCase_ ( contextlib._RedirectStream ): # type: ignore UpperCAmelCase = "stdin" @contextlib.contextmanager def _snake_case ( __snake_case ): if root == ".": yield return _UpperCamelCase = os.getcwd() os.chdir(__snake_case ) try: yield except BaseException as exc: raise exc finally: os.chdir(__snake_case ) def _snake_case ( __snake_case=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins _UpperCamelCase = None _UpperCamelCase = None import os _UpperCamelCase = '''1''' _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None import shutil _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None import subprocess _UpperCamelCase = None # type: ignore _UpperCamelCase = None import sys _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None
10
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _A ( ): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __lowercase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , A__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _A ( ): """simple docstring""" assert _test_patching.open is open __lowercase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , A__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , A__ ): pass def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , A__ ) is None with patch_submodule(_test_patching , '''len''' , A__ ): assert _test_patching.len is mock assert _test_patching.len is len def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_start_and_stop_mock__''' __lowercase = patch_submodule(_test_patching , '''open''' , A__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _A ( ): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __lowercase = '''__test_patch_submodule_successive_join__''' __lowercase = '''__test_patch_submodule_successive_dirname__''' __lowercase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , A__ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , A__ ): pass
41
0
'''simple docstring''' def lowerCAmelCase (__A , __A): """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(__A , int(b / 2)) * actual_power(__A , int(b / 2)) else: return a * actual_power(__A , int(b / 2)) * actual_power(__A , int(b / 2)) def lowerCAmelCase (__A , __A): """simple docstring""" if b < 0: return 1 / actual_power(__A , __A) return actual_power(__A , __A) if __name__ == "__main__": print(power(-2, -3))
11
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : """simple docstring""" def __init__( self : Dict ,lowercase__ : Dict ,lowercase__ : int=1_3 ,lowercase__ : List[str]=7 ,lowercase__ : int=True ,lowercase__ : int=True ,lowercase__ : Union[str, Any]=True ,lowercase__ : List[Any]=True ,lowercase__ : str=9_9 ,lowercase__ : Optional[Any]=3_2 ,lowercase__ : Union[str, Any]=5 ,lowercase__ : List[Any]=4 ,lowercase__ : str=3_7 ,lowercase__ : Tuple="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : Dict=0.1 ,lowercase__ : int=1_2_8 ,lowercase__ : Dict=3_2 ,lowercase__ : Dict=1_6 ,lowercase__ : Any=2 ,lowercase__ : int=0.0_2 ,lowercase__ : List[str]=3 ,lowercase__ : Dict=4 ,lowercase__ : Optional[int]=None ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return NezhaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.prepare_config_and_inputs() __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : str ): __lowercase = NezhaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Dict ,lowercase__ : str ,lowercase__ : Optional[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,): __lowercase = True __lowercase = NezhaModel(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,encoder_attention_mask=lowercase__ ,) __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,) __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): __lowercase = NezhaForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): __lowercase = NezhaForNextSentencePrediction(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ): __lowercase = NezhaForPreTraining(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,next_sentence_label=lowercase__ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ): __lowercase = NezhaForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,start_positions=lowercase__ ,end_positions=lowercase__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Tuple ,lowercase__ : str ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : Optional[int] ,lowercase__ : int ): __lowercase = self.num_labels __lowercase = NezhaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Any ,lowercase__ : Optional[Any] ): __lowercase = self.num_labels __lowercase = NezhaForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : str ): __lowercase = self.num_choices __lowercase = NezhaForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : List[str] = True def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : Any=False ): __lowercase = super()._prepare_for_class(lowercase__ ,lowercase__ ,return_labels=lowercase__ ) if return_labels: if model_class in get_values(lowercase__ ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowercase__ ) __lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowercase__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = NezhaModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : int ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): # This regression test was failing with PyTorch < 1.3 ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase = None self.model_tester.create_and_check_model_as_decoder( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = NezhaModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __lowercase = True __lowercase = model_class(config=lowercase__ ) __lowercase = self._prepare_for_class(lowercase__ ,lowercase__ ) __lowercase = torch.jit.trace( lowercase__ ,(inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase__ ,os.path.join(lowercase__ ,'''bert.pt''' ) ) __lowercase = torch.jit.load(os.path.join(lowercase__ ,'''bert.pt''' ) ,map_location=lowercase__ ) loaded(inputs_dict['''input_ids'''].to(lowercase__ ) ,inputs_dict['''attention_mask'''].to(lowercase__ ) ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) )
41
0
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCamelCase ( lowercase_ = "isbn/0140328726" ) -> dict: '''simple docstring''' lowercase__ : Dict = olid.strip().strip("""/""" ) # Remove leading/trailing whitespace & slashes if new_olid.count("""/""" ) != 1: lowercase__ : Optional[Any] = F'{olid} is not a valid Open Library olid' raise ValueError(lowercase_ ) return requests.get(F'https://openlibrary.org/{new_olid}.json' ).json() def UpperCamelCase ( lowercase_ ) -> dict: '''simple docstring''' lowercase__ : Tuple = { """title""": """Title""", """publish_date""": """Publish date""", """authors""": """Authors""", """number_of_pages""": """Number of pages:""", """first_sentence""": """First sentence""", """isbn_10""": """ISBN (10)""", """isbn_13""": """ISBN (13)""", } lowercase__ : List[Any] = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} lowercase__ : Any = [ get_openlibrary_data(author["""key"""] )["""name"""] for author in data["""Authors"""] ] lowercase__ : Tuple = data["""First sentence"""]["""value"""] for key, value in data.items(): if isinstance(lowercase_ , lowercase_ ): lowercase__ : List[str] = """, """.join(lowercase_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: lowerCamelCase__ : Tuple = input("""\nEnter the ISBN code to search (or 'quit' to stop): """).strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (1_0, 1_3) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: lowerCamelCase__ : Optional[Any] = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print("""\n""".join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
12
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KEY''') lowerCAmelCase__ = TypeVar('''VAL''') @dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ ) class lowercase_ (Generic[KEY, VAL] ): """simple docstring""" SCREAMING_SNAKE_CASE : KEY SCREAMING_SNAKE_CASE : VAL class lowercase_ (_Item ): """simple docstring""" def __init__( self : Optional[int] ): super().__init__(lowercase__ ,lowercase__ ) def __bool__( self : List[str] ): return False lowerCAmelCase__ = _DeletedItem() class lowercase_ (MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ): __lowercase = initial_block_size __lowercase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowercase = capacity_factor __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ): return hash(lowercase__ ) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ): return (ind + 1) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ): __lowercase = self._buckets[ind] if not stored: __lowercase = _Item(lowercase__ ,lowercase__ ) self._len += 1 return True elif stored.key == key: __lowercase = _Item(lowercase__ ,lowercase__ ) return True else: return False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False __lowercase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ): __lowercase = self._buckets __lowercase = [None] * new_size __lowercase = 0 for item in old_buckets: if item: self._add_item(item.key ,item.val ) def SCREAMING_SNAKE_CASE ( self : str ): self._resize(len(self._buckets ) * 2 ) def SCREAMING_SNAKE_CASE ( self : Tuple ): self._resize(len(self._buckets ) // 2 ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ): __lowercase = self._get_bucket_index(lowercase__ ) for _ in range(len(self._buckets ) ): yield ind __lowercase = self._get_next_ind(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): for ind in self._iterate_buckets(lowercase__ ): if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ): break def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): if self._is_full(): self._size_up() self._add_item(lowercase__ ,lowercase__ ) def __delitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: raise KeyError(lowercase__ ) if item is _deleted: continue if item.key == key: __lowercase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowercase__ ) def __len__( self : Optional[int] ): return self._len def __iter__( self : str ): yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ): __lowercase = ''' ,'''.join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
41
0
'''simple docstring''' import collections import importlib.util import os import re from pathlib import Path A__ : Dict = """src/transformers""" # Matches is_xxx_available() A__ : Union[str, Any] = re.compile(R"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} A__ : Tuple = re.compile(R"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] A__ : str = re.compile(R"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available A__ : Union[str, Any] = re.compile(R"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") A__ : int = re.compile(R"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] A__ : List[Any] = re.compile(R"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", A__ : Tuple = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], A__ : List[Any] = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo A__ : Any = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: A__ : str = re.compile(R"""^\s*try:""") # Catches a line with else: A__ : List[str] = re.compile(R"""^\s*else:""") def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] ) -> List[str]: if _re_test_backend.search(UpperCAmelCase_ ) is None: return None __lowerCamelCase : str = [b[0] for b in _re_backend.findall(UpperCAmelCase_ )] backends.sort() return "_and_".join(UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple ) -> Union[str, Any]: with open(UpperCAmelCase_ , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowerCamelCase : Union[str, Any] = f.readlines() __lowerCamelCase : Any = 0 while line_index < len(UpperCAmelCase_ ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(UpperCAmelCase_ ): return None # First grab the objects without a specific backend in _import_structure __lowerCamelCase : Dict = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: __lowerCamelCase : Optional[Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(UpperCAmelCase_ ): __lowerCamelCase : Optional[int] = _re_one_line_import_struct.search(UpperCAmelCase_ ).groups()[0] __lowerCamelCase : Union[str, Any] = re.findall('\[([^\]]+)\]' , UpperCAmelCase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue __lowerCamelCase : Tuple = _re_import_struct_key_value.search(UpperCAmelCase_ ) if single_line_import_search is not None: __lowerCamelCase : Dict = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(UpperCAmelCase_ ) > 0] objects.extend(UpperCAmelCase_ ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 __lowerCamelCase : Tuple = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. __lowerCamelCase : Dict = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowerCamelCase : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowerCamelCase : Tuple = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): __lowerCamelCase : int = lines[line_index] if _re_import_struct_add_one.search(UpperCAmelCase_ ) is not None: objects.append(_re_import_struct_add_one.search(UpperCAmelCase_ ).groups()[0] ) elif _re_import_struct_add_many.search(UpperCAmelCase_ ) is not None: __lowerCamelCase : int = _re_import_struct_add_many.search(UpperCAmelCase_ ).groups()[0].split(', ' ) __lowerCamelCase : Union[str, Any] = [obj[1:-1] for obj in imports if len(UpperCAmelCase_ ) > 0] objects.extend(UpperCAmelCase_ ) elif _re_between_brackets.search(UpperCAmelCase_ ) is not None: __lowerCamelCase : Dict = _re_between_brackets.search(UpperCAmelCase_ ).groups()[0].split(', ' ) __lowerCamelCase : Union[str, Any] = [obj[1:-1] for obj in imports if len(UpperCAmelCase_ ) > 0] objects.extend(UpperCAmelCase_ ) elif _re_quote_object.search(UpperCAmelCase_ ) is not None: objects.append(_re_quote_object.search(UpperCAmelCase_ ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 __lowerCamelCase : Optional[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __lowerCamelCase : Union[str, Any] = [] while ( line_index < len(UpperCAmelCase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): __lowerCamelCase : List[str] = lines[line_index] __lowerCamelCase : Dict = _re_import.search(UpperCAmelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 __lowerCamelCase : str = {'none': objects} # Let's continue with backend-specific objects while line_index < len(UpperCAmelCase_ ): # If the line is an if is_backend_available, we grab all objects associated. __lowerCamelCase : Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowerCamelCase : Optional[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowerCamelCase : Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): __lowerCamelCase : Optional[Any] = lines[line_index] __lowerCamelCase : Optional[Any] = _re_import.search(UpperCAmelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 __lowerCamelCase : Any = objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] ) -> List[Any]: def find_duplicates(UpperCAmelCase_ : List[str] ): return [k for k, v in collections.Counter(UpperCAmelCase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __lowerCamelCase : Dict = [] for key in import_dict_objects.keys(): __lowerCamelCase : Any = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' ) __lowerCamelCase : Optional[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __lowerCamelCase : Tuple = 'base imports' if key == 'none' else F'{key} backend' errors.append(F'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F' {a} in _import_structure but not in TYPE_HINT.' ) return errors def UpperCAmelCase__ ( ) -> str: __lowerCamelCase : str = [] for root, _, files in os.walk(UpperCAmelCase_ ): if "__init__.py" in files: __lowerCamelCase : Dict = os.path.join(UpperCAmelCase_ , '__init__.py' ) __lowerCamelCase : int = parse_init(UpperCAmelCase_ ) if objects is not None: __lowerCamelCase : Optional[Any] = analyze_results(*UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: __lowerCamelCase : Optional[int] = F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append('\n'.join(UpperCAmelCase_ ) ) if len(UpperCAmelCase_ ) > 0: raise ValueError('\n\n'.join(UpperCAmelCase_ ) ) def UpperCAmelCase__ ( ) -> Union[str, Any]: __lowerCamelCase : List[Any] = [] for path, directories, files in os.walk(UpperCAmelCase_ ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(UpperCAmelCase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(UpperCAmelCase_ ) / folder).glob('*.py' ) ) ) == 0: continue __lowerCamelCase : List[str] = str((Path(UpperCAmelCase_ ) / folder).relative_to(UpperCAmelCase_ ) ) __lowerCamelCase : int = short_path.replace(os.path.sep , '.' ) submodules.append(UpperCAmelCase_ ) for fname in files: if fname == "__init__.py": continue __lowerCamelCase : int = str((Path(UpperCAmelCase_ ) / fname).relative_to(UpperCAmelCase_ ) ) __lowerCamelCase : int = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(UpperCAmelCase_ ) return submodules A__ : Optional[Any] = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def UpperCAmelCase__ ( ) -> List[Any]: # This is to make sure the transformers module imported is the one in the repo. __lowerCamelCase : List[str] = importlib.util.spec_from_file_location( 'transformers' , os.path.join(UpperCAmelCase_ , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __lowerCamelCase : Dict = spec.loader.load_module() __lowerCamelCase : str = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(UpperCAmelCase_ ) > 0: __lowerCamelCase : List[Any] = '\n'.join(F'- {module}' for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F'{list_of_modules}\n' 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
13
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ,**lowercase__ : Tuple ): super().__init__(**lowercase__ ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self ,'''vision''' ) self.check_model_type(lowercase__ ) def __call__( self : List[str] ,lowercase__ : Union[str, "Image.Image", List[Dict[str, Any]]] ,lowercase__ : Union[str, List[str]] = None ,**lowercase__ : str ,): if "text_queries" in kwargs: __lowercase = kwargs.pop('''text_queries''' ) if isinstance(lowercase__ ,(str, Image.Image) ): __lowercase = {'''image''': image, '''candidate_labels''': candidate_labels} else: __lowercase = image __lowercase = super().__call__(lowercase__ ,**lowercase__ ) return results def SCREAMING_SNAKE_CASE ( self : int ,**lowercase__ : List[Any] ): __lowercase = {} if "threshold" in kwargs: __lowercase = kwargs['''threshold'''] if "top_k" in kwargs: __lowercase = kwargs['''top_k'''] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[Any] ): __lowercase = load_image(inputs['''image'''] ) __lowercase = inputs['''candidate_labels'''] if isinstance(lowercase__ ,lowercase__ ): __lowercase = candidate_labels.split(''',''' ) __lowercase = torch.tensor([[image.height, image.width]] ,dtype=torch.intaa ) for i, candidate_label in enumerate(lowercase__ ): __lowercase = self.tokenizer(lowercase__ ,return_tensors=self.framework ) __lowercase = self.image_processor(lowercase__ ,return_tensors=self.framework ) yield { "is_last": i == len(lowercase__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ): __lowercase = model_inputs.pop('''target_size''' ) __lowercase = model_inputs.pop('''candidate_label''' ) __lowercase = model_inputs.pop('''is_last''' ) __lowercase = self.model(**lowercase__ ) __lowercase = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : List[Any]=0.1 ,lowercase__ : List[str]=None ): __lowercase = [] for model_output in model_outputs: __lowercase = model_output['''candidate_label'''] __lowercase = BaseModelOutput(lowercase__ ) __lowercase = self.image_processor.post_process_object_detection( outputs=lowercase__ ,threshold=lowercase__ ,target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): __lowercase = outputs['''scores'''][index].item() __lowercase = self._get_bounding_box(outputs['''boxes'''][index][0] ) __lowercase = {'''score''': score, '''label''': label, '''box''': box} results.append(lowercase__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : x["score"] ,reverse=lowercase__ ) if top_k: __lowercase = results[:top_k] return results def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : "torch.Tensor" ): if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) __lowercase , __lowercase , __lowercase , __lowercase = box.int().tolist() __lowercase = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
41
0
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __UpperCAmelCase ( __a : int ,__a : int ,__a : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _a : List[str] = tau * frequency / samplerate _a : int = sin(__a ) _a : str = cos(__a ) _a : Optional[int] = _sin / (2 * q_factor) _a : List[Any] = (1 - _cos) / 2 _a : Optional[int] = 1 - _cos _a : Union[str, Any] = 1 + alpha _a : Dict = -2 * _cos _a : Any = 1 - alpha _a : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def __UpperCAmelCase ( __a : int ,__a : int ,__a : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _a : List[Any] = tau * frequency / samplerate _a : Union[str, Any] = sin(__a ) _a : Optional[int] = cos(__a ) _a : Optional[Any] = _sin / (2 * q_factor) _a : List[Any] = (1 + _cos) / 2 _a : List[str] = -1 - _cos _a : Tuple = 1 + alpha _a : Optional[int] = -2 * _cos _a : Optional[Any] = 1 - alpha _a : Optional[int] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def __UpperCAmelCase ( __a : int ,__a : int ,__a : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _a : List[Any] = tau * frequency / samplerate _a : Union[str, Any] = sin(__a ) _a : Optional[int] = cos(__a ) _a : str = _sin / (2 * q_factor) _a : Optional[Any] = _sin / 2 _a : str = 0 _a : List[str] = -ba _a : Tuple = 1 + alpha _a : Any = -2 * _cos _a : Any = 1 - alpha _a : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def __UpperCAmelCase ( __a : int ,__a : int ,__a : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _a : List[str] = tau * frequency / samplerate _a : Any = sin(__a ) _a : Optional[int] = cos(__a ) _a : Any = _sin / (2 * q_factor) _a : int = 1 - alpha _a : List[str] = -2 * _cos _a : Optional[Any] = 1 + alpha _a : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] ,[ba, ba, ba] ) return filt def __UpperCAmelCase ( __a : int ,__a : int ,__a : float ,__a : float = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _a : List[Any] = tau * frequency / samplerate _a : Optional[Any] = sin(__a ) _a : Optional[Any] = cos(__a ) _a : Optional[int] = _sin / (2 * q_factor) _a : Dict = 10 ** (gain_db / 40) _a : List[Any] = 1 + alpha * big_a _a : int = -2 * _cos _a : Dict = 1 - alpha * big_a _a : Optional[Any] = 1 + alpha / big_a _a : Dict = -2 * _cos _a : int = 1 - alpha / big_a _a : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def __UpperCAmelCase ( __a : int ,__a : int ,__a : float ,__a : float = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _a : Optional[Any] = tau * frequency / samplerate _a : List[Any] = sin(__a ) _a : Any = cos(__a ) _a : str = _sin / (2 * q_factor) _a : Union[str, Any] = 10 ** (gain_db / 40) _a : Tuple = (big_a + 1) - (big_a - 1) * _cos _a : Tuple = (big_a + 1) + (big_a - 1) * _cos _a : Dict = (big_a - 1) - (big_a + 1) * _cos _a : Optional[Any] = (big_a - 1) + (big_a + 1) * _cos _a : Tuple = 2 * sqrt(__a ) * alpha _a : List[str] = big_a * (pmc + aaa) _a : List[str] = 2 * big_a * mpc _a : Union[str, Any] = big_a * (pmc - aaa) _a : Optional[Any] = ppmc + aaa _a : str = -2 * pmpc _a : str = ppmc - aaa _a : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def __UpperCAmelCase ( __a : int ,__a : int ,__a : float ,__a : float = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _a : int = tau * frequency / samplerate _a : Tuple = sin(__a ) _a : Optional[int] = cos(__a ) _a : Dict = _sin / (2 * q_factor) _a : Tuple = 10 ** (gain_db / 40) _a : Union[str, Any] = (big_a + 1) - (big_a - 1) * _cos _a : List[Any] = (big_a + 1) + (big_a - 1) * _cos _a : List[str] = (big_a - 1) - (big_a + 1) * _cos _a : Tuple = (big_a - 1) + (big_a + 1) * _cos _a : List[Any] = 2 * sqrt(__a ) * alpha _a : Any = big_a * (ppmc + aaa) _a : Dict = -2 * big_a * pmpc _a : Tuple = big_a * (ppmc - aaa) _a : List[str] = pmc + aaa _a : List[str] = 2 * mpc _a : Optional[Any] = pmc - aaa _a : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt
14
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 'facebook/bart-large-mnli' SCREAMING_SNAKE_CASE : Optional[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) SCREAMING_SNAKE_CASE : Any = 'text_classifier' SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : Tuple = ['text', ['text']] SCREAMING_SNAKE_CASE : List[str] = ['text'] def SCREAMING_SNAKE_CASE ( self : List[Any] ): super().setup() __lowercase = self.model.config __lowercase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): __lowercase = int(lowercase__ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Dict ,lowercase__ : List[Any] ): __lowercase = labels return self.pre_processor( [text] * len(lowercase__ ) ,[F"This example is {label}" for label in labels] ,return_tensors='''pt''' ,padding='''max_length''' ,) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = outputs.logits __lowercase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
41
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A : List[Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = XLMRobertaTokenizer A__ = XLMRobertaTokenizerFast A__ = True A__ = True def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = XLMRobertaTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ (self : Union[str, Any] ) -> str: """simple docstring""" lowercase__ = """<pad>""" lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> int: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(_UpperCAmelCase ) , 1002 ) def lowerCamelCase__ (self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" lowercase__ = XLMRobertaTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) lowercase__ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_UpperCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowercase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def lowerCamelCase__ (self : Optional[Any] ) -> str: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowercase__ = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = self.tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = tempfile.mkdtemp() lowercase__ = tokenizer_r.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer_p.save_pretrained(_UpperCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) lowercase__ = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(_UpperCAmelCase , _UpperCAmelCase ) # Checks everything loads correctly in the same way lowercase__ = tokenizer_r.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer_p.from_pretrained(_UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_UpperCAmelCase ) # Save tokenizer rust, legacy_format=True lowercase__ = tempfile.mkdtemp() lowercase__ = tokenizer_r.save_pretrained(_UpperCAmelCase , legacy_format=_UpperCAmelCase ) lowercase__ = tokenizer_p.save_pretrained(_UpperCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(_UpperCAmelCase , _UpperCAmelCase ) # Checks everything loads correctly in the same way lowercase__ = tokenizer_r.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer_p.from_pretrained(_UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase ) ) shutil.rmtree(_UpperCAmelCase ) # Save tokenizer rust, legacy_format=False lowercase__ = tempfile.mkdtemp() lowercase__ = tokenizer_r.save_pretrained(_UpperCAmelCase , legacy_format=_UpperCAmelCase ) lowercase__ = tokenizer_p.save_pretrained(_UpperCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowercase__ = tokenizer_r.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer_p.from_pretrained(_UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase ) ) shutil.rmtree(_UpperCAmelCase ) @cached_property def lowerCamelCase__ (self : str ) -> str: """simple docstring""" return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" ) def lowerCamelCase__ (self : int ) -> List[str]: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_UpperCAmelCase , f.name ) lowercase__ = XLMRobertaTokenizer(f.name , keep_accents=_UpperCAmelCase ) lowercase__ = pickle.dumps(_UpperCAmelCase ) pickle.loads(_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" if not self.test_rust_tokenizer: return lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = """I was born in 92000, and this is falsé.""" lowercase__ = tokenizer.tokenize(_UpperCAmelCase ) lowercase__ = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) lowercase__ = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(_UpperCAmelCase ) lowercase__ = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def lowerCamelCase__ (self : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = """Hello World!""" lowercase__ = [0, 3_5378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" lowercase__ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) lowercase__ = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 17_9459, 12_4850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 1_0114, 711, 152, 20, 6, 5, 2_2376, 642, 1221, 1_5190, 3_4153, 450, 5608, 959, 1119, 5_7702, 136, 186, 47, 1098, 2_9367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 5_0901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = {"""input_ids""": [[0, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [0, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
15
'''simple docstring''' from collections.abc import Callable class lowercase_ : """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : Callable | None = None ): # Stores actual heap items. __lowercase = [] # Stores indexes of each item for supporting updates and deletion. __lowercase = {} # Stores current size of heap. __lowercase = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __lowercase = key or (lambda lowercase__ : x) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : int ): return int((i - 1) / 2 ) if i > 0 else None def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = int(2 * i + 1 ) return left if 0 < left < self.size else None def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ): __lowercase = int(2 * i + 2 ) return right if 0 < right < self.size else None def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : int ,lowercase__ : int ): __lowercase , __lowercase = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __lowercase , __lowercase = self.arr[j], self.arr[i] def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): return self.arr[i][1] < self.arr[j][1] def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._left(lowercase__ ) __lowercase = self._right(lowercase__ ) __lowercase = i if left is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = left if right is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = right return valid_parent def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._parent(lowercase__ ) while parent is not None and not self._cmp(lowercase__ ,lowercase__ ): self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = parent, self._parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = self._get_valid_parent(lowercase__ ) while valid_parent != index: self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = valid_parent, self._get_valid_parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] __lowercase = [item, self.key(lowercase__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] del self.pos_map[item] __lowercase = self.arr[self.size - 1] __lowercase = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : int ): __lowercase = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(lowercase__ )] ) else: __lowercase = [item, self.key(lowercase__ )] __lowercase = self.size self.size += 1 self._heapify_up(self.size - 1 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): return self.arr[0] if self.size else None def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _A ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
41
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input __A : List[Any] = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def __a ( ): SCREAMING_SNAKE_CASE = _ask_options( "In which compute environment are you running?" , ["This machine", "AWS (Amazon SageMaker)"] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: SCREAMING_SNAKE_CASE = get_sagemaker_input() else: SCREAMING_SNAKE_CASE = get_cluster_input() return config def __a ( A__ : int=None ): if subparsers is not None: SCREAMING_SNAKE_CASE = subparsers.add_parser("config" , description=A__ ) else: SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate config command" , description=A__ ) parser.add_argument( "--config_file" , default=A__ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=A__ ) return parser def __a ( A__ : int ): SCREAMING_SNAKE_CASE = get_user_input() if args.config_file is not None: SCREAMING_SNAKE_CASE = args.config_file else: if not os.path.isdir(A__ ): os.makedirs(A__ ) SCREAMING_SNAKE_CASE = default_yaml_config_file if config_file.endswith(".json" ): config.to_json_file(A__ ) else: config.to_yaml_file(A__ ) print(F"accelerate configuration saved at {config_file}" ) def __a ( ): SCREAMING_SNAKE_CASE = config_command_parser() SCREAMING_SNAKE_CASE = parser.parse_args() config_command(A__ ) if __name__ == "__main__": main()
16
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ): __lowercase = [] def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : str ,**lowercase__ : Any ): self.events.append('''on_init_end''' ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : int ,**lowercase__ : Optional[int] ): self.events.append('''on_train_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ,**lowercase__ : List[str] ): self.events.append('''on_train_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,**lowercase__ : Optional[Any] ): self.events.append('''on_epoch_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : Any ,**lowercase__ : Optional[int] ): self.events.append('''on_epoch_end''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_step_begin''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : Optional[int] ,**lowercase__ : Dict ): self.events.append('''on_step_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,**lowercase__ : Any ): self.events.append('''on_evaluate''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : int ,**lowercase__ : Optional[Any] ): self.events.append('''on_predict''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,**lowercase__ : int ): self.events.append('''on_save''' ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_log''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : int ,lowercase__ : Dict ,**lowercase__ : str ): self.events.append('''on_prediction_step''' ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): shutil.rmtree(self.output_dir ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any]=0 ,lowercase__ : Any=0 ,lowercase__ : Tuple=6_4 ,lowercase__ : Optional[int]=6_4 ,lowercase__ : Optional[Any]=None ,lowercase__ : str=False ,**lowercase__ : Any ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionModelConfig(a=lowercase__ ,b=lowercase__ ) __lowercase = RegressionPreTrainedModel(lowercase__ ) __lowercase = TrainingArguments(self.output_dir ,disable_tqdm=lowercase__ ,report_to=[] ,**lowercase__ ) return Trainer( lowercase__ ,lowercase__ ,train_dataset=lowercase__ ,eval_dataset=lowercase__ ,callbacks=lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) ) # Order doesn't matter __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) for cba, cba in zip(lowercase__ ,lowercase__ ): if isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,lowercase__ ) elif isinstance(lowercase__ ,lowercase__ ) and not isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,cba.__class__ ) elif not isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(cba.__class__ ,lowercase__ ) else: self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ): __lowercase = ['''on_init_end''', '''on_train_begin'''] __lowercase = 0 __lowercase = len(trainer.get_eval_dataloader() ) __lowercase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(lowercase__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.get_trainer() __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # Callbacks passed at init are added to the default callbacks __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __lowercase = self.get_trainer(disable_tqdm=lowercase__ ) __lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __lowercase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(cb.__class__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # We can also add, pop, or remove by instance __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' ,category=lowercase__ ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # Independent log/save/eval __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='''steps''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='''epoch''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # A bit of everything __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=1_0 ,eval_steps=5 ,evaluation_strategy='''steps''' ,) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,) assert str(lowercase__ ) in warn_mock.call_args[0][0]
41
0
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Tuple , __A : Optional[Any] , __A : bool = True , __A : Dict[str, int] = None , __A : int = 32 , __A : bool = True , __A : Union[int, float] = 1 / 255 , __A : bool = True , __A : bool = True , __A : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __A : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __A : bool = True , __A : Tuple=7 , __A : Tuple=30 , __A : List[str]=400 , __A : str=3 , ): __A : str = parent __A : List[Any] = do_resize __A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 288} __A : Optional[Any] = size_divisor __A : str = do_rescale __A : Tuple = rescale_factor __A : Optional[int] = do_normalize __A : Tuple = do_center_crop __A : Any = image_mean __A : Union[str, Any] = image_std __A : str = do_pad __A : Any = batch_size __A : Union[str, Any] = num_channels __A : Dict = min_resolution __A : Tuple = max_resolution def lowerCAmelCase_ ( self : Optional[int] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def lowerCAmelCase_ ( self : str , __A : List[Any] , __A : Any=False ): if not batched: __A : Optional[Any] = self.size["""shortest_edge"""] __A : Optional[int] = image_inputs[0] if isinstance(__A , Image.Image ): __A , __A : Any = image.size else: __A , __A : Dict = image.shape[1], image.shape[2] __A : Tuple = size / min(__A , __A ) if h < w: __A , __A : Union[str, Any] = size, scale * w else: __A , __A : str = scale * h, size __A : List[str] = int((1333 / 800) * size ) if max(__A , __A ) > max_size: __A : Optional[int] = max_size / max(__A , __A ) __A : Tuple = newh * scale __A : Optional[Any] = neww * scale __A , __A : Tuple = int(newh + 0.5 ), int(neww + 0.5 ) __A , __A : List[Any] = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __A : Dict = [] for image in image_inputs: __A , __A : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __A : Dict = max(__A , key=lambda __A : item[0] )[0] __A : Dict = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( _lowercase , unittest.TestCase ): _lowercase : str = BridgeTowerImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : List[str] ): __A : str = BridgeTowerImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : Union[str, Any] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : Tuple ): __A : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , """image_mean""" ) ) self.assertTrue(hasattr(__A , """image_std""" ) ) self.assertTrue(hasattr(__A , """do_normalize""" ) ) self.assertTrue(hasattr(__A , """do_resize""" ) ) self.assertTrue(hasattr(__A , """size""" ) ) self.assertTrue(hasattr(__A , """size_divisor""" ) ) def lowerCAmelCase_ ( self : Union[str, Any] ): pass def lowerCAmelCase_ ( self : Optional[Any] ): # Initialize image processor __A : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input __A : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : Optional[Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Union[str, Any] = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : int ): # Initialize image processor __A : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input __A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : str = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : List[str] = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Dict = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : List[Any] ): # Initialize image processor __A : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input __A : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : str = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : int = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Optional[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
17
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : jnp.ndarray SCREAMING_SNAKE_CASE : jnp.ndarray class lowercase_ (nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __lowercase = [] for i in range(len(self.block_out_channels ) - 1 ): __lowercase = self.block_out_channels[i] __lowercase = self.block_out_channels[i + 1] __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = blocks __lowercase = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : List[str] ,lowercase__ : Optional[int] ): __lowercase = self.conv_in(lowercase__ ) __lowercase = nn.silu(lowercase__ ) for block in self.blocks: __lowercase = block(lowercase__ ) __lowercase = nn.silu(lowercase__ ) __lowercase = self.conv_out(lowercase__ ) return embedding @flax_register_to_config class lowercase_ (nn.Module , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 3_2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False SCREAMING_SNAKE_CASE : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) SCREAMING_SNAKE_CASE : int = 2 SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None SCREAMING_SNAKE_CASE : int = 1_2_8_0 SCREAMING_SNAKE_CASE : float = 0.0 SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = "rgb" SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : jax.random.KeyArray ): # init input tensors __lowercase = (1, self.in_channels, self.sample_size, self.sample_size) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase = jnp.ones((1,) ,dtype=jnp.intaa ) __lowercase = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa ) __lowercase = (1, 3, self.sample_size * 8, self.sample_size * 8) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase , __lowercase = jax.random.split(lowercase__ ) __lowercase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )["params"] def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.block_out_channels __lowercase = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __lowercase = self.num_attention_heads or self.attention_head_dim # input __lowercase = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time __lowercase = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift ) __lowercase = FlaxTimestepEmbedding(lowercase__ ,dtype=self.dtype ) __lowercase = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) __lowercase = self.only_cross_attention if isinstance(lowercase__ ,lowercase__ ): __lowercase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = (num_attention_heads,) * len(self.down_block_types ) # down __lowercase = [] __lowercase = [] __lowercase = block_out_channels[0] __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) for i, down_block_type in enumerate(self.down_block_types ): __lowercase = output_channel __lowercase = block_out_channels[i] __lowercase = i == len(lowercase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": __lowercase = FlaxCrossAttnDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: __lowercase = FlaxDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(lowercase__ ) for _ in range(self.layers_per_block ): __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) if not is_final_block: __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) __lowercase = down_blocks __lowercase = controlnet_down_blocks # mid __lowercase = block_out_channels[-1] __lowercase = FlaxUNetMidBlockaDCrossAttn( in_channels=lowercase__ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : float = 1.0 ,lowercase__ : bool = True ,lowercase__ : bool = False ,): __lowercase = self.controlnet_conditioning_channel_order if channel_order == "bgr": __lowercase = jnp.flip(lowercase__ ,axis=1 ) # 1. time if not isinstance(lowercase__ ,jnp.ndarray ): __lowercase = jnp.array([timesteps] ,dtype=jnp.intaa ) elif isinstance(lowercase__ ,jnp.ndarray ) and len(timesteps.shape ) == 0: __lowercase = timesteps.astype(dtype=jnp.floataa ) __lowercase = jnp.expand_dims(lowercase__ ,0 ) __lowercase = self.time_proj(lowercase__ ) __lowercase = self.time_embedding(lowercase__ ) # 2. pre-process __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.conv_in(lowercase__ ) __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.controlnet_cond_embedding(lowercase__ ) sample += controlnet_cond # 3. down __lowercase = (sample,) for down_block in self.down_blocks: if isinstance(lowercase__ ,lowercase__ ): __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) else: __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,deterministic=not train ) down_block_res_samples += res_samples # 4. mid __lowercase = self.mid_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) # 5. contronet blocks __lowercase = () for down_block_res_sample, controlnet_block in zip(lowercase__ ,self.controlnet_down_blocks ): __lowercase = controlnet_block(lowercase__ ) controlnet_down_block_res_samples += (down_block_res_sample,) __lowercase = controlnet_down_block_res_samples __lowercase = self.controlnet_mid_block(lowercase__ ) # 6. scaling __lowercase = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowercase__ ,mid_block_res_sample=lowercase__ )
41
0
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : int | float | str , SCREAMING_SNAKE_CASE_ : int | float | str ): '''simple docstring''' if nth_term == "": return [""] _lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = [] for temp in range(int(SCREAMING_SNAKE_CASE_ ) ): series.append(F'''1 / {pow(temp + 1 , int(SCREAMING_SNAKE_CASE_ ) )}''' if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = int(input("Enter the last number (nth term) of the P-Series")) _SCREAMING_SNAKE_CASE = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
18
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase__ = False lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''ybelkada/fonts''' def _A ( ): """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use " '''Pix2StructImageProcessor. Please upgrade torch.''' ) def _A ( A__ , A__ , A__ ): """simple docstring""" requires_backends(A__ , ['''torch'''] ) _check_torch_version() __lowercase = image_tensor.unsqueeze(0 ) __lowercase = torch.nn.functional.unfold(A__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) __lowercase = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , A__ , A__ , -1 ) __lowercase = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def _A ( A__ , A__ = 36 , A__ = "black" , A__ = "white" , A__ = 5 , A__ = 5 , A__ = 5 , A__ = 5 , A__ = None , A__ = None , ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Add new lines so that each line is no more than 80 characters. __lowercase = textwrap.TextWrapper(width=80 ) __lowercase = wrapper.wrap(text=A__ ) __lowercase = '''\n'''.join(A__ ) if font_bytes is not None and font_path is None: __lowercase = io.BytesIO(A__ ) elif font_path is not None: __lowercase = font_path else: __lowercase = hf_hub_download(A__ , '''Arial.TTF''' ) __lowercase = ImageFont.truetype(A__ , encoding='''UTF-8''' , size=A__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. __lowercase = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , A__ ) ) __lowercase , __lowercase , __lowercase , __lowercase = temp_draw.textbbox((0, 0) , A__ , A__ ) # Create the actual image with a bit of padding around the text. __lowercase = text_width + left_padding + right_padding __lowercase = text_height + top_padding + bottom_padding __lowercase = Image.new('''RGB''' , (image_width, image_height) , A__ ) __lowercase = ImageDraw.Draw(A__ ) draw.text(xy=(left_padding, top_padding) , text=A__ , fill=A__ , font=A__ ) return image def _A ( A__ , A__ , **A__ ): """simple docstring""" requires_backends(A__ , '''vision''' ) # Convert to PIL image if necessary __lowercase = to_pil_image(A__ ) __lowercase = render_text(A__ , **A__ ) __lowercase = max(header_image.width , image.width ) __lowercase = int(image.height * (new_width / image.width) ) __lowercase = int(header_image.height * (new_width / header_image.width) ) __lowercase = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary __lowercase = to_numpy_array(A__ ) if infer_channel_dimension_format(A__ ) == ChannelDimension.LAST: __lowercase = to_channel_dimension_format(A__ , ChannelDimension.LAST ) return new_image class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ['flattened_patches'] def __init__( self : Any ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : int = 2_0_4_8 ,lowercase__ : bool = False ,**lowercase__ : List[str] ,): super().__init__(**lowercase__ ) __lowercase = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6} __lowercase = do_normalize __lowercase = do_convert_rgb __lowercase = max_patches __lowercase = is_vqa def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : np.ndarray ,lowercase__ : int ,lowercase__ : dict ,**lowercase__ : Tuple ): requires_backends(self.extract_flattened_patches ,'''torch''' ) _check_torch_version() # convert to torch __lowercase = to_channel_dimension_format(lowercase__ ,ChannelDimension.FIRST ) __lowercase = torch.from_numpy(lowercase__ ) __lowercase , __lowercase = patch_size['''height'''], patch_size['''width'''] __lowercase , __lowercase = get_image_size(lowercase__ ) # maximize scale s.t. __lowercase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) __lowercase = max(min(math.floor(scale * image_height / patch_height ) ,lowercase__ ) ,1 ) __lowercase = max(min(math.floor(scale * image_width / patch_width ) ,lowercase__ ) ,1 ) __lowercase = max(num_feasible_rows * patch_height ,1 ) __lowercase = max(num_feasible_cols * patch_width ,1 ) __lowercase = torch.nn.functional.interpolate( image.unsqueeze(0 ) ,size=(resized_height, resized_width) ,mode='''bilinear''' ,align_corners=lowercase__ ,antialias=lowercase__ ,).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] __lowercase = torch_extract_patches(lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = patches.shape __lowercase = patches_shape[1] __lowercase = patches_shape[2] __lowercase = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] __lowercase = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] __lowercase = torch.arange(lowercase__ ).reshape([rows, 1] ).repeat(1 ,lowercase__ ).reshape([rows * columns, 1] ) __lowercase = torch.arange(lowercase__ ).reshape([1, columns] ).repeat(lowercase__ ,1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] __lowercase = row_ids.to(torch.floataa ) __lowercase = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] __lowercase = torch.cat([row_ids, col_ids, patches] ,-1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] __lowercase = torch.nn.functional.pad(lowercase__ ,[0, 0, 0, max_patches - (rows * columns)] ).float() __lowercase = to_numpy_array(lowercase__ ) return result def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : np.ndarray ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ): if image.dtype == np.uinta: __lowercase = image.astype(np.floataa ) # take mean across the whole `image` __lowercase = np.mean(lowercase__ ) __lowercase = np.std(lowercase__ ) __lowercase = max(lowercase__ ,1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : ImageInput ,lowercase__ : Optional[str] = None ,lowercase__ : bool = None ,lowercase__ : Optional[bool] = None ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[Dict[str, int]] = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : ChannelDimension = ChannelDimension.FIRST ,**lowercase__ : List[Any] ,): __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = patch_size if patch_size is not None else self.patch_size __lowercase = max_patches if max_patches is not None else self.max_patches __lowercase = self.is_vqa if kwargs.get('''data_format''' ,lowercase__ ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) __lowercase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(lowercase__ ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowercase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) __lowercase = kwargs.pop('''font_bytes''' ,lowercase__ ) __lowercase = kwargs.pop('''font_path''' ,lowercase__ ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = [header_text] * len(lowercase__ ) __lowercase = [ render_header(lowercase__ ,header_text[i] ,font_bytes=lowercase__ ,font_path=lowercase__ ) for i, image in enumerate(lowercase__ ) ] if do_normalize: __lowercase = [self.normalize(image=lowercase__ ) for image in images] # convert to torch tensor and permute __lowercase = [ self.extract_flattened_patches(image=lowercase__ ,max_patches=lowercase__ ,patch_size=lowercase__ ) for image in images ] # create attention mask in numpy __lowercase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] __lowercase = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks} ,tensor_type=lowercase__ ) return encoded_outputs
41
0
"""simple docstring""" import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.14.0""", """To fix: pip install -r examples/pytorch/audio-classification/requirements.txt""") def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case = 1_60_00 ) -> int: """simple docstring""" _UpperCamelCase = int(round(sample_rate * max_length ) ) if len(__snake_case ) <= sample_length: return wav _UpperCamelCase = randint(0, len(__snake_case ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class _UpperCAmelCase: lowercase__ = field(default=lowerCamelCase , metadata={'help': 'Name of a dataset from the datasets package'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'A file containing the training audio paths and labels.'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'A file containing the validation audio paths and labels.'} ) lowercase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowercase__ = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowercase__ = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) lowercase__ = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''} ) lowercase__ = field( default=lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowercase__ = field( default=lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) lowercase__ = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class _UpperCAmelCase: lowercase__ = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'} ) lowercase__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Name or path of preprocessor config.'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'} ) lowercase__ = field( default=lowerCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''will be removed in a future version. Use `--freeze_feature_encoder`''' '''instead. Setting `freeze_feature_encoder==True`.''' , __a , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''should not be used in combination with `--freeze_feature_encoder`.''' '''Only make use of `--freeze_feature_encoder`.''') def lowerCamelCase__ ( ) -> List[Any]: """simple docstring""" _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_audio_classification''', __snake_case, __snake_case ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCamelCase = training_args.get_process_log_level() logger.setLevel(__snake_case ) transformers.utils.logging.set_verbosity(__snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to train from scratch.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset and prepare it for the audio classification task. _UpperCamelCase = DatasetDict() _UpperCamelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=data_args.train_split_name, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCamelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=data_args.eval_split_name, use_auth_token=True if model_args.use_auth_token else None, ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'''--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' '''Make sure to set `--audio_column_name` to the correct audio column - one of ''' F'''{", ".join(raw_datasets["train"].column_names )}.''' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'''--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' '''Make sure to set `--label_column_name` to the correct text column - one of ''' F'''{", ".join(raw_datasets["train"].column_names )}.''' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _UpperCamelCase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path, return_attention_mask=model_args.attention_mask, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _UpperCamelCase = raw_datasets.cast_column( data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _UpperCamelCase = feature_extractor.model_input_names[0] def train_transforms(__snake_case ): _UpperCamelCase = [] for audio in batch[data_args.audio_column_name]: _UpperCamelCase = random_subsample( audio['''array'''], max_length=data_args.max_length_seconds, sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(__snake_case ) _UpperCamelCase = feature_extractor(__snake_case, sampling_rate=feature_extractor.sampling_rate ) _UpperCamelCase = {model_input_name: inputs.get(__snake_case )} _UpperCamelCase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(__snake_case ): _UpperCamelCase = [audio['''array'''] for audio in batch[data_args.audio_column_name]] _UpperCamelCase = feature_extractor(__snake_case, sampling_rate=feature_extractor.sampling_rate ) _UpperCamelCase = {model_input_name: inputs.get(__snake_case )} _UpperCamelCase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _UpperCamelCase = raw_datasets['''train'''].features[data_args.label_column_name].names _UpperCamelCase , _UpperCamelCase = {}, {} for i, label in enumerate(__snake_case ): _UpperCamelCase = str(__snake_case ) _UpperCamelCase = label # Load the accuracy metric from the datasets package _UpperCamelCase = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(__snake_case ): _UpperCamelCase = np.argmax(eval_pred.predictions, axis=1 ) return metric.compute(predictions=__snake_case, references=eval_pred.label_ids ) _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(__snake_case ), labelaid=__snake_case, idalabel=__snake_case, finetuning_task='''audio-classification''', cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCamelCase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=__snake_case, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _UpperCamelCase = ( raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(__snake_case, output_all_columns=__snake_case ) if training_args.do_eval: if data_args.max_eval_samples is not None: _UpperCamelCase = ( raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(__snake_case, output_all_columns=__snake_case ) # Initialize our trainer _UpperCamelCase = Trainer( model=__snake_case, args=__snake_case, train_dataset=raw_datasets['''train'''] if training_args.do_train else None, eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None, compute_metrics=__snake_case, tokenizer=__snake_case, ) # Training if training_args.do_train: _UpperCamelCase = None if training_args.resume_from_checkpoint is not None: _UpperCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCamelCase = last_checkpoint _UpperCamelCase = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() trainer.log_metrics('''train''', train_result.metrics ) trainer.save_metrics('''train''', train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCamelCase = trainer.evaluate() trainer.log_metrics('''eval''', __snake_case ) trainer.save_metrics('''eval''', __snake_case ) # Write model card and (optionally) push to hub _UpperCamelCase = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**__snake_case ) else: trainer.create_model_card(**__snake_case ) if __name__ == "__main__": main()
19
'''simple docstring''' import doctest from collections import deque import numpy as np class lowercase_ : """simple docstring""" def __init__( self : Optional[Any] ): __lowercase = [2, 1, 2, -1] __lowercase = [1, 2, 3, 4] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = len(self.first_signal ) __lowercase = len(self.second_signal ) __lowercase = max(lowercase__ ,lowercase__ ) # create a zero matrix of max_length x max_length __lowercase = [[0] * max_length for i in range(lowercase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase__ ): __lowercase = deque(self.second_signal ) rotated_signal.rotate(lowercase__ ) for j, item in enumerate(lowercase__ ): matrix[i][j] += item # multiply the matrix with the first signal __lowercase = np.matmul(np.transpose(lowercase__ ) ,np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase__ ,2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
41
0
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _lowercase( __a : int , __a : int , __a : int , __a : int , __a : int , __a : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: a__ =ksize + 1 a__ =np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__a ): for x in range(__a ): # distance from center a__ =x - ksize // 2 a__ =y - ksize // 2 # degree to radiant a__ =theta / 180 * np.pi a__ =np.cos(_theta ) a__ =np.sin(_theta ) # get kernel x a__ =cos_theta * px + sin_theta * py # get kernel y a__ =-sin_theta * px + cos_theta * py # fill kernel a__ =np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _lowerCAmelCase: Union[str, Any] = imread('../image_data/lena.jpg') # turn image in gray scale value _lowerCAmelCase: Tuple = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _lowerCAmelCase: Union[str, Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _lowerCAmelCase: Any = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _lowerCAmelCase: Tuple = out / out.max() * 255 _lowerCAmelCase: int = out.astype(np.uinta) imshow('Original', gray) imshow('Gabor filter with 20x20 mask and 6 directions', out) waitKey(0)
20
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
41
0
import colorsys from PIL import Image # type: ignore def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Any =x __magic_name__ : Dict =y for step in range(lowerCamelCase ): # noqa: B007 __magic_name__ : str =a * a - b * b + x __magic_name__ : int =2 * a * b + y __magic_name__ : Union[str, Any] =a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCAmelCase_ ( lowerCamelCase ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCAmelCase_ ( lowerCamelCase ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCamelCase , 1 , 1 ) ) def lowerCAmelCase_ ( lowerCamelCase = 800 , lowerCamelCase = 600 , lowerCamelCase = -0.6 , lowerCamelCase = 0 , lowerCamelCase = 3.2 , lowerCamelCase = 50 , lowerCamelCase = True , ): __magic_name__ : Tuple =Image.new("""RGB""" , (image_width, image_height) ) __magic_name__ : List[Any] =img.load() # loop through the image-coordinates for image_x in range(lowerCamelCase ): for image_y in range(lowerCamelCase ): # determine the figure-coordinates based on the image-coordinates __magic_name__ : Optional[int] =figure_width / image_width * image_height __magic_name__ : Optional[int] =figure_center_x + (image_x / image_width - 0.5) * figure_width __magic_name__ : Tuple =figure_center_y + (image_y / image_height - 0.5) * figure_height __magic_name__ : Optional[int] =get_distance(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __magic_name__ : Optional[int] =get_color_coded_rgb(lowerCamelCase ) else: __magic_name__ : int =get_black_and_white_rgb(lowerCamelCase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure UpperCAmelCase_ : Any = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
21
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCAmelCase__ = getLogger(__name__) lowerCAmelCase__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def _A ( A__ , A__ , A__ , A__ = 8 , A__ = DEFAULT_DEVICE , A__=False , A__="summarization" , A__=None , **A__ , ): """simple docstring""" __lowercase = Path(A__ ).open('''w''' , encoding='''utf-8''' ) __lowercase = str(A__ ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained(A__ ).to(A__ ) if fpaa: __lowercase = model.half() __lowercase = AutoTokenizer.from_pretrained(A__ ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __lowercase = time.time() # update config with task specific params use_task_specific_params(A__ , A__ ) if prefix is None: __lowercase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(A__ , A__ ) ) ): __lowercase = [prefix + text for text in examples_chunk] __lowercase = tokenizer(A__ , return_tensors='''pt''' , truncation=A__ , padding='''longest''' ).to(A__ ) __lowercase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **A__ , ) __lowercase = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __lowercase = int(time.time() - start_time ) # seconds __lowercase = len(A__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _A ( ): """simple docstring""" return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def _A ( A__=True ): """simple docstring""" __lowercase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=A__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=A__ , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=A__ , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=A__ , required=A__ , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=A__ , required=A__ , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=A__ , required=A__ , default=A__ , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=A__ , required=A__ , default=A__ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=A__ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=A__ , default=8 , required=A__ , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=A__ , default=-1 , required=A__ , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=A__ , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowercase , __lowercase = parser.parse_known_args() __lowercase = parse_numeric_n_bool_cl_kwargs(A__ ) if parsed_args and verbose: print(F"parsed the following generate kwargs: {parsed_args}" ) __lowercase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowercase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=A__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __lowercase = generate_summaries_or_translations( A__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **A__ , ) if args.reference_path is None: return {} # Compute scores __lowercase = calculate_bleu if '''translation''' in args.task else calculate_rouge __lowercase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowercase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(A__ )] __lowercase = score_fn(A__ , A__ ) scores.update(A__ ) if args.dump_args: scores.update(A__ ) if args.info: __lowercase = args.info if verbose: print(A__ ) if args.score_path is not None: json.dump(A__ , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
41
0
'''simple docstring''' from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : str=1e-12 ): '''simple docstring''' _a = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(UpperCamelCase , axis=1 ) , a_min=UpperCamelCase ) ).T _a = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(UpperCamelCase , axis=1 ) , a_min=UpperCamelCase ) ).T return jnp.matmul(UpperCamelCase , norm_emb_a.T ) class A ( nn.Module ): lowercase_ = 42 lowercase_ = jnp.floataa def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _a = FlaxCLIPVisionModule(self.config.vision_config ) _a = nn.Dense(self.config.projection_dim , use_bias=lowerCAmelCase_ , dtype=self.dtype ) _a = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) _a = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) _a = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) ) _a = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__( self : Any , lowerCAmelCase_ : int ) -> List[str]: """simple docstring""" _a = self.vision_model(lowerCAmelCase_ )[1] _a = self.visual_projection(lowerCAmelCase_ ) _a = jax_cosine_distance(lowerCAmelCase_ , self.special_care_embeds ) _a = jax_cosine_distance(lowerCAmelCase_ , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs _a = 0.0 _a = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment _a = jnp.round(lowerCAmelCase_ , 3 ) _a = jnp.any(special_scores > 0 , axis=1 , keepdims=lowerCAmelCase_ ) # Use a lower threshold if an image has any special care concept _a = is_special_care * 0.0_1 _a = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment _a = jnp.round(lowerCAmelCase_ , 3 ) _a = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class A ( _a ): lowercase_ = CLIPConfig lowercase_ = 'clip_input' lowercase_ = FlaxStableDiffusionSafetyCheckerModule def __init__( self : Optional[int] , lowerCAmelCase_ : CLIPConfig , lowerCAmelCase_ : Optional[Tuple] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : jnp.dtype = jnp.floataa , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" if input_shape is None: _a = (1, 2_24, 2_24, 3) _a = self.module_class(config=lowerCAmelCase_ , dtype=lowerCAmelCase_ , **lowerCAmelCase_ ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ , input_shape=lowerCAmelCase_ , seed=lowerCAmelCase_ , dtype=lowerCAmelCase_ , _do_init=_do_init ) def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : jax.random.KeyArray , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : FrozenDict = None ) -> FrozenDict: """simple docstring""" _a = jax.random.normal(lowerCAmelCase_ , lowerCAmelCase_ ) _a , _a = jax.random.split(lowerCAmelCase_ ) _a = {'''params''': params_rng, '''dropout''': dropout_rng} _a = self.module.init(lowerCAmelCase_ , lowerCAmelCase_ )['''params'''] return random_params def __call__( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : dict = None , ) -> int: """simple docstring""" _a = jnp.transpose(lowerCAmelCase_ , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(lowerCAmelCase_ , dtype=jnp.floataa ) , rngs={} , )
22
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(A__ ): print(F"{i}\t\t{d}" ) def _A ( A__ , A__ , A__ ): """simple docstring""" for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = [float('''inf''' )] * vertex_count __lowercase = 0.0 for _ in range(vertex_count - 1 ): for j in range(A__ ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: __lowercase = distance[u] + w __lowercase = check_negative_cycle(A__ , A__ , A__ ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = int(input('''Enter number of vertices: ''').strip()) lowerCAmelCase__ = int(input('''Enter number of edges: ''').strip()) lowerCAmelCase__ = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) lowerCAmelCase__ = {'''src''': src, '''dst''': dest, '''weight''': weight} lowerCAmelCase__ = int(input('''\nEnter shortest path source:''').strip()) lowerCAmelCase__ = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
41
0
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class _a : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=14 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=0.0_2 , ) -> Dict: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_input_mask UpperCamelCase_ = use_token_type_ids UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = rotary_dim UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = initializer_range UpperCamelCase_ = None UpperCamelCase_ = vocab_size - 1 UpperCamelCase_ = vocab_size - 1 UpperCamelCase_ = vocab_size - 1 def _UpperCAmelCase ( self ) -> Tuple: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_input_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=_UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = 20 UpperCamelCase_ = model_class_name(_UpperCAmelCase ) UpperCamelCase_ = model.init_cache(input_ids.shape[0] , _UpperCAmelCase ) UpperCamelCase_ = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) UpperCamelCase_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCamelCase_ = model( input_ids[:, :-1] , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , position_ids=_UpperCAmelCase , ) UpperCamelCase_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) UpperCamelCase_ = model( input_ids[:, -1:] , attention_mask=_UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=_UpperCAmelCase , ) UpperCamelCase_ = model(_UpperCAmelCase ) UpperCamelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ = 20 UpperCamelCase_ = model_class_name(_UpperCAmelCase ) UpperCamelCase_ = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) UpperCamelCase_ = model.init_cache(input_ids.shape[0] , _UpperCAmelCase ) UpperCamelCase_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCamelCase_ = model( input_ids[:, :-1] , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , position_ids=_UpperCAmelCase , ) UpperCamelCase_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) UpperCamelCase_ = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=_UpperCAmelCase , position_ids=_UpperCAmelCase , ) UpperCamelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) UpperCamelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () A_ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = FlaxGPTJModelTester(self ) def _UpperCAmelCase ( self ) -> Any: for model_class_name in self.all_model_classes: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[Any]: for model_class_name in self.all_model_classes: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @tooslow def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) UpperCamelCase_ = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=_UpperCAmelCase , truncation=_UpperCAmelCase ) UpperCamelCase_ = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) UpperCamelCase_ = False UpperCamelCase_ = model.config.eos_token_id UpperCamelCase_ = jax.jit(model.generate ) UpperCamelCase_ = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @is_pt_flax_cross_test def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCamelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCamelCase_ = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCamelCase_ = getattr(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = pt_inputs['input_ids'].shape UpperCamelCase_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_UpperCAmelCase ): UpperCamelCase_ = 0 UpperCamelCase_ = 1 UpperCamelCase_ = 0 UpperCamelCase_ = 1 UpperCamelCase_ = pt_model_class(_UpperCAmelCase ).eval() UpperCamelCase_ = model_class(_UpperCAmelCase , dtype=jnp.floataa ) UpperCamelCase_ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _UpperCAmelCase ) UpperCamelCase_ = fx_state with torch.no_grad(): UpperCamelCase_ = pt_model(**_UpperCAmelCase ).to_tuple() UpperCamelCase_ = fx_model(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_UpperCAmelCase ) UpperCamelCase_ = model_class.from_pretrained(_UpperCAmelCase , from_pt=_UpperCAmelCase ) UpperCamelCase_ = fx_model_loaded(**_UpperCAmelCase ).to_tuple() self.assertEqual( len(_UpperCAmelCase ) , len(_UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def _UpperCAmelCase ( self ) -> Tuple: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCamelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCamelCase_ = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCamelCase_ = getattr(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = pt_model_class(_UpperCAmelCase ).eval() UpperCamelCase_ = model_class(_UpperCAmelCase , dtype=jnp.floataa ) UpperCamelCase_ = load_flax_weights_in_pytorch_model(_UpperCAmelCase , fx_model.params ) UpperCamelCase_ , UpperCamelCase_ = pt_inputs['input_ids'].shape UpperCamelCase_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_UpperCAmelCase ): UpperCamelCase_ = 0 UpperCamelCase_ = 1 UpperCamelCase_ = 0 UpperCamelCase_ = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): UpperCamelCase_ = pt_model(**_UpperCAmelCase ).to_tuple() UpperCamelCase_ = fx_model(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_UpperCAmelCase ) UpperCamelCase_ = pt_model_class.from_pretrained(_UpperCAmelCase , from_flax=_UpperCAmelCase ) with torch.no_grad(): UpperCamelCase_ = pt_model_loaded(**_UpperCAmelCase ).to_tuple() self.assertEqual( len(_UpperCAmelCase ) , len(_UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def _UpperCAmelCase ( self ) -> Optional[int]: for model_class_name in self.all_model_classes: UpperCamelCase_ = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) UpperCamelCase_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
23
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[Any] ,*lowercase__ : Optional[Any] ,**lowercase__ : int ): warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' ,lowercase__ ,) super().__init__(*lowercase__ ,**lowercase__ )
41
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCAmelCase ( __lowerCAmelCase): __lowercase : UNetaDModel __lowercase : ScoreSdeVeScheduler def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' super().__init__() self.register_modules(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = 2000 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "pil" , __SCREAMING_SNAKE_CASE = True , **__SCREAMING_SNAKE_CASE , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' __snake_case = self.unet.config.sample_size __snake_case = (batch_size, 3, img_size, img_size) __snake_case = self.unet __snake_case = randn_tensor(__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ) * self.scheduler.init_noise_sigma __snake_case = sample.to(self.device ) self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) self.scheduler.set_sigmas(__SCREAMING_SNAKE_CASE ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __snake_case = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __snake_case = self.unet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).sample __snake_case = self.scheduler.step_correct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample # prediction step __snake_case = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).sample __snake_case = self.scheduler.step_pred(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ) __snake_case , __snake_case = output.prev_sample, output.prev_sample_mean __snake_case = sample_mean.clamp(0 , 1 ) __snake_case = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(__SCREAMING_SNAKE_CASE ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__SCREAMING_SNAKE_CASE )
24
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _A ( A__ ): """simple docstring""" __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) __lowercase = 0.0_1 with locka.acquire(): with pytest.raises(A__ ): __lowercase = time.time() locka.acquire(A__ ) assert time.time() - _start > timeout def _A ( A__ ): """simple docstring""" __lowercase = '''a''' * 1000 + '''.lock''' __lowercase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(A__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __lowercase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(A__ ): locka.acquire(0 )
41
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. a_ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def lowerCamelCase__ ( _a): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_a) def lowerCamelCase__ ( _a): from diffusers.utils.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE : Optional[Any] = terminalreporter.config.getoption("--make-reports") if make_reports: pytest_terminal_summary_main(_a , id=_a)
25
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase__ = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class _A : def __init__( self : Optional[Any] , __magic_name__ : int ) -> None: """simple docstring""" __snake_case : List[Any] = value __snake_case : Node | None = None __snake_case : Node | None = None class _A : def __init__( self : Tuple , __magic_name__ : Node ) -> None: """simple docstring""" __snake_case : Tuple = tree def lowercase__ ( self : str , __magic_name__ : Node | None ) -> int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Optional[int] ) -> Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
26
'''simple docstring''' import argparse import os import re lowerCAmelCase__ = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(R'''\[([^\]]+)\]''') def _A ( A__ ): """simple docstring""" __lowercase = _re_indent.search(A__ ) return "" if search is None else search.groups()[0] def _A ( A__ , A__="" , A__=None , A__=None ): """simple docstring""" __lowercase = 0 __lowercase = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(A__ ): index += 1 __lowercase = ['''\n'''.join(lines[:index] )] else: __lowercase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowercase = [lines[index]] index += 1 while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(A__ ) ) if index < len(A__ ) - 1: __lowercase = [lines[index + 1]] index += 1 else: __lowercase = [] else: blocks.append('''\n'''.join(A__ ) ) __lowercase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A__ ) > 0: blocks.append('''\n'''.join(A__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def _A ( A__ ): """simple docstring""" def _inner(A__ ): return key(A__ ).lower().replace('''_''' , '''''' ) return _inner def _A ( A__ , A__=None ): """simple docstring""" def noop(A__ ): return x if key is None: __lowercase = noop # Constants are all uppercase, they go first. __lowercase = [obj for obj in objects if key(A__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowercase = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()] # Functions begin with a lowercase, they go last. __lowercase = [obj for obj in objects if not key(A__ )[0].isupper()] __lowercase = ignore_underscore(A__ ) return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) def _A ( A__ ): """simple docstring""" def _replace(A__ ): __lowercase = match.groups()[0] if "," not in imports: return F"[{imports}]" __lowercase = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) + "]" __lowercase = import_statement.split('''\n''' ) if len(A__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowercase = 2 if lines[1].strip() == '''[''' else 1 __lowercase = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowercase = sort_objects(A__ , key=lambda A__ : x[1] ) __lowercase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowercase = _re_bracket_content.sub(_replace , lines[1] ) else: __lowercase = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] __lowercase = get_indent(lines[1] ) + ''', '''.join([F"\"{k}\"" for k in sort_objects(A__ )] ) return "\n".join(A__ ) else: # Finally we have to deal with imports fitting on one line __lowercase = _re_bracket_content.sub(_replace , A__ ) return import_statement def _A ( A__ , A__=True ): """simple docstring""" with open(A__ , '''r''' ) as f: __lowercase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowercase = split_code_in_indented_blocks( A__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowercase = main_blocks[block_idx] __lowercase = block.split('''\n''' ) # Get to the start of the imports. __lowercase = 0 while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowercase = len(A__ ) else: line_idx += 1 if line_idx >= len(A__ ): continue # Ignore beginning and last line: they don't contain anything. __lowercase = '''\n'''.join(block_lines[line_idx:-1] ) __lowercase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowercase = split_code_in_indented_blocks(A__ , indent_level=A__ ) # We have two categories of import key: list or _import_structure[key].append/extend __lowercase = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowercase = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowercase = [(i, key) for i, key in enumerate(A__ ) if key is not None] __lowercase = [x[0] for x in sorted(A__ , key=lambda A__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowercase = 0 __lowercase = [] for i in range(len(A__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __lowercase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(A__ ) count += 1 # And we put our main block back together with its first and last line. __lowercase = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(A__ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(A__ , '''w''' ) as f: f.write('''\n'''.join(A__ ) ) def _A ( A__=True ): """simple docstring""" __lowercase = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: __lowercase = sort_imports(os.path.join(A__ , '''__init__.py''' ) , check_only=A__ ) if result: __lowercase = [os.path.join(A__ , '''__init__.py''' )] if len(A__ ) > 0: raise ValueError(F"Would overwrite {len(A__ )} files, run `make style`." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
41
0
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 100 ) -> int: """simple docstring""" _A = 1 _A = 2 for i in range(2 , max_n + 1 ): _A = pre_numerator _A = 2 * i // 3 if i % 3 == 0 else 1 _A = cur_numerator _A = e_cont * pre_numerator + temp return sum_digits(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f"{solution() = }")
27
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = TextToVideoSDPipeline SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. SCREAMING_SNAKE_CASE : Optional[int] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') ,up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') ,cross_attention_dim=3_2 ,attention_head_dim=4 ,) __lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,clip_sample=lowercase__ ,set_alpha_to_one=lowercase__ ,) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=1_2_8 ,) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''gelu''' ,projection_dim=5_1_2 ,) __lowercase = CLIPTextModel(lowercase__ ) __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : List[str]=0 ): if str(lowercase__ ).startswith('''mps''' ): __lowercase = torch.manual_seed(lowercase__ ) else: __lowercase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = TextToVideoSDPipeline(**lowercase__ ) __lowercase = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs(lowercase__ ) __lowercase = '''np''' __lowercase = sd_pipe(**lowercase__ ).frames __lowercase = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) __lowercase = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def SCREAMING_SNAKE_CASE ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=1e-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass def SCREAMING_SNAKE_CASE ( self : List[str] ): return super().test_progress_bar() @slow @skip_mps class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2_5 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
41
0
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Any = '''segformer''' def __init__( self, A=3, A=4, A=[2, 2, 2, 2], A=[8, 4, 2, 1], A=[32, 64, 160, 256], A=[7, 3, 3, 3], A=[4, 2, 2, 2], A=[1, 2, 5, 8], A=[4, 4, 4, 4], A="gelu", A=0.0, A=0.0, A=0.1, A=0.02, A=0.1, A=1E-6, A=256, A=255, **A, ): '''simple docstring''' super().__init__(**A ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.', A, ) SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : Optional[int] = num_encoder_blocks SCREAMING_SNAKE_CASE : int = depths SCREAMING_SNAKE_CASE : List[Any] = sr_ratios SCREAMING_SNAKE_CASE : List[Any] = hidden_sizes SCREAMING_SNAKE_CASE : List[str] = patch_sizes SCREAMING_SNAKE_CASE : str = strides SCREAMING_SNAKE_CASE : List[Any] = mlp_ratios SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : int = classifier_dropout_prob SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Any = drop_path_rate SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : List[Any] = decoder_hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.get('reshape_last_stage', A ) SCREAMING_SNAKE_CASE : List[str] = semantic_loss_ignore_index class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Optional[int] = version.parse('''1.11''' ) @property def UpperCamelCase_ ( self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCamelCase_ ( self ): '''simple docstring''' return 1E-4 @property def UpperCamelCase_ ( self ): '''simple docstring''' return 12
28
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _A ( A__ ): """simple docstring""" __lowercase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def _A ( A__ ): """simple docstring""" __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(A__ , A__ , bias=A__ ) __lowercase = emb.weight.data return lin_layer def _A ( A__ , A__="facebook/mbart-large-en-ro" , A__=False , A__=False ): """simple docstring""" __lowercase = torch.load(A__ , map_location='''cpu''' )['''model'''] remove_ignore_keys_(A__ ) __lowercase = state_dict['''encoder.embed_tokens.weight'''].shape[0] __lowercase = MBartConfig.from_pretrained(A__ , vocab_size=A__ ) if mbart_aa and finetuned: __lowercase = '''relu''' __lowercase = state_dict['''decoder.embed_tokens.weight'''] __lowercase = MBartForConditionalGeneration(A__ ) model.model.load_state_dict(A__ ) if finetuned: __lowercase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
41
0
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int A_ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class __lowerCamelCase ( datasets.BuilderConfig ): a__: Optional[datasets.Features] = None def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,): import pyspark def generate_fn(): lowerCamelCase_ = df.select('''*''' ,pyspark.sql.functions.spark_partition_id().alias('''part_id''' ) ) for partition_id in partition_order: lowerCamelCase_ = df_with_partition_id.select('''*''' ).where(f"part_id = {partition_id}" ).drop('''part_id''' ) lowerCamelCase_ = partition_df.collect() lowerCamelCase_ = 0 for row in rows: yield f"{partition_id}_{row_id}", row.asDict() row_id += 1 return generate_fn class __lowerCamelCase ( _BaseExamplesIterable ): def __init__( self , UpperCAmelCase , UpperCAmelCase=None , ): lowerCamelCase_ = df lowerCamelCase_ = partition_order or range(self.df.rdd.getNumPartitions() ) lowerCamelCase_ = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ): yield from self.generate_examples_fn() def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(UpperCAmelCase ) return SparkExamplesIterable(self.df , partition_order=UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = self.split_shard_indices_by_worker(UpperCAmelCase , UpperCAmelCase ) return SparkExamplesIterable(self.df , partition_order=UpperCAmelCase ) @property def UpperCAmelCase__ ( self ): return len(self.partition_order ) class __lowerCamelCase ( datasets.DatasetBuilder ): a__: Optional[Any] = SparkConfig def __init__( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ): import pyspark lowerCamelCase_ = pyspark.sql.SparkSession.builder.getOrCreate() lowerCamelCase_ = df lowerCamelCase_ = working_dir super().__init__( cache_dir=UpperCAmelCase , config_name=str(self.df.semanticHash() ) , **UpperCAmelCase , ) def UpperCAmelCase__ ( self ): # Returns the path of the created file. def create_cache_and_write_probe(UpperCAmelCase ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=UpperCAmelCase ) lowerCamelCase_ = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(UpperCAmelCase , '''a''' ) return [probe_file] if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowerCamelCase_ = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(UpperCAmelCase ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( '''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' ) def UpperCAmelCase__ ( self ): return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase__ ( self , UpperCAmelCase ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def UpperCAmelCase__ ( self , UpperCAmelCase ): import pyspark def get_arrow_batch_size(UpperCAmelCase ): for batch in it: yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} ) lowerCamelCase_ = self.df.count() lowerCamelCase_ = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowerCamelCase_ = ( self.df.limit(UpperCAmelCase ) .repartition(1 ) .mapInArrow(UpperCAmelCase , '''batch_bytes: long''' ) .agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowerCamelCase_ = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowerCamelCase_ = min(UpperCAmelCase , int(approx_total_size / max_shard_size ) ) lowerCamelCase_ = self.df.repartition(UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ): import pyspark lowerCamelCase_ = ParquetWriter if file_format == '''parquet''' else ArrowWriter lowerCamelCase_ = os.path.join(self._working_dir , os.path.basename(UpperCAmelCase ) ) if self._working_dir else fpath lowerCamelCase_ = file_format == '''parquet''' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowerCamelCase_ = self.config.features lowerCamelCase_ = self._writer_batch_size lowerCamelCase_ = self._fs.storage_options def write_arrow(UpperCAmelCase ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowerCamelCase_ = pyspark.TaskContext().taskAttemptId() lowerCamelCase_ = next(UpperCAmelCase , UpperCAmelCase ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) lowerCamelCase_ = 0 lowerCamelCase_ = writer_class( features=UpperCAmelCase , path=working_fpath.replace('''SSSSS''' , f"{shard_id:05d}" ).replace('''TTTTT''' , f"{task_id:05d}" ) , writer_batch_size=UpperCAmelCase , storage_options=UpperCAmelCase , embed_local_files=UpperCAmelCase , ) lowerCamelCase_ = pa.Table.from_batches([first_batch] ) writer.write_table(UpperCAmelCase ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowerCamelCase_ , lowerCamelCase_ = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) shard_id += 1 lowerCamelCase_ = writer_class( features=writer._features , path=working_fpath.replace('''SSSSS''' , f"{shard_id:05d}" ).replace('''TTTTT''' , f"{task_id:05d}" ) , writer_batch_size=UpperCAmelCase , storage_options=UpperCAmelCase , embed_local_files=UpperCAmelCase , ) lowerCamelCase_ = pa.Table.from_batches([batch] ) writer.write_table(UpperCAmelCase ) if writer._num_bytes > 0: lowerCamelCase_ , lowerCamelCase_ = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(UpperCAmelCase ) ): lowerCamelCase_ = os.path.join(os.path.dirname(UpperCAmelCase ) , os.path.basename(UpperCAmelCase ) ) shutil.move(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = ( self.df.mapInArrow(UpperCAmelCase , '''task_id: long, num_examples: long, num_bytes: long''' ) .groupBy('''task_id''' ) .agg( pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = "arrow" , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ): self._validate_cache_dir() lowerCamelCase_ = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(UpperCAmelCase ) lowerCamelCase_ = not is_remote_filesystem(self._fs ) lowerCamelCase_ = os.path.join if is_local else posixpath.join lowerCamelCase_ = '''-TTTTT-SSSSS-of-NNNNN''' lowerCamelCase_ = f"{self.name}-{split_generator.name}{SUFFIX}.{file_format}" lowerCamelCase_ = path_join(self._output_dir , UpperCAmelCase ) lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = [] lowerCamelCase_ = [] for task_id, content in self._prepare_split_single(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(UpperCAmelCase ) lowerCamelCase_ = total_num_examples lowerCamelCase_ = total_num_bytes # should rename everything at the end logger.debug(f"Renaming {total_shards} shards." ) if total_shards > 1: lowerCamelCase_ = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowerCamelCase_ = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ): rename( UpperCAmelCase , fpath.replace('''SSSSS''' , f"{shard_id:05d}" ).replace('''TTTTT''' , f"{task_id:05d}" ) , fpath.replace('''TTTTT-SSSSS''' , f"{global_shard_id:05d}" ).replace('''NNNNN''' , f"{total_shards:05d}" ) , ) lowerCamelCase_ = [] lowerCamelCase_ = 0 for i in range(len(UpperCAmelCase ) ): lowerCamelCase_ , lowerCamelCase_ = task_id_and_num_shards[i] for shard_id in range(UpperCAmelCase ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(UpperCAmelCase , len(UpperCAmelCase ) ).map(lambda UpperCAmelCase : _rename_shard(*UpperCAmelCase ) ).collect() else: # don't use any pattern lowerCamelCase_ = 0 lowerCamelCase_ = task_id_and_num_shards[0][0] self._rename( fpath.replace('''SSSSS''' , f"{shard_id:05d}" ).replace('''TTTTT''' , f"{task_id:05d}" ) , fpath.replace(UpperCAmelCase , '''''' ) , ) def UpperCAmelCase__ ( self , UpperCAmelCase , ): return SparkExamplesIterable(self.df )
29
'''simple docstring''' import os from math import logaa def _A ( A__ = "base_exp.txt" ): """simple docstring""" __lowercase = 0 __lowercase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowercase , __lowercase = list(map(A__ , line.split(''',''' ) ) ) if x * logaa(A__ ) > largest: __lowercase = x * logaa(A__ ) __lowercase = i + 1 return result if __name__ == "__main__": print(solution())
41
0
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( '''files''' , [ ['''full:README.md''', '''dataset_infos.json'''], ['''empty:README.md''', '''dataset_infos.json'''], ['''dataset_infos.json'''], ['''full:README.md'''], ] , ) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : int = tmp_path_factory.mktemp('''dset_infos_dir''' ) if "full:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''---\ndataset_info:\n dataset_size: 42\n---''' ) if "empty:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''''' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / '''dataset_infos.json''' , '''w''' ) as f: f.write('''{"default": {"dataset_size": 42}}''' ) UpperCAmelCase_ : List[Any] = DatasetInfosDict.from_directory(_lowercase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( '''dataset_info''' , [ DatasetInfo(), DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ), ] , ) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[str] = str(_lowercase ) dataset_info.write_to_directory(_lowercase ) UpperCAmelCase_ : int = DatasetInfo.from_directory(_lowercase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_lowercase , '''dataset_info.json''' ) ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Tuple = DatasetInfo( description='''foo''' , citation='''bar''' , homepage='''https://foo.bar''' , license='''CC0''' , features=Features({'''a''': Value('''int32''' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train''', '''num_examples''': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) UpperCAmelCase_ : List[str] = dataset_info._to_yaml_dict() assert sorted(_lowercase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) UpperCAmelCase_ : str = yaml.safe_dump(_lowercase ) UpperCAmelCase_ : List[Any] = yaml.safe_load(_lowercase ) assert dataset_info_yaml_dict == reloaded def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = DatasetInfo() UpperCAmelCase_ : Union[str, Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( '''dataset_infos_dict''' , [ DatasetInfosDict(), DatasetInfosDict({'''default''': DatasetInfo()} ), DatasetInfosDict({'''my_config_name''': DatasetInfo()} ), DatasetInfosDict( { '''default''': DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ) } ), DatasetInfosDict( { '''v1''': DatasetInfo(dataset_size=42 ), '''v2''': DatasetInfo(dataset_size=1337 ), } ), ] , ) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = str(_lowercase ) dataset_infos_dict.write_to_directory(_lowercase ) UpperCAmelCase_ : Dict = DatasetInfosDict.from_directory(_lowercase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): UpperCAmelCase_ : List[str] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml UpperCAmelCase_ : Optional[Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_lowercase , '''README.md''' ) )
30
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'blenderbot-small' SCREAMING_SNAKE_CASE : int = ['past_key_values'] SCREAMING_SNAKE_CASE : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] ,lowercase__ : List[str]=5_0_2_6_5 ,lowercase__ : Optional[Any]=5_1_2 ,lowercase__ : Optional[int]=8 ,lowercase__ : List[Any]=2_0_4_8 ,lowercase__ : List[str]=1_6 ,lowercase__ : str=8 ,lowercase__ : Any=2_0_4_8 ,lowercase__ : Tuple=1_6 ,lowercase__ : Tuple=0.0 ,lowercase__ : List[str]=0.0 ,lowercase__ : Any=True ,lowercase__ : str=True ,lowercase__ : int="gelu" ,lowercase__ : Tuple=5_1_2 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : str=0.0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : List[Any]=False ,lowercase__ : Optional[int]=0 ,lowercase__ : Optional[int]=1 ,lowercase__ : str=2 ,lowercase__ : int=2 ,**lowercase__ : List[str] ,): __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = use_cache __lowercase = encoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,is_encoder_decoder=lowercase__ ,decoder_start_token_id=lowercase__ ,forced_eos_token_id=lowercase__ ,**lowercase__ ,) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Dict ): if self.task in ["default", "seq2seq-lm"]: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase = {0: '''batch'''} __lowercase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase__ ,direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super().outputs else: __lowercase = super(lowercase__ ,self ).outputs if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) # Generate decoder inputs __lowercase = seq_length if not self.use_past else 1 __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __lowercase = dict(**lowercase__ ,**lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape __lowercase = common_inputs['''decoder_input_ids'''].shape[1] __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = decoder_seq_length + 3 __lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase__ ,lowercase__ )] ,dim=1 ) __lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase = self.num_layers __lowercase = min(lowercase__ ,lowercase__ ) __lowercase = max(lowercase__ ,lowercase__ ) - min_num_layers __lowercase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), ) ) # TODO: test this. __lowercase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase__ ,lowercase__ ): common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase , __lowercase = self.num_layers __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = common_inputs['''attention_mask'''].dtype __lowercase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase__ ,lowercase__ ,dtype=lowercase__ )] ,dim=1 ) __lowercase = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ ) ] return common_inputs def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = tokenizer.num_special_tokens_to_add(lowercase__ ) __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowercase__ ) # Generate dummy inputs according to compute batch and sequence __lowercase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase = dict(tokenizer(lowercase__ ,return_tensors=lowercase__ ) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): if self.task in ["default", "seq2seq-lm"]: __lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) elif self.task == "causal-lm": __lowercase = self._generate_dummy_inputs_for_causal_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) else: __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super()._flatten_past_key_values_(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) else: __lowercase = super(lowercase__ ,self )._flatten_past_key_values_( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
41
0
from __future__ import annotations def UpperCAmelCase_ ( __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> None: if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = array[indexa], array[indexa] def UpperCAmelCase_ ( __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> None: if length > 1: SCREAMING_SNAKE_CASE_ = int(length / 2 ) for i in range(__UpperCAmelCase , low + middle ): comp_and_swap(__UpperCAmelCase , __UpperCAmelCase , i + middle , __UpperCAmelCase ) bitonic_merge(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) bitonic_merge(__UpperCAmelCase , low + middle , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> None: if length > 1: SCREAMING_SNAKE_CASE_ = int(length / 2 ) bitonic_sort(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , 1 ) bitonic_sort(__UpperCAmelCase , low + middle , __UpperCAmelCase , 0 ) bitonic_merge(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase__ : Tuple = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
31
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" if b == 0: return (1, 0) ((__lowercase) , (__lowercase)) = extended_euclid(A__ , a % b ) __lowercase = a // b return (y, x - k * y) def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m def _A ( A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) if b < 0: __lowercase = (b % n + n) % n return b def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase , __lowercase = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
41
0
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase_ = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } UpperCAmelCase_ = {"allegro/herbert-base-cased": 5_14} UpperCAmelCase_ = {} class __UpperCamelCase ( A__ ): __A : List[str] = VOCAB_FILES_NAMES __A : List[str] = PRETRAINED_VOCAB_FILES_MAP __A : Optional[int] = PRETRAINED_INIT_CONFIGURATION __A : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Optional[int] = HerbertTokenizer def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase="<s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase="<mask>" , _UpperCamelCase="</s>" , **_UpperCamelCase , ): super().__init__( _UpperCamelCase , _UpperCamelCase , tokenizer_file=_UpperCamelCase , cls_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , sep_token=_UpperCamelCase , **_UpperCamelCase , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = [self.cls_token_id] _UpperCAmelCase = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None ): _UpperCAmelCase = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
32
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _A ( ): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __lowercase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , A__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _A ( ): """simple docstring""" assert _test_patching.open is open __lowercase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , A__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , A__ ): pass def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , A__ ) is None with patch_submodule(_test_patching , '''len''' , A__ ): assert _test_patching.len is mock assert _test_patching.len is len def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_start_and_stop_mock__''' __lowercase = patch_submodule(_test_patching , '''open''' , A__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _A ( ): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __lowercase = '''__test_patch_submodule_successive_join__''' __lowercase = '''__test_patch_submodule_successive_dirname__''' __lowercase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , A__ ): with patch_submodule(_test_patching , '''os.path.join''' , A__ ): with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _A ( ): """simple docstring""" __lowercase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , A__ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , A__ ): pass
41
0
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class __magic_name__ (unittest.TestCase ): '''simple docstring''' __lowercase : Tuple = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int , _a:str , _a:Optional[Any] ): snake_case__ = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) snake_case__ = VideoClassificationPipeline(model=_a , image_processor=_a , top_k=2 ) snake_case__ = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] , _a:Optional[Any] ): for example in examples: snake_case__ = video_classifier(_a ) self.assertEqual( _a , [ {'''score''': ANY(_a ), '''label''': ANY(_a )}, {'''score''': ANY(_a ), '''label''': ANY(_a )}, ] , ) @require_torch def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' snake_case__ = VideoMAEFeatureExtractor( size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} ) snake_case__ = pipeline( '''video-classification''' , model=_a , feature_extractor=_a , frame_sampling_rate=4 ) snake_case__ = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) snake_case__ = video_classifier(_a , top_k=2 ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}] , ) snake_case__ = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], ] , ) @require_tf def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): pass
33
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : """simple docstring""" def __init__( self : Dict ,lowercase__ : Dict ,lowercase__ : int=1_3 ,lowercase__ : List[str]=7 ,lowercase__ : int=True ,lowercase__ : int=True ,lowercase__ : Union[str, Any]=True ,lowercase__ : List[Any]=True ,lowercase__ : str=9_9 ,lowercase__ : Optional[Any]=3_2 ,lowercase__ : Union[str, Any]=5 ,lowercase__ : List[Any]=4 ,lowercase__ : str=3_7 ,lowercase__ : Tuple="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : Dict=0.1 ,lowercase__ : int=1_2_8 ,lowercase__ : Dict=3_2 ,lowercase__ : Dict=1_6 ,lowercase__ : Any=2 ,lowercase__ : int=0.0_2 ,lowercase__ : List[str]=3 ,lowercase__ : Dict=4 ,lowercase__ : Optional[int]=None ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return NezhaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.prepare_config_and_inputs() __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : str ): __lowercase = NezhaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ,token_type_ids=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Dict ,lowercase__ : str ,lowercase__ : Optional[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,): __lowercase = True __lowercase = NezhaModel(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,encoder_attention_mask=lowercase__ ,) __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,) __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): __lowercase = NezhaForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): __lowercase = NezhaForNextSentencePrediction(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ): __lowercase = NezhaForPreTraining(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,next_sentence_label=lowercase__ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ): __lowercase = NezhaForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,start_positions=lowercase__ ,end_positions=lowercase__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Tuple ,lowercase__ : str ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : Optional[int] ,lowercase__ : int ): __lowercase = self.num_labels __lowercase = NezhaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Any ,lowercase__ : Optional[Any] ): __lowercase = self.num_labels __lowercase = NezhaForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : str ): __lowercase = self.num_choices __lowercase = NezhaForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __lowercase = model( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Tuple = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : List[str] = True def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : Any=False ): __lowercase = super()._prepare_for_class(lowercase__ ,lowercase__ ,return_labels=lowercase__ ) if return_labels: if model_class in get_values(lowercase__ ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowercase__ ) __lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowercase__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = NezhaModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ,hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : int ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): # This regression test was failing with PyTorch < 1.3 ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase = None self.model_tester.create_and_check_model_as_decoder( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = NezhaModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __lowercase = True __lowercase = model_class(config=lowercase__ ) __lowercase = self._prepare_for_class(lowercase__ ,lowercase__ ) __lowercase = torch.jit.trace( lowercase__ ,(inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase__ ,os.path.join(lowercase__ ,'''bert.pt''' ) ) __lowercase = torch.jit.load(os.path.join(lowercase__ ,'''bert.pt''' ) ,map_location=lowercase__ ) loaded(inputs_dict['''input_ids'''].to(lowercase__ ) ,inputs_dict['''attention_mask'''].to(lowercase__ ) ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) __lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0] __lowercase = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape ,lowercase__ ) __lowercase = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) )
41
0
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path SCREAMING_SNAKE_CASE_ = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) SCREAMING_SNAKE_CASE_ = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} SCREAMING_SNAKE_CASE_ = 'zero2' SCREAMING_SNAKE_CASE_ = 'zero3' SCREAMING_SNAKE_CASE_ = [ZEROa, ZEROa] def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = parameterized.to_safe_name('''_'''.join(str(_lowercase ) for x in param.args ) ) return f'{func.__name__}_{param_based_name}' # Cartesian-product of zero stages with models to test SCREAMING_SNAKE_CASE_ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @parameterized.expand(lowerCamelCase_ , name_func=lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> str: self.run_and_check( stage=lowerCamelCase_ , model=lowerCamelCase_ , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) @require_torch_multi_gpu @parameterized.expand(lowerCamelCase_ , name_func=lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: self.run_and_check( stage=lowerCamelCase_ , model=lowerCamelCase_ , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) @parameterized.expand(lowerCamelCase_ , name_func=lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: self.run_and_check( stage=lowerCamelCase_ , model=lowerCamelCase_ , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) @require_torch_multi_gpu @parameterized.expand(lowerCamelCase_ , name_func=lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> Dict: self.run_and_check( stage=lowerCamelCase_ , model=lowerCamelCase_ , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1_0 , lowerCamelCase_ = True , lowerCamelCase_ = True , lowerCamelCase_ = True , ) -> Union[str, Any]: UpperCamelCase = models[model] UpperCamelCase = self.run_trainer( stage=lowerCamelCase_ , model_name=lowerCamelCase_ , eval_steps=lowerCamelCase_ , num_train_epochs=1 , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) self.do_checks(lowerCamelCase_) return output_dir def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1_0 , lowerCamelCase_ = 1 , lowerCamelCase_ = True , lowerCamelCase_ = True , ) -> Dict: UpperCamelCase = self.get_auto_remove_tmp_dir('''./xxx''' , after=lowerCamelCase_) UpperCamelCase = F'\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(lowerCamelCase_)}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n '.split() if fpaa: args.extend(['''--fp16''']) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files UpperCamelCase = F'--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'.split() UpperCamelCase = [F'{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'] UpperCamelCase = self.get_launcher(lowerCamelCase_) UpperCamelCase = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) return output_dir def UpperCAmelCase__ ( self , lowerCamelCase_=False) -> List[Any]: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) UpperCamelCase = min(2 , get_gpu_count()) if distributed else 1 return F'deepspeed --num_nodes 1 --num_gpus {num_gpus}'.split()
34
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KEY''') lowerCAmelCase__ = TypeVar('''VAL''') @dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ ) class lowercase_ (Generic[KEY, VAL] ): """simple docstring""" SCREAMING_SNAKE_CASE : KEY SCREAMING_SNAKE_CASE : VAL class lowercase_ (_Item ): """simple docstring""" def __init__( self : Optional[int] ): super().__init__(lowercase__ ,lowercase__ ) def __bool__( self : List[str] ): return False lowerCAmelCase__ = _DeletedItem() class lowercase_ (MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ): __lowercase = initial_block_size __lowercase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowercase = capacity_factor __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ): return hash(lowercase__ ) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ): return (ind + 1) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ): __lowercase = self._buckets[ind] if not stored: __lowercase = _Item(lowercase__ ,lowercase__ ) self._len += 1 return True elif stored.key == key: __lowercase = _Item(lowercase__ ,lowercase__ ) return True else: return False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False __lowercase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ): __lowercase = self._buckets __lowercase = [None] * new_size __lowercase = 0 for item in old_buckets: if item: self._add_item(item.key ,item.val ) def SCREAMING_SNAKE_CASE ( self : str ): self._resize(len(self._buckets ) * 2 ) def SCREAMING_SNAKE_CASE ( self : Tuple ): self._resize(len(self._buckets ) // 2 ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ): __lowercase = self._get_bucket_index(lowercase__ ) for _ in range(len(self._buckets ) ): yield ind __lowercase = self._get_next_ind(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): for ind in self._iterate_buckets(lowercase__ ): if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ): break def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): if self._is_full(): self._size_up() self._add_item(lowercase__ ,lowercase__ ) def __delitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: raise KeyError(lowercase__ ) if item is _deleted: continue if item.key == key: __lowercase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowercase__ ) def __len__( self : Optional[int] ): return self._len def __iter__( self : str ): yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ): __lowercase = ''' ,'''.join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
41
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging a_ :Optional[int] = logging.get_logger(__name__) a_ :Union[str, Any] = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class lowercase ( _UpperCAmelCase ): lowerCamelCase : Union[str, Any] = '''marian''' lowerCamelCase : Tuple = ['''past_key_values'''] lowerCamelCase : Optional[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[Any] , _lowercase : str=5_81_01 , _lowercase : Union[str, Any]=None , _lowercase : Tuple=10_24 , _lowercase : List[Any]=12 , _lowercase : int=40_96 , _lowercase : int=16 , _lowercase : str=12 , _lowercase : List[str]=40_96 , _lowercase : Tuple=16 , _lowercase : List[Any]=0.0 , _lowercase : Any=0.0 , _lowercase : List[Any]=True , _lowercase : Dict=True , _lowercase : Union[str, Any]="gelu" , _lowercase : int=10_24 , _lowercase : Optional[Any]=0.1 , _lowercase : List[Any]=0.0 , _lowercase : Optional[int]=0.0 , _lowercase : str=0.02 , _lowercase : Tuple=5_81_00 , _lowercase : int=False , _lowercase : Any=5_81_00 , _lowercase : Tuple=0 , _lowercase : Tuple=0 , _lowercase : List[Any]=True , **_lowercase : int , ): SCREAMING_SNAKE_CASE__ : List[str] = vocab_size SCREAMING_SNAKE_CASE__ : Dict = decoder_vocab_size or vocab_size SCREAMING_SNAKE_CASE__ : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : int = d_model SCREAMING_SNAKE_CASE__ : Tuple = encoder_ffn_dim SCREAMING_SNAKE_CASE__ : int = encoder_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = encoder_attention_heads SCREAMING_SNAKE_CASE__ : Dict = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : Tuple = decoder_layers SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : int = dropout SCREAMING_SNAKE_CASE__ : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE__ : List[str] = activation_dropout SCREAMING_SNAKE_CASE__ : Union[str, Any] = activation_function SCREAMING_SNAKE_CASE__ : Tuple = init_std SCREAMING_SNAKE_CASE__ : Optional[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE__ : List[str] = decoder_layerdrop SCREAMING_SNAKE_CASE__ : Tuple = use_cache SCREAMING_SNAKE_CASE__ : str = encoder_layers SCREAMING_SNAKE_CASE__ : Any = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE__ : str = share_encoder_decoder_embeddings super().__init__( pad_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , forced_eos_token_id=_lowercase , **_lowercase , ) class lowercase ( _UpperCAmelCase ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowercase__ ( self : Tuple ): if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : Optional[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: SCREAMING_SNAKE_CASE__ : Any = {0: '''batch'''} SCREAMING_SNAKE_CASE__ : Optional[Any] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: SCREAMING_SNAKE_CASE__ : Optional[int] = {0: '''batch''', 1: '''decoder_sequence'''} SCREAMING_SNAKE_CASE__ : Optional[Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_lowercase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. SCREAMING_SNAKE_CASE__ : Optional[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.num_layers for i in range(_lowercase ): SCREAMING_SNAKE_CASE__ : int = {0: '''batch''', 2: '''past_sequence + sequence'''} SCREAMING_SNAKE_CASE__ : Any = {0: '''batch''', 2: '''past_sequence + sequence'''} else: SCREAMING_SNAKE_CASE__ : int = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowercase__ ( self : Tuple ): if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : Optional[Any] = super().outputs else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = super(_lowercase , self ).outputs if self.use_past: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = self.num_layers for i in range(_lowercase ): SCREAMING_SNAKE_CASE__ : List[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} SCREAMING_SNAKE_CASE__ : Any = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def lowercase__ ( self : Optional[Any] , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE__ : str = self._generate_dummy_inputs_for_encoder_and_decoder( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # Generate decoder inputs SCREAMING_SNAKE_CASE__ : str = seq_length if not self.use_past else 1 SCREAMING_SNAKE_CASE__ : List[str] = self._generate_dummy_inputs_for_encoder_and_decoder( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : Dict = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} SCREAMING_SNAKE_CASE__ : Optional[int] = dict(**_lowercase , **_lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = common_inputs['''input_ids'''].shape SCREAMING_SNAKE_CASE__ : str = common_inputs['''decoder_input_ids'''].shape[1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = self.num_attention_heads SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_seq_length + 3 SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) SCREAMING_SNAKE_CASE__ : str = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_lowercase , _lowercase )] , dim=1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self.num_layers SCREAMING_SNAKE_CASE__ : str = min(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = max(_lowercase , _lowercase ) - min_num_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowercase ), torch.zeros(_lowercase ), torch.zeros(_lowercase ), torch.zeros(_lowercase ), ) ) # TODO: test this. SCREAMING_SNAKE_CASE__ : List[Any] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_lowercase , _lowercase ): common_inputs["past_key_values"].append((torch.zeros(_lowercase ), torch.zeros(_lowercase )) ) return common_inputs def lowercase__ ( self : int , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE__ : List[str] = self._generate_dummy_inputs_for_encoder_and_decoder( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE__ : Any = seqlen + 2 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = self.num_layers SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = self.num_attention_heads SCREAMING_SNAKE_CASE__ : str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE__ : Any = common_inputs['''attention_mask'''].dtype SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_lowercase , _lowercase , dtype=_lowercase )] , dim=1 ) SCREAMING_SNAKE_CASE__ : List[str] = [ (torch.zeros(_lowercase ), torch.zeros(_lowercase )) for _ in range(_lowercase ) ] return common_inputs def lowercase__ ( self : Optional[Any] , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : str = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : str = tokenizer.num_special_tokens_to_add(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowercase ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE__ : List[Any] = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = dict(tokenizer(_lowercase , return_tensors=_lowercase ) ) return common_inputs def lowercase__ ( self : List[str] , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : Dict = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) else: SCREAMING_SNAKE_CASE__ : List[Any] = self._generate_dummy_inputs_for_causal_lm( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) return common_inputs def lowercase__ ( self : str , _lowercase : Union[str, Any] , _lowercase : Any , _lowercase : Optional[int] , _lowercase : Union[str, Any] ): if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : Optional[Any] = super()._flatten_past_key_values_(_lowercase , _lowercase , _lowercase , _lowercase ) else: SCREAMING_SNAKE_CASE__ : List[Any] = super(_lowercase , self )._flatten_past_key_values_( _lowercase , _lowercase , _lowercase , _lowercase ) @property def lowercase__ ( self : Dict ): return 1E-4
35
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ,**lowercase__ : Tuple ): super().__init__(**lowercase__ ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self ,'''vision''' ) self.check_model_type(lowercase__ ) def __call__( self : List[str] ,lowercase__ : Union[str, "Image.Image", List[Dict[str, Any]]] ,lowercase__ : Union[str, List[str]] = None ,**lowercase__ : str ,): if "text_queries" in kwargs: __lowercase = kwargs.pop('''text_queries''' ) if isinstance(lowercase__ ,(str, Image.Image) ): __lowercase = {'''image''': image, '''candidate_labels''': candidate_labels} else: __lowercase = image __lowercase = super().__call__(lowercase__ ,**lowercase__ ) return results def SCREAMING_SNAKE_CASE ( self : int ,**lowercase__ : List[Any] ): __lowercase = {} if "threshold" in kwargs: __lowercase = kwargs['''threshold'''] if "top_k" in kwargs: __lowercase = kwargs['''top_k'''] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[Any] ): __lowercase = load_image(inputs['''image'''] ) __lowercase = inputs['''candidate_labels'''] if isinstance(lowercase__ ,lowercase__ ): __lowercase = candidate_labels.split(''',''' ) __lowercase = torch.tensor([[image.height, image.width]] ,dtype=torch.intaa ) for i, candidate_label in enumerate(lowercase__ ): __lowercase = self.tokenizer(lowercase__ ,return_tensors=self.framework ) __lowercase = self.image_processor(lowercase__ ,return_tensors=self.framework ) yield { "is_last": i == len(lowercase__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ): __lowercase = model_inputs.pop('''target_size''' ) __lowercase = model_inputs.pop('''candidate_label''' ) __lowercase = model_inputs.pop('''is_last''' ) __lowercase = self.model(**lowercase__ ) __lowercase = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : List[Any]=0.1 ,lowercase__ : List[str]=None ): __lowercase = [] for model_output in model_outputs: __lowercase = model_output['''candidate_label'''] __lowercase = BaseModelOutput(lowercase__ ) __lowercase = self.image_processor.post_process_object_detection( outputs=lowercase__ ,threshold=lowercase__ ,target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): __lowercase = outputs['''scores'''][index].item() __lowercase = self._get_bounding_box(outputs['''boxes'''][index][0] ) __lowercase = {'''score''': score, '''label''': label, '''box''': box} results.append(lowercase__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : x["score"] ,reverse=lowercase__ ) if top_k: __lowercase = results[:top_k] return results def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : "torch.Tensor" ): if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) __lowercase , __lowercase , __lowercase , __lowercase = box.int().tolist() __lowercase = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
41
0
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging __lowercase : List[str] = logging.get_logger(__name__) def lowercase ( ) -> Optional[Any]: '''simple docstring''' snake_case : int = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. snake_case : str = json.loads(__A ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. snake_case : List[Any] = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". snake_case : int = json.loads(__A ) if not mpi_options.get("""sagemaker_mpi_enabled""" , __A ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : str = field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def snake_case_ ( self ): '''simple docstring''' super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" ,SCREAMING_SNAKE_CASE_ ,) @cached_property def snake_case_ ( self ): '''simple docstring''' logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: snake_case : Tuple = torch.device("""cpu""" ) snake_case : Optional[Any] = 0 elif is_sagemaker_model_parallel_available(): snake_case : Tuple = smp.local_rank() snake_case : List[str] = torch.device("""cuda""" ,SCREAMING_SNAKE_CASE_ ) snake_case : List[Any] = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" ,timeout=self.ddp_timeout_delta ) snake_case : Union[str, Any] = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) snake_case : List[str] = torch.device("""cuda""" ,self.local_rank ) snake_case : Tuple = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 snake_case : Any = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. snake_case : Optional[int] = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" ,timeout=self.ddp_timeout_delta ) snake_case : Tuple = torch.device("""cuda""" ,self.local_rank ) snake_case : Optional[int] = 1 if device.type == "cuda": torch.cuda.set_device(SCREAMING_SNAKE_CASE_ ) return device @property def snake_case_ ( self ): '''simple docstring''' if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def snake_case_ ( self ): '''simple docstring''' return not is_sagemaker_model_parallel_available() @property def snake_case_ ( self ): '''simple docstring''' return False
36
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 'facebook/bart-large-mnli' SCREAMING_SNAKE_CASE : Optional[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) SCREAMING_SNAKE_CASE : Any = 'text_classifier' SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : Tuple = ['text', ['text']] SCREAMING_SNAKE_CASE : List[str] = ['text'] def SCREAMING_SNAKE_CASE ( self : List[Any] ): super().setup() __lowercase = self.model.config __lowercase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): __lowercase = int(lowercase__ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Dict ,lowercase__ : List[Any] ): __lowercase = labels return self.pre_processor( [text] * len(lowercase__ ) ,[F"This example is {label}" for label in labels] ,return_tensors='''pt''' ,padding='''max_length''' ,) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = outputs.logits __lowercase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
41
0
from math import ceil def UpperCamelCase_ ( __a = 1_001 ) -> int: a__ : Optional[Any] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): a__ : List[str] = 2 * i + 1 a__ : Optional[int] = 2 * i a__ : Dict = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: UpperCamelCase : List[str] = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number""")
37
'''simple docstring''' from collections.abc import Callable class lowercase_ : """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : Callable | None = None ): # Stores actual heap items. __lowercase = [] # Stores indexes of each item for supporting updates and deletion. __lowercase = {} # Stores current size of heap. __lowercase = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __lowercase = key or (lambda lowercase__ : x) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : int ): return int((i - 1) / 2 ) if i > 0 else None def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = int(2 * i + 1 ) return left if 0 < left < self.size else None def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ): __lowercase = int(2 * i + 2 ) return right if 0 < right < self.size else None def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : int ,lowercase__ : int ): __lowercase , __lowercase = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __lowercase , __lowercase = self.arr[j], self.arr[i] def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): return self.arr[i][1] < self.arr[j][1] def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._left(lowercase__ ) __lowercase = self._right(lowercase__ ) __lowercase = i if left is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = left if right is not None and not self._cmp(lowercase__ ,lowercase__ ): __lowercase = right return valid_parent def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): __lowercase = self._parent(lowercase__ ) while parent is not None and not self._cmp(lowercase__ ,lowercase__ ): self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = parent, self._parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ): __lowercase = self._get_valid_parent(lowercase__ ) while valid_parent != index: self._swap(lowercase__ ,lowercase__ ) __lowercase , __lowercase = valid_parent, self._get_valid_parent(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] __lowercase = [item, self.key(lowercase__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ): if item not in self.pos_map: return __lowercase = self.pos_map[item] del self.pos_map[item] __lowercase = self.arr[self.size - 1] __lowercase = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowercase__ ) self._heapify_down(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : int ): __lowercase = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(lowercase__ )] ) else: __lowercase = [item, self.key(lowercase__ )] __lowercase = self.size self.size += 1 self._heapify_up(self.size - 1 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): return self.arr[0] if self.size else None def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _A ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
41
0
'''simple docstring''' from math import sqrt def UpperCamelCase__ ( __magic_name__ : int ) -> int: '''simple docstring''' snake_case__ : Dict = 0 for i in range(1 , int(sqrt(__magic_name__ ) + 1 ) ): if n % i == 0 and i != sqrt(__magic_name__ ): total += i + n // i elif i == sqrt(__magic_name__ ): total += i return total - n def UpperCamelCase__ ( __magic_name__ : int = 1_00_00 ) -> int: '''simple docstring''' snake_case__ : Dict = sum( i for i in range(1 , __magic_name__ ) if sum_of_divisors(sum_of_divisors(__magic_name__ ) ) == i and sum_of_divisors(__magic_name__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
38
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ): __lowercase = [] def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : str ,**lowercase__ : Any ): self.events.append('''on_init_end''' ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : int ,**lowercase__ : Optional[int] ): self.events.append('''on_train_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ,**lowercase__ : List[str] ): self.events.append('''on_train_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,**lowercase__ : Optional[Any] ): self.events.append('''on_epoch_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : Any ,**lowercase__ : Optional[int] ): self.events.append('''on_epoch_end''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_step_begin''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : Optional[int] ,**lowercase__ : Dict ): self.events.append('''on_step_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,**lowercase__ : Any ): self.events.append('''on_evaluate''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : int ,**lowercase__ : Optional[Any] ): self.events.append('''on_predict''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,**lowercase__ : int ): self.events.append('''on_save''' ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_log''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : int ,lowercase__ : Dict ,**lowercase__ : str ): self.events.append('''on_prediction_step''' ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): shutil.rmtree(self.output_dir ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any]=0 ,lowercase__ : Any=0 ,lowercase__ : Tuple=6_4 ,lowercase__ : Optional[int]=6_4 ,lowercase__ : Optional[Any]=None ,lowercase__ : str=False ,**lowercase__ : Any ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionModelConfig(a=lowercase__ ,b=lowercase__ ) __lowercase = RegressionPreTrainedModel(lowercase__ ) __lowercase = TrainingArguments(self.output_dir ,disable_tqdm=lowercase__ ,report_to=[] ,**lowercase__ ) return Trainer( lowercase__ ,lowercase__ ,train_dataset=lowercase__ ,eval_dataset=lowercase__ ,callbacks=lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) ) # Order doesn't matter __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) for cba, cba in zip(lowercase__ ,lowercase__ ): if isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,lowercase__ ) elif isinstance(lowercase__ ,lowercase__ ) and not isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,cba.__class__ ) elif not isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(cba.__class__ ,lowercase__ ) else: self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ): __lowercase = ['''on_init_end''', '''on_train_begin'''] __lowercase = 0 __lowercase = len(trainer.get_eval_dataloader() ) __lowercase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(lowercase__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.get_trainer() __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # Callbacks passed at init are added to the default callbacks __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __lowercase = self.get_trainer(disable_tqdm=lowercase__ ) __lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __lowercase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(cb.__class__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # We can also add, pop, or remove by instance __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' ,category=lowercase__ ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # Independent log/save/eval __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='''steps''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='''epoch''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # A bit of everything __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=1_0 ,eval_steps=5 ,evaluation_strategy='''steps''' ,) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,) assert str(lowercase__ ) in warn_mock.call_args[0][0]
41
0
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = os.path.join(args.tf_model_dir , '''parameters.json''' ) snake_case_ = json.loads(open(SCREAMING_SNAKE_CASE__ ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('''.pt''' ): snake_case_ = args.output + '''.pt''' snake_case_ = OrderedDict() with tf.device('''/CPU:0''' ): snake_case_ = tf.train.load_checkpoint(args.tf_model_dir ) snake_case_ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): snake_case_ = reader.get_tensor(SCREAMING_SNAKE_CASE__ ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): snake_case_ = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): snake_case_ = 8 snake_case_ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time snake_case_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.startswith('''model/moe''' ): snake_case_ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): snake_case_ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player snake_case_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.endswith('''/softmlp/kernel''' ): snake_case_ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player snake_case_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): snake_case_ = key_name[-9:-7] for i in range(16 ): snake_case_ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) snake_case_ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided snake_case_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.startswith('''model/mlp''' ): snake_case_ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): snake_case_ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player snake_case_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.endswith('''/p1/bias''' ): snake_case_ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player snake_case_ = vnp.copy() # same because it is one dimensional snake_case_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.endswith('''/p2/kernel''' ): snake_case_ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player snake_case_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.endswith('''/p2/bias''' ): snake_case_ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player snake_case_ = vnp.copy() # same because it is one dimensional snake_case_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.startswith('''model/ln''' ): snake_case_ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): snake_case_ = '''model.blocks.%d.feed_forward.norm.bias''' % player snake_case_ = vnp.copy() # same because it is one dimensional snake_case_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.endswith('''/g''' ): snake_case_ = '''model.blocks.%d.feed_forward.norm.weight''' % player snake_case_ = vnp.copy() # same because it is one dimensional snake_case_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.startswith('''model/att''' ): snake_case_ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): snake_case_ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum snake_case_ = state[:, 0, :, :] snake_case_ = state[:, 1, :, :] snake_case_ = state[:, 2, :, :] snake_case_ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player snake_case_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) snake_case_ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player snake_case_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) snake_case_ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player snake_case_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.endswith('''/o/kernel''' ): snake_case_ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player snake_case_ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.startswith('''model/an''' ): snake_case_ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): snake_case_ = '''model.blocks.%d.self_attn.norm.bias''' % player snake_case_ = vnp.copy() # same because it is one dimensional snake_case_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.endswith('''/g''' ): snake_case_ = '''model.blocks.%d.self_attn.norm.weight''' % player snake_case_ = vnp.copy() # same because it is one dimensional snake_case_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): snake_case_ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] snake_case_ = '''model.%s.weight''' % nlayer snake_case_ = vnp.copy() # same in embedded snake_case_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) if key_name.startswith('''model/wte''' ): snake_case_ = '''lm_head.weight''' snake_case_ = vnp.copy() # same in embedded snake_case_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name.startswith('''model/wob''' ): snake_case_ = '''final_logits_bias''' snake_case_ = vnp.copy() # same in embedded snake_case_ = state.reshape((1, -1) ) snake_case_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name == "model/dense/kernel": snake_case_ = '''model.last_project.weight''' snake_case_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) elif key_name == "model/dense_1/bias": snake_case_ = '''model.last_project.bias''' snake_case_ = vnp.copy() # same because it is one dimensional snake_case_ = torch.tensor(SCREAMING_SNAKE_CASE__ ) torch.save(SCREAMING_SNAKE_CASE__ , args.output ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') lowerCAmelCase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
39
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : jnp.ndarray SCREAMING_SNAKE_CASE : jnp.ndarray class lowercase_ (nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __lowercase = [] for i in range(len(self.block_out_channels ) - 1 ): __lowercase = self.block_out_channels[i] __lowercase = self.block_out_channels[i + 1] __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = nn.Conv( lowercase__ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(lowercase__ ) __lowercase = blocks __lowercase = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : List[str] ,lowercase__ : Optional[int] ): __lowercase = self.conv_in(lowercase__ ) __lowercase = nn.silu(lowercase__ ) for block in self.blocks: __lowercase = block(lowercase__ ) __lowercase = nn.silu(lowercase__ ) __lowercase = self.conv_out(lowercase__ ) return embedding @flax_register_to_config class lowercase_ (nn.Module , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 3_2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False SCREAMING_SNAKE_CASE : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) SCREAMING_SNAKE_CASE : int = 2 SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None SCREAMING_SNAKE_CASE : int = 1_2_8_0 SCREAMING_SNAKE_CASE : float = 0.0 SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = "rgb" SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : jax.random.KeyArray ): # init input tensors __lowercase = (1, self.in_channels, self.sample_size, self.sample_size) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase = jnp.ones((1,) ,dtype=jnp.intaa ) __lowercase = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa ) __lowercase = (1, 3, self.sample_size * 8, self.sample_size * 8) __lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa ) __lowercase , __lowercase = jax.random.split(lowercase__ ) __lowercase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )["params"] def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.block_out_channels __lowercase = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __lowercase = self.num_attention_heads or self.attention_head_dim # input __lowercase = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time __lowercase = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift ) __lowercase = FlaxTimestepEmbedding(lowercase__ ,dtype=self.dtype ) __lowercase = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) __lowercase = self.only_cross_attention if isinstance(lowercase__ ,lowercase__ ): __lowercase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase__ ,lowercase__ ): __lowercase = (num_attention_heads,) * len(self.down_block_types ) # down __lowercase = [] __lowercase = [] __lowercase = block_out_channels[0] __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) for i, down_block_type in enumerate(self.down_block_types ): __lowercase = output_channel __lowercase = block_out_channels[i] __lowercase = i == len(lowercase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": __lowercase = FlaxCrossAttnDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: __lowercase = FlaxDownBlockaD( in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(lowercase__ ) for _ in range(self.layers_per_block ): __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) if not is_final_block: __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(lowercase__ ) __lowercase = down_blocks __lowercase = controlnet_down_blocks # mid __lowercase = block_out_channels[-1] __lowercase = FlaxUNetMidBlockaDCrossAttn( in_channels=lowercase__ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) __lowercase = nn.Conv( lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : float = 1.0 ,lowercase__ : bool = True ,lowercase__ : bool = False ,): __lowercase = self.controlnet_conditioning_channel_order if channel_order == "bgr": __lowercase = jnp.flip(lowercase__ ,axis=1 ) # 1. time if not isinstance(lowercase__ ,jnp.ndarray ): __lowercase = jnp.array([timesteps] ,dtype=jnp.intaa ) elif isinstance(lowercase__ ,jnp.ndarray ) and len(timesteps.shape ) == 0: __lowercase = timesteps.astype(dtype=jnp.floataa ) __lowercase = jnp.expand_dims(lowercase__ ,0 ) __lowercase = self.time_proj(lowercase__ ) __lowercase = self.time_embedding(lowercase__ ) # 2. pre-process __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.conv_in(lowercase__ ) __lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) ) __lowercase = self.controlnet_cond_embedding(lowercase__ ) sample += controlnet_cond # 3. down __lowercase = (sample,) for down_block in self.down_blocks: if isinstance(lowercase__ ,lowercase__ ): __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) else: __lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,deterministic=not train ) down_block_res_samples += res_samples # 4. mid __lowercase = self.mid_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train ) # 5. contronet blocks __lowercase = () for down_block_res_sample, controlnet_block in zip(lowercase__ ,self.controlnet_down_blocks ): __lowercase = controlnet_block(lowercase__ ) controlnet_down_block_res_samples += (down_block_res_sample,) __lowercase = controlnet_down_block_res_samples __lowercase = self.controlnet_mid_block(lowercase__ ) # 6. scaling __lowercase = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowercase__ ,mid_block_res_sample=lowercase__ )
41
0