code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
__a: int = logging.get_logger(__name__)
@add_end_docstrings(lowerCamelCase__ )
class UpperCAmelCase ( lowerCamelCase__ ):
'''simple docstring'''
def __init__( self , **__lowerCAmelCase ) -> Optional[Any]:
super().__init__(**lowercase__ )
if self.framework == "tf":
raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" )
requires_backends(self , '''vision''' )
self.check_model_type(lowercase__ )
def __call__( self , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> str:
if "text_queries" in kwargs:
lowercase__ : Tuple = kwargs.pop('''text_queries''' )
if isinstance(lowercase__ , (str, Image.Image) ):
lowercase__ : int = {'''image''': image, '''candidate_labels''': candidate_labels}
else:
lowercase__ : List[Any] = image
lowercase__ : Optional[int] = super().__call__(lowercase__ , **lowercase__ )
return results
def _lowerCAmelCase( self , **__lowerCAmelCase ) -> Optional[Any]:
lowercase__ : str = {}
if "threshold" in kwargs:
lowercase__ : Optional[Any] = kwargs['''threshold''']
if "top_k" in kwargs:
lowercase__ : List[Any] = kwargs['''top_k''']
return {}, {}, postprocess_params
def _lowerCAmelCase( self , __lowerCAmelCase ) -> int:
lowercase__ : Optional[int] = load_image(inputs['''image'''] )
lowercase__ : Optional[int] = inputs['''candidate_labels''']
if isinstance(lowercase__ , lowercase__ ):
lowercase__ : int = candidate_labels.split(''',''' )
lowercase__ : List[Any] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa )
for i, candidate_label in enumerate(lowercase__ ):
lowercase__ : List[Any] = self.tokenizer(lowercase__ , return_tensors=self.framework )
lowercase__ : Optional[int] = self.image_processor(lowercase__ , return_tensors=self.framework )
yield {
"is_last": i == len(lowercase__ ) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def _lowerCAmelCase( self , __lowerCAmelCase ) -> Dict:
lowercase__ : Optional[Any] = model_inputs.pop('''target_size''' )
lowercase__ : Tuple = model_inputs.pop('''candidate_label''' )
lowercase__ : Any = model_inputs.pop('''is_last''' )
lowercase__ : str = self.model(**lowercase__ )
lowercase__ : List[str] = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs}
return model_outputs
def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=0.1 , __lowerCAmelCase=None ) -> Union[str, Any]:
lowercase__ : Union[str, Any] = []
for model_output in model_outputs:
lowercase__ : Union[str, Any] = model_output['''candidate_label''']
lowercase__ : Union[str, Any] = BaseModelOutput(lowercase__ )
lowercase__ : Optional[Any] = self.image_processor.post_process_object_detection(
outputs=lowercase__ , threshold=lowercase__ , target_sizes=model_output['''target_size'''] )[0]
for index in outputs["scores"].nonzero():
lowercase__ : int = outputs['''scores'''][index].item()
lowercase__ : str = self._get_bounding_box(outputs['''boxes'''][index][0] )
lowercase__ : Optional[Any] = {'''score''': score, '''label''': label, '''box''': box}
results.append(lowercase__ )
lowercase__ : List[str] = sorted(lowercase__ , key=lambda __lowerCAmelCase : x["score"] , reverse=lowercase__ )
if top_k:
lowercase__ : Union[str, Any] = results[:top_k]
return results
def _lowerCAmelCase( self , __lowerCAmelCase ) -> Union[str, Any]:
if self.framework != "pt":
raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' )
lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = box.int().tolist()
lowercase__ : Union[str, Any] = {
'''xmin''': xmin,
'''ymin''': ymin,
'''xmax''': xmax,
'''ymax''': ymax,
}
return bbox
| 152 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''',
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = 'blenderbot-small'
SCREAMING_SNAKE_CASE : int = ['past_key_values']
SCREAMING_SNAKE_CASE : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self : Optional[int] ,lowercase__ : List[str]=5_0_2_6_5 ,lowercase__ : Optional[Any]=5_1_2 ,lowercase__ : Optional[int]=8 ,lowercase__ : List[Any]=2_0_4_8 ,lowercase__ : List[str]=1_6 ,lowercase__ : str=8 ,lowercase__ : Any=2_0_4_8 ,lowercase__ : Tuple=1_6 ,lowercase__ : Tuple=0.0 ,lowercase__ : List[str]=0.0 ,lowercase__ : Any=True ,lowercase__ : str=True ,lowercase__ : int="gelu" ,lowercase__ : Tuple=5_1_2 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : str=0.0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : List[Any]=False ,lowercase__ : Optional[int]=0 ,lowercase__ : Optional[int]=1 ,lowercase__ : str=2 ,lowercase__ : int=2 ,**lowercase__ : List[str] ,):
__lowercase = vocab_size
__lowercase = max_position_embeddings
__lowercase = d_model
__lowercase = encoder_ffn_dim
__lowercase = encoder_layers
__lowercase = encoder_attention_heads
__lowercase = decoder_ffn_dim
__lowercase = decoder_layers
__lowercase = decoder_attention_heads
__lowercase = dropout
__lowercase = attention_dropout
__lowercase = activation_dropout
__lowercase = activation_function
__lowercase = init_std
__lowercase = encoder_layerdrop
__lowercase = decoder_layerdrop
__lowercase = use_cache
__lowercase = encoder_layers
__lowercase = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,is_encoder_decoder=lowercase__ ,decoder_start_token_id=lowercase__ ,forced_eos_token_id=lowercase__ ,**lowercase__ ,)
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
@property
def SCREAMING_SNAKE_CASE ( self : Dict ):
if self.task in ["default", "seq2seq-lm"]:
__lowercase = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
__lowercase = {0: '''batch'''}
__lowercase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
__lowercase = {0: '''batch''', 1: '''decoder_sequence'''}
__lowercase = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(lowercase__ ,direction='''inputs''' )
elif self.task == "causal-lm":
# TODO: figure this case out.
__lowercase = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
__lowercase , __lowercase = self.num_layers
for i in range(lowercase__ ):
__lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''}
__lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''}
else:
__lowercase = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}),
('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}),
] )
return common_inputs
@property
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
if self.task in ["default", "seq2seq-lm"]:
__lowercase = super().outputs
else:
__lowercase = super(lowercase__ ,self ).outputs
if self.use_past:
__lowercase , __lowercase = self.num_layers
for i in range(lowercase__ ):
__lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''}
__lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''}
return common_outputs
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,):
__lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
# Generate decoder inputs
__lowercase = seq_length if not self.use_past else 1
__lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
__lowercase = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
__lowercase = dict(**lowercase__ ,**lowercase__ )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
__lowercase , __lowercase = common_inputs['''input_ids'''].shape
__lowercase = common_inputs['''decoder_input_ids'''].shape[1]
__lowercase , __lowercase = self.num_attention_heads
__lowercase = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
__lowercase = decoder_seq_length + 3
__lowercase = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
__lowercase = torch.cat(
[common_inputs['''decoder_attention_mask'''], torch.ones(lowercase__ ,lowercase__ )] ,dim=1 )
__lowercase = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
__lowercase , __lowercase = self.num_layers
__lowercase = min(lowercase__ ,lowercase__ )
__lowercase = max(lowercase__ ,lowercase__ ) - min_num_layers
__lowercase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder'''
for _ in range(lowercase__ ):
common_inputs["past_key_values"].append(
(
torch.zeros(lowercase__ ),
torch.zeros(lowercase__ ),
torch.zeros(lowercase__ ),
torch.zeros(lowercase__ ),
) )
# TODO: test this.
__lowercase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape
for _ in range(lowercase__ ,lowercase__ ):
common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) )
return common_inputs
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,):
__lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
__lowercase , __lowercase = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
__lowercase = seqlen + 2
__lowercase , __lowercase = self.num_layers
__lowercase , __lowercase = self.num_attention_heads
__lowercase = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
__lowercase = common_inputs['''attention_mask'''].dtype
__lowercase = torch.cat(
[common_inputs['''attention_mask'''], torch.ones(lowercase__ ,lowercase__ ,dtype=lowercase__ )] ,dim=1 )
__lowercase = [
(torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ )
]
return common_inputs
def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,):
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__lowercase = compute_effective_axis_dimension(
lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase = tokenizer.num_special_tokens_to_add(lowercase__ )
__lowercase = compute_effective_axis_dimension(
lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowercase__ )
# Generate dummy inputs according to compute batch and sequence
__lowercase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size
__lowercase = dict(tokenizer(lowercase__ ,return_tensors=lowercase__ ) )
return common_inputs
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,):
if self.task in ["default", "seq2seq-lm"]:
__lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ )
elif self.task == "causal-lm":
__lowercase = self._generate_dummy_inputs_for_causal_lm(
lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ )
else:
__lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ )
return common_inputs
def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ):
if self.task in ["default", "seq2seq-lm"]:
__lowercase = super()._flatten_past_key_values_(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
else:
__lowercase = super(lowercase__ ,self )._flatten_past_key_values_(
lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
| 41 | 0 |
"""simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,)
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6},
},
{
"framework": "pytorch",
"script": "run_ddp.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6},
},
{
"framework": "tensorflow",
"script": "run_tf_dist.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7},
},
] )
class UpperCAmelCase (unittest.TestCase ):
"""simple docstring"""
def _snake_case ( self ):
if self.framework == "pytorch":
subprocess.run(
F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=lowercase__ , )
assert hasattr(self , '''env''' )
def _snake_case ( self , _UpperCAmelCase ):
lowercase__: str = F"""{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}"""
# distributed data settings
lowercase__: Tuple = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=lowercase__ , instance_count=lowercase__ , instance_type=self.instance_type , debugger_hook_config=lowercase__ , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=lowercase__ , py_version='''py36''' , )
def _snake_case ( self , _UpperCAmelCase ):
TrainingJobAnalytics(lowercase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(2,)] )
def _snake_case ( self , _UpperCAmelCase ):
# create estimator
lowercase__: Dict = self.create_estimator(lowercase__ )
# run training
estimator.fit()
# result dataframe
lowercase__: Union[str, Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
lowercase__: Dict = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] )
lowercase__: Tuple = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
lowercase__: Optional[Any] = (
Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 999999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy )
assert all(t <= self.results['''eval_loss'''] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile:
json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , lowercase__ )
| 586 |
'''simple docstring'''
from __future__ import annotations
def _A ( A__ , A__ ):
"""simple docstring"""
if b == 0:
return (1, 0)
((__lowercase) , (__lowercase)) = extended_euclid(A__ , a % b )
__lowercase = a // b
return (y, x - k * y)
def _A ( A__ , A__ , A__ , A__ ):
"""simple docstring"""
((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ )
__lowercase = na * na
__lowercase = ra * x * na + ra * y * na
return (n % m + m) % m
def _A ( A__ , A__ ):
"""simple docstring"""
((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ )
if b < 0:
__lowercase = (b % n + n) % n
return b
def _A ( A__ , A__ , A__ , A__ ):
"""simple docstring"""
__lowercase , __lowercase = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ )
__lowercase = na * na
__lowercase = ra * x * na + ra * y * na
return (n % m + m) % m
if __name__ == "__main__":
from doctest import testmod
testmod(name='''chinese_remainder_theorem''', verbose=True)
testmod(name='''chinese_remainder_theorem2''', verbose=True)
testmod(name='''invert_modulo''', verbose=True)
testmod(name='''extended_euclid''', verbose=True)
| 41 | 0 |
"""simple docstring"""
import os
import string
import sys
lowerCAmelCase_ = 1 << 8
lowerCAmelCase_ = {
'''tab''': ord('''\t'''),
'''newline''': ord('''\r'''),
'''esc''': 27,
'''up''': 65 + ARROW_KEY_FLAG,
'''down''': 66 + ARROW_KEY_FLAG,
'''right''': 67 + ARROW_KEY_FLAG,
'''left''': 68 + ARROW_KEY_FLAG,
'''mod_int''': 91,
'''undefined''': sys.maxsize,
'''interrupt''': 3,
'''insert''': 50,
'''delete''': 51,
'''pg_up''': 53,
'''pg_down''': 54,
}
lowerCAmelCase_ = KEYMAP['''up''']
lowerCAmelCase_ = KEYMAP['''left''']
if sys.platform == "win32":
lowerCAmelCase_ = []
lowerCAmelCase_ = {
b'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG,
b'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG,
b'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG,
b'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG,
b'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG,
b'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG,
b'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG,
b'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG,
}
for i in range(10):
lowerCAmelCase_ = ord(str(i))
def lowerCamelCase_()-> Any:
if os.name == "nt":
import msvcrt
_SCREAMING_SNAKE_CASE : List[str] = """mbcs"""
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(A__ ) == 0:
# Read the keystroke
_SCREAMING_SNAKE_CASE : List[str] = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
_SCREAMING_SNAKE_CASE : List[Any] = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
_SCREAMING_SNAKE_CASE : Any = chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) )
WIN_CH_BUFFER.append(A__ )
if ord(A__ ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(126 ) )
_SCREAMING_SNAKE_CASE : Union[str, Any] = chr(KEYMAP["""esc"""] )
except KeyError:
_SCREAMING_SNAKE_CASE : List[str] = cha[1]
else:
_SCREAMING_SNAKE_CASE : Any = ch.decode(A__ )
else:
_SCREAMING_SNAKE_CASE : Union[str, Any] = WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
_SCREAMING_SNAKE_CASE : Dict = sys.stdin.fileno()
_SCREAMING_SNAKE_CASE : List[str] = termios.tcgetattr(A__ )
try:
tty.setraw(A__ )
_SCREAMING_SNAKE_CASE : int = sys.stdin.read(1 )
finally:
termios.tcsetattr(A__ , termios.TCSADRAIN , A__ )
return ch
def lowerCamelCase_()-> Dict:
_SCREAMING_SNAKE_CASE : int = get_raw_chars()
if ord(A__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(A__ ) == KEYMAP["esc"]:
_SCREAMING_SNAKE_CASE : Optional[int] = get_raw_chars()
if ord(A__ ) == KEYMAP["mod_int"]:
_SCREAMING_SNAKE_CASE : Union[str, Any] = get_raw_chars()
if ord(A__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(A__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(A__ ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"]
| 338 |
'''simple docstring'''
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def _A ( ):
"""simple docstring"""
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
__lowercase = '''__test_patch_submodule_mock__'''
with patch_submodule(_test_patching , '''os.path.join''' , A__ ):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os , _PatchedModuleObj )
assert isinstance(_test_patching.os.path , _PatchedModuleObj )
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path , _PatchedModuleObj )
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os , _PatchedModuleObj )
assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj )
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path , _PatchedModuleObj )
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def _A ( ):
"""simple docstring"""
assert _test_patching.open is open
__lowercase = '''__test_patch_submodule_builtin_mock__'''
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching , '''open''' , A__ ):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def _A ( ):
"""simple docstring"""
__lowercase = '''__test_patch_submodule_missing_mock__'''
with patch_submodule(_test_patching , '''pandas.read_csv''' , A__ ):
pass
def _A ( ):
"""simple docstring"""
__lowercase = '''__test_patch_submodule_missing_builtin_mock__'''
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching , '''len''' , A__ ) is None
with patch_submodule(_test_patching , '''len''' , A__ ):
assert _test_patching.len is mock
assert _test_patching.len is len
def _A ( ):
"""simple docstring"""
__lowercase = '''__test_patch_submodule_start_and_stop_mock__'''
__lowercase = patch_submodule(_test_patching , '''open''' , A__ )
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def _A ( ):
"""simple docstring"""
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
__lowercase = '''__test_patch_submodule_successive_join__'''
__lowercase = '''__test_patch_submodule_successive_dirname__'''
__lowercase = '''__test_patch_submodule_successive_rename__'''
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching , '''os.path.join''' , A__ ):
with patch_submodule(_test_patching , '''os.rename''' , A__ ):
with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching , '''os.rename''' , A__ ):
with patch_submodule(_test_patching , '''os.path.join''' , A__ ):
with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def _A ( ):
"""simple docstring"""
__lowercase = '''__test_patch_submodule_doesnt_exist_mock__'''
with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , A__ ):
pass
with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , A__ ):
pass
| 41 | 0 |
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def a_ (__A ) -> Optional[Any]: # picklable for multiprocessing
"""simple docstring"""
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def a_ () -> Union[str, Any]:
"""simple docstring"""
with parallel_backend("spark" ):
assert ParallelBackendConfig.backend_name == "spark"
__a : int = [1, 2, 3]
with pytest.raises(A__ ):
with parallel_backend("unsupported backend" ):
map_nested(A__ , A__ , num_proc=2 )
with pytest.raises(A__ ):
with parallel_backend("unsupported backend" ):
map_nested(A__ , A__ , num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize("num_proc" , [2, -1] )
def a_ (__A ) -> Dict:
"""simple docstring"""
__a : Union[str, Any] = [1, 2]
__a : Union[str, Any] = {"a": 1, "b": 2}
__a : Tuple = {"a": [1, 2], "b": [3, 4]}
__a : Dict = {"a": {"1": 1}, "b": 2}
__a : Optional[Any] = {"a": 1, "b": 2, "c": 3, "d": 4}
__a : Optional[int] = [2, 3]
__a : str = {"a": 2, "b": 3}
__a : Dict = {"a": [2, 3], "b": [4, 5]}
__a : Optional[int] = {"a": {"1": 2}, "b": 3}
__a : Tuple = {"a": 2, "b": 3, "c": 4, "d": 5}
with parallel_backend("spark" ):
assert map_nested(A__ , A__ , num_proc=A__ ) == expected_map_nested_sa
assert map_nested(A__ , A__ , num_proc=A__ ) == expected_map_nested_sa
assert map_nested(A__ , A__ , num_proc=A__ ) == expected_map_nested_sa
assert map_nested(A__ , A__ , num_proc=A__ ) == expected_map_nested_sa
assert map_nested(A__ , A__ , num_proc=A__ ) == expected_map_nested_sa
| 351 |
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import NezhaConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
)
from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST
class lowercase_ :
"""simple docstring"""
def __init__( self : Dict ,lowercase__ : Dict ,lowercase__ : int=1_3 ,lowercase__ : List[str]=7 ,lowercase__ : int=True ,lowercase__ : int=True ,lowercase__ : Union[str, Any]=True ,lowercase__ : List[Any]=True ,lowercase__ : str=9_9 ,lowercase__ : Optional[Any]=3_2 ,lowercase__ : Union[str, Any]=5 ,lowercase__ : List[Any]=4 ,lowercase__ : str=3_7 ,lowercase__ : Tuple="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : Dict=0.1 ,lowercase__ : int=1_2_8 ,lowercase__ : Dict=3_2 ,lowercase__ : Dict=1_6 ,lowercase__ : Any=2 ,lowercase__ : int=0.0_2 ,lowercase__ : List[str]=3 ,lowercase__ : Dict=4 ,lowercase__ : Optional[int]=None ,):
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_token_type_ids
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = type_sequence_label_size
__lowercase = initializer_range
__lowercase = num_labels
__lowercase = num_choices
__lowercase = scope
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
__lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size )
__lowercase = None
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
__lowercase = ids_tensor([self.batch_size] ,self.num_choices )
__lowercase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
return NezhaConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = self.prepare_config_and_inputs()
__lowercase = True
__lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__lowercase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : str ):
__lowercase = NezhaModel(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ )
__lowercase = model(lowercase__ ,token_type_ids=lowercase__ )
__lowercase = model(lowercase__ )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Dict ,lowercase__ : str ,lowercase__ : Optional[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,):
__lowercase = True
__lowercase = NezhaModel(lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(
lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,encoder_attention_mask=lowercase__ ,)
__lowercase = model(
lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,)
__lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ):
__lowercase = NezhaForMaskedLM(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ):
__lowercase = NezhaForNextSentencePrediction(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(
lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) )
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ):
__lowercase = NezhaForPreTraining(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(
lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,next_sentence_label=lowercase__ ,)
self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ):
__lowercase = NezhaForQuestionAnswering(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(
lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,start_positions=lowercase__ ,end_positions=lowercase__ ,)
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Tuple ,lowercase__ : str ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : Optional[int] ,lowercase__ : int ):
__lowercase = self.num_labels
__lowercase = NezhaForSequenceClassification(lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Any ,lowercase__ : Optional[Any] ):
__lowercase = self.num_labels
__lowercase = NezhaForTokenClassification(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : str ):
__lowercase = self.num_choices
__lowercase = NezhaForMultipleChoice(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
__lowercase = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
__lowercase = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
__lowercase = model(
lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = config_and_inputs
__lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = (
(
NezhaModel,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE : Tuple = (
{
'feature-extraction': NezhaModel,
'fill-mask': NezhaForMaskedLM,
'question-answering': NezhaForQuestionAnswering,
'text-classification': NezhaForSequenceClassification,
'token-classification': NezhaForTokenClassification,
'zero-shot': NezhaForSequenceClassification,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE : List[str] = True
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : Any=False ):
__lowercase = super()._prepare_for_class(lowercase__ ,lowercase__ ,return_labels=lowercase__ )
if return_labels:
if model_class in get_values(lowercase__ ):
__lowercase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowercase__ )
__lowercase = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=lowercase__ )
return inputs_dict
def SCREAMING_SNAKE_CASE ( self : Tuple ):
__lowercase = NezhaModelTester(self )
__lowercase = ConfigTester(self ,config_class=lowercase__ ,hidden_size=3_7 )
def SCREAMING_SNAKE_CASE ( self : int ):
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Any ):
__lowercase = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Any ):
# This regression test was failing with PyTorch < 1.3
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = self.model_tester.prepare_config_and_inputs_for_decoder()
__lowercase = None
self.model_tester.create_and_check_model_as_decoder(
lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,)
def SCREAMING_SNAKE_CASE ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_next_sequence_prediction(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : str ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : str ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowercase__ )
@slow
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = NezhaModel.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
@slow
@require_torch_gpu
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# NezhaForMultipleChoice behaves incorrectly in JIT environments.
if model_class == NezhaForMultipleChoice:
return
__lowercase = True
__lowercase = model_class(config=lowercase__ )
__lowercase = self._prepare_for_class(lowercase__ ,lowercase__ )
__lowercase = torch.jit.trace(
lowercase__ ,(inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(lowercase__ ,os.path.join(lowercase__ ,'''bert.pt''' ) )
__lowercase = torch.jit.load(os.path.join(lowercase__ ,'''bert.pt''' ) ,map_location=lowercase__ )
loaded(inputs_dict['''input_ids'''].to(lowercase__ ) ,inputs_dict['''attention_mask'''].to(lowercase__ ) )
@require_torch
class lowercase_ (unittest.TestCase ):
"""simple docstring"""
@slow
def SCREAMING_SNAKE_CASE ( self : int ):
__lowercase = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' )
__lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] )
__lowercase = torch.tensor([[0, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0]
__lowercase = torch.Size((1, 6, 7_6_8) )
self.assertEqual(output.shape ,lowercase__ )
__lowercase = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) )
@slow
def SCREAMING_SNAKE_CASE ( self : Dict ):
__lowercase = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' )
__lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] )
__lowercase = torch.tensor([[1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0]
__lowercase = torch.Size((1, 6, 2_1_1_2_8) )
self.assertEqual(output.shape ,lowercase__ )
__lowercase = torch.tensor(
[[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) )
| 41 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A_ : Union[str, Any] = logging.get_logger(__name__)
A_ : Union[str, Any] = {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json'
),
'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json',
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json'
),
'distilbert-base-uncased-finetuned-sst-2-english': (
'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json'
),
}
class lowerCAmelCase__ ( lowerCamelCase__ ):
'''simple docstring'''
_SCREAMING_SNAKE_CASE : List[Any] = 'distilbert'
_SCREAMING_SNAKE_CASE : Any = {
'hidden_size': 'dim',
'num_attention_heads': 'n_heads',
'num_hidden_layers': 'n_layers',
}
def __init__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any]=30_522 , _SCREAMING_SNAKE_CASE : Optional[int]=512 , _SCREAMING_SNAKE_CASE : Optional[int]=False , _SCREAMING_SNAKE_CASE : Optional[Any]=6 , _SCREAMING_SNAKE_CASE : Optional[int]=12 , _SCREAMING_SNAKE_CASE : List[Any]=768 , _SCREAMING_SNAKE_CASE : Any=4 * 768 , _SCREAMING_SNAKE_CASE : Tuple=0.1 , _SCREAMING_SNAKE_CASE : Tuple=0.1 , _SCREAMING_SNAKE_CASE : List[str]="gelu" , _SCREAMING_SNAKE_CASE : List[Any]=0.0_2 , _SCREAMING_SNAKE_CASE : Optional[int]=0.1 , _SCREAMING_SNAKE_CASE : Optional[Any]=0.2 , _SCREAMING_SNAKE_CASE : List[str]=0 , **_SCREAMING_SNAKE_CASE : Tuple , ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size
SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings
SCREAMING_SNAKE_CASE : Optional[Any] = sinusoidal_pos_embds
SCREAMING_SNAKE_CASE : List[Any] = n_layers
SCREAMING_SNAKE_CASE : int = n_heads
SCREAMING_SNAKE_CASE : Any = dim
SCREAMING_SNAKE_CASE : int = hidden_dim
SCREAMING_SNAKE_CASE : str = dropout
SCREAMING_SNAKE_CASE : int = attention_dropout
SCREAMING_SNAKE_CASE : str = activation
SCREAMING_SNAKE_CASE : int = initializer_range
SCREAMING_SNAKE_CASE : List[Any] = qa_dropout
SCREAMING_SNAKE_CASE : Any = seq_classif_dropout
super().__init__(**lowercase__ , pad_token_id=lowercase__ )
class lowerCAmelCase__ ( lowerCamelCase__ ):
'''simple docstring'''
@property
def _lowerCAmelCase ( self : int ) -> Union[str, Any]:
"""simple docstring"""
if self.task == "multiple-choice":
SCREAMING_SNAKE_CASE : int = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
SCREAMING_SNAKE_CASE : Any = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 265 |
'''simple docstring'''
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
lowerCAmelCase__ = TypeVar('''KEY''')
lowerCAmelCase__ = TypeVar('''VAL''')
@dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ )
class lowercase_ (Generic[KEY, VAL] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : KEY
SCREAMING_SNAKE_CASE : VAL
class lowercase_ (_Item ):
"""simple docstring"""
def __init__( self : Optional[int] ):
super().__init__(lowercase__ ,lowercase__ )
def __bool__( self : List[str] ):
return False
lowerCAmelCase__ = _DeletedItem()
class lowercase_ (MutableMapping[KEY, VAL] ):
"""simple docstring"""
def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ):
__lowercase = initial_block_size
__lowercase = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
__lowercase = capacity_factor
__lowercase = 0
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ):
return hash(lowercase__ ) % len(self._buckets )
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ):
return (ind + 1) % len(self._buckets )
def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ):
__lowercase = self._buckets[ind]
if not stored:
__lowercase = _Item(lowercase__ ,lowercase__ )
self._len += 1
return True
elif stored.key == key:
__lowercase = _Item(lowercase__ ,lowercase__ )
return True
else:
return False
def SCREAMING_SNAKE_CASE ( self : Dict ):
__lowercase = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : int ):
if len(self._buckets ) <= self._initial_block_size:
return False
__lowercase = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ):
__lowercase = self._buckets
__lowercase = [None] * new_size
__lowercase = 0
for item in old_buckets:
if item:
self._add_item(item.key ,item.val )
def SCREAMING_SNAKE_CASE ( self : str ):
self._resize(len(self._buckets ) * 2 )
def SCREAMING_SNAKE_CASE ( self : Tuple ):
self._resize(len(self._buckets ) // 2 )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ):
__lowercase = self._get_bucket_index(lowercase__ )
for _ in range(len(self._buckets ) ):
yield ind
__lowercase = self._get_next_ind(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ):
for ind in self._iterate_buckets(lowercase__ ):
if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ):
break
def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ):
if self._is_full():
self._size_up()
self._add_item(lowercase__ ,lowercase__ )
def __delitem__( self : Tuple ,lowercase__ : KEY ):
for ind in self._iterate_buckets(lowercase__ ):
__lowercase = self._buckets[ind]
if item is None:
raise KeyError(lowercase__ )
if item is _deleted:
continue
if item.key == key:
__lowercase = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self : Tuple ,lowercase__ : KEY ):
for ind in self._iterate_buckets(lowercase__ ):
__lowercase = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(lowercase__ )
def __len__( self : Optional[int] ):
return self._len
def __iter__( self : str ):
yield from (item.key for item in self._buckets if item)
def __repr__( self : Optional[Any] ):
__lowercase = ''' ,'''.join(
F"{item.key}: {item.val}" for item in self._buckets if item )
return F"HashMap({val_string})"
| 41 | 0 |
import doctest
from collections import deque
import numpy as np
class __A :
def __init__( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : str =[2, 1, 2, -1]
__magic_name__ : Tuple =[1, 2, 3, 4]
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : List[Any] =len(self.first_signal )
__magic_name__ : Dict =len(self.second_signal )
__magic_name__ : int =max(lowercase__ , lowercase__ )
# create a zero matrix of max_length x max_length
__magic_name__ : Dict =[[0] * max_length for i in range(lowercase__ )]
# fills the smaller signal with zeros to make both signals of same length
if length_first_signal < length_second_signal:
self.first_signal += [0] * (max_length - length_first_signal)
elif length_first_signal > length_second_signal:
self.second_signal += [0] * (max_length - length_second_signal)
for i in range(lowercase__ ):
__magic_name__ : Union[str, Any] =deque(self.second_signal )
rotated_signal.rotate(lowercase__ )
for j, item in enumerate(lowercase__ ):
matrix[i][j] += item
# multiply the matrix with the first signal
__magic_name__ : Tuple =np.matmul(np.transpose(lowercase__ ) , np.transpose(self.first_signal ) )
# rounding-off to two decimal places
return [round(lowercase__ , 2 ) for i in final_signal]
if __name__ == "__main__":
doctest.testmod()
| 21 |
'''simple docstring'''
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
lowerCAmelCase__ = logging.get_logger(__name__)
@add_end_docstrings(lowerCamelCase__ )
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
def __init__( self : List[str] ,**lowercase__ : Tuple ):
super().__init__(**lowercase__ )
if self.framework == "tf":
raise ValueError(F"The {self.__class__} is only available in PyTorch." )
requires_backends(self ,'''vision''' )
self.check_model_type(lowercase__ )
def __call__( self : List[str] ,lowercase__ : Union[str, "Image.Image", List[Dict[str, Any]]] ,lowercase__ : Union[str, List[str]] = None ,**lowercase__ : str ,):
if "text_queries" in kwargs:
__lowercase = kwargs.pop('''text_queries''' )
if isinstance(lowercase__ ,(str, Image.Image) ):
__lowercase = {'''image''': image, '''candidate_labels''': candidate_labels}
else:
__lowercase = image
__lowercase = super().__call__(lowercase__ ,**lowercase__ )
return results
def SCREAMING_SNAKE_CASE ( self : int ,**lowercase__ : List[Any] ):
__lowercase = {}
if "threshold" in kwargs:
__lowercase = kwargs['''threshold''']
if "top_k" in kwargs:
__lowercase = kwargs['''top_k''']
return {}, {}, postprocess_params
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[Any] ):
__lowercase = load_image(inputs['''image'''] )
__lowercase = inputs['''candidate_labels''']
if isinstance(lowercase__ ,lowercase__ ):
__lowercase = candidate_labels.split(''',''' )
__lowercase = torch.tensor([[image.height, image.width]] ,dtype=torch.intaa )
for i, candidate_label in enumerate(lowercase__ ):
__lowercase = self.tokenizer(lowercase__ ,return_tensors=self.framework )
__lowercase = self.image_processor(lowercase__ ,return_tensors=self.framework )
yield {
"is_last": i == len(lowercase__ ) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ):
__lowercase = model_inputs.pop('''target_size''' )
__lowercase = model_inputs.pop('''candidate_label''' )
__lowercase = model_inputs.pop('''is_last''' )
__lowercase = self.model(**lowercase__ )
__lowercase = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs}
return model_outputs
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : List[Any]=0.1 ,lowercase__ : List[str]=None ):
__lowercase = []
for model_output in model_outputs:
__lowercase = model_output['''candidate_label''']
__lowercase = BaseModelOutput(lowercase__ )
__lowercase = self.image_processor.post_process_object_detection(
outputs=lowercase__ ,threshold=lowercase__ ,target_sizes=model_output['''target_size'''] )[0]
for index in outputs["scores"].nonzero():
__lowercase = outputs['''scores'''][index].item()
__lowercase = self._get_bounding_box(outputs['''boxes'''][index][0] )
__lowercase = {'''score''': score, '''label''': label, '''box''': box}
results.append(lowercase__ )
__lowercase = sorted(lowercase__ ,key=lambda lowercase__ : x["score"] ,reverse=lowercase__ )
if top_k:
__lowercase = results[:top_k]
return results
def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : "torch.Tensor" ):
if self.framework != "pt":
raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' )
__lowercase , __lowercase , __lowercase , __lowercase = box.int().tolist()
__lowercase = {
'''xmin''': xmin,
'''ymin''': ymin,
'''xmax''': xmax,
'''ymax''': ymax,
}
return bbox
| 41 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ..utils import _LazyModule
UpperCAmelCase ={
"config": [
"EXTERNAL_DATA_FORMAT_SIZE_LIMIT",
"OnnxConfig",
"OnnxConfigWithPast",
"OnnxSeq2SeqConfigWithPast",
"PatchingSpec",
],
"convert": ["export", "validate_model_outputs"],
"features": ["FeaturesManager"],
"utils": ["ParameterFormat", "compute_serialized_parameters_size"],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
UpperCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 617 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = 'facebook/bart-large-mnli'
SCREAMING_SNAKE_CASE : Optional[Any] = (
'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which '
'should be the text to classify, and `labels`, which should be the list of labels to use for classification. '
'It returns the most likely label in the list of provided `labels` for the input text.'
)
SCREAMING_SNAKE_CASE : Any = 'text_classifier'
SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer
SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForSequenceClassification
SCREAMING_SNAKE_CASE : Tuple = ['text', ['text']]
SCREAMING_SNAKE_CASE : List[str] = ['text']
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
super().setup()
__lowercase = self.model.config
__lowercase = -1
for idx, label in config.idalabel.items():
if label.lower().startswith('''entail''' ):
__lowercase = int(lowercase__ )
if self.entailment_id == -1:
raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Dict ,lowercase__ : List[Any] ):
__lowercase = labels
return self.pre_processor(
[text] * len(lowercase__ ) ,[F"This example is {label}" for label in labels] ,return_tensors='''pt''' ,padding='''max_length''' ,)
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ):
__lowercase = outputs.logits
__lowercase = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id]
| 41 | 0 |
"""simple docstring"""
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
lowerCAmelCase_ : Dict = 0
lowerCAmelCase_ : str = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
lowerCAmelCase_ : Optional[int] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
lowerCAmelCase_ : str = tuple[int, int]
class UpperCamelCase_ :
def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase = pos_x
UpperCAmelCase = pos_y
UpperCAmelCase = (pos_y, pos_x)
UpperCAmelCase = goal_x
UpperCAmelCase = goal_y
UpperCAmelCase = g_cost
UpperCAmelCase = parent
UpperCAmelCase = self.calculate_heuristic()
UpperCAmelCase = self.g_cost + self.h_cost
def UpperCamelCase_ ( self ) -> str:
"""simple docstring"""
UpperCAmelCase = self.pos_x - self.goal_x
UpperCAmelCase = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(lowercase__ ) + abs(lowercase__ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self , snake_case__ ) -> Dict:
"""simple docstring"""
return self.f_cost < other.f_cost
class UpperCamelCase_ :
def __init__( self , snake_case__ , snake_case__ ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowercase__ )
UpperCAmelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , lowercase__ )
UpperCAmelCase = [self.start]
UpperCAmelCase = []
UpperCAmelCase = False
def UpperCamelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
UpperCAmelCase = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(lowercase__ )
self.closed_nodes.append(lowercase__ )
UpperCAmelCase = self.get_successors(lowercase__ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(lowercase__ )
else:
# retrieve the best current path
UpperCAmelCase = self.open_nodes.pop(self.open_nodes.index(lowercase__ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(lowercase__ )
else:
self.open_nodes.append(lowercase__ )
return [self.start.pos]
def UpperCamelCase_ ( self , snake_case__ ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase = []
for action in delta:
UpperCAmelCase = parent.pos_x + action[1]
UpperCAmelCase = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase__ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
lowercase__ , lowercase__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowercase__ , ) )
return successors
def UpperCamelCase_ ( self , snake_case__ ) -> str:
"""simple docstring"""
UpperCAmelCase = node
UpperCAmelCase = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
UpperCAmelCase = current_node.parent
path.reverse()
return path
class UpperCamelCase_ :
def __init__( self , snake_case__ , snake_case__ ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase = AStar(lowercase__ , lowercase__ )
UpperCAmelCase = AStar(lowercase__ , lowercase__ )
UpperCAmelCase = False
def UpperCamelCase_ ( self ) -> int:
"""simple docstring"""
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
UpperCAmelCase = self.fwd_astar.open_nodes.pop(0 )
UpperCAmelCase = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
lowercase__ , lowercase__ )
self.fwd_astar.closed_nodes.append(lowercase__ )
self.bwd_astar.closed_nodes.append(lowercase__ )
UpperCAmelCase = current_bwd_node
UpperCAmelCase = current_fwd_node
UpperCAmelCase = {
self.fwd_astar: self.fwd_astar.get_successors(lowercase__ ),
self.bwd_astar: self.bwd_astar.get_successors(lowercase__ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(lowercase__ )
else:
# retrieve the best current path
UpperCAmelCase = astar.open_nodes.pop(
astar.open_nodes.index(lowercase__ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(lowercase__ )
else:
astar.open_nodes.append(lowercase__ )
return [self.fwd_astar.start.pos]
def UpperCamelCase_ ( self , snake_case__ , snake_case__ ) -> Dict:
"""simple docstring"""
UpperCAmelCase = self.fwd_astar.retrace_path(lowercase__ )
UpperCAmelCase = self.bwd_astar.retrace_path(lowercase__ )
bwd_path.pop()
bwd_path.reverse()
UpperCAmelCase = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
lowerCAmelCase_ : Tuple = (0, 0)
lowerCAmelCase_ : int = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
lowerCAmelCase_ : Optional[Any] = time.time()
lowerCAmelCase_ : str = AStar(init, goal)
lowerCAmelCase_ : Dict = a_star.search()
lowerCAmelCase_ : int = time.time() - start_time
print(F'AStar execution time = {end_time:f} seconds')
lowerCAmelCase_ : Union[str, Any] = time.time()
lowerCAmelCase_ : Optional[Any] = BidirectionalAStar(init, goal)
lowerCAmelCase_ : List[str] = time.time() - bd_start_time
print(F'BidirectionalAStar execution time = {bd_end_time:f} seconds')
| 673 |
'''simple docstring'''
from collections.abc import Callable
class lowercase_ :
"""simple docstring"""
def __init__( self : Optional[int] ,lowercase__ : Callable | None = None ):
# Stores actual heap items.
__lowercase = []
# Stores indexes of each item for supporting updates and deletion.
__lowercase = {}
# Stores current size of heap.
__lowercase = 0
# Stores function used to evaluate the score of an item on which basis ordering
# will be done.
__lowercase = key or (lambda lowercase__ : x)
def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : int ):
return int((i - 1) / 2 ) if i > 0 else None
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ):
__lowercase = int(2 * i + 1 )
return left if 0 < left < self.size else None
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ):
__lowercase = int(2 * i + 2 )
return right if 0 < right < self.size else None
def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : int ,lowercase__ : int ):
__lowercase , __lowercase = (
self.pos_map[self.arr[j][0]],
self.pos_map[self.arr[i][0]],
)
# Then swap the items in the list.
__lowercase , __lowercase = self.arr[j], self.arr[i]
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ):
return self.arr[i][1] < self.arr[j][1]
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ):
__lowercase = self._left(lowercase__ )
__lowercase = self._right(lowercase__ )
__lowercase = i
if left is not None and not self._cmp(lowercase__ ,lowercase__ ):
__lowercase = left
if right is not None and not self._cmp(lowercase__ ,lowercase__ ):
__lowercase = right
return valid_parent
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ):
__lowercase = self._parent(lowercase__ )
while parent is not None and not self._cmp(lowercase__ ,lowercase__ ):
self._swap(lowercase__ ,lowercase__ )
__lowercase , __lowercase = parent, self._parent(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ):
__lowercase = self._get_valid_parent(lowercase__ )
while valid_parent != index:
self._swap(lowercase__ ,lowercase__ )
__lowercase , __lowercase = valid_parent, self._get_valid_parent(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ):
if item not in self.pos_map:
return
__lowercase = self.pos_map[item]
__lowercase = [item, self.key(lowercase__ )]
# Make sure heap is right in both up and down direction.
# Ideally only one of them will make any change.
self._heapify_up(lowercase__ )
self._heapify_down(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ):
if item not in self.pos_map:
return
__lowercase = self.pos_map[item]
del self.pos_map[item]
__lowercase = self.arr[self.size - 1]
__lowercase = index
self.size -= 1
# Make sure heap is right in both up and down direction. Ideally only one
# of them will make any change- so no performance loss in calling both.
if self.size > index:
self._heapify_up(lowercase__ )
self._heapify_down(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : int ):
__lowercase = len(self.arr )
if arr_len == self.size:
self.arr.append([item, self.key(lowercase__ )] )
else:
__lowercase = [item, self.key(lowercase__ )]
__lowercase = self.size
self.size += 1
self._heapify_up(self.size - 1 )
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
return self.arr[0] if self.size else None
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
__lowercase = self.get_top()
if top_item_tuple:
self.delete_item(top_item_tuple[0] )
return top_item_tuple
def _A ( ):
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 41 | 0 |
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
)
@flax.struct.dataclass
class _UpperCamelCase ( lowerCamelCase__ ):
'''simple docstring'''
a_ : jnp.ndarray
a_ : jnp.ndarray
class _UpperCamelCase ( nn.Module ):
'''simple docstring'''
a_ : int
a_ : Tuple[int] = (16, 32, 96, 256)
a_ : jnp.dtype = jnp.floataa
def _snake_case ( self : Dict ):
'''simple docstring'''
__lowerCamelCase : Dict = nn.Conv(
self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__lowerCamelCase : List[str] = []
for i in range(len(self.block_out_channels ) - 1 ):
__lowerCamelCase : List[Any] = self.block_out_channels[i]
__lowerCamelCase : Tuple = self.block_out_channels[i + 1]
__lowerCamelCase : str = nn.Conv(
lowercase__ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
blocks.append(lowercase__ )
__lowerCamelCase : str = nn.Conv(
lowercase__ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
blocks.append(lowercase__ )
__lowerCamelCase : Dict = blocks
__lowerCamelCase : Dict = nn.Conv(
self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
def __call__( self : List[str] , _lowerCamelCase : Optional[int] ):
'''simple docstring'''
__lowerCamelCase : int = self.conv_in(lowercase__ )
__lowerCamelCase : Union[str, Any] = nn.silu(lowercase__ )
for block in self.blocks:
__lowerCamelCase : List[str] = block(lowercase__ )
__lowerCamelCase : Optional[int] = nn.silu(lowercase__ )
__lowerCamelCase : Dict = self.conv_out(lowercase__ )
return embedding
@flax_register_to_config
class _UpperCamelCase ( nn.Module,lowerCamelCase__,lowerCamelCase__ ):
'''simple docstring'''
a_ : int = 32
a_ : int = 4
a_ : Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
a_ : Union[bool, Tuple[bool]] = False
a_ : Tuple[int] = (320, 640, 1280, 1280)
a_ : int = 2
a_ : Union[int, Tuple[int]] = 8
a_ : Optional[Union[int, Tuple[int]]] = None
a_ : int = 1280
a_ : float = 0.0
a_ : bool = False
a_ : jnp.dtype = jnp.floataa
a_ : bool = True
a_ : int = 0
a_ : str = "rgb"
a_ : Tuple[int] = (16, 32, 96, 256)
def _snake_case ( self : Optional[int] , _lowerCamelCase : jax.random.KeyArray ):
'''simple docstring'''
__lowerCamelCase : int = (1, self.in_channels, self.sample_size, self.sample_size)
__lowerCamelCase : Tuple = jnp.zeros(lowercase__ , dtype=jnp.floataa )
__lowerCamelCase : Tuple = jnp.ones((1,) , dtype=jnp.intaa )
__lowerCamelCase : Optional[Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )
__lowerCamelCase : Tuple = (1, 3, self.sample_size * 8, self.sample_size * 8)
__lowerCamelCase : Union[str, Any] = jnp.zeros(lowercase__ , dtype=jnp.floataa )
__lowerCamelCase , __lowerCamelCase : Union[str, Any] = jax.random.split(lowercase__ )
__lowerCamelCase : Dict = {"""params""": params_rng, """dropout""": dropout_rng}
return self.init(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )["params"]
def _snake_case ( self : Any ):
'''simple docstring'''
__lowerCamelCase : List[Any] = self.block_out_channels
__lowerCamelCase : Any = block_out_channels[0] * 4
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
__lowerCamelCase : Tuple = self.num_attention_heads or self.attention_head_dim
# input
__lowerCamelCase : str = nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
__lowerCamelCase : str = FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )
__lowerCamelCase : Optional[Any] = FlaxTimestepEmbedding(lowercase__ , dtype=self.dtype )
__lowerCamelCase : str = FlaxControlNetConditioningEmbedding(
conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , )
__lowerCamelCase : Union[str, Any] = self.only_cross_attention
if isinstance(lowercase__ , lowercase__ ):
__lowerCamelCase : int = (only_cross_attention,) * len(self.down_block_types )
if isinstance(lowercase__ , lowercase__ ):
__lowerCamelCase : Optional[int] = (num_attention_heads,) * len(self.down_block_types )
# down
__lowerCamelCase : str = []
__lowerCamelCase : Optional[int] = []
__lowerCamelCase : List[Any] = block_out_channels[0]
__lowerCamelCase : Any = nn.Conv(
lowercase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
controlnet_down_blocks.append(lowercase__ )
for i, down_block_type in enumerate(self.down_block_types ):
__lowerCamelCase : int = output_channel
__lowerCamelCase : Union[str, Any] = block_out_channels[i]
__lowerCamelCase : Dict = i == len(lowercase__ ) - 1
if down_block_type == "CrossAttnDownBlock2D":
__lowerCamelCase : List[str] = FlaxCrossAttnDownBlockaD(
in_channels=lowercase__ , out_channels=lowercase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , )
else:
__lowerCamelCase : str = FlaxDownBlockaD(
in_channels=lowercase__ , out_channels=lowercase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(lowercase__ )
for _ in range(self.layers_per_block ):
__lowerCamelCase : Any = nn.Conv(
lowercase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
controlnet_down_blocks.append(lowercase__ )
if not is_final_block:
__lowerCamelCase : Dict = nn.Conv(
lowercase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
controlnet_down_blocks.append(lowercase__ )
__lowerCamelCase : Dict = down_blocks
__lowerCamelCase : Union[str, Any] = controlnet_down_blocks
# mid
__lowerCamelCase : int = block_out_channels[-1]
__lowerCamelCase : Optional[Any] = FlaxUNetMidBlockaDCrossAttn(
in_channels=lowercase__ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , )
__lowerCamelCase : Optional[Any] = nn.Conv(
lowercase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
def __call__( self : Optional[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : Any , _lowerCamelCase : List[Any] , _lowerCamelCase : str , _lowerCamelCase : float = 1.0 , _lowerCamelCase : bool = True , _lowerCamelCase : bool = False , ):
'''simple docstring'''
__lowerCamelCase : Union[str, Any] = self.controlnet_conditioning_channel_order
if channel_order == "bgr":
__lowerCamelCase : Dict = jnp.flip(lowercase__ , axis=1 )
# 1. time
if not isinstance(lowercase__ , jnp.ndarray ):
__lowerCamelCase : int = jnp.array([timesteps] , dtype=jnp.intaa )
elif isinstance(lowercase__ , jnp.ndarray ) and len(timesteps.shape ) == 0:
__lowerCamelCase : int = timesteps.astype(dtype=jnp.floataa )
__lowerCamelCase : Dict = jnp.expand_dims(lowercase__ , 0 )
__lowerCamelCase : Any = self.time_proj(lowercase__ )
__lowerCamelCase : Dict = self.time_embedding(lowercase__ )
# 2. pre-process
__lowerCamelCase : int = jnp.transpose(lowercase__ , (0, 2, 3, 1) )
__lowerCamelCase : Optional[Any] = self.conv_in(lowercase__ )
__lowerCamelCase : Any = jnp.transpose(lowercase__ , (0, 2, 3, 1) )
__lowerCamelCase : List[str] = self.controlnet_cond_embedding(lowercase__ )
sample += controlnet_cond
# 3. down
__lowerCamelCase : Optional[int] = (sample,)
for down_block in self.down_blocks:
if isinstance(lowercase__ , lowercase__ ):
__lowerCamelCase , __lowerCamelCase : Union[str, Any] = down_block(lowercase__ , lowercase__ , lowercase__ , deterministic=not train )
else:
__lowerCamelCase , __lowerCamelCase : Dict = down_block(lowercase__ , lowercase__ , deterministic=not train )
down_block_res_samples += res_samples
# 4. mid
__lowerCamelCase : str = self.mid_block(lowercase__ , lowercase__ , lowercase__ , deterministic=not train )
# 5. contronet blocks
__lowerCamelCase : Dict = ()
for down_block_res_sample, controlnet_block in zip(lowercase__ , self.controlnet_down_blocks ):
__lowerCamelCase : Dict = controlnet_block(lowercase__ )
controlnet_down_block_res_samples += (down_block_res_sample,)
__lowerCamelCase : int = controlnet_down_block_res_samples
__lowerCamelCase : int = self.controlnet_mid_block(lowercase__ )
# 6. scaling
__lowerCamelCase : int = [sample * conditioning_scale for sample in down_block_res_samples]
mid_block_res_sample *= conditioning_scale
if not return_dict:
return (down_block_res_samples, mid_block_res_sample)
return FlaxControlNetOutput(
down_block_res_samples=lowercase__ , mid_block_res_sample=lowercase__ )
| 519 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
def __init__( self : List[str] ):
__lowercase = []
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : str ,**lowercase__ : Any ):
self.events.append('''on_init_end''' )
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : int ,**lowercase__ : Optional[int] ):
self.events.append('''on_train_begin''' )
def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ,**lowercase__ : List[str] ):
self.events.append('''on_train_end''' )
def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,**lowercase__ : Optional[Any] ):
self.events.append('''on_epoch_begin''' )
def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : Any ,**lowercase__ : Optional[int] ):
self.events.append('''on_epoch_end''' )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[str] ,**lowercase__ : List[str] ):
self.events.append('''on_step_begin''' )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : Optional[int] ,**lowercase__ : Dict ):
self.events.append('''on_step_end''' )
def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,**lowercase__ : Any ):
self.events.append('''on_evaluate''' )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : int ,**lowercase__ : Optional[Any] ):
self.events.append('''on_predict''' )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,**lowercase__ : int ):
self.events.append('''on_save''' )
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : List[str] ,**lowercase__ : List[str] ):
self.events.append('''on_log''' )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : int ,lowercase__ : Dict ,**lowercase__ : str ):
self.events.append('''on_prediction_step''' )
@require_torch
class lowercase_ (unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE ( self : List[str] ):
__lowercase = tempfile.mkdtemp()
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
shutil.rmtree(self.output_dir )
def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any]=0 ,lowercase__ : Any=0 ,lowercase__ : Tuple=6_4 ,lowercase__ : Optional[int]=6_4 ,lowercase__ : Optional[Any]=None ,lowercase__ : str=False ,**lowercase__ : Any ):
# disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure
# its set to False since the tests later on depend on its value.
__lowercase = RegressionDataset(length=lowercase__ )
__lowercase = RegressionDataset(length=lowercase__ )
__lowercase = RegressionModelConfig(a=lowercase__ ,b=lowercase__ )
__lowercase = RegressionPreTrainedModel(lowercase__ )
__lowercase = TrainingArguments(self.output_dir ,disable_tqdm=lowercase__ ,report_to=[] ,**lowercase__ )
return Trainer(
lowercase__ ,lowercase__ ,train_dataset=lowercase__ ,eval_dataset=lowercase__ ,callbacks=lowercase__ ,)
def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ):
self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) )
# Order doesn't matter
__lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ )
__lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ )
for cba, cba in zip(lowercase__ ,lowercase__ ):
if isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ):
self.assertEqual(lowercase__ ,lowercase__ )
elif isinstance(lowercase__ ,lowercase__ ) and not isinstance(lowercase__ ,lowercase__ ):
self.assertEqual(lowercase__ ,cba.__class__ )
elif not isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ):
self.assertEqual(cba.__class__ ,lowercase__ )
else:
self.assertEqual(lowercase__ ,lowercase__ )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ):
__lowercase = ['''on_init_end''', '''on_train_begin''']
__lowercase = 0
__lowercase = len(trainer.get_eval_dataloader() )
__lowercase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate''']
for _ in range(trainer.state.num_train_epochs ):
expected_events.append('''on_epoch_begin''' )
for _ in range(lowercase__ ):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append('''on_log''' )
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append('''on_save''' )
expected_events.append('''on_epoch_end''' )
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def SCREAMING_SNAKE_CASE ( self : str ):
__lowercase = self.get_trainer()
__lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
# Callbacks passed at init are added to the default callbacks
__lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] )
expected_callbacks.append(lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
__lowercase = self.get_trainer(disable_tqdm=lowercase__ )
__lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
__lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
__lowercase = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(lowercase__ )
expected_callbacks.remove(lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
__lowercase = self.get_trainer()
__lowercase = trainer.pop_callback(lowercase__ )
self.assertEqual(cb.__class__ ,lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
trainer.add_callback(lowercase__ )
expected_callbacks.insert(0 ,lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
# We can also add, pop, or remove by instance
__lowercase = self.get_trainer()
__lowercase = trainer.callback_handler.callbacks[0]
trainer.remove_callback(lowercase__ )
expected_callbacks.remove(lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
__lowercase = self.get_trainer()
__lowercase = trainer.callback_handler.callbacks[0]
__lowercase = trainer.pop_callback(lowercase__ )
self.assertEqual(lowercase__ ,lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
trainer.add_callback(lowercase__ )
expected_callbacks.insert(0 ,lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Dict ):
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action='''ignore''' ,category=lowercase__ )
__lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] )
trainer.train()
__lowercase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
# Independent log/save/eval
__lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 )
trainer.train()
__lowercase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
__lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 )
trainer.train()
__lowercase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
__lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='''steps''' )
trainer.train()
__lowercase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
__lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='''epoch''' )
trainer.train()
__lowercase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
# A bit of everything
__lowercase = self.get_trainer(
callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=1_0 ,eval_steps=5 ,evaluation_strategy='''steps''' ,)
trainer.train()
__lowercase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
# warning should be emitted for duplicated callbacks
with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock:
__lowercase = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,)
assert str(lowercase__ ) in warn_mock.call_args[0][0]
| 41 | 0 |
"""simple docstring"""
import argparse
import torch
from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel
from transformers.utils import logging
logging.set_verbosity_info()
def a_ ( __a , __a , __a , __a ):
A__ = FunnelConfig.from_json_file(A__ )
print(f'''Building PyTorch model from configuration: {config}''' )
A__ = FunnelBaseModel(A__ ) if base_model else FunnelModel(A__ )
# Load weights from tf checkpoint
load_tf_weights_in_funnel(A__ , A__ , A__ )
# Save pytorch-model
print(f'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , A__ )
if __name__ == "__main__":
__snake_case : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.'
)
__snake_case : str = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model
)
| 571 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
)
@flax.struct.dataclass
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : jnp.ndarray
SCREAMING_SNAKE_CASE : jnp.ndarray
class lowercase_ (nn.Module ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int
SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6)
SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa
def SCREAMING_SNAKE_CASE ( self : Dict ):
__lowercase = nn.Conv(
self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
__lowercase = []
for i in range(len(self.block_out_channels ) - 1 ):
__lowercase = self.block_out_channels[i]
__lowercase = self.block_out_channels[i + 1]
__lowercase = nn.Conv(
lowercase__ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
blocks.append(lowercase__ )
__lowercase = nn.Conv(
lowercase__ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
blocks.append(lowercase__ )
__lowercase = blocks
__lowercase = nn.Conv(
self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,)
def __call__( self : List[str] ,lowercase__ : Optional[int] ):
__lowercase = self.conv_in(lowercase__ )
__lowercase = nn.silu(lowercase__ )
for block in self.blocks:
__lowercase = block(lowercase__ )
__lowercase = nn.silu(lowercase__ )
__lowercase = self.conv_out(lowercase__ )
return embedding
@flax_register_to_config
class lowercase_ (nn.Module , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = 3_2
SCREAMING_SNAKE_CASE : int = 4
SCREAMING_SNAKE_CASE : Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False
SCREAMING_SNAKE_CASE : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0)
SCREAMING_SNAKE_CASE : int = 2
SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8
SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None
SCREAMING_SNAKE_CASE : int = 1_2_8_0
SCREAMING_SNAKE_CASE : float = 0.0
SCREAMING_SNAKE_CASE : bool = False
SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa
SCREAMING_SNAKE_CASE : bool = True
SCREAMING_SNAKE_CASE : int = 0
SCREAMING_SNAKE_CASE : str = "rgb"
SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6)
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : jax.random.KeyArray ):
# init input tensors
__lowercase = (1, self.in_channels, self.sample_size, self.sample_size)
__lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa )
__lowercase = jnp.ones((1,) ,dtype=jnp.intaa )
__lowercase = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa )
__lowercase = (1, 3, self.sample_size * 8, self.sample_size * 8)
__lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa )
__lowercase , __lowercase = jax.random.split(lowercase__ )
__lowercase = {'''params''': params_rng, '''dropout''': dropout_rng}
return self.init(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )["params"]
def SCREAMING_SNAKE_CASE ( self : Any ):
__lowercase = self.block_out_channels
__lowercase = block_out_channels[0] * 4
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
__lowercase = self.num_attention_heads or self.attention_head_dim
# input
__lowercase = nn.Conv(
block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
# time
__lowercase = FlaxTimesteps(
block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift )
__lowercase = FlaxTimestepEmbedding(lowercase__ ,dtype=self.dtype )
__lowercase = FlaxControlNetConditioningEmbedding(
conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,)
__lowercase = self.only_cross_attention
if isinstance(lowercase__ ,lowercase__ ):
__lowercase = (only_cross_attention,) * len(self.down_block_types )
if isinstance(lowercase__ ,lowercase__ ):
__lowercase = (num_attention_heads,) * len(self.down_block_types )
# down
__lowercase = []
__lowercase = []
__lowercase = block_out_channels[0]
__lowercase = nn.Conv(
lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,)
controlnet_down_blocks.append(lowercase__ )
for i, down_block_type in enumerate(self.down_block_types ):
__lowercase = output_channel
__lowercase = block_out_channels[i]
__lowercase = i == len(lowercase__ ) - 1
if down_block_type == "CrossAttnDownBlock2D":
__lowercase = FlaxCrossAttnDownBlockaD(
in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,)
else:
__lowercase = FlaxDownBlockaD(
in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,)
down_blocks.append(lowercase__ )
for _ in range(self.layers_per_block ):
__lowercase = nn.Conv(
lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,)
controlnet_down_blocks.append(lowercase__ )
if not is_final_block:
__lowercase = nn.Conv(
lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,)
controlnet_down_blocks.append(lowercase__ )
__lowercase = down_blocks
__lowercase = controlnet_down_blocks
# mid
__lowercase = block_out_channels[-1]
__lowercase = FlaxUNetMidBlockaDCrossAttn(
in_channels=lowercase__ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,)
__lowercase = nn.Conv(
lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,)
def __call__( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : float = 1.0 ,lowercase__ : bool = True ,lowercase__ : bool = False ,):
__lowercase = self.controlnet_conditioning_channel_order
if channel_order == "bgr":
__lowercase = jnp.flip(lowercase__ ,axis=1 )
# 1. time
if not isinstance(lowercase__ ,jnp.ndarray ):
__lowercase = jnp.array([timesteps] ,dtype=jnp.intaa )
elif isinstance(lowercase__ ,jnp.ndarray ) and len(timesteps.shape ) == 0:
__lowercase = timesteps.astype(dtype=jnp.floataa )
__lowercase = jnp.expand_dims(lowercase__ ,0 )
__lowercase = self.time_proj(lowercase__ )
__lowercase = self.time_embedding(lowercase__ )
# 2. pre-process
__lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) )
__lowercase = self.conv_in(lowercase__ )
__lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) )
__lowercase = self.controlnet_cond_embedding(lowercase__ )
sample += controlnet_cond
# 3. down
__lowercase = (sample,)
for down_block in self.down_blocks:
if isinstance(lowercase__ ,lowercase__ ):
__lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train )
else:
__lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,deterministic=not train )
down_block_res_samples += res_samples
# 4. mid
__lowercase = self.mid_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train )
# 5. contronet blocks
__lowercase = ()
for down_block_res_sample, controlnet_block in zip(lowercase__ ,self.controlnet_down_blocks ):
__lowercase = controlnet_block(lowercase__ )
controlnet_down_block_res_samples += (down_block_res_sample,)
__lowercase = controlnet_down_block_res_samples
__lowercase = self.controlnet_mid_block(lowercase__ )
# 6. scaling
__lowercase = [sample * conditioning_scale for sample in down_block_res_samples]
mid_block_res_sample *= conditioning_scale
if not return_dict:
return (down_block_res_samples, mid_block_res_sample)
return FlaxControlNetOutput(
down_block_res_samples=lowercase__ ,mid_block_res_sample=lowercase__ )
| 41 | 0 |
import os
import tempfile
import unittest
from transformers import NezhaConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
)
from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST
class __magic_name__ :
'''simple docstring'''
def __init__( self: Dict , _lowerCamelCase: Dict , _lowerCamelCase: int=13 , _lowerCamelCase: List[str]=7 , _lowerCamelCase: int=True , _lowerCamelCase: int=True , _lowerCamelCase: Union[str, Any]=True , _lowerCamelCase: List[Any]=True , _lowerCamelCase: str=99 , _lowerCamelCase: Optional[Any]=32 , _lowerCamelCase: Union[str, Any]=5 , _lowerCamelCase: List[Any]=4 , _lowerCamelCase: str=37 , _lowerCamelCase: Tuple="gelu" , _lowerCamelCase: List[Any]=0.1 , _lowerCamelCase: Dict=0.1 , _lowerCamelCase: int=1_28 , _lowerCamelCase: Dict=32 , _lowerCamelCase: Dict=16 , _lowerCamelCase: Any=2 , _lowerCamelCase: int=0.02 , _lowerCamelCase: List[str]=3 , _lowerCamelCase: Dict=4 , _lowerCamelCase: Optional[int]=None , ):
SCREAMING_SNAKE_CASE_ = parent
SCREAMING_SNAKE_CASE_ = batch_size
SCREAMING_SNAKE_CASE_ = seq_length
SCREAMING_SNAKE_CASE_ = is_training
SCREAMING_SNAKE_CASE_ = use_input_mask
SCREAMING_SNAKE_CASE_ = use_token_type_ids
SCREAMING_SNAKE_CASE_ = use_labels
SCREAMING_SNAKE_CASE_ = vocab_size
SCREAMING_SNAKE_CASE_ = hidden_size
SCREAMING_SNAKE_CASE_ = num_hidden_layers
SCREAMING_SNAKE_CASE_ = num_attention_heads
SCREAMING_SNAKE_CASE_ = intermediate_size
SCREAMING_SNAKE_CASE_ = hidden_act
SCREAMING_SNAKE_CASE_ = hidden_dropout_prob
SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ = max_position_embeddings
SCREAMING_SNAKE_CASE_ = type_vocab_size
SCREAMING_SNAKE_CASE_ = type_sequence_label_size
SCREAMING_SNAKE_CASE_ = initializer_range
SCREAMING_SNAKE_CASE_ = num_labels
SCREAMING_SNAKE_CASE_ = num_choices
SCREAMING_SNAKE_CASE_ = scope
def _A ( self: Optional[int] ):
SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE_ = None
if self.use_input_mask:
SCREAMING_SNAKE_CASE_ = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE_ = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = None
if self.use_labels:
SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_choices )
SCREAMING_SNAKE_CASE_ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _A ( self: Union[str, Any] ):
return NezhaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , )
def _A ( self: Union[str, Any] ):
(
(
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) ,
) = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _A ( self: Optional[int] , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: List[str] , _lowerCamelCase: List[str] , _lowerCamelCase: List[str] , _lowerCamelCase: Tuple , _lowerCamelCase: Tuple , _lowerCamelCase: str ):
SCREAMING_SNAKE_CASE_ = NezhaModel(config=lowercase__ )
model.to(lowercase__ )
model.eval()
SCREAMING_SNAKE_CASE_ = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ )
SCREAMING_SNAKE_CASE_ = model(lowercase__ , token_type_ids=lowercase__ )
SCREAMING_SNAKE_CASE_ = model(lowercase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def _A ( self: Optional[int] , _lowerCamelCase: Dict , _lowerCamelCase: str , _lowerCamelCase: Optional[Any] , _lowerCamelCase: Optional[Any] , _lowerCamelCase: List[str] , _lowerCamelCase: Tuple , _lowerCamelCase: Tuple , _lowerCamelCase: Optional[int] , _lowerCamelCase: List[Any] , ):
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = NezhaModel(lowercase__ )
model.to(lowercase__ )
model.eval()
SCREAMING_SNAKE_CASE_ = model(
lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , encoder_hidden_states=lowercase__ , encoder_attention_mask=lowercase__ , )
SCREAMING_SNAKE_CASE_ = model(
lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , encoder_hidden_states=lowercase__ , )
SCREAMING_SNAKE_CASE_ = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def _A ( self: Any , _lowerCamelCase: List[str] , _lowerCamelCase: Dict , _lowerCamelCase: Tuple , _lowerCamelCase: Optional[Any] , _lowerCamelCase: List[Any] , _lowerCamelCase: List[Any] , _lowerCamelCase: Optional[Any] ):
SCREAMING_SNAKE_CASE_ = NezhaForMaskedLM(config=lowercase__ )
model.to(lowercase__ )
model.eval()
SCREAMING_SNAKE_CASE_ = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _A ( self: Optional[Any] , _lowerCamelCase: List[str] , _lowerCamelCase: Dict , _lowerCamelCase: Any , _lowerCamelCase: int , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Optional[int] , _lowerCamelCase: Any ):
SCREAMING_SNAKE_CASE_ = NezhaForNextSentencePrediction(config=lowercase__ )
model.to(lowercase__ )
model.eval()
SCREAMING_SNAKE_CASE_ = model(
lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def _A ( self: Dict , _lowerCamelCase: str , _lowerCamelCase: Dict , _lowerCamelCase: Tuple , _lowerCamelCase: Dict , _lowerCamelCase: Tuple , _lowerCamelCase: int , _lowerCamelCase: int ):
SCREAMING_SNAKE_CASE_ = NezhaForPreTraining(config=lowercase__ )
model.to(lowercase__ )
model.eval()
SCREAMING_SNAKE_CASE_ = model(
lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , next_sentence_label=lowercase__ , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def _A ( self: Optional[int] , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Optional[Any] , _lowerCamelCase: Tuple , _lowerCamelCase: List[str] , _lowerCamelCase: Dict , _lowerCamelCase: Optional[int] , _lowerCamelCase: Union[str, Any] ):
SCREAMING_SNAKE_CASE_ = NezhaForQuestionAnswering(config=lowercase__ )
model.to(lowercase__ )
model.eval()
SCREAMING_SNAKE_CASE_ = model(
lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _A ( self: Dict , _lowerCamelCase: Tuple , _lowerCamelCase: str , _lowerCamelCase: List[str] , _lowerCamelCase: Dict , _lowerCamelCase: Any , _lowerCamelCase: Optional[int] , _lowerCamelCase: int ):
SCREAMING_SNAKE_CASE_ = self.num_labels
SCREAMING_SNAKE_CASE_ = NezhaForSequenceClassification(lowercase__ )
model.to(lowercase__ )
model.eval()
SCREAMING_SNAKE_CASE_ = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _A ( self: Optional[Any] , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: List[str] , _lowerCamelCase: int , _lowerCamelCase: List[Any] , _lowerCamelCase: List[Any] , _lowerCamelCase: Any , _lowerCamelCase: Optional[Any] ):
SCREAMING_SNAKE_CASE_ = self.num_labels
SCREAMING_SNAKE_CASE_ = NezhaForTokenClassification(config=lowercase__ )
model.to(lowercase__ )
model.eval()
SCREAMING_SNAKE_CASE_ = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _A ( self: Optional[Any] , _lowerCamelCase: List[Any] , _lowerCamelCase: List[Any] , _lowerCamelCase: Optional[Any] , _lowerCamelCase: List[str] , _lowerCamelCase: Dict , _lowerCamelCase: List[Any] , _lowerCamelCase: str ):
SCREAMING_SNAKE_CASE_ = self.num_choices
SCREAMING_SNAKE_CASE_ = NezhaForMultipleChoice(config=lowercase__ )
model.to(lowercase__ )
model.eval()
SCREAMING_SNAKE_CASE_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE_ = model(
lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _A ( self: Union[str, Any] ):
SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) ,
) = config_and_inputs
SCREAMING_SNAKE_CASE_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict = (
(
NezhaModel,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE__ : Tuple = (
{
'feature-extraction': NezhaModel,
'fill-mask': NezhaForMaskedLM,
'question-answering': NezhaForQuestionAnswering,
'text-classification': NezhaForSequenceClassification,
'token-classification': NezhaForTokenClassification,
'zero-shot': NezhaForSequenceClassification,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE__ : List[str] = True
def _A ( self: Dict , _lowerCamelCase: List[str] , _lowerCamelCase: str , _lowerCamelCase: Any=False ):
SCREAMING_SNAKE_CASE_ = super()._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__ )
if return_labels:
if model_class in get_values(lowercase__ ):
SCREAMING_SNAKE_CASE_ = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase__ )
SCREAMING_SNAKE_CASE_ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowercase__ )
return inputs_dict
def _A ( self: Tuple ):
SCREAMING_SNAKE_CASE_ = NezhaModelTester(self )
SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=lowercase__ , hidden_size=37 )
def _A ( self: int ):
self.config_tester.run_common_tests()
def _A ( self: int ):
SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase__ )
def _A ( self: Any ):
SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*lowercase__ )
def _A ( self: Any ):
# This regression test was failing with PyTorch < 1.3
(
(
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) ,
) = self.model_tester.prepare_config_and_inputs_for_decoder()
SCREAMING_SNAKE_CASE_ = None
self.model_tester.create_and_check_model_as_decoder(
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , )
def _A ( self: int ):
SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowercase__ )
def _A ( self: Union[str, Any] ):
SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*lowercase__ )
def _A ( self: int ):
SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_next_sequence_prediction(*lowercase__ )
def _A ( self: Optional[Any] ):
SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*lowercase__ )
def _A ( self: str ):
SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowercase__ )
def _A ( self: str ):
SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowercase__ )
def _A ( self: int ):
SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowercase__ )
@slow
def _A ( self: Union[str, Any] ):
for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE_ = NezhaModel.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
@slow
@require_torch_gpu
def _A ( self: Optional[int] ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# NezhaForMultipleChoice behaves incorrectly in JIT environments.
if model_class == NezhaForMultipleChoice:
return
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = model_class(config=lowercase__ )
SCREAMING_SNAKE_CASE_ = self._prepare_for_class(lowercase__ , lowercase__ )
SCREAMING_SNAKE_CASE_ = torch.jit.trace(
lowercase__ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(lowercase__ , os.path.join(lowercase__ , '''bert.pt''' ) )
SCREAMING_SNAKE_CASE_ = torch.jit.load(os.path.join(lowercase__ , '''bert.pt''' ) , map_location=lowercase__ )
loaded(inputs_dict['''input_ids'''].to(lowercase__ ) , inputs_dict['''attention_mask'''].to(lowercase__ ) )
@require_torch
class __magic_name__ ( unittest.TestCase):
'''simple docstring'''
@slow
def _A ( self: int ):
SCREAMING_SNAKE_CASE_ = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' )
SCREAMING_SNAKE_CASE_ = torch.tensor([[0, 1, 2, 3, 4, 5]] )
SCREAMING_SNAKE_CASE_ = torch.tensor([[0, 1, 1, 1, 1, 1]] )
with torch.no_grad():
SCREAMING_SNAKE_CASE_ = model(lowercase__ , attention_mask=lowercase__ )[0]
SCREAMING_SNAKE_CASE_ = torch.Size((1, 6, 7_68) )
self.assertEqual(output.shape , lowercase__ )
SCREAMING_SNAKE_CASE_ = torch.tensor([[[0.06_85, 0.24_41, 0.11_02], [0.06_00, 0.19_06, 0.13_49], [0.02_21, 0.08_19, 0.05_86]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase__ , atol=1E-4 ) )
@slow
def _A ( self: Dict ):
SCREAMING_SNAKE_CASE_ = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' )
SCREAMING_SNAKE_CASE_ = torch.tensor([[0, 1, 2, 3, 4, 5]] )
SCREAMING_SNAKE_CASE_ = torch.tensor([[1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
SCREAMING_SNAKE_CASE_ = model(lowercase__ , attention_mask=lowercase__ )[0]
SCREAMING_SNAKE_CASE_ = torch.Size((1, 6, 2_11_28) )
self.assertEqual(output.shape , lowercase__ )
SCREAMING_SNAKE_CASE_ = torch.tensor(
[[-2.79_39, -1.79_02, -2.21_89], [-2.85_85, -1.89_08, -2.37_23], [-2.64_99, -1.77_50, -2.25_58]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase__ , atol=1E-4 ) )
| 234 |
'''simple docstring'''
import io
import math
from typing import Dict, Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
get_image_size,
infer_channel_dimension_format,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_vision_available, logging
from ...utils.import_utils import requires_backends
if is_vision_available():
import textwrap
from PIL import Image, ImageDraw, ImageFont
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
lowerCAmelCase__ = False
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = '''ybelkada/fonts'''
def _A ( ):
"""simple docstring"""
if is_torch_available() and not is_torch_greater_or_equal_than_1_11:
raise ImportError(
F"You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use "
'''Pix2StructImageProcessor. Please upgrade torch.''' )
def _A ( A__ , A__ , A__ ):
"""simple docstring"""
requires_backends(A__ , ['''torch'''] )
_check_torch_version()
__lowercase = image_tensor.unsqueeze(0 )
__lowercase = torch.nn.functional.unfold(A__ , (patch_height, patch_width) , stride=(patch_height, patch_width) )
__lowercase = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , A__ , A__ , -1 )
__lowercase = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape(
image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , )
return patches.unsqueeze(0 )
def _A ( A__ , A__ = 36 , A__ = "black" , A__ = "white" , A__ = 5 , A__ = 5 , A__ = 5 , A__ = 5 , A__ = None , A__ = None , ):
"""simple docstring"""
requires_backends(A__ , '''vision''' )
# Add new lines so that each line is no more than 80 characters.
__lowercase = textwrap.TextWrapper(width=80 )
__lowercase = wrapper.wrap(text=A__ )
__lowercase = '''\n'''.join(A__ )
if font_bytes is not None and font_path is None:
__lowercase = io.BytesIO(A__ )
elif font_path is not None:
__lowercase = font_path
else:
__lowercase = hf_hub_download(A__ , '''Arial.TTF''' )
__lowercase = ImageFont.truetype(A__ , encoding='''UTF-8''' , size=A__ )
# Use a temporary canvas to determine the width and height in pixels when
# rendering the text.
__lowercase = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , A__ ) )
__lowercase , __lowercase , __lowercase , __lowercase = temp_draw.textbbox((0, 0) , A__ , A__ )
# Create the actual image with a bit of padding around the text.
__lowercase = text_width + left_padding + right_padding
__lowercase = text_height + top_padding + bottom_padding
__lowercase = Image.new('''RGB''' , (image_width, image_height) , A__ )
__lowercase = ImageDraw.Draw(A__ )
draw.text(xy=(left_padding, top_padding) , text=A__ , fill=A__ , font=A__ )
return image
def _A ( A__ , A__ , **A__ ):
"""simple docstring"""
requires_backends(A__ , '''vision''' )
# Convert to PIL image if necessary
__lowercase = to_pil_image(A__ )
__lowercase = render_text(A__ , **A__ )
__lowercase = max(header_image.width , image.width )
__lowercase = int(image.height * (new_width / image.width) )
__lowercase = int(header_image.height * (new_width / header_image.width) )
__lowercase = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' )
new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) )
new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) )
# Convert back to the original framework if necessary
__lowercase = to_numpy_array(A__ )
if infer_channel_dimension_format(A__ ) == ChannelDimension.LAST:
__lowercase = to_channel_dimension_format(A__ , ChannelDimension.LAST )
return new_image
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = ['flattened_patches']
def __init__( self : Any ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : int = 2_0_4_8 ,lowercase__ : bool = False ,**lowercase__ : List[str] ,):
super().__init__(**lowercase__ )
__lowercase = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6}
__lowercase = do_normalize
__lowercase = do_convert_rgb
__lowercase = max_patches
__lowercase = is_vqa
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : np.ndarray ,lowercase__ : int ,lowercase__ : dict ,**lowercase__ : Tuple ):
requires_backends(self.extract_flattened_patches ,'''torch''' )
_check_torch_version()
# convert to torch
__lowercase = to_channel_dimension_format(lowercase__ ,ChannelDimension.FIRST )
__lowercase = torch.from_numpy(lowercase__ )
__lowercase , __lowercase = patch_size['''height'''], patch_size['''width''']
__lowercase , __lowercase = get_image_size(lowercase__ )
# maximize scale s.t.
__lowercase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) )
__lowercase = max(min(math.floor(scale * image_height / patch_height ) ,lowercase__ ) ,1 )
__lowercase = max(min(math.floor(scale * image_width / patch_width ) ,lowercase__ ) ,1 )
__lowercase = max(num_feasible_rows * patch_height ,1 )
__lowercase = max(num_feasible_cols * patch_width ,1 )
__lowercase = torch.nn.functional.interpolate(
image.unsqueeze(0 ) ,size=(resized_height, resized_width) ,mode='''bilinear''' ,align_corners=lowercase__ ,antialias=lowercase__ ,).squeeze(0 )
# [1, rows, columns, patch_height * patch_width * image_channels]
__lowercase = torch_extract_patches(lowercase__ ,lowercase__ ,lowercase__ )
__lowercase = patches.shape
__lowercase = patches_shape[1]
__lowercase = patches_shape[2]
__lowercase = patches_shape[3]
# [rows * columns, patch_height * patch_width * image_channels]
__lowercase = patches.reshape([rows * columns, depth] )
# [rows * columns, 1]
__lowercase = torch.arange(lowercase__ ).reshape([rows, 1] ).repeat(1 ,lowercase__ ).reshape([rows * columns, 1] )
__lowercase = torch.arange(lowercase__ ).reshape([1, columns] ).repeat(lowercase__ ,1 ).reshape([rows * columns, 1] )
# Offset by 1 so the ids do not contain zeros, which represent padding.
row_ids += 1
col_ids += 1
# Prepare additional patch features.
# [rows * columns, 1]
__lowercase = row_ids.to(torch.floataa )
__lowercase = col_ids.to(torch.floataa )
# [rows * columns, 2 + patch_height * patch_width * image_channels]
__lowercase = torch.cat([row_ids, col_ids, patches] ,-1 )
# [max_patches, 2 + patch_height * patch_width * image_channels]
__lowercase = torch.nn.functional.pad(lowercase__ ,[0, 0, 0, max_patches - (rows * columns)] ).float()
__lowercase = to_numpy_array(lowercase__ )
return result
def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : np.ndarray ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ):
if image.dtype == np.uinta:
__lowercase = image.astype(np.floataa )
# take mean across the whole `image`
__lowercase = np.mean(lowercase__ )
__lowercase = np.std(lowercase__ )
__lowercase = max(lowercase__ ,1.0 / math.sqrt(np.prod(image.shape ) ) )
return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,**lowercase__ )
def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : ImageInput ,lowercase__ : Optional[str] = None ,lowercase__ : bool = None ,lowercase__ : Optional[bool] = None ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[Dict[str, int]] = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : ChannelDimension = ChannelDimension.FIRST ,**lowercase__ : List[Any] ,):
__lowercase = do_normalize if do_normalize is not None else self.do_normalize
__lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__lowercase = patch_size if patch_size is not None else self.patch_size
__lowercase = max_patches if max_patches is not None else self.max_patches
__lowercase = self.is_vqa
if kwargs.get('''data_format''' ,lowercase__ ) is not None:
raise ValueError('''data_format is not an accepted input as the outputs are ''' )
__lowercase = make_list_of_images(lowercase__ )
if not valid_images(lowercase__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__lowercase = [convert_to_rgb(lowercase__ ) for image in images]
# All transformations expect numpy arrays.
__lowercase = [to_numpy_array(lowercase__ ) for image in images]
if is_vqa:
if header_text is None:
raise ValueError('''A header text must be provided for VQA models.''' )
__lowercase = kwargs.pop('''font_bytes''' ,lowercase__ )
__lowercase = kwargs.pop('''font_path''' ,lowercase__ )
if isinstance(lowercase__ ,lowercase__ ):
__lowercase = [header_text] * len(lowercase__ )
__lowercase = [
render_header(lowercase__ ,header_text[i] ,font_bytes=lowercase__ ,font_path=lowercase__ )
for i, image in enumerate(lowercase__ )
]
if do_normalize:
__lowercase = [self.normalize(image=lowercase__ ) for image in images]
# convert to torch tensor and permute
__lowercase = [
self.extract_flattened_patches(image=lowercase__ ,max_patches=lowercase__ ,patch_size=lowercase__ )
for image in images
]
# create attention mask in numpy
__lowercase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images]
__lowercase = BatchFeature(
data={'''flattened_patches''': images, '''attention_mask''': attention_masks} ,tensor_type=lowercase__ )
return encoded_outputs
| 41 | 0 |
'''simple docstring'''
import os
import sys
import transformers
__a: List[str] = """3"""
print("""Python version:""", sys.version)
print("""transformers version:""", transformers.__version__)
try:
import torch
print("""Torch version:""", torch.__version__)
print("""Cuda available:""", torch.cuda.is_available())
print("""Cuda version:""", torch.version.cuda)
print("""CuDNN version:""", torch.backends.cudnn.version())
print("""Number of GPUs available:""", torch.cuda.device_count())
print("""NCCL version:""", torch.cuda.nccl.version())
except ImportError:
print("""Torch version:""", None)
try:
import deepspeed
print("""DeepSpeed version:""", deepspeed.__version__)
except ImportError:
print("""DeepSpeed version:""", None)
try:
import tensorflow as tf
print("""TensorFlow version:""", tf.__version__)
print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU""")))
print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU""")))
except ImportError:
print("""TensorFlow version:""", None)
| 152 |
'''simple docstring'''
import doctest
from collections import deque
import numpy as np
class lowercase_ :
"""simple docstring"""
def __init__( self : Optional[Any] ):
__lowercase = [2, 1, 2, -1]
__lowercase = [1, 2, 3, 4]
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
__lowercase = len(self.first_signal )
__lowercase = len(self.second_signal )
__lowercase = max(lowercase__ ,lowercase__ )
# create a zero matrix of max_length x max_length
__lowercase = [[0] * max_length for i in range(lowercase__ )]
# fills the smaller signal with zeros to make both signals of same length
if length_first_signal < length_second_signal:
self.first_signal += [0] * (max_length - length_first_signal)
elif length_first_signal > length_second_signal:
self.second_signal += [0] * (max_length - length_second_signal)
for i in range(lowercase__ ):
__lowercase = deque(self.second_signal )
rotated_signal.rotate(lowercase__ )
for j, item in enumerate(lowercase__ ):
matrix[i][j] += item
# multiply the matrix with the first signal
__lowercase = np.matmul(np.transpose(lowercase__ ) ,np.transpose(self.first_signal ) )
# rounding-off to two decimal places
return [round(lowercase__ ,2 ) for i in final_signal]
if __name__ == "__main__":
doctest.testmod()
| 41 | 0 |
"""simple docstring"""
import inspect
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
__A = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
__A = direct_transformers_import(PATH_TO_TRANSFORMERS)
__A = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
__A = re.compile(R"\[(.+?)\]\((https://huggingface\.co/.+?)\)")
__A = {
"DecisionTransformerConfig",
"EncoderDecoderConfig",
"MusicgenConfig",
"RagConfig",
"SpeechEncoderDecoderConfig",
"TimmBackboneConfig",
"VisionEncoderDecoderConfig",
"VisionTextDualEncoderConfig",
"LlamaConfig",
}
def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[Any]:
lowercase__: List[str] = None
# source code of `config_class`
lowercase__: Dict = inspect.getsource(A__ )
lowercase__: Optional[Any] = _re_checkpoint.findall(A__ )
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
for ckpt_name, ckpt_link in checkpoints:
# allow the link to end with `/`
if ckpt_link.endswith('''/''' ):
lowercase__: List[Any] = ckpt_link[:-1]
# verify the checkpoint name corresponds to the checkpoint link
lowercase__: Any = F"""https://huggingface.co/{ckpt_name}"""
if ckpt_link == ckpt_link_from_name:
lowercase__: Union[str, Any] = ckpt_name
break
return checkpoint
def SCREAMING_SNAKE_CASE__ ( ) -> List[str]:
lowercase__: Optional[int] = []
for config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in config_class.__module__:
continue
lowercase__: str = get_checkpoint_from_config_class(A__ )
lowercase__: str = config_class.__name__
if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(A__ )
if len(A__ ) > 0:
lowercase__: Dict = '''\n'''.join(sorted(A__ ) )
raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
| 586 |
'''simple docstring'''
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[List[np.ndarray], torch.FloatTensor]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 41 | 0 |
"""simple docstring"""
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
lowerCAmelCase_ = logging.getLogger()
@unittest.skip("Temporarily disable the doc tests." )
@require_torch
@require_tf
@slow
class _snake_case ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : List[Any] , _A : Path , _A : Union[str, None] = None , _A : Union[List[str], None] = None , _A : Union[str, List[str], None] = None , _A : bool = True , ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : List[str] = [file for file in os.listdir(lowercase__) if os.path.isfile(os.path.join(lowercase__ , lowercase__))]
if identifier is not None:
_SCREAMING_SNAKE_CASE : str = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(lowercase__ , lowercase__):
for n_ in n_identifier:
_SCREAMING_SNAKE_CASE : Union[str, Any] = [file for file in files if n_ not in file]
else:
_SCREAMING_SNAKE_CASE : int = [file for file in files if n_identifier not in file]
_SCREAMING_SNAKE_CASE : Union[str, Any] = ignore_files or []
ignore_files.append("""__init__.py""")
_SCREAMING_SNAKE_CASE : Any = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print("""Testing""" , lowercase__)
if only_modules:
_SCREAMING_SNAKE_CASE : Dict = file.split(""".""")[0]
try:
_SCREAMING_SNAKE_CASE : Any = getattr(lowercase__ , lowercase__)
_SCREAMING_SNAKE_CASE : Tuple = doctest.DocTestSuite(lowercase__)
_SCREAMING_SNAKE_CASE : List[str] = unittest.TextTestRunner().run(lowercase__)
self.assertIs(len(result.failures) , 0)
except AttributeError:
logger.info(f"""{module_identifier} is not a module.""")
else:
_SCREAMING_SNAKE_CASE : Dict = doctest.testfile(str("""..""" / directory / file) , optionflags=doctest.ELLIPSIS)
self.assertIs(result.failed , 0)
def _lowerCAmelCase ( self : Optional[int]):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Dict = Path("""src/transformers""")
_SCREAMING_SNAKE_CASE : Optional[Any] = """modeling"""
_SCREAMING_SNAKE_CASE : List[str] = [
"""modeling_ctrl.py""",
"""modeling_tf_ctrl.py""",
]
self.analyze_directory(lowercase__ , identifier=lowercase__ , ignore_files=lowercase__)
def _lowerCAmelCase ( self : Optional[Any]):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Union[str, Any] = Path("""src/transformers""")
_SCREAMING_SNAKE_CASE : List[str] = """tokenization"""
self.analyze_directory(lowercase__ , identifier=lowercase__)
def _lowerCAmelCase ( self : int):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Any = Path("""src/transformers""")
_SCREAMING_SNAKE_CASE : Any = """configuration"""
self.analyze_directory(lowercase__ , identifier=lowercase__)
def _lowerCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : str = Path("""src/transformers""")
_SCREAMING_SNAKE_CASE : Optional[int] = ["""configuration""", """modeling""", """tokenization"""]
self.analyze_directory(lowercase__ , n_identifier=lowercase__)
def _lowerCAmelCase ( self : str):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : str = Path("""docs/source""")
_SCREAMING_SNAKE_CASE : int = ["""favicon.ico"""]
self.analyze_directory(lowercase__ , ignore_files=lowercase__ , only_modules=lowercase__)
| 338 |
'''simple docstring'''
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
lowerCAmelCase__ = getLogger(__name__)
lowerCAmelCase__ = '''cuda''' if torch.cuda.is_available() else '''cpu'''
def _A ( A__ , A__ , A__ , A__ = 8 , A__ = DEFAULT_DEVICE , A__=False , A__="summarization" , A__=None , **A__ , ):
"""simple docstring"""
__lowercase = Path(A__ ).open('''w''' , encoding='''utf-8''' )
__lowercase = str(A__ )
__lowercase = AutoModelForSeqaSeqLM.from_pretrained(A__ ).to(A__ )
if fpaa:
__lowercase = model.half()
__lowercase = AutoTokenizer.from_pretrained(A__ )
logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type.
__lowercase = time.time()
# update config with task specific params
use_task_specific_params(A__ , A__ )
if prefix is None:
__lowercase = prefix or getattr(model.config , '''prefix''' , '''''' ) or ''''''
for examples_chunk in tqdm(list(chunks(A__ , A__ ) ) ):
__lowercase = [prefix + text for text in examples_chunk]
__lowercase = tokenizer(A__ , return_tensors='''pt''' , truncation=A__ , padding='''longest''' ).to(A__ )
__lowercase = model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **A__ , )
__lowercase = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ )
for hypothesis in dec:
fout.write(hypothesis + '''\n''' )
fout.flush()
fout.close()
__lowercase = int(time.time() - start_time ) # seconds
__lowercase = len(A__ )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )}
def _A ( ):
"""simple docstring"""
return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' )
def _A ( A__=True ):
"""simple docstring"""
__lowercase = argparse.ArgumentParser()
parser.add_argument('''model_name''' , type=A__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' )
parser.add_argument('''input_path''' , type=A__ , help='''like cnn_dm/test.source''' )
parser.add_argument('''save_path''' , type=A__ , help='''where to save summaries''' )
parser.add_argument('''--reference_path''' , type=A__ , required=A__ , help='''like cnn_dm/test.target''' )
parser.add_argument('''--score_path''' , type=A__ , required=A__ , default='''metrics.json''' , help='''where to save metrics''' )
parser.add_argument('''--device''' , type=A__ , required=A__ , default=A__ , help='''cuda, cuda:1, cpu etc.''' )
parser.add_argument(
'''--prefix''' , type=A__ , required=A__ , default=A__ , help='''will be added to the begininng of src examples''' )
parser.add_argument('''--task''' , type=A__ , default='''summarization''' , help='''used for task_specific_params + metrics''' )
parser.add_argument('''--bs''' , type=A__ , default=8 , required=A__ , help='''batch size''' )
parser.add_argument(
'''--n_obs''' , type=A__ , default=-1 , required=A__ , help='''How many observations. Defaults to all.''' )
parser.add_argument('''--fp16''' , action='''store_true''' )
parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' )
parser.add_argument(
'''--info''' , nargs='''?''' , type=A__ , const=datetime_now() , help=(
'''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.'''
''' lang=en-ru. If no value is passed, the current datetime string will be used.'''
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
__lowercase , __lowercase = parser.parse_known_args()
__lowercase = parse_numeric_n_bool_cl_kwargs(A__ )
if parsed_args and verbose:
print(F"parsed the following generate kwargs: {parsed_args}" )
__lowercase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
__lowercase = examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=A__ )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError('''Can\'t mix --fp16 and --device cpu''' )
__lowercase = generate_summaries_or_translations(
A__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **A__ , )
if args.reference_path is None:
return {}
# Compute scores
__lowercase = calculate_bleu if '''translation''' in args.task else calculate_rouge
__lowercase = [x.rstrip() for x in open(args.save_path ).readlines()]
__lowercase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(A__ )]
__lowercase = score_fn(A__ , A__ )
scores.update(A__ )
if args.dump_args:
scores.update(A__ )
if args.info:
__lowercase = args.info
if verbose:
print(A__ )
if args.score_path is not None:
json.dump(A__ , open(args.score_path , '''w''' ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 41 | 0 |
import os
import sys
UpperCAmelCase__ = os.path.join(os.path.dirname(__file__), '''src''')
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
UpperCAmelCase__ = [
'''torch''',
'''numpy''',
'''tokenizers''',
'''filelock''',
'''requests''',
'''tqdm''',
'''regex''',
'''sentencepiece''',
'''sacremoses''',
'''importlib_metadata''',
'''huggingface_hub''',
]
@add_start_docstrings(AutoConfig.__doc__ )
def a_ (*__A , **__A ) -> Dict:
"""simple docstring"""
return AutoConfig.from_pretrained(*A__ , **A__ )
@add_start_docstrings(AutoTokenizer.__doc__ )
def a_ (*__A , **__A ) -> str:
"""simple docstring"""
return AutoTokenizer.from_pretrained(*A__ , **A__ )
@add_start_docstrings(AutoModel.__doc__ )
def a_ (*__A , **__A ) -> int:
"""simple docstring"""
return AutoModel.from_pretrained(*A__ , **A__ )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def a_ (*__A , **__A ) -> List[str]:
"""simple docstring"""
return AutoModelForCausalLM.from_pretrained(*A__ , **A__ )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def a_ (*__A , **__A ) -> int:
"""simple docstring"""
return AutoModelForMaskedLM.from_pretrained(*A__ , **A__ )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def a_ (*__A , **__A ) -> List[str]:
"""simple docstring"""
return AutoModelForSequenceClassification.from_pretrained(*A__ , **A__ )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def a_ (*__A , **__A ) -> str:
"""simple docstring"""
return AutoModelForQuestionAnswering.from_pretrained(*A__ , **A__ )
| 351 |
'''simple docstring'''
from __future__ import annotations
def _A ( A__ , A__ ):
"""simple docstring"""
print(F"Vertex\tShortest Distance from vertex {src}" )
for i, d in enumerate(A__ ):
print(F"{i}\t\t{d}" )
def _A ( A__ , A__ , A__ ):
"""simple docstring"""
for j in range(A__ ):
__lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight'''])
if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]:
return True
return False
def _A ( A__ , A__ , A__ , A__ ):
"""simple docstring"""
__lowercase = [float('''inf''' )] * vertex_count
__lowercase = 0.0
for _ in range(vertex_count - 1 ):
for j in range(A__ ):
__lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight'''])
if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]:
__lowercase = distance[u] + w
__lowercase = check_negative_cycle(A__ , A__ , A__ )
if negative_cycle_exists:
raise Exception('''Negative cycle found''' )
return distance
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase__ = int(input('''Enter number of vertices: ''').strip())
lowerCAmelCase__ = int(input('''Enter number of edges: ''').strip())
lowerCAmelCase__ = [{} for _ in range(E)]
for i in range(E):
print('''Edge ''', i + 1)
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = (
int(x)
for x in input('''Enter source, destination, weight: ''').strip().split(''' ''')
)
lowerCAmelCase__ = {'''src''': src, '''dst''': dest, '''weight''': weight}
lowerCAmelCase__ = int(input('''\nEnter shortest path source:''').strip())
lowerCAmelCase__ = bellman_ford(graph, V, E, source)
print_distance(shortest_distance, 0)
| 41 | 0 |
"""simple docstring"""
import os
# Precomputes a list of the 100 first triangular numbers
A_ : Tuple = [int(0.5 * n * (n + 1)) for n in range(1, 101)]
def __snake_case ( ) -> List[str]:
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = os.path.dirname(os.path.realpath(A__ ) )
SCREAMING_SNAKE_CASE : int = os.path.join(A__ , 'words.txt' )
SCREAMING_SNAKE_CASE : str = ''
with open(A__ ) as f:
SCREAMING_SNAKE_CASE : Dict = f.readline()
SCREAMING_SNAKE_CASE : List[Any] = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )]
SCREAMING_SNAKE_CASE : Optional[int] = [
word
for word in [sum(ord(A__ ) - 64 for x in word ) for word in words]
if word in TRIANGULAR_NUMBERS
]
return len(A__ )
if __name__ == "__main__":
print(solution())
| 265 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
lowerCAmelCase__ = logging.get_logger(__name__)
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
def __init__( self : List[Any] ,*lowercase__ : Optional[Any] ,**lowercase__ : int ):
warnings.warn(
'''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use YolosImageProcessor instead.''' ,lowercase__ ,)
super().__init__(*lowercase__ ,**lowercase__ )
| 41 | 0 |
import argparse
import os
import re
UpperCAmelCase_ : List[Any] = "src/diffusers"
# Pattern that looks at the indentation in a line.
UpperCAmelCase_ : Dict = re.compile(R"^(\s*)\S")
# Pattern that matches `"key":" and puts `key` in group 0.
UpperCAmelCase_ : List[str] = re.compile(R"^\s*\"([^\"]+)\":")
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
UpperCAmelCase_ : Any = re.compile(R"^\s*_import_structure\[\"([^\"]+)\"\]")
# Pattern that matches `"key",` and puts `key` in group 0.
UpperCAmelCase_ : str = re.compile(R"^\s*\"([^\"]+)\",\s*$")
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
UpperCAmelCase_ : str = re.compile(R"\[([^\]]+)\]")
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : str =_re_indent.search(A__ )
return "" if search is None else search.groups()[0]
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase="" , lowerCamelCase=None , lowerCamelCase=None ):
__magic_name__ : Optional[Any] =0
__magic_name__ : Tuple =code.split("""\n""" )
if start_prompt is not None:
while not lines[index].startswith(A__ ):
index += 1
__magic_name__ : Optional[int] =["""\n""".join(lines[:index] )]
else:
__magic_name__ : List[str] =[]
# We split into blocks until we get to the `end_prompt` (or the end of the block).
__magic_name__ : Any =[lines[index]]
index += 1
while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ):
current_block.append(lines[index] )
blocks.append("""\n""".join(A__ ) )
if index < len(A__ ) - 1:
__magic_name__ : int =[lines[index + 1]]
index += 1
else:
__magic_name__ : Optional[int] =[]
else:
blocks.append("""\n""".join(A__ ) )
__magic_name__ : str =[lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(A__ ) > 0:
blocks.append("""\n""".join(A__ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(A__ ):
blocks.append("""\n""".join(lines[index:] ) )
return blocks
def lowerCAmelCase_ ( lowerCamelCase ):
def _inner(lowerCamelCase ):
return key(A__ ).lower().replace("""_""" , """""" )
return _inner
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=None ):
def noop(lowerCamelCase ):
return x
if key is None:
__magic_name__ : str =noop
# Constants are all uppercase, they go first.
__magic_name__ : Optional[int] =[obj for obj in objects if key(A__ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
__magic_name__ : List[Any] =[obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()]
# Functions begin with a lowercase, they go last.
__magic_name__ : Any =[obj for obj in objects if not key(A__ )[0].isupper()]
__magic_name__ : Any =ignore_underscore(A__ )
return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ )
def lowerCAmelCase_ ( lowerCamelCase ):
def _replace(lowerCamelCase ):
__magic_name__ : Tuple =match.groups()[0]
if "," not in imports:
return F"[{imports}]"
__magic_name__ : List[str] =[part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
__magic_name__ : Dict =keys[:-1]
return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) + "]"
__magic_name__ : Optional[Any] =import_statement.split("""\n""" )
if len(A__ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
__magic_name__ : List[str] =2 if lines[1].strip() == """[""" else 1
__magic_name__ : str =[(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
__magic_name__ : Any =sort_objects(A__ , key=lambda lowerCamelCase : x[1] )
__magic_name__ : Union[str, Any] =[lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(A__ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
__magic_name__ : Union[str, Any] =_re_bracket_content.sub(_replace , lines[1] )
else:
__magic_name__ : str =[part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
__magic_name__ : str =keys[:-1]
__magic_name__ : Optional[int] =get_indent(lines[1] ) + """, """.join([F"\"{k}\"" for k in sort_objects(A__ )] )
return "\n".join(A__ )
else:
# Finally we have to deal with imports fitting on one line
__magic_name__ : List[Any] =_re_bracket_content.sub(_replace , A__ )
return import_statement
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=True ):
with open(A__ , """r""" ) as f:
__magic_name__ : List[str] =f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
__magic_name__ : Optional[Any] =split_code_in_indented_blocks(
A__ , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(A__ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
__magic_name__ : Optional[int] =main_blocks[block_idx]
__magic_name__ : List[Any] =block.split("""\n""" )
# Get to the start of the imports.
__magic_name__ : Optional[Any] =0
while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
__magic_name__ : List[str] =len(A__ )
else:
line_idx += 1
if line_idx >= len(A__ ):
continue
# Ignore beginning and last line: they don't contain anything.
__magic_name__ : Optional[Any] ="""\n""".join(block_lines[line_idx:-1] )
__magic_name__ : int =get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
__magic_name__ : List[Any] =split_code_in_indented_blocks(A__ , indent_level=A__ )
# We have two categories of import key: list or _import_structure[key].append/extend
__magic_name__ : str =_re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
__magic_name__ : Optional[Any] =[(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
__magic_name__ : Dict =[(i, key) for i, key in enumerate(A__ ) if key is not None]
__magic_name__ : Optional[Any] =[x[0] for x in sorted(A__ , key=lambda lowerCamelCase : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
__magic_name__ : int =0
__magic_name__ : Union[str, Any] =[]
for i in range(len(A__ ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
__magic_name__ : Optional[Any] =sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(A__ )
count += 1
# And we put our main block back together with its first and last line.
__magic_name__ : Tuple ="""\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(A__ ):
if check_only:
return True
else:
print(F"Overwriting {file}." )
with open(A__ , """w""" ) as f:
f.write("""\n""".join(A__ ) )
def lowerCAmelCase_ ( lowerCamelCase=True ):
__magic_name__ : List[Any] =[]
for root, _, files in os.walk(A__ ):
if "__init__.py" in files:
__magic_name__ : int =sort_imports(os.path.join(A__ , """__init__.py""" ) , check_only=A__ )
if result:
__magic_name__ : List[Any] =[os.path.join(A__ , """__init__.py""" )]
if len(A__ ) > 0:
raise ValueError(F"Would overwrite {len(A__ )} files, run `make style`." )
if __name__ == "__main__":
UpperCAmelCase_ : int = argparse.ArgumentParser()
parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.")
UpperCAmelCase_ : List[Any] = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 21 |
'''simple docstring'''
import os
import time
import pytest
from datasets.utils.filelock import FileLock, Timeout
def _A ( A__ ):
"""simple docstring"""
__lowercase = FileLock(str(tmpdir / '''foo.lock''' ) )
__lowercase = FileLock(str(tmpdir / '''foo.lock''' ) )
__lowercase = 0.0_1
with locka.acquire():
with pytest.raises(A__ ):
__lowercase = time.time()
locka.acquire(A__ )
assert time.time() - _start > timeout
def _A ( A__ ):
"""simple docstring"""
__lowercase = '''a''' * 1000 + '''.lock'''
__lowercase = FileLock(str(tmpdir / filename ) )
assert locka._lock_file.endswith('''.lock''' )
assert not locka._lock_file.endswith(A__ )
assert len(os.path.basename(locka._lock_file ) ) <= 255
__lowercase = FileLock(tmpdir / filename )
with locka.acquire():
with pytest.raises(A__ ):
locka.acquire(0 )
| 41 | 0 |
"""simple docstring"""
class lowerCamelCase__ : # Public class to implement a graph
'''simple docstring'''
def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Tuple:
A = row
A = col
A = graph
def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> int:
return (
0 <= i < self.ROW
and 0 <= j < self.COL
and not visited[i][j]
and self.graph[i][j]
)
def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> int:
# Checking all 8 elements surrounding nth element
A = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
A = [-1, 0, 1, -1, 1, -1, 0, 1]
A = True # Make those cells visited
for k in range(8 ):
if self.is_safe(i + row_nbr[k] ,j + col_nbr[k] ,lowercase__ ):
self.diffs(i + row_nbr[k] ,j + col_nbr[k] ,lowercase__ )
def UpperCamelCase__ ( self ) -> int: # And finally, count all islands.
A = [[False for j in range(self.COL )] for i in range(self.ROW )]
A = 0
for i in range(self.ROW ):
for j in range(self.COL ):
if visited[i][j] is False and self.graph[i][j] == 1:
self.diffs(lowercase__ ,lowercase__ ,lowercase__ )
count += 1
return count
| 617 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
lowerCAmelCase__ = {
'''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GPTBigCodeForSequenceClassification''',
'''GPTBigCodeForTokenClassification''',
'''GPTBigCodeForCausalLM''',
'''GPTBigCodeModel''',
'''GPTBigCodePreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_bigcode import (
GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTBigCodeForCausalLM,
GPTBigCodeForSequenceClassification,
GPTBigCodeForTokenClassification,
GPTBigCodeModel,
GPTBigCodePreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 41 | 0 |
"""simple docstring"""
import unittest
from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase_ : List[str] = get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
@require_tokenizers
class UpperCamelCase_ ( lowerCamelCase__ , unittest.TestCase ):
_A : str = XLNetTokenizer
_A : Optional[int] = XLNetTokenizerFast
_A : int = True
_A : List[str] = True
def UpperCamelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase = XLNetTokenizer(lowercase__ , keep_accents=lowercase__ )
tokenizer.sanitize_special_tokens()
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self ) -> str:
"""simple docstring"""
UpperCAmelCase = """<s>"""
UpperCAmelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ )
def UpperCamelCase_ ( self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<unk>""" )
self.assertEqual(vocab_keys[1] , """<s>""" )
self.assertEqual(vocab_keys[-1] , """<eod>""" )
self.assertEqual(len(lowercase__ ) , 10_06 )
def UpperCamelCase_ ( self ) -> Any:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_00 )
def UpperCamelCase_ ( self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase = XLNetTokenizer(lowercase__ , keep_accents=lowercase__ )
UpperCAmelCase = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(lowercase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , [2_85, 46, 10, 1_70, 3_82] )
UpperCAmelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
lowercase__ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase__ )
self.assertListEqual(lowercase__ , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] )
UpperCAmelCase = tokenizer.convert_ids_to_tokens(lowercase__ )
self.assertListEqual(
lowercase__ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
def UpperCamelCase_ ( self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase = XLNetTokenizer(lowercase__ , do_lower_case=lowercase__ )
UpperCAmelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
lowercase__ , [
SPIECE_UNDERLINE + """""",
"""i""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""se""",
""".""",
] , )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""▁he""", """ll""", """o"""] )
def UpperCamelCase_ ( self ) -> int:
"""simple docstring"""
UpperCAmelCase = XLNetTokenizer(lowercase__ , do_lower_case=lowercase__ )
UpperCAmelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
lowercase__ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""se""",
""".""",
] , )
@slow
def UpperCamelCase_ ( self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" )
UpperCAmelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase__ )
UpperCAmelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase__ )
UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ )
UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ )
assert encoded_sentence == text + [4, 3]
assert encoded_pair == text + [4] + text_a + [4, 3]
@slow
def UpperCamelCase_ ( self ) -> Any:
"""simple docstring"""
UpperCAmelCase = {"""input_ids""": [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowercase__ , model_name="""xlnet-base-cased""" , revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" , )
| 673 |
'''simple docstring'''
import argparse
import os
import re
lowerCAmelCase__ = '''src/diffusers'''
# Pattern that looks at the indentation in a line.
lowerCAmelCase__ = re.compile(R'''^(\s*)\S''')
# Pattern that matches `"key":" and puts `key` in group 0.
lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)":''')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''')
# Pattern that matches `"key",` and puts `key` in group 0.
lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)",\s*$''')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
lowerCAmelCase__ = re.compile(R'''\[([^\]]+)\]''')
def _A ( A__ ):
"""simple docstring"""
__lowercase = _re_indent.search(A__ )
return "" if search is None else search.groups()[0]
def _A ( A__ , A__="" , A__=None , A__=None ):
"""simple docstring"""
__lowercase = 0
__lowercase = code.split('''\n''' )
if start_prompt is not None:
while not lines[index].startswith(A__ ):
index += 1
__lowercase = ['''\n'''.join(lines[:index] )]
else:
__lowercase = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
__lowercase = [lines[index]]
index += 1
while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ):
current_block.append(lines[index] )
blocks.append('''\n'''.join(A__ ) )
if index < len(A__ ) - 1:
__lowercase = [lines[index + 1]]
index += 1
else:
__lowercase = []
else:
blocks.append('''\n'''.join(A__ ) )
__lowercase = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(A__ ) > 0:
blocks.append('''\n'''.join(A__ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(A__ ):
blocks.append('''\n'''.join(lines[index:] ) )
return blocks
def _A ( A__ ):
"""simple docstring"""
def _inner(A__ ):
return key(A__ ).lower().replace('''_''' , '''''' )
return _inner
def _A ( A__ , A__=None ):
"""simple docstring"""
def noop(A__ ):
return x
if key is None:
__lowercase = noop
# Constants are all uppercase, they go first.
__lowercase = [obj for obj in objects if key(A__ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
__lowercase = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()]
# Functions begin with a lowercase, they go last.
__lowercase = [obj for obj in objects if not key(A__ )[0].isupper()]
__lowercase = ignore_underscore(A__ )
return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ )
def _A ( A__ ):
"""simple docstring"""
def _replace(A__ ):
__lowercase = match.groups()[0]
if "," not in imports:
return F"[{imports}]"
__lowercase = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
__lowercase = keys[:-1]
return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) + "]"
__lowercase = import_statement.split('''\n''' )
if len(A__ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
__lowercase = 2 if lines[1].strip() == '''[''' else 1
__lowercase = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
__lowercase = sort_objects(A__ , key=lambda A__ : x[1] )
__lowercase = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(A__ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
__lowercase = _re_bracket_content.sub(_replace , lines[1] )
else:
__lowercase = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
__lowercase = keys[:-1]
__lowercase = get_indent(lines[1] ) + ''', '''.join([F"\"{k}\"" for k in sort_objects(A__ )] )
return "\n".join(A__ )
else:
# Finally we have to deal with imports fitting on one line
__lowercase = _re_bracket_content.sub(_replace , A__ )
return import_statement
def _A ( A__ , A__=True ):
"""simple docstring"""
with open(A__ , '''r''' ) as f:
__lowercase = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
__lowercase = split_code_in_indented_blocks(
A__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(A__ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
__lowercase = main_blocks[block_idx]
__lowercase = block.split('''\n''' )
# Get to the start of the imports.
__lowercase = 0
while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
__lowercase = len(A__ )
else:
line_idx += 1
if line_idx >= len(A__ ):
continue
# Ignore beginning and last line: they don't contain anything.
__lowercase = '''\n'''.join(block_lines[line_idx:-1] )
__lowercase = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
__lowercase = split_code_in_indented_blocks(A__ , indent_level=A__ )
# We have two categories of import key: list or _import_structure[key].append/extend
__lowercase = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
__lowercase = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
__lowercase = [(i, key) for i, key in enumerate(A__ ) if key is not None]
__lowercase = [x[0] for x in sorted(A__ , key=lambda A__ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
__lowercase = 0
__lowercase = []
for i in range(len(A__ ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
__lowercase = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(A__ )
count += 1
# And we put our main block back together with its first and last line.
__lowercase = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(A__ ):
if check_only:
return True
else:
print(F"Overwriting {file}." )
with open(A__ , '''w''' ) as f:
f.write('''\n'''.join(A__ ) )
def _A ( A__=True ):
"""simple docstring"""
__lowercase = []
for root, _, files in os.walk(A__ ):
if "__init__.py" in files:
__lowercase = sort_imports(os.path.join(A__ , '''__init__.py''' ) , check_only=A__ )
if result:
__lowercase = [os.path.join(A__ , '''__init__.py''' )]
if len(A__ ) > 0:
raise ValueError(F"Would overwrite {len(A__ )} files, run `make style`." )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
lowerCAmelCase__ = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 41 | 0 |
import numpy as np
import qiskit
def _UpperCAmelCase ( UpperCAmelCase : int = 8 , UpperCAmelCase : List[Any] = None ):
"""simple docstring"""
__lowerCamelCase : List[Any] = np.random.default_rng(seed=A__ )
# Roughly 25% of the qubits will contribute to the key.
# So we take more than we need.
__lowerCamelCase : Optional[int] = 6 * key_len
# Measurement basis for Alice's qubits.
__lowerCamelCase : Tuple = rng.integers(2 , size=A__ )
# The set of states Alice will prepare.
__lowerCamelCase : str = rng.integers(2 , size=A__ )
# Measurement basis for Bob's qubits.
__lowerCamelCase : List[str] = rng.integers(2 , size=A__ )
# Quantum Circuit to simulate BB84
__lowerCamelCase : List[str] = qiskit.QuantumCircuit(A__ , name="""BB84""" )
# Alice prepares her qubits according to rules above.
for index, _ in enumerate(A__ ):
if alice_state[index] == 1:
bbaa_circ.x(A__ )
if alice_basis[index] == 1:
bbaa_circ.h(A__ )
bbaa_circ.barrier()
# Bob measures the received qubits according to rules above.
for index, _ in enumerate(A__ ):
if bob_basis[index] == 1:
bbaa_circ.h(A__ )
bbaa_circ.barrier()
bbaa_circ.measure_all()
# Simulate the quantum circuit.
__lowerCamelCase : Dict = qiskit.Aer.get_backend("""aer_simulator""" )
# We only need to run one shot because the key is unique.
# Multiple shots will produce the same key.
__lowerCamelCase : Union[str, Any] = qiskit.execute(A__ , A__ , shots=1 , seed_simulator=A__ )
# Returns the result of measurement.
__lowerCamelCase : Optional[Any] = job.result().get_counts(A__ ).most_frequent()
# Extracting the generated key from the simulation results.
# Only keep measurement results where Alice and Bob chose the same basis.
__lowerCamelCase : str = """""".join(
[
result_bit
for alice_basis_bit, bob_basis_bit, result_bit in zip(
A__ , A__ , A__ )
if alice_basis_bit == bob_basis_bit
] )
# Get final key. Pad with 0 if too short, otherwise truncate.
__lowerCamelCase : Optional[int] = gen_key[:key_len] if len(A__ ) >= key_len else gen_key.ljust(A__ , """0""" )
return key
if __name__ == "__main__":
print(F'''The generated key is : {bbaa(8, seed=0)}''')
from doctest import testmod
testmod()
| 519 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
TextToVideoSDPipeline,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class lowercase_ (lowerCamelCase__ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = TextToVideoSDPipeline
SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_PARAMS
SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS
# No `output_type`.
SCREAMING_SNAKE_CASE : Optional[int] = frozenset(
[
'num_inference_steps',
'generator',
'latents',
'return_dict',
'callback',
'callback_steps',
] )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
torch.manual_seed(0 )
__lowercase = UNetaDConditionModel(
block_out_channels=(3_2, 6_4, 6_4, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') ,up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') ,cross_attention_dim=3_2 ,attention_head_dim=4 ,)
__lowercase = DDIMScheduler(
beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,clip_sample=lowercase__ ,set_alpha_to_one=lowercase__ ,)
torch.manual_seed(0 )
__lowercase = AutoencoderKL(
block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=1_2_8 ,)
torch.manual_seed(0 )
__lowercase = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''gelu''' ,projection_dim=5_1_2 ,)
__lowercase = CLIPTextModel(lowercase__ )
__lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
__lowercase = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : List[str]=0 ):
if str(lowercase__ ).startswith('''mps''' ):
__lowercase = torch.manual_seed(lowercase__ )
else:
__lowercase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ )
__lowercase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''pt''',
}
return inputs
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
__lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowercase = self.get_dummy_components()
__lowercase = TextToVideoSDPipeline(**lowercase__ )
__lowercase = sd_pipe.to(lowercase__ )
sd_pipe.set_progress_bar_config(disable=lowercase__ )
__lowercase = self.get_dummy_inputs(lowercase__ )
__lowercase = '''np'''
__lowercase = sd_pipe(**lowercase__ ).frames
__lowercase = frames[0][-3:, -3:, -1]
assert frames[0].shape == (6_4, 6_4, 3)
__lowercase = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=3e-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,)
def SCREAMING_SNAKE_CASE ( self : Any ):
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=1e-2 )
@unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' )
def SCREAMING_SNAKE_CASE ( self : List[str] ):
pass
@unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' )
def SCREAMING_SNAKE_CASE ( self : Tuple ):
pass
@unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' )
def SCREAMING_SNAKE_CASE ( self : Tuple ):
pass
def SCREAMING_SNAKE_CASE ( self : List[str] ):
return super().test_progress_bar()
@slow
@skip_mps
class lowercase_ (unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE ( self : int ):
__lowercase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' )
__lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' )
__lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
__lowercase = pipe.to('''cuda''' )
__lowercase = '''Spiderman is surfing'''
__lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 )
__lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2_5 ,output_type='''pt''' ).frames
__lowercase = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
__lowercase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' )
__lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' )
__lowercase = pipe.to('''cuda''' )
__lowercase = '''Spiderman is surfing'''
__lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 )
__lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2 ,output_type='''pt''' ).frames
__lowercase = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
| 41 | 0 |
"""simple docstring"""
def a_ ( __a ):
A__ = ''''''
for ch in key:
if ch == " " or ch not in key_no_dups and ch.isalpha():
key_no_dups += ch
return key_no_dups
def a_ ( __a ):
A__ = [chr(i + 65 ) for i in range(26 )]
# Remove duplicate characters from key
A__ = remove_duplicates(key.upper() )
A__ = len(A__ )
# First fill cipher with key characters
A__ = {alphabet[i]: char for i, char in enumerate(A__ )}
# Then map remaining characters in alphabet to
# the alphabet from the beginning
for i in range(len(A__ ) , 26 ):
A__ = alphabet[i - offset]
# Ensure we are not mapping letters to letters previously mapped
while char in key:
offset -= 1
A__ = alphabet[i - offset]
A__ = char
return cipher_alphabet
def a_ ( __a , __a ):
return "".join(cipher_map.get(A__ , A__ ) for ch in message.upper() )
def a_ ( __a , __a ):
A__ = {v: k for k, v in cipher_map.items()}
return "".join(rev_cipher_map.get(A__ , A__ ) for ch in message.upper() )
def a_ ( ):
A__ = input('''Enter message to encode or decode: ''' ).strip()
A__ = input('''Enter keyword: ''' ).strip()
A__ = input('''Encipher or decipher? E/D:''' ).strip()[0].lower()
try:
A__ = {'''e''': encipher, '''d''': decipher}[option]
except KeyError:
raise KeyError('''invalid input option''' )
A__ = create_cipher_map(A__ )
print(func(A__ , A__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 571 |
'''simple docstring'''
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def _A ( A__ ):
"""simple docstring"""
__lowercase = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''_float_tensor''',
'''decoder.output_projection.weight''',
]
for k in ignore_keys:
state_dict.pop(A__ , A__ )
def _A ( A__ ):
"""simple docstring"""
__lowercase , __lowercase = emb.weight.shape
__lowercase = nn.Linear(A__ , A__ , bias=A__ )
__lowercase = emb.weight.data
return lin_layer
def _A ( A__ , A__="facebook/mbart-large-en-ro" , A__=False , A__=False ):
"""simple docstring"""
__lowercase = torch.load(A__ , map_location='''cpu''' )['''model''']
remove_ignore_keys_(A__ )
__lowercase = state_dict['''encoder.embed_tokens.weight'''].shape[0]
__lowercase = MBartConfig.from_pretrained(A__ , vocab_size=A__ )
if mbart_aa and finetuned:
__lowercase = '''relu'''
__lowercase = state_dict['''decoder.embed_tokens.weight''']
__lowercase = MBartForConditionalGeneration(A__ )
model.model.load_state_dict(A__ )
if finetuned:
__lowercase = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.'''
)
parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--hf_config''',
default='''facebook/mbart-large-cc25''',
type=str,
help='''Which huggingface architecture to use: mbart-large''',
)
parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''')
parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''')
lowerCAmelCase__ = parser.parse_args()
lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 41 | 0 |
from importlib import import_module
from .logging import get_logger
__SCREAMING_SNAKE_CASE =get_logger(__name__)
class __magic_name__ :
'''simple docstring'''
def __init__( self: Union[str, Any] , _lowerCamelCase: Dict , _lowerCamelCase: Union[str, Any]=None ):
SCREAMING_SNAKE_CASE_ = attrs or []
if module is not None:
for key in module.__dict__:
if key in attrs or not key.startswith('''__''' ):
setattr(self , lowercase__ , getattr(lowercase__ , lowercase__ ) )
SCREAMING_SNAKE_CASE_ = module._original_module if isinstance(lowercase__ , _PatchedModuleObj ) else module
class __magic_name__ :
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : str = []
def __init__( self: Tuple , _lowerCamelCase: Dict , _lowerCamelCase: str , _lowerCamelCase: List[str] , _lowerCamelCase: Any=None ):
SCREAMING_SNAKE_CASE_ = obj
SCREAMING_SNAKE_CASE_ = target
SCREAMING_SNAKE_CASE_ = new
SCREAMING_SNAKE_CASE_ = target.split('''.''' )[0]
SCREAMING_SNAKE_CASE_ = {}
SCREAMING_SNAKE_CASE_ = attrs or []
def __enter__( self: Union[str, Any] ):
*SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.target.split('''.''' )
# Patch modules:
# it's used to patch attributes of submodules like "os.path.join";
# in this case we need to patch "os" and "os.path"
for i in range(len(lowercase__ ) ):
try:
SCREAMING_SNAKE_CASE_ = import_module('''.'''.join(submodules[: i + 1] ) )
except ModuleNotFoundError:
continue
# We iterate over all the globals in self.obj in case we find "os" or "os.path"
for attr in self.obj.__dir__():
SCREAMING_SNAKE_CASE_ = getattr(self.obj , lowercase__ )
# We don't check for the name of the global, but rather if its value *is* "os" or "os.path".
# This allows to patch renamed modules like "from os import path as ospath".
if obj_attr is submodule or (
(isinstance(lowercase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule)
):
SCREAMING_SNAKE_CASE_ = obj_attr
# patch at top level
setattr(self.obj , lowercase__ , _PatchedModuleObj(lowercase__ , attrs=self.attrs ) )
SCREAMING_SNAKE_CASE_ = getattr(self.obj , lowercase__ )
# construct lower levels patches
for key in submodules[i + 1 :]:
setattr(lowercase__ , lowercase__ , _PatchedModuleObj(getattr(lowercase__ , lowercase__ , lowercase__ ) , attrs=self.attrs ) )
SCREAMING_SNAKE_CASE_ = getattr(lowercase__ , lowercase__ )
# finally set the target attribute
setattr(lowercase__ , lowercase__ , self.new )
# Patch attribute itself:
# it's used for builtins like "open",
# and also to patch "os.path.join" we may also need to patch "join"
# itself if it was imported as "from os.path import join".
if submodules: # if it's an attribute of a submodule like "os.path.join"
try:
SCREAMING_SNAKE_CASE_ = getattr(import_module('''.'''.join(lowercase__ ) ) , lowercase__ )
except (AttributeError, ModuleNotFoundError):
return
# We iterate over all the globals in self.obj in case we find "os.path.join"
for attr in self.obj.__dir__():
# We don't check for the name of the global, but rather if its value *is* "os.path.join".
# This allows to patch renamed attributes like "from os.path import join as pjoin".
if getattr(self.obj , lowercase__ ) is attr_value:
SCREAMING_SNAKE_CASE_ = getattr(self.obj , lowercase__ )
setattr(self.obj , lowercase__ , self.new )
elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open"
SCREAMING_SNAKE_CASE_ = globals()['''__builtins__'''][target_attr]
setattr(self.obj , lowercase__ , self.new )
else:
raise RuntimeError(f"Tried to patch attribute {target_attr} instead of a submodule." )
def __exit__( self: Tuple , *_lowerCamelCase: Any ):
for attr in list(self.original ):
setattr(self.obj , lowercase__ , self.original.pop(lowercase__ ) )
def _A ( self: int ):
self.__enter__()
self._active_patches.append(self )
def _A ( self: Dict ):
try:
self._active_patches.remove(self )
except ValueError:
# If the patch hasn't been started this will fail
return None
return self.__exit__()
| 234 |
'''simple docstring'''
import os
from math import logaa
def _A ( A__ = "base_exp.txt" ):
"""simple docstring"""
__lowercase = 0
__lowercase = 0
for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ):
__lowercase , __lowercase = list(map(A__ , line.split(''',''' ) ) )
if x * logaa(A__ ) > largest:
__lowercase = x * logaa(A__ )
__lowercase = i + 1
return result
if __name__ == "__main__":
print(solution())
| 41 | 0 |
'''simple docstring'''
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def __UpperCamelCase ( UpperCAmelCase ):
for param in module.parameters():
lowercase__ : str = False
def __UpperCamelCase ( ):
lowercase__ : str = '''cuda''' if torch.cuda.is_available() else '''cpu'''
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
lowercase__ : Dict = '''mps'''
if device == "mps":
print(
'''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch'''
''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues'''
''' with generations.''' )
return device
def __UpperCamelCase ( UpperCAmelCase ):
lowercase__ : Tuple = plt.imshow(A__ )
fig.axes.get_xaxis().set_visible(A__ )
fig.axes.get_yaxis().set_visible(A__ )
plt.show()
def __UpperCamelCase ( ):
lowercase__ : Union[str, Any] = datetime.now()
lowercase__ : List[Any] = current_time.strftime('''%H:%M:%S''' )
return timestamp
| 152 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''',
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = 'blenderbot-small'
SCREAMING_SNAKE_CASE : int = ['past_key_values']
SCREAMING_SNAKE_CASE : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self : Optional[int] ,lowercase__ : List[str]=5_0_2_6_5 ,lowercase__ : Optional[Any]=5_1_2 ,lowercase__ : Optional[int]=8 ,lowercase__ : List[Any]=2_0_4_8 ,lowercase__ : List[str]=1_6 ,lowercase__ : str=8 ,lowercase__ : Any=2_0_4_8 ,lowercase__ : Tuple=1_6 ,lowercase__ : Tuple=0.0 ,lowercase__ : List[str]=0.0 ,lowercase__ : Any=True ,lowercase__ : str=True ,lowercase__ : int="gelu" ,lowercase__ : Tuple=5_1_2 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : str=0.0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : List[Any]=False ,lowercase__ : Optional[int]=0 ,lowercase__ : Optional[int]=1 ,lowercase__ : str=2 ,lowercase__ : int=2 ,**lowercase__ : List[str] ,):
__lowercase = vocab_size
__lowercase = max_position_embeddings
__lowercase = d_model
__lowercase = encoder_ffn_dim
__lowercase = encoder_layers
__lowercase = encoder_attention_heads
__lowercase = decoder_ffn_dim
__lowercase = decoder_layers
__lowercase = decoder_attention_heads
__lowercase = dropout
__lowercase = attention_dropout
__lowercase = activation_dropout
__lowercase = activation_function
__lowercase = init_std
__lowercase = encoder_layerdrop
__lowercase = decoder_layerdrop
__lowercase = use_cache
__lowercase = encoder_layers
__lowercase = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,is_encoder_decoder=lowercase__ ,decoder_start_token_id=lowercase__ ,forced_eos_token_id=lowercase__ ,**lowercase__ ,)
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
@property
def SCREAMING_SNAKE_CASE ( self : Dict ):
if self.task in ["default", "seq2seq-lm"]:
__lowercase = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
__lowercase = {0: '''batch'''}
__lowercase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
__lowercase = {0: '''batch''', 1: '''decoder_sequence'''}
__lowercase = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(lowercase__ ,direction='''inputs''' )
elif self.task == "causal-lm":
# TODO: figure this case out.
__lowercase = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
__lowercase , __lowercase = self.num_layers
for i in range(lowercase__ ):
__lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''}
__lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''}
else:
__lowercase = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}),
('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}),
] )
return common_inputs
@property
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
if self.task in ["default", "seq2seq-lm"]:
__lowercase = super().outputs
else:
__lowercase = super(lowercase__ ,self ).outputs
if self.use_past:
__lowercase , __lowercase = self.num_layers
for i in range(lowercase__ ):
__lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''}
__lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''}
return common_outputs
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,):
__lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
# Generate decoder inputs
__lowercase = seq_length if not self.use_past else 1
__lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
__lowercase = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
__lowercase = dict(**lowercase__ ,**lowercase__ )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
__lowercase , __lowercase = common_inputs['''input_ids'''].shape
__lowercase = common_inputs['''decoder_input_ids'''].shape[1]
__lowercase , __lowercase = self.num_attention_heads
__lowercase = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
__lowercase = decoder_seq_length + 3
__lowercase = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
__lowercase = torch.cat(
[common_inputs['''decoder_attention_mask'''], torch.ones(lowercase__ ,lowercase__ )] ,dim=1 )
__lowercase = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
__lowercase , __lowercase = self.num_layers
__lowercase = min(lowercase__ ,lowercase__ )
__lowercase = max(lowercase__ ,lowercase__ ) - min_num_layers
__lowercase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder'''
for _ in range(lowercase__ ):
common_inputs["past_key_values"].append(
(
torch.zeros(lowercase__ ),
torch.zeros(lowercase__ ),
torch.zeros(lowercase__ ),
torch.zeros(lowercase__ ),
) )
# TODO: test this.
__lowercase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape
for _ in range(lowercase__ ,lowercase__ ):
common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) )
return common_inputs
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,):
__lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
__lowercase , __lowercase = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
__lowercase = seqlen + 2
__lowercase , __lowercase = self.num_layers
__lowercase , __lowercase = self.num_attention_heads
__lowercase = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
__lowercase = common_inputs['''attention_mask'''].dtype
__lowercase = torch.cat(
[common_inputs['''attention_mask'''], torch.ones(lowercase__ ,lowercase__ ,dtype=lowercase__ )] ,dim=1 )
__lowercase = [
(torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ )
]
return common_inputs
def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,):
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__lowercase = compute_effective_axis_dimension(
lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase = tokenizer.num_special_tokens_to_add(lowercase__ )
__lowercase = compute_effective_axis_dimension(
lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowercase__ )
# Generate dummy inputs according to compute batch and sequence
__lowercase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size
__lowercase = dict(tokenizer(lowercase__ ,return_tensors=lowercase__ ) )
return common_inputs
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,):
if self.task in ["default", "seq2seq-lm"]:
__lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ )
elif self.task == "causal-lm":
__lowercase = self._generate_dummy_inputs_for_causal_lm(
lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ )
else:
__lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ )
return common_inputs
def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ):
if self.task in ["default", "seq2seq-lm"]:
__lowercase = super()._flatten_past_key_values_(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
else:
__lowercase = super(lowercase__ ,self )._flatten_past_key_values_(
lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
| 41 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
__A = {
"configuration_speecht5": [
"SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP",
"SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP",
"SpeechT5Config",
"SpeechT5HifiGanConfig",
],
"feature_extraction_speecht5": ["SpeechT5FeatureExtractor"],
"processing_speecht5": ["SpeechT5Processor"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ["SpeechT5Tokenizer"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST",
"SpeechT5ForSpeechToText",
"SpeechT5ForSpeechToSpeech",
"SpeechT5ForTextToSpeech",
"SpeechT5Model",
"SpeechT5PreTrainedModel",
"SpeechT5HifiGan",
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 586 |
'''simple docstring'''
from __future__ import annotations
def _A ( A__ , A__ ):
"""simple docstring"""
if b == 0:
return (1, 0)
((__lowercase) , (__lowercase)) = extended_euclid(A__ , a % b )
__lowercase = a // b
return (y, x - k * y)
def _A ( A__ , A__ , A__ , A__ ):
"""simple docstring"""
((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ )
__lowercase = na * na
__lowercase = ra * x * na + ra * y * na
return (n % m + m) % m
def _A ( A__ , A__ ):
"""simple docstring"""
((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ )
if b < 0:
__lowercase = (b % n + n) % n
return b
def _A ( A__ , A__ , A__ , A__ ):
"""simple docstring"""
__lowercase , __lowercase = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ )
__lowercase = na * na
__lowercase = ra * x * na + ra * y * na
return (n % m + m) % m
if __name__ == "__main__":
from doctest import testmod
testmod(name='''chinese_remainder_theorem''', verbose=True)
testmod(name='''chinese_remainder_theorem2''', verbose=True)
testmod(name='''invert_modulo''', verbose=True)
testmod(name='''extended_euclid''', verbose=True)
| 41 | 0 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class _snake_case ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Dict):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCAmelCase ( self : List[Any]):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Dict = 1
_SCREAMING_SNAKE_CASE : str = 3
_SCREAMING_SNAKE_CASE : int = (3_2, 3_2)
_SCREAMING_SNAKE_CASE : Tuple = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(lowercase__)
return image
@property
def _lowerCAmelCase ( self : str):
"""simple docstring"""
torch.manual_seed(0)
_SCREAMING_SNAKE_CASE : Dict = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , )
return model
@property
def _lowerCAmelCase ( self : List[str]):
"""simple docstring"""
torch.manual_seed(0)
_SCREAMING_SNAKE_CASE : Optional[Any] = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def _lowerCAmelCase ( self : str):
"""simple docstring"""
torch.manual_seed(0)
_SCREAMING_SNAKE_CASE : Tuple = RobertaSeriesConfig(
hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , )
return RobertaSeriesModelWithTransformation(lowercase__)
@property
def _lowerCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
def extract(*_A : int , **_A : Union[str, Any]):
class _snake_case :
"""simple docstring"""
def __init__( self : str):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Dict = torch.ones([0])
def _lowerCAmelCase ( self : Tuple , _A : List[Any]):
"""simple docstring"""
self.pixel_values.to(lowercase__)
return self
return Out()
return extract
def _lowerCAmelCase ( self : Tuple):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator
_SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_cond_unet
_SCREAMING_SNAKE_CASE : str = PNDMScheduler(skip_prk_steps=lowercase__)
_SCREAMING_SNAKE_CASE : Tuple = self.dummy_vae
_SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_text_encoder
_SCREAMING_SNAKE_CASE : int = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""")
_SCREAMING_SNAKE_CASE : Tuple = 7_7
_SCREAMING_SNAKE_CASE : List[Any] = self.dummy_image.to(lowercase__)
_SCREAMING_SNAKE_CASE : Union[str, Any] = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
_SCREAMING_SNAKE_CASE : int = AltDiffusionImgaImgPipeline(
unet=lowercase__ , scheduler=lowercase__ , vae=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , safety_checker=lowercase__ , feature_extractor=self.dummy_extractor , )
_SCREAMING_SNAKE_CASE : Optional[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowercase__)
_SCREAMING_SNAKE_CASE : Union[str, Any] = alt_pipe.to(lowercase__)
alt_pipe.set_progress_bar_config(disable=lowercase__)
_SCREAMING_SNAKE_CASE : Any = """A painting of a squirrel eating a burger"""
_SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=lowercase__).manual_seed(0)
_SCREAMING_SNAKE_CASE : Optional[int] = alt_pipe(
[prompt] , generator=lowercase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=lowercase__ , )
_SCREAMING_SNAKE_CASE : Tuple = output.images
_SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device=lowercase__).manual_seed(0)
_SCREAMING_SNAKE_CASE : List[str] = alt_pipe(
[prompt] , generator=lowercase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=lowercase__ , return_dict=lowercase__ , )[0]
_SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1]
_SCREAMING_SNAKE_CASE : Dict = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
_SCREAMING_SNAKE_CASE : List[str] = np.array([0.4_427, 0.3_731, 0.4_249, 0.4_941, 0.4_546, 0.4_148, 0.4_193, 0.4_666, 0.4_499])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5e-3
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""")
def _lowerCAmelCase ( self : Optional[int]):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_cond_unet
_SCREAMING_SNAKE_CASE : Tuple = PNDMScheduler(skip_prk_steps=lowercase__)
_SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_vae
_SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_text_encoder
_SCREAMING_SNAKE_CASE : Optional[Any] = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""")
_SCREAMING_SNAKE_CASE : Tuple = 7_7
_SCREAMING_SNAKE_CASE : int = self.dummy_image.to(lowercase__)
# put models in fp16
_SCREAMING_SNAKE_CASE : Union[str, Any] = unet.half()
_SCREAMING_SNAKE_CASE : Any = vae.half()
_SCREAMING_SNAKE_CASE : Optional[Any] = bert.half()
# make sure here that pndm scheduler skips prk
_SCREAMING_SNAKE_CASE : Optional[Any] = AltDiffusionImgaImgPipeline(
unet=lowercase__ , scheduler=lowercase__ , vae=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , safety_checker=lowercase__ , feature_extractor=self.dummy_extractor , )
_SCREAMING_SNAKE_CASE : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowercase__)
_SCREAMING_SNAKE_CASE : Any = alt_pipe.to(lowercase__)
alt_pipe.set_progress_bar_config(disable=lowercase__)
_SCREAMING_SNAKE_CASE : Union[str, Any] = """A painting of a squirrel eating a burger"""
_SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0)
_SCREAMING_SNAKE_CASE : Any = alt_pipe(
[prompt] , generator=lowercase__ , num_inference_steps=2 , output_type="""np""" , image=lowercase__ , ).images
assert image.shape == (1, 3_2, 3_2, 3)
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""")
def _lowerCAmelCase ( self : Dict):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Optional[int] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/img2img/sketch-mountains-input.jpg""")
# resize to resolution that is divisible by 8 but not 16 or 32
_SCREAMING_SNAKE_CASE : Union[str, Any] = init_image.resize((7_6_0, 5_0_4))
_SCREAMING_SNAKE_CASE : List[str] = """BAAI/AltDiffusion"""
_SCREAMING_SNAKE_CASE : int = AltDiffusionImgaImgPipeline.from_pretrained(
lowercase__ , safety_checker=lowercase__ , )
pipe.to(lowercase__)
pipe.set_progress_bar_config(disable=lowercase__)
pipe.enable_attention_slicing()
_SCREAMING_SNAKE_CASE : Union[str, Any] = """A fantasy landscape, trending on artstation"""
_SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0)
_SCREAMING_SNAKE_CASE : Tuple = pipe(
prompt=lowercase__ , image=lowercase__ , strength=0.75 , guidance_scale=7.5 , generator=lowercase__ , output_type="""np""" , )
_SCREAMING_SNAKE_CASE : List[Any] = output.images[0]
_SCREAMING_SNAKE_CASE : Dict = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert image.shape == (5_0_4, 7_6_0, 3)
_SCREAMING_SNAKE_CASE : Dict = np.array([0.9_358, 0.9_397, 0.9_599, 0.9_901, 1.0_000, 1.0_000, 0.9_882, 1.0_000, 1.0_000])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@slow
@require_torch_gpu
class _snake_case ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Any):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self : Optional[Any]):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : str = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/img2img/sketch-mountains-input.jpg""")
_SCREAMING_SNAKE_CASE : str = init_image.resize((7_6_8, 5_1_2))
_SCREAMING_SNAKE_CASE : Any = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""")
_SCREAMING_SNAKE_CASE : Dict = """BAAI/AltDiffusion"""
_SCREAMING_SNAKE_CASE : int = AltDiffusionImgaImgPipeline.from_pretrained(
lowercase__ , safety_checker=lowercase__ , )
pipe.to(lowercase__)
pipe.set_progress_bar_config(disable=lowercase__)
pipe.enable_attention_slicing()
_SCREAMING_SNAKE_CASE : Optional[int] = """A fantasy landscape, trending on artstation"""
_SCREAMING_SNAKE_CASE : str = torch.manual_seed(0)
_SCREAMING_SNAKE_CASE : Any = pipe(
prompt=lowercase__ , image=lowercase__ , strength=0.75 , guidance_scale=7.5 , generator=lowercase__ , output_type="""np""" , )
_SCREAMING_SNAKE_CASE : Dict = output.images[0]
assert image.shape == (5_1_2, 7_6_8, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image).max() < 1e-2
| 338 |
'''simple docstring'''
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def _A ( ):
"""simple docstring"""
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
__lowercase = '''__test_patch_submodule_mock__'''
with patch_submodule(_test_patching , '''os.path.join''' , A__ ):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os , _PatchedModuleObj )
assert isinstance(_test_patching.os.path , _PatchedModuleObj )
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path , _PatchedModuleObj )
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os , _PatchedModuleObj )
assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj )
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path , _PatchedModuleObj )
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def _A ( ):
"""simple docstring"""
assert _test_patching.open is open
__lowercase = '''__test_patch_submodule_builtin_mock__'''
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching , '''open''' , A__ ):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def _A ( ):
"""simple docstring"""
__lowercase = '''__test_patch_submodule_missing_mock__'''
with patch_submodule(_test_patching , '''pandas.read_csv''' , A__ ):
pass
def _A ( ):
"""simple docstring"""
__lowercase = '''__test_patch_submodule_missing_builtin_mock__'''
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching , '''len''' , A__ ) is None
with patch_submodule(_test_patching , '''len''' , A__ ):
assert _test_patching.len is mock
assert _test_patching.len is len
def _A ( ):
"""simple docstring"""
__lowercase = '''__test_patch_submodule_start_and_stop_mock__'''
__lowercase = patch_submodule(_test_patching , '''open''' , A__ )
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def _A ( ):
"""simple docstring"""
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
__lowercase = '''__test_patch_submodule_successive_join__'''
__lowercase = '''__test_patch_submodule_successive_dirname__'''
__lowercase = '''__test_patch_submodule_successive_rename__'''
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching , '''os.path.join''' , A__ ):
with patch_submodule(_test_patching , '''os.rename''' , A__ ):
with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching , '''os.rename''' , A__ ):
with patch_submodule(_test_patching , '''os.path.join''' , A__ ):
with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def _A ( ):
"""simple docstring"""
__lowercase = '''__test_patch_submodule_doesnt_exist_mock__'''
with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , A__ ):
pass
with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , A__ ):
pass
| 41 | 0 |
from itertools import permutations
def a_ (__A ) -> Union[str, Any]:
"""simple docstring"""
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
__a : Any = [7, 11, 13, 17]
for i, test in enumerate(A__ ):
if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def a_ (__A = 10 ) -> str:
"""simple docstring"""
return sum(
int("".join(map(A__ , A__ ) ) )
for num in permutations(range(A__ ) )
if is_substring_divisible(A__ ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 351 |
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import NezhaConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
)
from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST
class lowercase_ :
"""simple docstring"""
def __init__( self : Dict ,lowercase__ : Dict ,lowercase__ : int=1_3 ,lowercase__ : List[str]=7 ,lowercase__ : int=True ,lowercase__ : int=True ,lowercase__ : Union[str, Any]=True ,lowercase__ : List[Any]=True ,lowercase__ : str=9_9 ,lowercase__ : Optional[Any]=3_2 ,lowercase__ : Union[str, Any]=5 ,lowercase__ : List[Any]=4 ,lowercase__ : str=3_7 ,lowercase__ : Tuple="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : Dict=0.1 ,lowercase__ : int=1_2_8 ,lowercase__ : Dict=3_2 ,lowercase__ : Dict=1_6 ,lowercase__ : Any=2 ,lowercase__ : int=0.0_2 ,lowercase__ : List[str]=3 ,lowercase__ : Dict=4 ,lowercase__ : Optional[int]=None ,):
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_token_type_ids
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = type_sequence_label_size
__lowercase = initializer_range
__lowercase = num_labels
__lowercase = num_choices
__lowercase = scope
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
__lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size )
__lowercase = None
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
__lowercase = ids_tensor([self.batch_size] ,self.num_choices )
__lowercase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
return NezhaConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = self.prepare_config_and_inputs()
__lowercase = True
__lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__lowercase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : str ):
__lowercase = NezhaModel(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ )
__lowercase = model(lowercase__ ,token_type_ids=lowercase__ )
__lowercase = model(lowercase__ )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Dict ,lowercase__ : str ,lowercase__ : Optional[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,):
__lowercase = True
__lowercase = NezhaModel(lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(
lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,encoder_attention_mask=lowercase__ ,)
__lowercase = model(
lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,)
__lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ):
__lowercase = NezhaForMaskedLM(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ):
__lowercase = NezhaForNextSentencePrediction(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(
lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) )
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ):
__lowercase = NezhaForPreTraining(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(
lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,next_sentence_label=lowercase__ ,)
self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ):
__lowercase = NezhaForQuestionAnswering(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(
lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,start_positions=lowercase__ ,end_positions=lowercase__ ,)
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Tuple ,lowercase__ : str ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : Optional[int] ,lowercase__ : int ):
__lowercase = self.num_labels
__lowercase = NezhaForSequenceClassification(lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Any ,lowercase__ : Optional[Any] ):
__lowercase = self.num_labels
__lowercase = NezhaForTokenClassification(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : str ):
__lowercase = self.num_choices
__lowercase = NezhaForMultipleChoice(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
__lowercase = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
__lowercase = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
__lowercase = model(
lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = config_and_inputs
__lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = (
(
NezhaModel,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE : Tuple = (
{
'feature-extraction': NezhaModel,
'fill-mask': NezhaForMaskedLM,
'question-answering': NezhaForQuestionAnswering,
'text-classification': NezhaForSequenceClassification,
'token-classification': NezhaForTokenClassification,
'zero-shot': NezhaForSequenceClassification,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE : List[str] = True
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : Any=False ):
__lowercase = super()._prepare_for_class(lowercase__ ,lowercase__ ,return_labels=lowercase__ )
if return_labels:
if model_class in get_values(lowercase__ ):
__lowercase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowercase__ )
__lowercase = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=lowercase__ )
return inputs_dict
def SCREAMING_SNAKE_CASE ( self : Tuple ):
__lowercase = NezhaModelTester(self )
__lowercase = ConfigTester(self ,config_class=lowercase__ ,hidden_size=3_7 )
def SCREAMING_SNAKE_CASE ( self : int ):
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Any ):
__lowercase = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Any ):
# This regression test was failing with PyTorch < 1.3
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = self.model_tester.prepare_config_and_inputs_for_decoder()
__lowercase = None
self.model_tester.create_and_check_model_as_decoder(
lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,)
def SCREAMING_SNAKE_CASE ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_next_sequence_prediction(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : str ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : str ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowercase__ )
@slow
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = NezhaModel.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
@slow
@require_torch_gpu
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# NezhaForMultipleChoice behaves incorrectly in JIT environments.
if model_class == NezhaForMultipleChoice:
return
__lowercase = True
__lowercase = model_class(config=lowercase__ )
__lowercase = self._prepare_for_class(lowercase__ ,lowercase__ )
__lowercase = torch.jit.trace(
lowercase__ ,(inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(lowercase__ ,os.path.join(lowercase__ ,'''bert.pt''' ) )
__lowercase = torch.jit.load(os.path.join(lowercase__ ,'''bert.pt''' ) ,map_location=lowercase__ )
loaded(inputs_dict['''input_ids'''].to(lowercase__ ) ,inputs_dict['''attention_mask'''].to(lowercase__ ) )
@require_torch
class lowercase_ (unittest.TestCase ):
"""simple docstring"""
@slow
def SCREAMING_SNAKE_CASE ( self : int ):
__lowercase = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' )
__lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] )
__lowercase = torch.tensor([[0, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0]
__lowercase = torch.Size((1, 6, 7_6_8) )
self.assertEqual(output.shape ,lowercase__ )
__lowercase = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) )
@slow
def SCREAMING_SNAKE_CASE ( self : Dict ):
__lowercase = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' )
__lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] )
__lowercase = torch.tensor([[1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0]
__lowercase = torch.Size((1, 6, 2_1_1_2_8) )
self.assertEqual(output.shape ,lowercase__ )
__lowercase = torch.tensor(
[[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) )
| 41 | 0 |
"""simple docstring"""
import unittest
import numpy as np
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.bert.modeling_flax_bert import (
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
)
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int=13 , _SCREAMING_SNAKE_CASE : List[Any]=7 , _SCREAMING_SNAKE_CASE : List[str]=True , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : Optional[int]=True , _SCREAMING_SNAKE_CASE : Any=True , _SCREAMING_SNAKE_CASE : List[str]=99 , _SCREAMING_SNAKE_CASE : Tuple=32 , _SCREAMING_SNAKE_CASE : str=5 , _SCREAMING_SNAKE_CASE : Any=4 , _SCREAMING_SNAKE_CASE : Optional[int]=37 , _SCREAMING_SNAKE_CASE : str="gelu" , _SCREAMING_SNAKE_CASE : List[Any]=0.1 , _SCREAMING_SNAKE_CASE : int=0.1 , _SCREAMING_SNAKE_CASE : Dict=512 , _SCREAMING_SNAKE_CASE : Union[str, Any]=16 , _SCREAMING_SNAKE_CASE : Tuple=2 , _SCREAMING_SNAKE_CASE : str=0.0_2 , _SCREAMING_SNAKE_CASE : List[str]=4 , ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = parent
SCREAMING_SNAKE_CASE : Dict = batch_size
SCREAMING_SNAKE_CASE : Optional[Any] = seq_length
SCREAMING_SNAKE_CASE : Optional[Any] = is_training
SCREAMING_SNAKE_CASE : Tuple = use_attention_mask
SCREAMING_SNAKE_CASE : Union[str, Any] = use_token_type_ids
SCREAMING_SNAKE_CASE : List[str] = use_labels
SCREAMING_SNAKE_CASE : List[str] = vocab_size
SCREAMING_SNAKE_CASE : Any = hidden_size
SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers
SCREAMING_SNAKE_CASE : Dict = num_attention_heads
SCREAMING_SNAKE_CASE : Any = intermediate_size
SCREAMING_SNAKE_CASE : List[Any] = hidden_act
SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob
SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings
SCREAMING_SNAKE_CASE : int = type_vocab_size
SCREAMING_SNAKE_CASE : Tuple = type_sequence_label_size
SCREAMING_SNAKE_CASE : Tuple = initializer_range
SCREAMING_SNAKE_CASE : Tuple = num_choices
def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE : Optional[int] = None
if self.use_attention_mask:
SCREAMING_SNAKE_CASE : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE : int = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
SCREAMING_SNAKE_CASE : List[str] = BertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs
SCREAMING_SNAKE_CASE : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
def _lowerCAmelCase ( self : List[str] ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = config_and_inputs
SCREAMING_SNAKE_CASE : Any = True
SCREAMING_SNAKE_CASE : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class lowerCAmelCase__ ( lowerCamelCase__ , unittest.TestCase ):
'''simple docstring'''
_SCREAMING_SNAKE_CASE : Optional[int] = True
_SCREAMING_SNAKE_CASE : Any = (
(
FlaxBertModel,
FlaxBertForPreTraining,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForQuestionAnswering,
FlaxBertForNextSentencePrediction,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def _lowerCAmelCase ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = FlaxBertModelTester(self )
@slow
def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxBertModel.from_pretrained('bert-base-cased' )
SCREAMING_SNAKE_CASE : Optional[Any] = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowercase__ )
| 265 |
'''simple docstring'''
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
lowerCAmelCase__ = TypeVar('''KEY''')
lowerCAmelCase__ = TypeVar('''VAL''')
@dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ )
class lowercase_ (Generic[KEY, VAL] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : KEY
SCREAMING_SNAKE_CASE : VAL
class lowercase_ (_Item ):
"""simple docstring"""
def __init__( self : Optional[int] ):
super().__init__(lowercase__ ,lowercase__ )
def __bool__( self : List[str] ):
return False
lowerCAmelCase__ = _DeletedItem()
class lowercase_ (MutableMapping[KEY, VAL] ):
"""simple docstring"""
def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ):
__lowercase = initial_block_size
__lowercase = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
__lowercase = capacity_factor
__lowercase = 0
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ):
return hash(lowercase__ ) % len(self._buckets )
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ):
return (ind + 1) % len(self._buckets )
def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ):
__lowercase = self._buckets[ind]
if not stored:
__lowercase = _Item(lowercase__ ,lowercase__ )
self._len += 1
return True
elif stored.key == key:
__lowercase = _Item(lowercase__ ,lowercase__ )
return True
else:
return False
def SCREAMING_SNAKE_CASE ( self : Dict ):
__lowercase = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : int ):
if len(self._buckets ) <= self._initial_block_size:
return False
__lowercase = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ):
__lowercase = self._buckets
__lowercase = [None] * new_size
__lowercase = 0
for item in old_buckets:
if item:
self._add_item(item.key ,item.val )
def SCREAMING_SNAKE_CASE ( self : str ):
self._resize(len(self._buckets ) * 2 )
def SCREAMING_SNAKE_CASE ( self : Tuple ):
self._resize(len(self._buckets ) // 2 )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ):
__lowercase = self._get_bucket_index(lowercase__ )
for _ in range(len(self._buckets ) ):
yield ind
__lowercase = self._get_next_ind(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ):
for ind in self._iterate_buckets(lowercase__ ):
if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ):
break
def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ):
if self._is_full():
self._size_up()
self._add_item(lowercase__ ,lowercase__ )
def __delitem__( self : Tuple ,lowercase__ : KEY ):
for ind in self._iterate_buckets(lowercase__ ):
__lowercase = self._buckets[ind]
if item is None:
raise KeyError(lowercase__ )
if item is _deleted:
continue
if item.key == key:
__lowercase = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self : Tuple ,lowercase__ : KEY ):
for ind in self._iterate_buckets(lowercase__ ):
__lowercase = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(lowercase__ )
def __len__( self : Optional[int] ):
return self._len
def __iter__( self : str ):
yield from (item.key for item in self._buckets if item)
def __repr__( self : Optional[Any] ):
__lowercase = ''' ,'''.join(
F"{item.key}: {item.val}" for item in self._buckets if item )
return F"HashMap({val_string})"
| 41 | 0 |
from __future__ import annotations
from bisect import bisect_left
from functools import total_ordering
from heapq import merge
@total_ordering
class __A ( lowerCamelCase__ ):
def __lt__( self :Any , __snake_case :List[Any] ):
'''simple docstring'''
return self[-1] < other[-1]
def __eq__( self :Dict , __snake_case :Union[str, Any] ):
'''simple docstring'''
return self[-1] == other[-1]
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : Any =[]
# sort into stacks
for element in collection:
__magic_name__ : Any =Stack([element] )
__magic_name__ : str =bisect_left(A__ , A__ )
if i != len(A__ ):
stacks[i].append(A__ )
else:
stacks.append(A__ )
# use a heap-based merge to merge stack efficiently
__magic_name__ : Tuple =merge(*(reversed(A__ ) for stack in stacks) )
return collection
if __name__ == "__main__":
UpperCAmelCase_ : str = input("Enter numbers separated by a comma:\n").strip()
UpperCAmelCase_ : str = [int(item) for item in user_input.split(",")]
print(patience_sort(unsorted))
| 21 |
'''simple docstring'''
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
lowerCAmelCase__ = logging.get_logger(__name__)
@add_end_docstrings(lowerCamelCase__ )
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
def __init__( self : List[str] ,**lowercase__ : Tuple ):
super().__init__(**lowercase__ )
if self.framework == "tf":
raise ValueError(F"The {self.__class__} is only available in PyTorch." )
requires_backends(self ,'''vision''' )
self.check_model_type(lowercase__ )
def __call__( self : List[str] ,lowercase__ : Union[str, "Image.Image", List[Dict[str, Any]]] ,lowercase__ : Union[str, List[str]] = None ,**lowercase__ : str ,):
if "text_queries" in kwargs:
__lowercase = kwargs.pop('''text_queries''' )
if isinstance(lowercase__ ,(str, Image.Image) ):
__lowercase = {'''image''': image, '''candidate_labels''': candidate_labels}
else:
__lowercase = image
__lowercase = super().__call__(lowercase__ ,**lowercase__ )
return results
def SCREAMING_SNAKE_CASE ( self : int ,**lowercase__ : List[Any] ):
__lowercase = {}
if "threshold" in kwargs:
__lowercase = kwargs['''threshold''']
if "top_k" in kwargs:
__lowercase = kwargs['''top_k''']
return {}, {}, postprocess_params
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[Any] ):
__lowercase = load_image(inputs['''image'''] )
__lowercase = inputs['''candidate_labels''']
if isinstance(lowercase__ ,lowercase__ ):
__lowercase = candidate_labels.split(''',''' )
__lowercase = torch.tensor([[image.height, image.width]] ,dtype=torch.intaa )
for i, candidate_label in enumerate(lowercase__ ):
__lowercase = self.tokenizer(lowercase__ ,return_tensors=self.framework )
__lowercase = self.image_processor(lowercase__ ,return_tensors=self.framework )
yield {
"is_last": i == len(lowercase__ ) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ):
__lowercase = model_inputs.pop('''target_size''' )
__lowercase = model_inputs.pop('''candidate_label''' )
__lowercase = model_inputs.pop('''is_last''' )
__lowercase = self.model(**lowercase__ )
__lowercase = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs}
return model_outputs
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : List[Any]=0.1 ,lowercase__ : List[str]=None ):
__lowercase = []
for model_output in model_outputs:
__lowercase = model_output['''candidate_label''']
__lowercase = BaseModelOutput(lowercase__ )
__lowercase = self.image_processor.post_process_object_detection(
outputs=lowercase__ ,threshold=lowercase__ ,target_sizes=model_output['''target_size'''] )[0]
for index in outputs["scores"].nonzero():
__lowercase = outputs['''scores'''][index].item()
__lowercase = self._get_bounding_box(outputs['''boxes'''][index][0] )
__lowercase = {'''score''': score, '''label''': label, '''box''': box}
results.append(lowercase__ )
__lowercase = sorted(lowercase__ ,key=lambda lowercase__ : x["score"] ,reverse=lowercase__ )
if top_k:
__lowercase = results[:top_k]
return results
def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : "torch.Tensor" ):
if self.framework != "pt":
raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' )
__lowercase , __lowercase , __lowercase , __lowercase = box.int().tolist()
__lowercase = {
'''xmin''': xmin,
'''ymin''': ymin,
'''xmax''': xmax,
'''ymax''': ymax,
}
return bbox
| 41 | 0 |
"""simple docstring"""
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class lowerCamelCase__ ( lowerCamelCase__ ):
'''simple docstring'''
_lowerCamelCase = ['image_processor', 'tokenizer']
_lowerCamelCase = 'OwlViTImageProcessor'
_lowerCamelCase = ('CLIPTokenizer', 'CLIPTokenizerFast')
def __init__( self ,lowerCamelCase_=None ,lowerCamelCase_=None ,**lowerCamelCase_ ) -> Any:
A = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" ,lowercase__ ,)
A = kwargs.pop("""feature_extractor""" )
A = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(lowercase__ ,lowercase__ )
def __call__( self ,lowerCamelCase_=None ,lowerCamelCase_=None ,lowerCamelCase_=None ,lowerCamelCase_="max_length" ,lowerCamelCase_="np" ,**lowerCamelCase_ ) -> Optional[int]:
if text is None and query_images is None and images is None:
raise ValueError(
"""You have to specify at least one text or query image or image. All three cannot be none.""" )
if text is not None:
if isinstance(lowercase__ ,lowercase__ ) or (isinstance(lowercase__ ,lowercase__ ) and not isinstance(text[0] ,lowercase__ )):
A = [self.tokenizer(lowercase__ ,padding=lowercase__ ,return_tensors=lowercase__ ,**lowercase__ )]
elif isinstance(lowercase__ ,lowercase__ ) and isinstance(text[0] ,lowercase__ ):
A = []
# Maximum number of queries across batch
A = max([len(lowercase__ ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(lowercase__ ) != max_num_queries:
A = t + [""" """] * (max_num_queries - len(lowercase__ ))
A = self.tokenizer(lowercase__ ,padding=lowercase__ ,return_tensors=lowercase__ ,**lowercase__ )
encodings.append(lowercase__ )
else:
raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" )
if return_tensors == "np":
A = np.concatenate([encoding["""input_ids"""] for encoding in encodings] ,axis=0 )
A = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] ,axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
A = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] ,axis=0 )
A = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] ,axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
A = torch.cat([encoding["""input_ids"""] for encoding in encodings] ,dim=0 )
A = torch.cat([encoding["""attention_mask"""] for encoding in encodings] ,dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
A = tf.stack([encoding["""input_ids"""] for encoding in encodings] ,axis=0 )
A = tf.stack([encoding["""attention_mask"""] for encoding in encodings] ,axis=0 )
else:
raise ValueError("""Target return tensor type could not be returned""" )
A = BatchEncoding()
A = input_ids
A = attention_mask
if query_images is not None:
A = BatchEncoding()
A = self.image_processor(
lowercase__ ,return_tensors=lowercase__ ,**lowercase__ ).pixel_values
A = query_pixel_values
if images is not None:
A = self.image_processor(lowercase__ ,return_tensors=lowercase__ ,**lowercase__ )
if text is not None and images is not None:
A = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
A = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**lowercase__ ) ,tensor_type=lowercase__ )
def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> Optional[int]:
return self.image_processor.post_process(*lowercase__ ,**lowercase__ )
def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> Any:
return self.image_processor.post_process_object_detection(*lowercase__ ,**lowercase__ )
def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> Optional[Any]:
return self.image_processor.post_process_image_guided_detection(*lowercase__ ,**lowercase__ )
def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> Optional[int]:
return self.tokenizer.batch_decode(*lowercase__ ,**lowercase__ )
def UpperCamelCase__ ( self ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> List[str]:
return self.tokenizer.decode(*lowercase__ ,**lowercase__ )
@property
def UpperCamelCase__ ( self ) -> Optional[Any]:
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" ,lowercase__ ,)
return self.image_processor_class
@property
def UpperCamelCase__ ( self ) -> Tuple:
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" ,lowercase__ ,)
return self.image_processor
| 617 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = 'facebook/bart-large-mnli'
SCREAMING_SNAKE_CASE : Optional[Any] = (
'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which '
'should be the text to classify, and `labels`, which should be the list of labels to use for classification. '
'It returns the most likely label in the list of provided `labels` for the input text.'
)
SCREAMING_SNAKE_CASE : Any = 'text_classifier'
SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer
SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForSequenceClassification
SCREAMING_SNAKE_CASE : Tuple = ['text', ['text']]
SCREAMING_SNAKE_CASE : List[str] = ['text']
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
super().setup()
__lowercase = self.model.config
__lowercase = -1
for idx, label in config.idalabel.items():
if label.lower().startswith('''entail''' ):
__lowercase = int(lowercase__ )
if self.entailment_id == -1:
raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Dict ,lowercase__ : List[Any] ):
__lowercase = labels
return self.pre_processor(
[text] * len(lowercase__ ) ,[F"This example is {label}" for label in labels] ,return_tensors='''pt''' ,padding='''max_length''' ,)
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ):
__lowercase = outputs.logits
__lowercase = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id]
| 41 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
lowerCAmelCase_ : str = {
'''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''',
'''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''',
'''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''',
'''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''',
'''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''',
'''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''',
'''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''',
'''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''',
}
class UpperCamelCase_ ( lowerCamelCase__ ):
_A : List[str] = 'albert'
def __init__( self , snake_case__=3_00_00 , snake_case__=1_28 , snake_case__=40_96 , snake_case__=12 , snake_case__=1 , snake_case__=64 , snake_case__=1_63_84 , snake_case__=1 , snake_case__="gelu_new" , snake_case__=0 , snake_case__=0 , snake_case__=5_12 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=0.1 , snake_case__="absolute" , snake_case__=0 , snake_case__=2 , snake_case__=3 , **snake_case__ , ) -> str:
"""simple docstring"""
super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ )
UpperCAmelCase = vocab_size
UpperCAmelCase = embedding_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_hidden_groups
UpperCAmelCase = num_attention_heads
UpperCAmelCase = inner_group_num
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = classifier_dropout_prob
UpperCAmelCase = position_embedding_type
class UpperCamelCase_ ( lowerCamelCase__ ):
@property
def UpperCamelCase_ ( self ) -> Dict:
"""simple docstring"""
if self.task == "multiple-choice":
UpperCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
UpperCAmelCase = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 673 |
'''simple docstring'''
from collections.abc import Callable
class lowercase_ :
"""simple docstring"""
def __init__( self : Optional[int] ,lowercase__ : Callable | None = None ):
# Stores actual heap items.
__lowercase = []
# Stores indexes of each item for supporting updates and deletion.
__lowercase = {}
# Stores current size of heap.
__lowercase = 0
# Stores function used to evaluate the score of an item on which basis ordering
# will be done.
__lowercase = key or (lambda lowercase__ : x)
def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : int ):
return int((i - 1) / 2 ) if i > 0 else None
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ):
__lowercase = int(2 * i + 1 )
return left if 0 < left < self.size else None
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ):
__lowercase = int(2 * i + 2 )
return right if 0 < right < self.size else None
def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : int ,lowercase__ : int ):
__lowercase , __lowercase = (
self.pos_map[self.arr[j][0]],
self.pos_map[self.arr[i][0]],
)
# Then swap the items in the list.
__lowercase , __lowercase = self.arr[j], self.arr[i]
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ):
return self.arr[i][1] < self.arr[j][1]
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ):
__lowercase = self._left(lowercase__ )
__lowercase = self._right(lowercase__ )
__lowercase = i
if left is not None and not self._cmp(lowercase__ ,lowercase__ ):
__lowercase = left
if right is not None and not self._cmp(lowercase__ ,lowercase__ ):
__lowercase = right
return valid_parent
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ):
__lowercase = self._parent(lowercase__ )
while parent is not None and not self._cmp(lowercase__ ,lowercase__ ):
self._swap(lowercase__ ,lowercase__ )
__lowercase , __lowercase = parent, self._parent(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ):
__lowercase = self._get_valid_parent(lowercase__ )
while valid_parent != index:
self._swap(lowercase__ ,lowercase__ )
__lowercase , __lowercase = valid_parent, self._get_valid_parent(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ):
if item not in self.pos_map:
return
__lowercase = self.pos_map[item]
__lowercase = [item, self.key(lowercase__ )]
# Make sure heap is right in both up and down direction.
# Ideally only one of them will make any change.
self._heapify_up(lowercase__ )
self._heapify_down(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ):
if item not in self.pos_map:
return
__lowercase = self.pos_map[item]
del self.pos_map[item]
__lowercase = self.arr[self.size - 1]
__lowercase = index
self.size -= 1
# Make sure heap is right in both up and down direction. Ideally only one
# of them will make any change- so no performance loss in calling both.
if self.size > index:
self._heapify_up(lowercase__ )
self._heapify_down(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : int ):
__lowercase = len(self.arr )
if arr_len == self.size:
self.arr.append([item, self.key(lowercase__ )] )
else:
__lowercase = [item, self.key(lowercase__ )]
__lowercase = self.size
self.size += 1
self._heapify_up(self.size - 1 )
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
return self.arr[0] if self.size else None
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
__lowercase = self.get_top()
if top_item_tuple:
self.delete_item(top_item_tuple[0] )
return top_item_tuple
def _A ( ):
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 41 | 0 |
import os
import unittest
from transformers import MobileBertTokenizer, MobileBertTokenizerFast
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class _UpperCamelCase ( lowerCamelCase__,unittest.TestCase ):
'''simple docstring'''
a_ : Dict = MobileBertTokenizer
a_ : int = MobileBertTokenizerFast
a_ : str = True
a_ : Optional[int] = True
a_ : List[Any] = filter_non_english
a_ : Any = 'google/mobilebert-uncased'
def _snake_case ( self : Any ):
'''simple docstring'''
super().setUp()
__lowerCamelCase : str = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
__lowerCamelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
__lowerCamelCase : int = [
(tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped
for tokenizer_def in self.tokenizers_list
]
def _snake_case ( self : List[Any] , _lowerCamelCase : Optional[int] ):
'''simple docstring'''
__lowerCamelCase : str = """UNwant\u00E9d,running"""
__lowerCamelCase : List[str] = """unwanted, running"""
return input_text, output_text
def _snake_case ( self : str ):
'''simple docstring'''
__lowerCamelCase : Optional[int] = self.tokenizer_class(self.vocab_file )
__lowerCamelCase : Optional[int] = tokenizer.tokenize("""UNwant\u00E9d,running""" )
self.assertListEqual(lowercase__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , [9, 6, 7, 1_2, 1_0, 1_1] )
def _snake_case ( self : List[Any] ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
__lowerCamelCase : List[Any] = self.get_tokenizer()
__lowerCamelCase : int = self.get_rust_tokenizer()
__lowerCamelCase : int = """UNwant\u00E9d,running"""
__lowerCamelCase : Optional[Any] = tokenizer.tokenize(lowercase__ )
__lowerCamelCase : str = rust_tokenizer.tokenize(lowercase__ )
self.assertListEqual(lowercase__ , lowercase__ )
__lowerCamelCase : Optional[Any] = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ )
__lowerCamelCase : List[Any] = rust_tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ )
self.assertListEqual(lowercase__ , lowercase__ )
__lowerCamelCase : Optional[int] = self.get_rust_tokenizer()
__lowerCamelCase : Optional[Any] = tokenizer.encode(lowercase__ )
__lowerCamelCase : str = rust_tokenizer.encode(lowercase__ )
self.assertListEqual(lowercase__ , lowercase__ )
# With lower casing
__lowerCamelCase : Optional[Any] = self.get_tokenizer(do_lower_case=lowercase__ )
__lowerCamelCase : Dict = self.get_rust_tokenizer(do_lower_case=lowercase__ )
__lowerCamelCase : str = """UNwant\u00E9d,running"""
__lowerCamelCase : Optional[Any] = tokenizer.tokenize(lowercase__ )
__lowerCamelCase : Optional[int] = rust_tokenizer.tokenize(lowercase__ )
self.assertListEqual(lowercase__ , lowercase__ )
__lowerCamelCase : Dict = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ )
__lowerCamelCase : Dict = rust_tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ )
self.assertListEqual(lowercase__ , lowercase__ )
__lowerCamelCase : Any = self.get_rust_tokenizer()
__lowerCamelCase : Optional[int] = tokenizer.encode(lowercase__ )
__lowerCamelCase : Tuple = rust_tokenizer.encode(lowercase__ )
self.assertListEqual(lowercase__ , lowercase__ )
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowerCamelCase : Optional[Any] = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] )
def _snake_case ( self : int ):
'''simple docstring'''
__lowerCamelCase : Union[str, Any] = BasicTokenizer(do_lower_case=lowercase__ )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] )
def _snake_case ( self : Dict ):
'''simple docstring'''
__lowerCamelCase : List[str] = BasicTokenizer(do_lower_case=lowercase__ , strip_accents=lowercase__ )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] )
def _snake_case ( self : int ):
'''simple docstring'''
__lowerCamelCase : Union[str, Any] = BasicTokenizer(do_lower_case=lowercase__ , strip_accents=lowercase__ )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] )
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
__lowerCamelCase : Tuple = BasicTokenizer(do_lower_case=lowercase__ )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] )
def _snake_case ( self : Dict ):
'''simple docstring'''
__lowerCamelCase : int = BasicTokenizer(do_lower_case=lowercase__ )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def _snake_case ( self : str ):
'''simple docstring'''
__lowerCamelCase : List[str] = BasicTokenizer(do_lower_case=lowercase__ , strip_accents=lowercase__ )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
__lowerCamelCase : Optional[Any] = BasicTokenizer(do_lower_case=lowercase__ , strip_accents=lowercase__ )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def _snake_case ( self : int ):
'''simple docstring'''
__lowerCamelCase : str = BasicTokenizer(do_lower_case=lowercase__ , never_split=["""[UNK]"""] )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] )
def _snake_case ( self : List[Any] ):
'''simple docstring'''
__lowerCamelCase : Tuple = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""]
__lowerCamelCase : Optional[Any] = {}
for i, token in enumerate(lowercase__ ):
__lowerCamelCase : Any = i
__lowerCamelCase : str = WordpieceTokenizer(vocab=lowercase__ , unk_token="""[UNK]""" )
self.assertListEqual(tokenizer.tokenize("""""" ) , [] )
self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] )
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
self.assertTrue(_is_whitespace(""" """ ) )
self.assertTrue(_is_whitespace("""\t""" ) )
self.assertTrue(_is_whitespace("""\r""" ) )
self.assertTrue(_is_whitespace("""\n""" ) )
self.assertTrue(_is_whitespace("""\u00A0""" ) )
self.assertFalse(_is_whitespace("""A""" ) )
self.assertFalse(_is_whitespace("""-""" ) )
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
self.assertTrue(_is_control("""\u0005""" ) )
self.assertFalse(_is_control("""A""" ) )
self.assertFalse(_is_control(""" """ ) )
self.assertFalse(_is_control("""\t""" ) )
self.assertFalse(_is_control("""\r""" ) )
def _snake_case ( self : int ):
'''simple docstring'''
self.assertTrue(_is_punctuation("""-""" ) )
self.assertTrue(_is_punctuation("""$""" ) )
self.assertTrue(_is_punctuation("""`""" ) )
self.assertTrue(_is_punctuation(""".""" ) )
self.assertFalse(_is_punctuation("""A""" ) )
self.assertFalse(_is_punctuation(""" """ ) )
def _snake_case ( self : int ):
'''simple docstring'''
__lowerCamelCase : Tuple = self.get_tokenizer()
__lowerCamelCase : Any = self.get_rust_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(lowercase__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] )
self.assertListEqual(
[rust_tokenizer.tokenize(lowercase__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] )
@slow
def _snake_case ( self : Any ):
'''simple docstring'''
__lowerCamelCase : Union[str, Any] = self.tokenizer_class.from_pretrained("""google/mobilebert-uncased""" )
__lowerCamelCase : int = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase__ )
__lowerCamelCase : Union[str, Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase__ )
__lowerCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(lowercase__ )
__lowerCamelCase : Any = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ )
assert encoded_sentence == [1_0_1] + text + [1_0_2]
assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2]
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__lowerCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ )
__lowerCamelCase : Tuple = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence."""
__lowerCamelCase : List[Any] = tokenizer_r.encode_plus(
lowercase__ , return_attention_mask=lowercase__ , return_token_type_ids=lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ , )
__lowerCamelCase : Optional[int] = tokenizer_r.do_lower_case if hasattr(lowercase__ , """do_lower_case""" ) else False
__lowerCamelCase : List[Any] = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), """A"""),
((1, 2), ""","""),
((3, 5), """na"""),
((5, 6), """##ï"""),
((6, 8), """##ve"""),
((9, 1_5), tokenizer_r.mask_token),
((1_6, 2_1), """Allen"""),
((2_1, 2_3), """##NL"""),
((2_3, 2_4), """##P"""),
((2_5, 3_3), """sentence"""),
((3_3, 3_4), """."""),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), """a"""),
((1, 2), ""","""),
((3, 8), """naive"""),
((9, 1_5), tokenizer_r.mask_token),
((1_6, 2_1), """allen"""),
((2_1, 2_3), """##nl"""),
((2_3, 2_4), """##p"""),
((2_5, 3_3), """sentence"""),
((3_3, 3_4), """."""),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) )
self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] )
def _snake_case ( self : Dict ):
'''simple docstring'''
__lowerCamelCase : int = ["""的""", """人""", """有"""]
__lowerCamelCase : Union[str, Any] = """""".join(lowercase__ )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__lowerCamelCase : Optional[int] = True
__lowerCamelCase : List[Any] = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ )
__lowerCamelCase : str = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ )
__lowerCamelCase : List[Any] = tokenizer_p.encode(lowercase__ , add_special_tokens=lowercase__ )
__lowerCamelCase : int = tokenizer_r.encode(lowercase__ , add_special_tokens=lowercase__ )
__lowerCamelCase : Optional[int] = tokenizer_r.convert_ids_to_tokens(lowercase__ )
__lowerCamelCase : Any = tokenizer_p.convert_ids_to_tokens(lowercase__ )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(lowercase__ , lowercase__ )
self.assertListEqual(lowercase__ , lowercase__ )
__lowerCamelCase : str = False
__lowerCamelCase : str = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ )
__lowerCamelCase : Tuple = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ )
__lowerCamelCase : Optional[Any] = tokenizer_r.encode(lowercase__ , add_special_tokens=lowercase__ )
__lowerCamelCase : Any = tokenizer_p.encode(lowercase__ , add_special_tokens=lowercase__ )
__lowerCamelCase : str = tokenizer_r.convert_ids_to_tokens(lowercase__ )
__lowerCamelCase : List[Any] = tokenizer_p.convert_ids_to_tokens(lowercase__ )
# it is expected that only the first Chinese character is not preceded by "##".
__lowerCamelCase : Dict = [
F"""##{token}""" if idx != 0 else token for idx, token in enumerate(lowercase__ )
]
self.assertListEqual(lowercase__ , lowercase__ )
self.assertListEqual(lowercase__ , lowercase__ )
| 519 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
def __init__( self : List[str] ):
__lowercase = []
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : str ,**lowercase__ : Any ):
self.events.append('''on_init_end''' )
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : int ,**lowercase__ : Optional[int] ):
self.events.append('''on_train_begin''' )
def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ,**lowercase__ : List[str] ):
self.events.append('''on_train_end''' )
def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,**lowercase__ : Optional[Any] ):
self.events.append('''on_epoch_begin''' )
def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : Any ,**lowercase__ : Optional[int] ):
self.events.append('''on_epoch_end''' )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[str] ,**lowercase__ : List[str] ):
self.events.append('''on_step_begin''' )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : Optional[int] ,**lowercase__ : Dict ):
self.events.append('''on_step_end''' )
def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,**lowercase__ : Any ):
self.events.append('''on_evaluate''' )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : int ,**lowercase__ : Optional[Any] ):
self.events.append('''on_predict''' )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,**lowercase__ : int ):
self.events.append('''on_save''' )
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : List[str] ,**lowercase__ : List[str] ):
self.events.append('''on_log''' )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : int ,lowercase__ : Dict ,**lowercase__ : str ):
self.events.append('''on_prediction_step''' )
@require_torch
class lowercase_ (unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE ( self : List[str] ):
__lowercase = tempfile.mkdtemp()
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
shutil.rmtree(self.output_dir )
def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any]=0 ,lowercase__ : Any=0 ,lowercase__ : Tuple=6_4 ,lowercase__ : Optional[int]=6_4 ,lowercase__ : Optional[Any]=None ,lowercase__ : str=False ,**lowercase__ : Any ):
# disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure
# its set to False since the tests later on depend on its value.
__lowercase = RegressionDataset(length=lowercase__ )
__lowercase = RegressionDataset(length=lowercase__ )
__lowercase = RegressionModelConfig(a=lowercase__ ,b=lowercase__ )
__lowercase = RegressionPreTrainedModel(lowercase__ )
__lowercase = TrainingArguments(self.output_dir ,disable_tqdm=lowercase__ ,report_to=[] ,**lowercase__ )
return Trainer(
lowercase__ ,lowercase__ ,train_dataset=lowercase__ ,eval_dataset=lowercase__ ,callbacks=lowercase__ ,)
def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ):
self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) )
# Order doesn't matter
__lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ )
__lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ )
for cba, cba in zip(lowercase__ ,lowercase__ ):
if isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ):
self.assertEqual(lowercase__ ,lowercase__ )
elif isinstance(lowercase__ ,lowercase__ ) and not isinstance(lowercase__ ,lowercase__ ):
self.assertEqual(lowercase__ ,cba.__class__ )
elif not isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ):
self.assertEqual(cba.__class__ ,lowercase__ )
else:
self.assertEqual(lowercase__ ,lowercase__ )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ):
__lowercase = ['''on_init_end''', '''on_train_begin''']
__lowercase = 0
__lowercase = len(trainer.get_eval_dataloader() )
__lowercase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate''']
for _ in range(trainer.state.num_train_epochs ):
expected_events.append('''on_epoch_begin''' )
for _ in range(lowercase__ ):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append('''on_log''' )
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append('''on_save''' )
expected_events.append('''on_epoch_end''' )
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def SCREAMING_SNAKE_CASE ( self : str ):
__lowercase = self.get_trainer()
__lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
# Callbacks passed at init are added to the default callbacks
__lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] )
expected_callbacks.append(lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
__lowercase = self.get_trainer(disable_tqdm=lowercase__ )
__lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
__lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
__lowercase = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(lowercase__ )
expected_callbacks.remove(lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
__lowercase = self.get_trainer()
__lowercase = trainer.pop_callback(lowercase__ )
self.assertEqual(cb.__class__ ,lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
trainer.add_callback(lowercase__ )
expected_callbacks.insert(0 ,lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
# We can also add, pop, or remove by instance
__lowercase = self.get_trainer()
__lowercase = trainer.callback_handler.callbacks[0]
trainer.remove_callback(lowercase__ )
expected_callbacks.remove(lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
__lowercase = self.get_trainer()
__lowercase = trainer.callback_handler.callbacks[0]
__lowercase = trainer.pop_callback(lowercase__ )
self.assertEqual(lowercase__ ,lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
trainer.add_callback(lowercase__ )
expected_callbacks.insert(0 ,lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Dict ):
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action='''ignore''' ,category=lowercase__ )
__lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] )
trainer.train()
__lowercase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
# Independent log/save/eval
__lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 )
trainer.train()
__lowercase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
__lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 )
trainer.train()
__lowercase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
__lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='''steps''' )
trainer.train()
__lowercase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
__lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='''epoch''' )
trainer.train()
__lowercase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
# A bit of everything
__lowercase = self.get_trainer(
callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=1_0 ,eval_steps=5 ,evaluation_strategy='''steps''' ,)
trainer.train()
__lowercase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
# warning should be emitted for duplicated callbacks
with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock:
__lowercase = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,)
assert str(lowercase__ ) in warn_mock.call_args[0][0]
| 41 | 0 |
"""simple docstring"""
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__snake_case : Dict = logging.get_logger(__name__)
__snake_case : int = {'vocab_file': 'spiece.model'}
__snake_case : Dict = {
'vocab_file': {
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model',
'google/bigbird-roberta-large': (
'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'
),
'google/bigbird-base-trivia-itc': (
'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'
),
}
}
__snake_case : Any = {
'google/bigbird-roberta-base': 4_096,
'google/bigbird-roberta-large': 4_096,
'google/bigbird-base-trivia-itc': 4_096,
}
class UpperCamelCase ( lowerCamelCase__ ):
"""simple docstring"""
_lowerCamelCase : Tuple =VOCAB_FILES_NAMES
_lowerCamelCase : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase : str =['input_ids', 'attention_mask']
_lowerCamelCase : List[int] =[]
def __init__( self : str , _lowerCamelCase : int , _lowerCamelCase : Optional[Any]="<unk>" , _lowerCamelCase : str="<s>" , _lowerCamelCase : List[Any]="</s>" , _lowerCamelCase : Dict="<pad>" , _lowerCamelCase : int="[SEP]" , _lowerCamelCase : str="[MASK]" , _lowerCamelCase : Tuple="[CLS]" , _lowerCamelCase : Optional[Dict[str, Any]] = None , **_lowerCamelCase : str , ):
A__ = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else bos_token
A__ = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else eos_token
A__ = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else unk_token
A__ = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else pad_token
A__ = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else cls_token
A__ = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
A__ = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token
A__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , sep_token=lowercase__ , mask_token=lowercase__ , cls_token=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , )
A__ = vocab_file
A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowercase__ )
@property
def A__ ( self : List[str] ):
return self.sp_model.get_piece_size()
def A__ ( self : Tuple ):
A__ = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ):
A__ = self.__dict__.copy()
A__ = None
return state
def __setstate__( self : str , _lowerCamelCase : Optional[int] ):
A__ = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
A__ = {}
A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def A__ ( self : Tuple , _lowerCamelCase : str ):
return self.sp_model.encode(lowercase__ , out_type=lowercase__ )
def A__ ( self : Union[str, Any] , _lowerCamelCase : Dict ):
return self.sp_model.piece_to_id(lowercase__ )
def A__ ( self : int , _lowerCamelCase : List[str] ):
A__ = self.sp_model.IdToPiece(lowercase__ )
return token
def A__ ( self : str , _lowerCamelCase : Tuple ):
A__ = []
A__ = ''''''
A__ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowercase__ ) + token
A__ = True
A__ = []
else:
current_sub_tokens.append(lowercase__ )
A__ = False
out_string += self.sp_model.decode(lowercase__ )
return out_string.strip()
def A__ ( self : int , _lowerCamelCase : List[int] , _lowerCamelCase : bool = False , _lowerCamelCase : bool = None , _lowerCamelCase : bool = True , **_lowerCamelCase : Optional[Any] , ):
A__ = kwargs.pop('''use_source_tokenizer''' , lowercase__ )
A__ = self.convert_ids_to_tokens(lowercase__ , skip_special_tokens=lowercase__ )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
A__ = []
A__ = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowercase__ ) )
A__ = []
sub_texts.append(lowercase__ )
else:
current_sub_text.append(lowercase__ )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowercase__ ) )
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
A__ = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(lowercase__ ) )
else:
A__ = ''''''.join(lowercase__ )
A__ = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
A__ = self.clean_up_tokenization(lowercase__ )
return clean_text
else:
return text
def A__ ( self : Any , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ):
if not os.path.isdir(lowercase__ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
A__ = os.path.join(
lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowercase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowercase__ , '''wb''' ) as fi:
A__ = self.sp_model.serialized_model_proto()
fi.write(lowercase__ )
return (out_vocab_file,)
def A__ ( self : str , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
A__ = [self.cls_token_id]
A__ = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def A__ ( self : str , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None , _lowerCamelCase : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowercase__ )) + [1]
return [1] + ([0] * len(lowercase__ )) + [1] + ([0] * len(lowercase__ )) + [1]
def A__ ( self : Union[str, Any] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ):
A__ = [self.sep_token_id]
A__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
| 571 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
)
@flax.struct.dataclass
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : jnp.ndarray
SCREAMING_SNAKE_CASE : jnp.ndarray
class lowercase_ (nn.Module ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int
SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6)
SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa
def SCREAMING_SNAKE_CASE ( self : Dict ):
__lowercase = nn.Conv(
self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
__lowercase = []
for i in range(len(self.block_out_channels ) - 1 ):
__lowercase = self.block_out_channels[i]
__lowercase = self.block_out_channels[i + 1]
__lowercase = nn.Conv(
lowercase__ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
blocks.append(lowercase__ )
__lowercase = nn.Conv(
lowercase__ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
blocks.append(lowercase__ )
__lowercase = blocks
__lowercase = nn.Conv(
self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,)
def __call__( self : List[str] ,lowercase__ : Optional[int] ):
__lowercase = self.conv_in(lowercase__ )
__lowercase = nn.silu(lowercase__ )
for block in self.blocks:
__lowercase = block(lowercase__ )
__lowercase = nn.silu(lowercase__ )
__lowercase = self.conv_out(lowercase__ )
return embedding
@flax_register_to_config
class lowercase_ (nn.Module , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = 3_2
SCREAMING_SNAKE_CASE : int = 4
SCREAMING_SNAKE_CASE : Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False
SCREAMING_SNAKE_CASE : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0)
SCREAMING_SNAKE_CASE : int = 2
SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8
SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None
SCREAMING_SNAKE_CASE : int = 1_2_8_0
SCREAMING_SNAKE_CASE : float = 0.0
SCREAMING_SNAKE_CASE : bool = False
SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa
SCREAMING_SNAKE_CASE : bool = True
SCREAMING_SNAKE_CASE : int = 0
SCREAMING_SNAKE_CASE : str = "rgb"
SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6)
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : jax.random.KeyArray ):
# init input tensors
__lowercase = (1, self.in_channels, self.sample_size, self.sample_size)
__lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa )
__lowercase = jnp.ones((1,) ,dtype=jnp.intaa )
__lowercase = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa )
__lowercase = (1, 3, self.sample_size * 8, self.sample_size * 8)
__lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa )
__lowercase , __lowercase = jax.random.split(lowercase__ )
__lowercase = {'''params''': params_rng, '''dropout''': dropout_rng}
return self.init(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )["params"]
def SCREAMING_SNAKE_CASE ( self : Any ):
__lowercase = self.block_out_channels
__lowercase = block_out_channels[0] * 4
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
__lowercase = self.num_attention_heads or self.attention_head_dim
# input
__lowercase = nn.Conv(
block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
# time
__lowercase = FlaxTimesteps(
block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift )
__lowercase = FlaxTimestepEmbedding(lowercase__ ,dtype=self.dtype )
__lowercase = FlaxControlNetConditioningEmbedding(
conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,)
__lowercase = self.only_cross_attention
if isinstance(lowercase__ ,lowercase__ ):
__lowercase = (only_cross_attention,) * len(self.down_block_types )
if isinstance(lowercase__ ,lowercase__ ):
__lowercase = (num_attention_heads,) * len(self.down_block_types )
# down
__lowercase = []
__lowercase = []
__lowercase = block_out_channels[0]
__lowercase = nn.Conv(
lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,)
controlnet_down_blocks.append(lowercase__ )
for i, down_block_type in enumerate(self.down_block_types ):
__lowercase = output_channel
__lowercase = block_out_channels[i]
__lowercase = i == len(lowercase__ ) - 1
if down_block_type == "CrossAttnDownBlock2D":
__lowercase = FlaxCrossAttnDownBlockaD(
in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,)
else:
__lowercase = FlaxDownBlockaD(
in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,)
down_blocks.append(lowercase__ )
for _ in range(self.layers_per_block ):
__lowercase = nn.Conv(
lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,)
controlnet_down_blocks.append(lowercase__ )
if not is_final_block:
__lowercase = nn.Conv(
lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,)
controlnet_down_blocks.append(lowercase__ )
__lowercase = down_blocks
__lowercase = controlnet_down_blocks
# mid
__lowercase = block_out_channels[-1]
__lowercase = FlaxUNetMidBlockaDCrossAttn(
in_channels=lowercase__ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,)
__lowercase = nn.Conv(
lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,)
def __call__( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : float = 1.0 ,lowercase__ : bool = True ,lowercase__ : bool = False ,):
__lowercase = self.controlnet_conditioning_channel_order
if channel_order == "bgr":
__lowercase = jnp.flip(lowercase__ ,axis=1 )
# 1. time
if not isinstance(lowercase__ ,jnp.ndarray ):
__lowercase = jnp.array([timesteps] ,dtype=jnp.intaa )
elif isinstance(lowercase__ ,jnp.ndarray ) and len(timesteps.shape ) == 0:
__lowercase = timesteps.astype(dtype=jnp.floataa )
__lowercase = jnp.expand_dims(lowercase__ ,0 )
__lowercase = self.time_proj(lowercase__ )
__lowercase = self.time_embedding(lowercase__ )
# 2. pre-process
__lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) )
__lowercase = self.conv_in(lowercase__ )
__lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) )
__lowercase = self.controlnet_cond_embedding(lowercase__ )
sample += controlnet_cond
# 3. down
__lowercase = (sample,)
for down_block in self.down_blocks:
if isinstance(lowercase__ ,lowercase__ ):
__lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train )
else:
__lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,deterministic=not train )
down_block_res_samples += res_samples
# 4. mid
__lowercase = self.mid_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train )
# 5. contronet blocks
__lowercase = ()
for down_block_res_sample, controlnet_block in zip(lowercase__ ,self.controlnet_down_blocks ):
__lowercase = controlnet_block(lowercase__ )
controlnet_down_block_res_samples += (down_block_res_sample,)
__lowercase = controlnet_down_block_res_samples
__lowercase = self.controlnet_mid_block(lowercase__ )
# 6. scaling
__lowercase = [sample * conditioning_scale for sample in down_block_res_samples]
mid_block_res_sample *= conditioning_scale
if not return_dict:
return (down_block_res_samples, mid_block_res_sample)
return FlaxControlNetOutput(
down_block_res_samples=lowercase__ ,mid_block_res_sample=lowercase__ )
| 41 | 0 |
from __future__ import annotations
from math import ceil, floor, sqrt
def a (_lowerCAmelCase = 2_0_0_0_0_0_0 ):
SCREAMING_SNAKE_CASE_ = [0]
SCREAMING_SNAKE_CASE_ = 4_2
for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ):
triangle_numbers.append(triangle_numbers[-1] + idx )
# we want this to be as close as possible to target
SCREAMING_SNAKE_CASE_ = 0
# the area corresponding to the grid that gives the product closest to target
SCREAMING_SNAKE_CASE_ = 0
# an estimate of b, using the quadratic formula
SCREAMING_SNAKE_CASE_ = 4_2
# the largest integer less than b_estimate
SCREAMING_SNAKE_CASE_ = 4_2
# the largest integer less than b_estimate
SCREAMING_SNAKE_CASE_ = 4_2
# the triangle number corresponding to b_floor
SCREAMING_SNAKE_CASE_ = 4_2
# the triangle number corresponding to b_ceil
SCREAMING_SNAKE_CASE_ = 4_2
for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ):
SCREAMING_SNAKE_CASE_ = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2
SCREAMING_SNAKE_CASE_ = floor(A__ )
SCREAMING_SNAKE_CASE_ = ceil(A__ )
SCREAMING_SNAKE_CASE_ = triangle_numbers[b_floor]
SCREAMING_SNAKE_CASE_ = triangle_numbers[b_ceil]
if abs(target - triangle_b_first_guess * triangle_a ) < abs(
target - best_product ):
SCREAMING_SNAKE_CASE_ = triangle_b_first_guess * triangle_a
SCREAMING_SNAKE_CASE_ = idx_a * b_floor
if abs(target - triangle_b_second_guess * triangle_a ) < abs(
target - best_product ):
SCREAMING_SNAKE_CASE_ = triangle_b_second_guess * triangle_a
SCREAMING_SNAKE_CASE_ = idx_a * b_ceil
return area
if __name__ == "__main__":
print(f"""{solution() = }""")
| 234 |
'''simple docstring'''
import io
import math
from typing import Dict, Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
get_image_size,
infer_channel_dimension_format,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_vision_available, logging
from ...utils.import_utils import requires_backends
if is_vision_available():
import textwrap
from PIL import Image, ImageDraw, ImageFont
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
lowerCAmelCase__ = False
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = '''ybelkada/fonts'''
def _A ( ):
"""simple docstring"""
if is_torch_available() and not is_torch_greater_or_equal_than_1_11:
raise ImportError(
F"You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use "
'''Pix2StructImageProcessor. Please upgrade torch.''' )
def _A ( A__ , A__ , A__ ):
"""simple docstring"""
requires_backends(A__ , ['''torch'''] )
_check_torch_version()
__lowercase = image_tensor.unsqueeze(0 )
__lowercase = torch.nn.functional.unfold(A__ , (patch_height, patch_width) , stride=(patch_height, patch_width) )
__lowercase = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , A__ , A__ , -1 )
__lowercase = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape(
image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , )
return patches.unsqueeze(0 )
def _A ( A__ , A__ = 36 , A__ = "black" , A__ = "white" , A__ = 5 , A__ = 5 , A__ = 5 , A__ = 5 , A__ = None , A__ = None , ):
"""simple docstring"""
requires_backends(A__ , '''vision''' )
# Add new lines so that each line is no more than 80 characters.
__lowercase = textwrap.TextWrapper(width=80 )
__lowercase = wrapper.wrap(text=A__ )
__lowercase = '''\n'''.join(A__ )
if font_bytes is not None and font_path is None:
__lowercase = io.BytesIO(A__ )
elif font_path is not None:
__lowercase = font_path
else:
__lowercase = hf_hub_download(A__ , '''Arial.TTF''' )
__lowercase = ImageFont.truetype(A__ , encoding='''UTF-8''' , size=A__ )
# Use a temporary canvas to determine the width and height in pixels when
# rendering the text.
__lowercase = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , A__ ) )
__lowercase , __lowercase , __lowercase , __lowercase = temp_draw.textbbox((0, 0) , A__ , A__ )
# Create the actual image with a bit of padding around the text.
__lowercase = text_width + left_padding + right_padding
__lowercase = text_height + top_padding + bottom_padding
__lowercase = Image.new('''RGB''' , (image_width, image_height) , A__ )
__lowercase = ImageDraw.Draw(A__ )
draw.text(xy=(left_padding, top_padding) , text=A__ , fill=A__ , font=A__ )
return image
def _A ( A__ , A__ , **A__ ):
"""simple docstring"""
requires_backends(A__ , '''vision''' )
# Convert to PIL image if necessary
__lowercase = to_pil_image(A__ )
__lowercase = render_text(A__ , **A__ )
__lowercase = max(header_image.width , image.width )
__lowercase = int(image.height * (new_width / image.width) )
__lowercase = int(header_image.height * (new_width / header_image.width) )
__lowercase = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' )
new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) )
new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) )
# Convert back to the original framework if necessary
__lowercase = to_numpy_array(A__ )
if infer_channel_dimension_format(A__ ) == ChannelDimension.LAST:
__lowercase = to_channel_dimension_format(A__ , ChannelDimension.LAST )
return new_image
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = ['flattened_patches']
def __init__( self : Any ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : int = 2_0_4_8 ,lowercase__ : bool = False ,**lowercase__ : List[str] ,):
super().__init__(**lowercase__ )
__lowercase = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6}
__lowercase = do_normalize
__lowercase = do_convert_rgb
__lowercase = max_patches
__lowercase = is_vqa
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : np.ndarray ,lowercase__ : int ,lowercase__ : dict ,**lowercase__ : Tuple ):
requires_backends(self.extract_flattened_patches ,'''torch''' )
_check_torch_version()
# convert to torch
__lowercase = to_channel_dimension_format(lowercase__ ,ChannelDimension.FIRST )
__lowercase = torch.from_numpy(lowercase__ )
__lowercase , __lowercase = patch_size['''height'''], patch_size['''width''']
__lowercase , __lowercase = get_image_size(lowercase__ )
# maximize scale s.t.
__lowercase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) )
__lowercase = max(min(math.floor(scale * image_height / patch_height ) ,lowercase__ ) ,1 )
__lowercase = max(min(math.floor(scale * image_width / patch_width ) ,lowercase__ ) ,1 )
__lowercase = max(num_feasible_rows * patch_height ,1 )
__lowercase = max(num_feasible_cols * patch_width ,1 )
__lowercase = torch.nn.functional.interpolate(
image.unsqueeze(0 ) ,size=(resized_height, resized_width) ,mode='''bilinear''' ,align_corners=lowercase__ ,antialias=lowercase__ ,).squeeze(0 )
# [1, rows, columns, patch_height * patch_width * image_channels]
__lowercase = torch_extract_patches(lowercase__ ,lowercase__ ,lowercase__ )
__lowercase = patches.shape
__lowercase = patches_shape[1]
__lowercase = patches_shape[2]
__lowercase = patches_shape[3]
# [rows * columns, patch_height * patch_width * image_channels]
__lowercase = patches.reshape([rows * columns, depth] )
# [rows * columns, 1]
__lowercase = torch.arange(lowercase__ ).reshape([rows, 1] ).repeat(1 ,lowercase__ ).reshape([rows * columns, 1] )
__lowercase = torch.arange(lowercase__ ).reshape([1, columns] ).repeat(lowercase__ ,1 ).reshape([rows * columns, 1] )
# Offset by 1 so the ids do not contain zeros, which represent padding.
row_ids += 1
col_ids += 1
# Prepare additional patch features.
# [rows * columns, 1]
__lowercase = row_ids.to(torch.floataa )
__lowercase = col_ids.to(torch.floataa )
# [rows * columns, 2 + patch_height * patch_width * image_channels]
__lowercase = torch.cat([row_ids, col_ids, patches] ,-1 )
# [max_patches, 2 + patch_height * patch_width * image_channels]
__lowercase = torch.nn.functional.pad(lowercase__ ,[0, 0, 0, max_patches - (rows * columns)] ).float()
__lowercase = to_numpy_array(lowercase__ )
return result
def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : np.ndarray ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ):
if image.dtype == np.uinta:
__lowercase = image.astype(np.floataa )
# take mean across the whole `image`
__lowercase = np.mean(lowercase__ )
__lowercase = np.std(lowercase__ )
__lowercase = max(lowercase__ ,1.0 / math.sqrt(np.prod(image.shape ) ) )
return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,**lowercase__ )
def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : ImageInput ,lowercase__ : Optional[str] = None ,lowercase__ : bool = None ,lowercase__ : Optional[bool] = None ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[Dict[str, int]] = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : ChannelDimension = ChannelDimension.FIRST ,**lowercase__ : List[Any] ,):
__lowercase = do_normalize if do_normalize is not None else self.do_normalize
__lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__lowercase = patch_size if patch_size is not None else self.patch_size
__lowercase = max_patches if max_patches is not None else self.max_patches
__lowercase = self.is_vqa
if kwargs.get('''data_format''' ,lowercase__ ) is not None:
raise ValueError('''data_format is not an accepted input as the outputs are ''' )
__lowercase = make_list_of_images(lowercase__ )
if not valid_images(lowercase__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__lowercase = [convert_to_rgb(lowercase__ ) for image in images]
# All transformations expect numpy arrays.
__lowercase = [to_numpy_array(lowercase__ ) for image in images]
if is_vqa:
if header_text is None:
raise ValueError('''A header text must be provided for VQA models.''' )
__lowercase = kwargs.pop('''font_bytes''' ,lowercase__ )
__lowercase = kwargs.pop('''font_path''' ,lowercase__ )
if isinstance(lowercase__ ,lowercase__ ):
__lowercase = [header_text] * len(lowercase__ )
__lowercase = [
render_header(lowercase__ ,header_text[i] ,font_bytes=lowercase__ ,font_path=lowercase__ )
for i, image in enumerate(lowercase__ )
]
if do_normalize:
__lowercase = [self.normalize(image=lowercase__ ) for image in images]
# convert to torch tensor and permute
__lowercase = [
self.extract_flattened_patches(image=lowercase__ ,max_patches=lowercase__ ,patch_size=lowercase__ )
for image in images
]
# create attention mask in numpy
__lowercase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images]
__lowercase = BatchFeature(
data={'''flattened_patches''': images, '''attention_mask''': attention_masks} ,tensor_type=lowercase__ )
return encoded_outputs
| 41 | 0 |
'''simple docstring'''
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
__a: Optional[int] = pd.read_csv("""sample_data.csv""", header=None)
__a: int = df.shape[:1][0]
# If you're using some other dataset input the target column
__a: List[Any] = df.iloc[:, 1:2]
__a: Union[str, Any] = actual_data.values.reshape(len_data, 1)
__a: Optional[int] = MinMaxScaler().fit_transform(actual_data)
__a: int = 10
__a: int = 5
__a: Any = 20
__a: Tuple = len_data - periods * look_back
__a: Optional[Any] = actual_data[:division]
__a: Tuple = actual_data[division - look_back :]
__a , __a: Dict = [], []
__a , __a: List[Any] = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
__a: List[Any] = np.array(train_x)
__a: str = np.array(test_x)
__a: int = np.array([list(i.ravel()) for i in train_y])
__a: List[Any] = np.array([list(i.ravel()) for i in test_y])
__a: Optional[Any] = Sequential()
model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(1_28, 1)))
model.add(Dense(forward_days))
model.compile(loss="""mean_squared_error""", optimizer="""adam""")
__a: List[str] = model.fit(
x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4
)
__a: Optional[int] = model.predict(x_test)
| 152 |
'''simple docstring'''
import doctest
from collections import deque
import numpy as np
class lowercase_ :
"""simple docstring"""
def __init__( self : Optional[Any] ):
__lowercase = [2, 1, 2, -1]
__lowercase = [1, 2, 3, 4]
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
__lowercase = len(self.first_signal )
__lowercase = len(self.second_signal )
__lowercase = max(lowercase__ ,lowercase__ )
# create a zero matrix of max_length x max_length
__lowercase = [[0] * max_length for i in range(lowercase__ )]
# fills the smaller signal with zeros to make both signals of same length
if length_first_signal < length_second_signal:
self.first_signal += [0] * (max_length - length_first_signal)
elif length_first_signal > length_second_signal:
self.second_signal += [0] * (max_length - length_second_signal)
for i in range(lowercase__ ):
__lowercase = deque(self.second_signal )
rotated_signal.rotate(lowercase__ )
for j, item in enumerate(lowercase__ ):
matrix[i][j] += item
# multiply the matrix with the first signal
__lowercase = np.matmul(np.transpose(lowercase__ ) ,np.transpose(self.first_signal ) )
# rounding-off to two decimal places
return [round(lowercase__ ,2 ) for i in final_signal]
if __name__ == "__main__":
doctest.testmod()
| 41 | 0 |
"""simple docstring"""
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__A = logging.get_logger(__name__)
__A = {
"facebook/detr-resnet-50": "https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json",
# See all DETR models at https://huggingface.co/models?filter=detr
}
class UpperCAmelCase (lowerCamelCase__ ):
"""simple docstring"""
_UpperCAmelCase :Dict = 'detr'
_UpperCAmelCase :List[str] = ['past_key_values']
_UpperCAmelCase :Any = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=3 , _UpperCAmelCase=100 , _UpperCAmelCase=6 , _UpperCAmelCase=2048 , _UpperCAmelCase=8 , _UpperCAmelCase=6 , _UpperCAmelCase=2048 , _UpperCAmelCase=8 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase="relu" , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase="sine" , _UpperCAmelCase="resnet50" , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=1 , _UpperCAmelCase=5 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=1 , _UpperCAmelCase=5 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , **_UpperCAmelCase , ):
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
lowercase__: Tuple = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(lowercase__ , lowercase__ ):
lowercase__: Any = backbone_config.get('''model_type''' )
lowercase__: int = CONFIG_MAPPING[backbone_model_type]
lowercase__: Tuple = config_class.from_dict(lowercase__ )
# set timm attributes to None
lowercase__, lowercase__, lowercase__: List[str] = None, None, None
lowercase__: List[Any] = use_timm_backbone
lowercase__: Optional[Any] = backbone_config
lowercase__: List[Any] = num_channels
lowercase__: Any = num_queries
lowercase__: Dict = d_model
lowercase__: List[Any] = encoder_ffn_dim
lowercase__: Any = encoder_layers
lowercase__: Any = encoder_attention_heads
lowercase__: Dict = decoder_ffn_dim
lowercase__: Optional[int] = decoder_layers
lowercase__: Optional[int] = decoder_attention_heads
lowercase__: Optional[int] = dropout
lowercase__: Dict = attention_dropout
lowercase__: Dict = activation_dropout
lowercase__: Union[str, Any] = activation_function
lowercase__: Any = init_std
lowercase__: int = init_xavier_std
lowercase__: Optional[Any] = encoder_layerdrop
lowercase__: Union[str, Any] = decoder_layerdrop
lowercase__: List[Any] = encoder_layers
lowercase__: Optional[Any] = auxiliary_loss
lowercase__: Dict = position_embedding_type
lowercase__: str = backbone
lowercase__: Dict = use_pretrained_backbone
lowercase__: Dict = dilation
# Hungarian matcher
lowercase__: Tuple = class_cost
lowercase__: str = bbox_cost
lowercase__: Optional[int] = giou_cost
# Loss coefficients
lowercase__: int = mask_loss_coefficient
lowercase__: int = dice_loss_coefficient
lowercase__: str = bbox_loss_coefficient
lowercase__: Dict = giou_loss_coefficient
lowercase__: Optional[Any] = eos_coefficient
super().__init__(is_encoder_decoder=lowercase__ , **lowercase__ )
@property
def _snake_case ( self ):
return self.encoder_attention_heads
@property
def _snake_case ( self ):
return self.d_model
@classmethod
def _snake_case ( cls , _UpperCAmelCase , **_UpperCAmelCase ):
return cls(backbone_config=lowercase__ , **lowercase__ )
def _snake_case ( self ):
lowercase__: Dict = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
lowercase__: Optional[Any] = self.backbone_config.to_dict()
lowercase__: Optional[int] = self.__class__.model_type
return output
class UpperCAmelCase (lowerCamelCase__ ):
"""simple docstring"""
_UpperCAmelCase :str = version.parse("1.11" )
@property
def _snake_case ( self ):
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
('''pixel_mask''', {0: '''batch'''}),
] )
@property
def _snake_case ( self ):
return 1e-5
@property
def _snake_case ( self ):
return 12
| 586 |
'''simple docstring'''
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[List[np.ndarray], torch.FloatTensor]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 41 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
'''microsoft/trocr-base-handwritten''': (
'''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json'''
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class _snake_case ( lowerCamelCase__ ):
"""simple docstring"""
a = 'trocr'
a = ['past_key_values']
a = {
'num_attention_heads': 'decoder_attention_heads',
'hidden_size': 'd_model',
'num_hidden_layers': 'decoder_layers',
}
def __init__( self : Union[str, Any] , _A : Dict=5_0_2_6_5 , _A : Dict=1_0_2_4 , _A : Union[str, Any]=1_2 , _A : Optional[int]=1_6 , _A : int=4_0_9_6 , _A : str="gelu" , _A : Any=5_1_2 , _A : List[str]=0.1 , _A : Tuple=0.0 , _A : Optional[Any]=0.0 , _A : int=2 , _A : List[Any]=0.02 , _A : Optional[Any]=0.0 , _A : int=True , _A : str=False , _A : List[str]=True , _A : str=True , _A : Any=1 , _A : Any=0 , _A : Union[str, Any]=2 , **_A : Union[str, Any] , ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Any = vocab_size
_SCREAMING_SNAKE_CASE : Tuple = d_model
_SCREAMING_SNAKE_CASE : List[str] = decoder_layers
_SCREAMING_SNAKE_CASE : Any = decoder_attention_heads
_SCREAMING_SNAKE_CASE : Tuple = decoder_ffn_dim
_SCREAMING_SNAKE_CASE : int = activation_function
_SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings
_SCREAMING_SNAKE_CASE : Any = dropout
_SCREAMING_SNAKE_CASE : Tuple = attention_dropout
_SCREAMING_SNAKE_CASE : Union[str, Any] = activation_dropout
_SCREAMING_SNAKE_CASE : str = init_std
_SCREAMING_SNAKE_CASE : str = decoder_layerdrop
_SCREAMING_SNAKE_CASE : Optional[int] = use_cache
_SCREAMING_SNAKE_CASE : List[Any] = scale_embedding
_SCREAMING_SNAKE_CASE : str = use_learned_position_embeddings
_SCREAMING_SNAKE_CASE : Optional[int] = layernorm_embedding
super().__init__(
pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , **lowercase__ , )
| 338 |
'''simple docstring'''
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
lowerCAmelCase__ = getLogger(__name__)
lowerCAmelCase__ = '''cuda''' if torch.cuda.is_available() else '''cpu'''
def _A ( A__ , A__ , A__ , A__ = 8 , A__ = DEFAULT_DEVICE , A__=False , A__="summarization" , A__=None , **A__ , ):
"""simple docstring"""
__lowercase = Path(A__ ).open('''w''' , encoding='''utf-8''' )
__lowercase = str(A__ )
__lowercase = AutoModelForSeqaSeqLM.from_pretrained(A__ ).to(A__ )
if fpaa:
__lowercase = model.half()
__lowercase = AutoTokenizer.from_pretrained(A__ )
logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type.
__lowercase = time.time()
# update config with task specific params
use_task_specific_params(A__ , A__ )
if prefix is None:
__lowercase = prefix or getattr(model.config , '''prefix''' , '''''' ) or ''''''
for examples_chunk in tqdm(list(chunks(A__ , A__ ) ) ):
__lowercase = [prefix + text for text in examples_chunk]
__lowercase = tokenizer(A__ , return_tensors='''pt''' , truncation=A__ , padding='''longest''' ).to(A__ )
__lowercase = model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **A__ , )
__lowercase = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ )
for hypothesis in dec:
fout.write(hypothesis + '''\n''' )
fout.flush()
fout.close()
__lowercase = int(time.time() - start_time ) # seconds
__lowercase = len(A__ )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )}
def _A ( ):
"""simple docstring"""
return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' )
def _A ( A__=True ):
"""simple docstring"""
__lowercase = argparse.ArgumentParser()
parser.add_argument('''model_name''' , type=A__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' )
parser.add_argument('''input_path''' , type=A__ , help='''like cnn_dm/test.source''' )
parser.add_argument('''save_path''' , type=A__ , help='''where to save summaries''' )
parser.add_argument('''--reference_path''' , type=A__ , required=A__ , help='''like cnn_dm/test.target''' )
parser.add_argument('''--score_path''' , type=A__ , required=A__ , default='''metrics.json''' , help='''where to save metrics''' )
parser.add_argument('''--device''' , type=A__ , required=A__ , default=A__ , help='''cuda, cuda:1, cpu etc.''' )
parser.add_argument(
'''--prefix''' , type=A__ , required=A__ , default=A__ , help='''will be added to the begininng of src examples''' )
parser.add_argument('''--task''' , type=A__ , default='''summarization''' , help='''used for task_specific_params + metrics''' )
parser.add_argument('''--bs''' , type=A__ , default=8 , required=A__ , help='''batch size''' )
parser.add_argument(
'''--n_obs''' , type=A__ , default=-1 , required=A__ , help='''How many observations. Defaults to all.''' )
parser.add_argument('''--fp16''' , action='''store_true''' )
parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' )
parser.add_argument(
'''--info''' , nargs='''?''' , type=A__ , const=datetime_now() , help=(
'''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.'''
''' lang=en-ru. If no value is passed, the current datetime string will be used.'''
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
__lowercase , __lowercase = parser.parse_known_args()
__lowercase = parse_numeric_n_bool_cl_kwargs(A__ )
if parsed_args and verbose:
print(F"parsed the following generate kwargs: {parsed_args}" )
__lowercase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
__lowercase = examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=A__ )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError('''Can\'t mix --fp16 and --device cpu''' )
__lowercase = generate_summaries_or_translations(
A__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **A__ , )
if args.reference_path is None:
return {}
# Compute scores
__lowercase = calculate_bleu if '''translation''' in args.task else calculate_rouge
__lowercase = [x.rstrip() for x in open(args.save_path ).readlines()]
__lowercase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(A__ )]
__lowercase = score_fn(A__ , A__ )
scores.update(A__ )
if args.dump_args:
scores.update(A__ )
if args.info:
__lowercase = args.info
if verbose:
print(A__ )
if args.score_path is not None:
json.dump(A__ , open(args.score_path , '''w''' ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 41 | 0 |
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
UpperCAmelCase__ = abspath(join(dirname(dirname(__file__)), '''src'''))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='''ignore''', category=FutureWarning)
def a_ (__A ) -> Optional[Any]:
"""simple docstring"""
from diffusers.utils.testing_utils import pytest_addoption_shared
pytest_addoption_shared(A__ )
def a_ (__A ) -> List[Any]:
"""simple docstring"""
from diffusers.utils.testing_utils import pytest_terminal_summary_main
__a : Optional[int] = terminalreporter.config.getoption("--make-reports" )
if make_reports:
pytest_terminal_summary_main(A__ , id=A__ )
| 351 |
'''simple docstring'''
from __future__ import annotations
def _A ( A__ , A__ ):
"""simple docstring"""
print(F"Vertex\tShortest Distance from vertex {src}" )
for i, d in enumerate(A__ ):
print(F"{i}\t\t{d}" )
def _A ( A__ , A__ , A__ ):
"""simple docstring"""
for j in range(A__ ):
__lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight'''])
if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]:
return True
return False
def _A ( A__ , A__ , A__ , A__ ):
"""simple docstring"""
__lowercase = [float('''inf''' )] * vertex_count
__lowercase = 0.0
for _ in range(vertex_count - 1 ):
for j in range(A__ ):
__lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight'''])
if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]:
__lowercase = distance[u] + w
__lowercase = check_negative_cycle(A__ , A__ , A__ )
if negative_cycle_exists:
raise Exception('''Negative cycle found''' )
return distance
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase__ = int(input('''Enter number of vertices: ''').strip())
lowerCAmelCase__ = int(input('''Enter number of edges: ''').strip())
lowerCAmelCase__ = [{} for _ in range(E)]
for i in range(E):
print('''Edge ''', i + 1)
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = (
int(x)
for x in input('''Enter source, destination, weight: ''').strip().split(''' ''')
)
lowerCAmelCase__ = {'''src''': src, '''dst''': dest, '''weight''': weight}
lowerCAmelCase__ = int(input('''\nEnter shortest path source:''').strip())
lowerCAmelCase__ = bellman_ford(graph, V, E, source)
print_distance(shortest_distance, 0)
| 41 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ : Tuple = logging.get_logger(__name__)
A_ : Optional[int] = {
'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json',
}
class lowerCAmelCase__ ( lowerCamelCase__ ):
'''simple docstring'''
_SCREAMING_SNAKE_CASE : Optional[Any] = 'switch_transformers'
_SCREAMING_SNAKE_CASE : Union[str, Any] = ['past_key_values']
_SCREAMING_SNAKE_CASE : Tuple = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'}
def __init__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Tuple=32_128 , _SCREAMING_SNAKE_CASE : str=768 , _SCREAMING_SNAKE_CASE : Any=64 , _SCREAMING_SNAKE_CASE : List[str]=2_048 , _SCREAMING_SNAKE_CASE : Union[str, Any]=64 , _SCREAMING_SNAKE_CASE : List[str]=12 , _SCREAMING_SNAKE_CASE : List[Any]=3 , _SCREAMING_SNAKE_CASE : str=12 , _SCREAMING_SNAKE_CASE : Optional[int]=3 , _SCREAMING_SNAKE_CASE : Union[str, Any]=12 , _SCREAMING_SNAKE_CASE : Any=8 , _SCREAMING_SNAKE_CASE : List[str]=False , _SCREAMING_SNAKE_CASE : Any=0.0_1 , _SCREAMING_SNAKE_CASE : str="float32" , _SCREAMING_SNAKE_CASE : List[str]=False , _SCREAMING_SNAKE_CASE : int=32 , _SCREAMING_SNAKE_CASE : str=128 , _SCREAMING_SNAKE_CASE : List[str]=0.1 , _SCREAMING_SNAKE_CASE : Dict=1E-6 , _SCREAMING_SNAKE_CASE : Dict=0.0_0_1 , _SCREAMING_SNAKE_CASE : Union[str, Any]=0.0_0_1 , _SCREAMING_SNAKE_CASE : Optional[Any]=1.0 , _SCREAMING_SNAKE_CASE : int="relu" , _SCREAMING_SNAKE_CASE : Any=True , _SCREAMING_SNAKE_CASE : int=False , _SCREAMING_SNAKE_CASE : List[Any]=True , _SCREAMING_SNAKE_CASE : Optional[Any]=0 , _SCREAMING_SNAKE_CASE : Union[str, Any]=1 , **_SCREAMING_SNAKE_CASE : List[Any] , ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size
SCREAMING_SNAKE_CASE : Dict = d_model
SCREAMING_SNAKE_CASE : Optional[Any] = d_kv
SCREAMING_SNAKE_CASE : Dict = d_ff
SCREAMING_SNAKE_CASE : Optional[int] = num_sparse_encoder_layers
SCREAMING_SNAKE_CASE : Union[str, Any] = num_layers
SCREAMING_SNAKE_CASE : Tuple = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
SCREAMING_SNAKE_CASE : Union[str, Any] = num_sparse_decoder_layers
# This tells us, each how many encoder layer we'll have to set a sparse layer.
if self.num_sparse_encoder_layers > 0:
SCREAMING_SNAKE_CASE : Dict = self.num_layers // self.num_sparse_encoder_layers
else:
SCREAMING_SNAKE_CASE : List[str] = self.num_layers # HACK: this will create 0 sparse layers
# This tells us, each how many encoder layer we'll have to set a sparse layer.
if self.num_sparse_decoder_layers > 0:
SCREAMING_SNAKE_CASE : Tuple = self.num_decoder_layers // self.num_sparse_decoder_layers
else:
SCREAMING_SNAKE_CASE : Any = self.num_decoder_layers # HACK: this will create 0 sparse layers
SCREAMING_SNAKE_CASE : Optional[int] = num_heads
SCREAMING_SNAKE_CASE : Any = num_experts
SCREAMING_SNAKE_CASE : Any = expert_capacity
SCREAMING_SNAKE_CASE : Tuple = router_bias
SCREAMING_SNAKE_CASE : int = router_jitter_noise
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" )
SCREAMING_SNAKE_CASE : int = router_dtype
SCREAMING_SNAKE_CASE : Optional[Any] = router_ignore_padding_tokens
SCREAMING_SNAKE_CASE : Optional[int] = relative_attention_num_buckets
SCREAMING_SNAKE_CASE : List[Any] = relative_attention_max_distance
SCREAMING_SNAKE_CASE : Union[str, Any] = dropout_rate
SCREAMING_SNAKE_CASE : str = layer_norm_epsilon
SCREAMING_SNAKE_CASE : Dict = initializer_factor
SCREAMING_SNAKE_CASE : Optional[Any] = feed_forward_proj
SCREAMING_SNAKE_CASE : List[str] = use_cache
SCREAMING_SNAKE_CASE : str = add_router_probs
SCREAMING_SNAKE_CASE : Tuple = router_z_loss_coef
SCREAMING_SNAKE_CASE : Dict = router_aux_loss_coef
SCREAMING_SNAKE_CASE : Any = self.feed_forward_proj.split('-' )
SCREAMING_SNAKE_CASE : Optional[Any] = act_info[-1]
SCREAMING_SNAKE_CASE : Optional[Any] = act_info[0] == 'gated'
if len(lowercase__ ) > 1 and act_info[0] != "gated" or len(lowercase__ ) > 2:
raise ValueError(
f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '
'\'gated-gelu\' or \'relu\'' )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
SCREAMING_SNAKE_CASE : Tuple = 'gelu_new'
super().__init__(
pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , **lowercase__ , )
| 265 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
lowerCAmelCase__ = logging.get_logger(__name__)
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
def __init__( self : List[Any] ,*lowercase__ : Optional[Any] ,**lowercase__ : int ):
warnings.warn(
'''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use YolosImageProcessor instead.''' ,lowercase__ ,)
super().__init__(*lowercase__ ,**lowercase__ )
| 41 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase_ : Optional[Any] = {
"configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : str = [
"SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Swinv2ForImageClassification",
"Swinv2ForMaskedImageModeling",
"Swinv2Model",
"Swinv2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 21 |
'''simple docstring'''
import os
import time
import pytest
from datasets.utils.filelock import FileLock, Timeout
def _A ( A__ ):
"""simple docstring"""
__lowercase = FileLock(str(tmpdir / '''foo.lock''' ) )
__lowercase = FileLock(str(tmpdir / '''foo.lock''' ) )
__lowercase = 0.0_1
with locka.acquire():
with pytest.raises(A__ ):
__lowercase = time.time()
locka.acquire(A__ )
assert time.time() - _start > timeout
def _A ( A__ ):
"""simple docstring"""
__lowercase = '''a''' * 1000 + '''.lock'''
__lowercase = FileLock(str(tmpdir / filename ) )
assert locka._lock_file.endswith('''.lock''' )
assert not locka._lock_file.endswith(A__ )
assert len(os.path.basename(locka._lock_file ) ) <= 255
__lowercase = FileLock(tmpdir / filename )
with locka.acquire():
with pytest.raises(A__ ):
locka.acquire(0 )
| 41 | 0 |
"""simple docstring"""
import os
import textwrap
import pyarrow as pa
import pytest
from datasets import ClassLabel, Features, Image
from datasets.packaged_modules.csv.csv import Csv
from ..utils import require_pil
@pytest.fixture
def _A ( _a : Union[str, Any] ):
"""simple docstring"""
A = tmp_path / """file.csv"""
A = textwrap.dedent(
"""\
header1,header2
1,2
10,20
""" )
with open(A__ , """w""" ) as f:
f.write(A__ )
return str(A__ )
@pytest.fixture
def _A ( _a : int ):
"""simple docstring"""
A = tmp_path / """malformed_file.csv"""
A = textwrap.dedent(
"""\
header1,header2
1,2
10,20,
""" )
with open(A__ , """w""" ) as f:
f.write(A__ )
return str(A__ )
@pytest.fixture
def _A ( _a : Optional[int] , _a : Union[str, Any] ):
"""simple docstring"""
A = tmp_path / """csv_with_image.csv"""
A = textwrap.dedent(
f'\\n image\n {image_file}\n ' )
with open(A__ , """w""" ) as f:
f.write(A__ )
return str(A__ )
@pytest.fixture
def _A ( _a : Any ):
"""simple docstring"""
A = tmp_path / """csv_with_label.csv"""
A = textwrap.dedent(
"""\
label
good
bad
good
""" )
with open(A__ , """w""" ) as f:
f.write(A__ )
return str(A__ )
@pytest.fixture
def _A ( _a : Any ):
"""simple docstring"""
A = tmp_path / """csv_with_int_list.csv"""
A = textwrap.dedent(
"""\
int_list
1 2 3
4 5 6
7 8 9
""" )
with open(A__ , """w""" ) as f:
f.write(A__ )
return str(A__ )
def _A ( _a : List[str] , _a : Any , _a : Union[str, Any] ):
"""simple docstring"""
A = Csv()
A = csv._generate_tables([[csv_file, malformed_csv_file]] )
with pytest.raises(A__ , match="""Error tokenizing data""" ):
for _ in generator:
pass
assert any(
record.levelname == """ERROR"""
and """Failed to read file""" in record.message
and os.path.basename(A__ ) in record.message
for record in caplog.records )
@require_pil
def _A ( _a : Dict ):
"""simple docstring"""
with open(A__ , encoding="""utf-8""" ) as f:
A = f.read().splitlines()[1]
A = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) )
A = csv._generate_tables([[csv_file_with_image]] )
A = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field("""image""" ).type == Image()()
A = pa_table.to_pydict()["""image"""]
assert generated_content == [{"path": image_file, "bytes": None}]
def _A ( _a : List[Any] ):
"""simple docstring"""
with open(A__ , encoding="""utf-8""" ) as f:
A = f.read().splitlines()[1:]
A = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) )
A = csv._generate_tables([[csv_file_with_label]] )
A = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )()
A = pa_table.to_pydict()["""label"""]
assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(A__ ) for label in labels]
def _A ( _a : Any ):
"""simple docstring"""
A = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda _a : [int(A__ ) for i in x.split()]} )
A = csv._generate_tables([[csv_file_with_int_list]] )
A = pa.concat_tables([table for _, table in generator] )
assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type )
A = pa_table.to_pydict()["""int_list"""]
assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
| 617 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
lowerCAmelCase__ = {
'''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GPTBigCodeForSequenceClassification''',
'''GPTBigCodeForTokenClassification''',
'''GPTBigCodeForCausalLM''',
'''GPTBigCodeModel''',
'''GPTBigCodePreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_bigcode import (
GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTBigCodeForCausalLM,
GPTBigCodeForSequenceClassification,
GPTBigCodeForTokenClassification,
GPTBigCodeModel,
GPTBigCodePreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 41 | 0 |
"""simple docstring"""
import argparse
import os
import re
import tensorflow as tf
import torch
from transformers import BertConfig, BertModel
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase_ : List[Any] = logging.get_logger(__name__)
def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase = os.path.abspath(A__ )
logger.info(F'''Converting TensorFlow checkpoint from {tf_path}''' )
# Load weights from TF model
UpperCAmelCase = tf.train.list_variables(A__ )
UpperCAmelCase = []
UpperCAmelCase = []
UpperCAmelCase = []
for full_name, shape in init_vars:
# logger.info(f"Loading TF weight {name} with shape {shape}")
UpperCAmelCase = full_name.split("""/""" )
if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]:
logger.info(F'''Skipping non-model layer {full_name}''' )
continue
if "optimizer" in full_name:
logger.info(F'''Skipping optimization layer {full_name}''' )
continue
if name[0] == "model":
# ignore initial 'model'
UpperCAmelCase = name[1:]
# figure out how many levels deep the name is
UpperCAmelCase = 0
for _name in name:
if _name.startswith("""layer_with_weights""" ):
depth += 1
else:
break
layer_depth.append(A__ )
# read data
UpperCAmelCase = tf.train.load_variable(A__ , A__ )
names.append("""/""".join(A__ ) )
arrays.append(A__ )
logger.info(F'''Read a total of {len(A__ ):,} layers''' )
# Sanity check
if len(set(A__ ) ) != 1:
raise ValueError(F'''Found layer names with different depths (layer depth {list(set(A__ ) )})''' )
UpperCAmelCase = list(set(A__ ) )[0]
if layer_depth != 1:
raise ValueError(
"""The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP"""
""" heads.""" )
# convert layers
logger.info("""Converting weights...""" )
for full_name, array in zip(A__ , A__ ):
UpperCAmelCase = full_name.split("""/""" )
UpperCAmelCase = model
UpperCAmelCase = []
for i, m_name in enumerate(A__ ):
if m_name == ".ATTRIBUTES":
# variable names end with .ATTRIBUTES/VARIABLE_VALUE
break
if m_name.startswith("""layer_with_weights""" ):
UpperCAmelCase = int(m_name.split("""-""" )[-1] )
if layer_num <= 2:
# embedding layers
# layer_num 0: word_embeddings
# layer_num 1: position_embeddings
# layer_num 2: token_type_embeddings
continue
elif layer_num == 3:
# embedding LayerNorm
trace.extend(["""embeddings""", """LayerNorm"""] )
UpperCAmelCase = getattr(A__ , """embeddings""" )
UpperCAmelCase = getattr(A__ , """LayerNorm""" )
elif layer_num > 3 and layer_num < config.num_hidden_layers + 4:
# encoder layers
trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] )
UpperCAmelCase = getattr(A__ , """encoder""" )
UpperCAmelCase = getattr(A__ , """layer""" )
UpperCAmelCase = pointer[layer_num - 4]
elif layer_num == config.num_hidden_layers + 4:
# pooler layer
trace.extend(["""pooler""", """dense"""] )
UpperCAmelCase = getattr(A__ , """pooler""" )
UpperCAmelCase = getattr(A__ , """dense""" )
elif m_name == "embeddings":
trace.append("""embeddings""" )
UpperCAmelCase = getattr(A__ , """embeddings""" )
if layer_num == 0:
trace.append("""word_embeddings""" )
UpperCAmelCase = getattr(A__ , """word_embeddings""" )
elif layer_num == 1:
trace.append("""position_embeddings""" )
UpperCAmelCase = getattr(A__ , """position_embeddings""" )
elif layer_num == 2:
trace.append("""token_type_embeddings""" )
UpperCAmelCase = getattr(A__ , """token_type_embeddings""" )
else:
raise ValueError(F'''Unknown embedding layer with name {full_name}''' )
trace.append("""weight""" )
UpperCAmelCase = getattr(A__ , """weight""" )
elif m_name == "_attention_layer":
# self-attention layer
trace.extend(["""attention""", """self"""] )
UpperCAmelCase = getattr(A__ , """attention""" )
UpperCAmelCase = getattr(A__ , """self""" )
elif m_name == "_attention_layer_norm":
# output attention norm
trace.extend(["""attention""", """output""", """LayerNorm"""] )
UpperCAmelCase = getattr(A__ , """attention""" )
UpperCAmelCase = getattr(A__ , """output""" )
UpperCAmelCase = getattr(A__ , """LayerNorm""" )
elif m_name == "_attention_output_dense":
# output attention dense
trace.extend(["""attention""", """output""", """dense"""] )
UpperCAmelCase = getattr(A__ , """attention""" )
UpperCAmelCase = getattr(A__ , """output""" )
UpperCAmelCase = getattr(A__ , """dense""" )
elif m_name == "_output_dense":
# output dense
trace.extend(["""output""", """dense"""] )
UpperCAmelCase = getattr(A__ , """output""" )
UpperCAmelCase = getattr(A__ , """dense""" )
elif m_name == "_output_layer_norm":
# output dense
trace.extend(["""output""", """LayerNorm"""] )
UpperCAmelCase = getattr(A__ , """output""" )
UpperCAmelCase = getattr(A__ , """LayerNorm""" )
elif m_name == "_key_dense":
# attention key
trace.append("""key""" )
UpperCAmelCase = getattr(A__ , """key""" )
elif m_name == "_query_dense":
# attention query
trace.append("""query""" )
UpperCAmelCase = getattr(A__ , """query""" )
elif m_name == "_value_dense":
# attention value
trace.append("""value""" )
UpperCAmelCase = getattr(A__ , """value""" )
elif m_name == "_intermediate_dense":
# attention intermediate dense
trace.extend(["""intermediate""", """dense"""] )
UpperCAmelCase = getattr(A__ , """intermediate""" )
UpperCAmelCase = getattr(A__ , """dense""" )
elif m_name == "_output_layer_norm":
# output layer norm
trace.append("""output""" )
UpperCAmelCase = getattr(A__ , """output""" )
# weights & biases
elif m_name in ["bias", "beta"]:
trace.append("""bias""" )
UpperCAmelCase = getattr(A__ , """bias""" )
elif m_name in ["kernel", "gamma"]:
trace.append("""weight""" )
UpperCAmelCase = getattr(A__ , """weight""" )
else:
logger.warning(F'''Ignored {m_name}''' )
# for certain layers reshape is necessary
UpperCAmelCase = """.""".join(A__ )
if re.match(r"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""" , A__ ) or re.match(
r"""(\S+)\.attention\.output\.dense\.weight""" , A__ ):
UpperCAmelCase = array.reshape(pointer.data.shape )
if "kernel" in full_name:
UpperCAmelCase = array.transpose()
if pointer.shape == array.shape:
UpperCAmelCase = torch.from_numpy(A__ )
else:
raise ValueError(
F'''Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:'''
F''' {array.shape}''' )
logger.info(F'''Successfully set variable {full_name} to PyTorch layer {trace}''' )
return model
def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ):
'''simple docstring'''
logger.info(F'''Loading model based on config from {config_path}...''' )
UpperCAmelCase = BertConfig.from_json_file(A__ )
UpperCAmelCase = BertModel(A__ )
# Load weights from checkpoint
logger.info(F'''Loading weights from checkpoint {tf_checkpoint_path}...''' )
load_tfa_weights_in_bert(A__ , A__ , A__ )
# Save pytorch-model
logger.info(F'''Saving PyTorch model to {pytorch_dump_path}...''' )
torch.save(model.state_dict() , A__ )
if __name__ == "__main__":
lowerCAmelCase_ : Dict = argparse.ArgumentParser()
parser.add_argument(
'''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow 2.x checkpoint path.'''
)
parser.add_argument(
'''--bert_config_file''',
type=str,
required=True,
help='''The config json file corresponding to the BERT model. This specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''',
type=str,
required=True,
help='''Path to the output PyTorch model (must include filename).''',
)
lowerCAmelCase_ : Any = parser.parse_args()
convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 673 |
'''simple docstring'''
import argparse
import os
import re
lowerCAmelCase__ = '''src/diffusers'''
# Pattern that looks at the indentation in a line.
lowerCAmelCase__ = re.compile(R'''^(\s*)\S''')
# Pattern that matches `"key":" and puts `key` in group 0.
lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)":''')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''')
# Pattern that matches `"key",` and puts `key` in group 0.
lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)",\s*$''')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
lowerCAmelCase__ = re.compile(R'''\[([^\]]+)\]''')
def _A ( A__ ):
"""simple docstring"""
__lowercase = _re_indent.search(A__ )
return "" if search is None else search.groups()[0]
def _A ( A__ , A__="" , A__=None , A__=None ):
"""simple docstring"""
__lowercase = 0
__lowercase = code.split('''\n''' )
if start_prompt is not None:
while not lines[index].startswith(A__ ):
index += 1
__lowercase = ['''\n'''.join(lines[:index] )]
else:
__lowercase = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
__lowercase = [lines[index]]
index += 1
while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ):
current_block.append(lines[index] )
blocks.append('''\n'''.join(A__ ) )
if index < len(A__ ) - 1:
__lowercase = [lines[index + 1]]
index += 1
else:
__lowercase = []
else:
blocks.append('''\n'''.join(A__ ) )
__lowercase = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(A__ ) > 0:
blocks.append('''\n'''.join(A__ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(A__ ):
blocks.append('''\n'''.join(lines[index:] ) )
return blocks
def _A ( A__ ):
"""simple docstring"""
def _inner(A__ ):
return key(A__ ).lower().replace('''_''' , '''''' )
return _inner
def _A ( A__ , A__=None ):
"""simple docstring"""
def noop(A__ ):
return x
if key is None:
__lowercase = noop
# Constants are all uppercase, they go first.
__lowercase = [obj for obj in objects if key(A__ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
__lowercase = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()]
# Functions begin with a lowercase, they go last.
__lowercase = [obj for obj in objects if not key(A__ )[0].isupper()]
__lowercase = ignore_underscore(A__ )
return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ )
def _A ( A__ ):
"""simple docstring"""
def _replace(A__ ):
__lowercase = match.groups()[0]
if "," not in imports:
return F"[{imports}]"
__lowercase = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
__lowercase = keys[:-1]
return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) + "]"
__lowercase = import_statement.split('''\n''' )
if len(A__ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
__lowercase = 2 if lines[1].strip() == '''[''' else 1
__lowercase = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
__lowercase = sort_objects(A__ , key=lambda A__ : x[1] )
__lowercase = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(A__ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
__lowercase = _re_bracket_content.sub(_replace , lines[1] )
else:
__lowercase = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
__lowercase = keys[:-1]
__lowercase = get_indent(lines[1] ) + ''', '''.join([F"\"{k}\"" for k in sort_objects(A__ )] )
return "\n".join(A__ )
else:
# Finally we have to deal with imports fitting on one line
__lowercase = _re_bracket_content.sub(_replace , A__ )
return import_statement
def _A ( A__ , A__=True ):
"""simple docstring"""
with open(A__ , '''r''' ) as f:
__lowercase = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
__lowercase = split_code_in_indented_blocks(
A__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(A__ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
__lowercase = main_blocks[block_idx]
__lowercase = block.split('''\n''' )
# Get to the start of the imports.
__lowercase = 0
while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
__lowercase = len(A__ )
else:
line_idx += 1
if line_idx >= len(A__ ):
continue
# Ignore beginning and last line: they don't contain anything.
__lowercase = '''\n'''.join(block_lines[line_idx:-1] )
__lowercase = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
__lowercase = split_code_in_indented_blocks(A__ , indent_level=A__ )
# We have two categories of import key: list or _import_structure[key].append/extend
__lowercase = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
__lowercase = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
__lowercase = [(i, key) for i, key in enumerate(A__ ) if key is not None]
__lowercase = [x[0] for x in sorted(A__ , key=lambda A__ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
__lowercase = 0
__lowercase = []
for i in range(len(A__ ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
__lowercase = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(A__ )
count += 1
# And we put our main block back together with its first and last line.
__lowercase = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(A__ ):
if check_only:
return True
else:
print(F"Overwriting {file}." )
with open(A__ , '''w''' ) as f:
f.write('''\n'''.join(A__ ) )
def _A ( A__=True ):
"""simple docstring"""
__lowercase = []
for root, _, files in os.walk(A__ ):
if "__init__.py" in files:
__lowercase = sort_imports(os.path.join(A__ , '''__init__.py''' ) , check_only=A__ )
if result:
__lowercase = [os.path.join(A__ , '''__init__.py''' )]
if len(A__ ) > 0:
raise ValueError(F"Would overwrite {len(A__ )} files, run `make style`." )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
lowerCAmelCase__ = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 41 | 0 |
import json
import os
import tempfile
import datasets
from utils import generate_example_dataset, get_duration
__UpperCamelCase : List[Any] = 50000
__UpperCamelCase : str = 5000
__UpperCamelCase , __UpperCamelCase : Tuple = os.path.split(__file__)
__UpperCamelCase : Union[str, Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json'))
@get_duration
def _UpperCAmelCase ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
for i in range(A__ ):
__lowerCamelCase : List[Any] = dataset[i]
@get_duration
def _UpperCAmelCase ( UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int ):
"""simple docstring"""
for i in range(0 , len(A__ ) , A__ ):
__lowerCamelCase : int = dataset[i : i + batch_size]
@get_duration
def _UpperCAmelCase ( UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple ):
"""simple docstring"""
with dataset.formatted_as(type=A__ ):
for i in range(A__ ):
__lowerCamelCase : Optional[int] = dataset[i]
@get_duration
def _UpperCAmelCase ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ):
"""simple docstring"""
with dataset.formatted_as(type=A__ ):
for i in range(0 , A__ , A__ ):
__lowerCamelCase : Tuple = dataset[i : i + batch_size]
def _UpperCAmelCase ( ):
"""simple docstring"""
__lowerCamelCase : Tuple = {"""num examples""": SPEED_TEST_N_EXAMPLES}
__lowerCamelCase : List[str] = [
(read, {"""length""": SMALL_TEST}),
(read, {"""length""": SPEED_TEST_N_EXAMPLES}),
(read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}),
(read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}),
(read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_000}),
(read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}),
(read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}),
(read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}),
(read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}),
(read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}),
(read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_000}),
]
__lowerCamelCase : Dict = [
(read, {"""length""": SMALL_TEST}),
(read, {"""length""": SPEED_TEST_N_EXAMPLES}),
(read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}),
(read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}),
(read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_000}),
(read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}),
(read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}),
(read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_000}),
]
with tempfile.TemporaryDirectory() as tmp_dir:
print("""generating dataset""" )
__lowerCamelCase : Tuple = datasets.Features(
{"""list""": datasets.Sequence(datasets.Value("""float32""" ) ), """numbers""": datasets.Value("""float32""" )} )
__lowerCamelCase : List[Any] = generate_example_dataset(
os.path.join(A__ , """dataset.arrow""" ) , A__ , num_examples=A__ , seq_shapes={"""list""": (100,)} , )
print("""first set of iterations""" )
for func, kwargs in functions:
print(func.__name__ , str(A__ ) )
__lowerCamelCase : Dict = func(A__ , **A__ )
print("""shuffling dataset""" )
__lowerCamelCase : Tuple = dataset.shuffle()
print("""Second set of iterations (after shuffling""" )
for func, kwargs in functions_shuffled:
print("""shuffled """ , func.__name__ , str(A__ ) )
__lowerCamelCase : str = func(
A__ , **A__ )
with open(A__ , """wb""" ) as f:
f.write(json.dumps(A__ ).encode("""utf-8""" ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_iterating()
| 519 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
TextToVideoSDPipeline,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class lowercase_ (lowerCamelCase__ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = TextToVideoSDPipeline
SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_PARAMS
SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS
# No `output_type`.
SCREAMING_SNAKE_CASE : Optional[int] = frozenset(
[
'num_inference_steps',
'generator',
'latents',
'return_dict',
'callback',
'callback_steps',
] )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
torch.manual_seed(0 )
__lowercase = UNetaDConditionModel(
block_out_channels=(3_2, 6_4, 6_4, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') ,up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') ,cross_attention_dim=3_2 ,attention_head_dim=4 ,)
__lowercase = DDIMScheduler(
beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,clip_sample=lowercase__ ,set_alpha_to_one=lowercase__ ,)
torch.manual_seed(0 )
__lowercase = AutoencoderKL(
block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=1_2_8 ,)
torch.manual_seed(0 )
__lowercase = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''gelu''' ,projection_dim=5_1_2 ,)
__lowercase = CLIPTextModel(lowercase__ )
__lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
__lowercase = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : List[str]=0 ):
if str(lowercase__ ).startswith('''mps''' ):
__lowercase = torch.manual_seed(lowercase__ )
else:
__lowercase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ )
__lowercase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''pt''',
}
return inputs
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
__lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowercase = self.get_dummy_components()
__lowercase = TextToVideoSDPipeline(**lowercase__ )
__lowercase = sd_pipe.to(lowercase__ )
sd_pipe.set_progress_bar_config(disable=lowercase__ )
__lowercase = self.get_dummy_inputs(lowercase__ )
__lowercase = '''np'''
__lowercase = sd_pipe(**lowercase__ ).frames
__lowercase = frames[0][-3:, -3:, -1]
assert frames[0].shape == (6_4, 6_4, 3)
__lowercase = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=3e-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,)
def SCREAMING_SNAKE_CASE ( self : Any ):
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=1e-2 )
@unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' )
def SCREAMING_SNAKE_CASE ( self : List[str] ):
pass
@unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' )
def SCREAMING_SNAKE_CASE ( self : Tuple ):
pass
@unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' )
def SCREAMING_SNAKE_CASE ( self : Tuple ):
pass
def SCREAMING_SNAKE_CASE ( self : List[str] ):
return super().test_progress_bar()
@slow
@skip_mps
class lowercase_ (unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE ( self : int ):
__lowercase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' )
__lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' )
__lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
__lowercase = pipe.to('''cuda''' )
__lowercase = '''Spiderman is surfing'''
__lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 )
__lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2_5 ,output_type='''pt''' ).frames
__lowercase = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
__lowercase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' )
__lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' )
__lowercase = pipe.to('''cuda''' )
__lowercase = '''Spiderman is surfing'''
__lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 )
__lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2 ,output_type='''pt''' ).frames
__lowercase = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
| 41 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__snake_case : Optional[Any] = {
'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'],
'tokenization_m2m_100': ['M2M100Tokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Optional[Any] = [
'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST',
'M2M100ForConditionalGeneration',
'M2M100Model',
'M2M100PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
__snake_case : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 571 |
'''simple docstring'''
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def _A ( A__ ):
"""simple docstring"""
__lowercase = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''_float_tensor''',
'''decoder.output_projection.weight''',
]
for k in ignore_keys:
state_dict.pop(A__ , A__ )
def _A ( A__ ):
"""simple docstring"""
__lowercase , __lowercase = emb.weight.shape
__lowercase = nn.Linear(A__ , A__ , bias=A__ )
__lowercase = emb.weight.data
return lin_layer
def _A ( A__ , A__="facebook/mbart-large-en-ro" , A__=False , A__=False ):
"""simple docstring"""
__lowercase = torch.load(A__ , map_location='''cpu''' )['''model''']
remove_ignore_keys_(A__ )
__lowercase = state_dict['''encoder.embed_tokens.weight'''].shape[0]
__lowercase = MBartConfig.from_pretrained(A__ , vocab_size=A__ )
if mbart_aa and finetuned:
__lowercase = '''relu'''
__lowercase = state_dict['''decoder.embed_tokens.weight''']
__lowercase = MBartForConditionalGeneration(A__ )
model.model.load_state_dict(A__ )
if finetuned:
__lowercase = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.'''
)
parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--hf_config''',
default='''facebook/mbart-large-cc25''',
type=str,
help='''Which huggingface architecture to use: mbart-large''',
)
parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''')
parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''')
lowerCAmelCase__ = parser.parse_args()
lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 41 | 0 |
from __future__ import annotations
def a (_lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = str(A__ )
return len(A__ ) == 9 and set(A__ ) == set('''123456789''' )
def a ():
for base_num in range(9_9_9_9 , 4_9_9_9 , -1 ):
SCREAMING_SNAKE_CASE_ = 1_0_0_0_0_2 * base_num
if is_9_pandigital(A__ ):
return candidate
for base_num in range(3_3_3 , 9_9 , -1 ):
SCREAMING_SNAKE_CASE_ = 1_0_0_2_0_0_3 * base_num
if is_9_pandigital(A__ ):
return candidate
return None
if __name__ == "__main__":
print(f"""{solution() = }""")
| 234 |
'''simple docstring'''
import os
from math import logaa
def _A ( A__ = "base_exp.txt" ):
"""simple docstring"""
__lowercase = 0
__lowercase = 0
for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ):
__lowercase , __lowercase = list(map(A__ , line.split(''',''' ) ) )
if x * logaa(A__ ) > largest:
__lowercase = x * logaa(A__ )
__lowercase = i + 1
return result
if __name__ == "__main__":
print(solution())
| 41 | 0 |
'''simple docstring'''
import unittest
from transformers import CamembertTokenizer, CamembertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
__a: List[str] = get_tests_dir("""fixtures/test_sentencepiece.model""")
__a: List[Any] = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""")
__a: Any = """pt""" if is_torch_available() else """tf"""
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE = CamembertTokenizer
SCREAMING_SNAKE_CASE = CamembertTokenizerFast
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = True
def _lowerCAmelCase( self ) -> Tuple:
super().setUp()
# We have a SentencePiece fixture for testing
lowercase__ : Optional[int] = CamembertTokenizer(lowercase__ )
tokenizer.save_pretrained(self.tmpdirname )
def _lowerCAmelCase( self ) -> int:
lowercase__ : Dict = '''<pad>'''
lowercase__ : Any = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ )
def _lowerCAmelCase( self ) -> Optional[int]:
lowercase__ : Dict = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>NOTUSED''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(lowercase__ ) , 1004 )
def _lowerCAmelCase( self ) -> List[Any]:
self.assertEqual(self.get_tokenizer().vocab_size , 1005 )
def _lowerCAmelCase( self ) -> Optional[Any]:
lowercase__ : Union[str, Any] = CamembertTokenizer(lowercase__ )
tokenizer.save_pretrained(self.tmpdirname )
lowercase__ : Optional[Any] = CamembertTokenizerFast.from_pretrained(self.tmpdirname )
lowercase__ : Optional[int] = '''I was born in 92000, and this is falsé.'''
lowercase__ : Dict = tokenizer.encode(lowercase__ )
lowercase__ : Optional[int] = rust_tokenizer.encode(lowercase__ )
self.assertListEqual(lowercase__ , lowercase__ )
lowercase__ : Optional[Any] = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ )
lowercase__ : Tuple = rust_tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ )
self.assertListEqual(lowercase__ , lowercase__ )
# <unk> tokens are not the same for `rust` than for `slow`.
# Because spm gives back raw token instead of `unk` in EncodeAsPieces
# tokens = tokenizer.tokenize(sequence)
lowercase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(lowercase__ )
lowercase__ : Dict = rust_tokenizer.tokenize(lowercase__ )
self.assertListEqual(lowercase__ , lowercase__ )
def _lowerCAmelCase( self ) -> int:
if not self.test_rust_tokenizer:
return
lowercase__ : Dict = self.get_tokenizer()
lowercase__ : str = self.get_rust_tokenizer()
lowercase__ : Any = '''I was born in 92000, and this is falsé.'''
lowercase__ : List[str] = tokenizer.tokenize(lowercase__ )
lowercase__ : Optional[int] = rust_tokenizer.tokenize(lowercase__ )
self.assertListEqual(lowercase__ , lowercase__ )
lowercase__ : Union[str, Any] = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ )
lowercase__ : List[str] = rust_tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ )
self.assertListEqual(lowercase__ , lowercase__ )
lowercase__ : Optional[Any] = self.get_rust_tokenizer()
lowercase__ : Optional[Any] = tokenizer.encode(lowercase__ )
lowercase__ : List[str] = rust_tokenizer.encode(lowercase__ )
self.assertListEqual(lowercase__ , lowercase__ )
@slow
def _lowerCAmelCase( self ) -> List[Any]:
# fmt: off
lowercase__ : str = {'''input_ids''': [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# camembert is a french model. So we also use french texts.
lowercase__ : Any = [
'''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, '''
'''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''',
'''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus '''
'''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches '''
'''telles que la traduction et la synthèse de texte.''',
]
self.tokenizer_integration_test_util(
expected_encoding=lowercase__ , model_name='''camembert-base''' , revision='''3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf''' , sequences=lowercase__ , )
| 152 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''',
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = 'blenderbot-small'
SCREAMING_SNAKE_CASE : int = ['past_key_values']
SCREAMING_SNAKE_CASE : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self : Optional[int] ,lowercase__ : List[str]=5_0_2_6_5 ,lowercase__ : Optional[Any]=5_1_2 ,lowercase__ : Optional[int]=8 ,lowercase__ : List[Any]=2_0_4_8 ,lowercase__ : List[str]=1_6 ,lowercase__ : str=8 ,lowercase__ : Any=2_0_4_8 ,lowercase__ : Tuple=1_6 ,lowercase__ : Tuple=0.0 ,lowercase__ : List[str]=0.0 ,lowercase__ : Any=True ,lowercase__ : str=True ,lowercase__ : int="gelu" ,lowercase__ : Tuple=5_1_2 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : str=0.0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : List[Any]=False ,lowercase__ : Optional[int]=0 ,lowercase__ : Optional[int]=1 ,lowercase__ : str=2 ,lowercase__ : int=2 ,**lowercase__ : List[str] ,):
__lowercase = vocab_size
__lowercase = max_position_embeddings
__lowercase = d_model
__lowercase = encoder_ffn_dim
__lowercase = encoder_layers
__lowercase = encoder_attention_heads
__lowercase = decoder_ffn_dim
__lowercase = decoder_layers
__lowercase = decoder_attention_heads
__lowercase = dropout
__lowercase = attention_dropout
__lowercase = activation_dropout
__lowercase = activation_function
__lowercase = init_std
__lowercase = encoder_layerdrop
__lowercase = decoder_layerdrop
__lowercase = use_cache
__lowercase = encoder_layers
__lowercase = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,is_encoder_decoder=lowercase__ ,decoder_start_token_id=lowercase__ ,forced_eos_token_id=lowercase__ ,**lowercase__ ,)
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
@property
def SCREAMING_SNAKE_CASE ( self : Dict ):
if self.task in ["default", "seq2seq-lm"]:
__lowercase = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
__lowercase = {0: '''batch'''}
__lowercase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
__lowercase = {0: '''batch''', 1: '''decoder_sequence'''}
__lowercase = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(lowercase__ ,direction='''inputs''' )
elif self.task == "causal-lm":
# TODO: figure this case out.
__lowercase = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
__lowercase , __lowercase = self.num_layers
for i in range(lowercase__ ):
__lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''}
__lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''}
else:
__lowercase = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}),
('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}),
] )
return common_inputs
@property
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
if self.task in ["default", "seq2seq-lm"]:
__lowercase = super().outputs
else:
__lowercase = super(lowercase__ ,self ).outputs
if self.use_past:
__lowercase , __lowercase = self.num_layers
for i in range(lowercase__ ):
__lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''}
__lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''}
return common_outputs
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,):
__lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
# Generate decoder inputs
__lowercase = seq_length if not self.use_past else 1
__lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
__lowercase = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
__lowercase = dict(**lowercase__ ,**lowercase__ )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
__lowercase , __lowercase = common_inputs['''input_ids'''].shape
__lowercase = common_inputs['''decoder_input_ids'''].shape[1]
__lowercase , __lowercase = self.num_attention_heads
__lowercase = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
__lowercase = decoder_seq_length + 3
__lowercase = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
__lowercase = torch.cat(
[common_inputs['''decoder_attention_mask'''], torch.ones(lowercase__ ,lowercase__ )] ,dim=1 )
__lowercase = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
__lowercase , __lowercase = self.num_layers
__lowercase = min(lowercase__ ,lowercase__ )
__lowercase = max(lowercase__ ,lowercase__ ) - min_num_layers
__lowercase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder'''
for _ in range(lowercase__ ):
common_inputs["past_key_values"].append(
(
torch.zeros(lowercase__ ),
torch.zeros(lowercase__ ),
torch.zeros(lowercase__ ),
torch.zeros(lowercase__ ),
) )
# TODO: test this.
__lowercase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape
for _ in range(lowercase__ ,lowercase__ ):
common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) )
return common_inputs
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,):
__lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
__lowercase , __lowercase = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
__lowercase = seqlen + 2
__lowercase , __lowercase = self.num_layers
__lowercase , __lowercase = self.num_attention_heads
__lowercase = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
__lowercase = common_inputs['''attention_mask'''].dtype
__lowercase = torch.cat(
[common_inputs['''attention_mask'''], torch.ones(lowercase__ ,lowercase__ ,dtype=lowercase__ )] ,dim=1 )
__lowercase = [
(torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ )
]
return common_inputs
def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,):
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__lowercase = compute_effective_axis_dimension(
lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase = tokenizer.num_special_tokens_to_add(lowercase__ )
__lowercase = compute_effective_axis_dimension(
lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowercase__ )
# Generate dummy inputs according to compute batch and sequence
__lowercase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size
__lowercase = dict(tokenizer(lowercase__ ,return_tensors=lowercase__ ) )
return common_inputs
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,):
if self.task in ["default", "seq2seq-lm"]:
__lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ )
elif self.task == "causal-lm":
__lowercase = self._generate_dummy_inputs_for_causal_lm(
lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ )
else:
__lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ )
return common_inputs
def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ):
if self.task in ["default", "seq2seq-lm"]:
__lowercase = super()._flatten_past_key_values_(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
else:
__lowercase = super(lowercase__ ,self )._flatten_past_key_values_(
lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
| 41 | 0 |
"""simple docstring"""
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]:
lowercase__, lowercase__: Any = 9, 1_4 # noqa: F841
lowercase__: Tuple = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 1_4],
[3, 4, 9],
[5, 4, 1_0],
[1, 7, 1_1],
]
lowercase__: Dict = defaultdict(A__ )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
lowercase__: Any = mst(A__ )
lowercase__: Optional[int] = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
lowercase__: Tuple = tuple(answer[:2] )
lowercase__: Any = tuple(edge[::-1] )
assert edge in result or reverse in result
| 586 |
'''simple docstring'''
from __future__ import annotations
def _A ( A__ , A__ ):
"""simple docstring"""
if b == 0:
return (1, 0)
((__lowercase) , (__lowercase)) = extended_euclid(A__ , a % b )
__lowercase = a // b
return (y, x - k * y)
def _A ( A__ , A__ , A__ , A__ ):
"""simple docstring"""
((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ )
__lowercase = na * na
__lowercase = ra * x * na + ra * y * na
return (n % m + m) % m
def _A ( A__ , A__ ):
"""simple docstring"""
((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ )
if b < 0:
__lowercase = (b % n + n) % n
return b
def _A ( A__ , A__ , A__ , A__ ):
"""simple docstring"""
__lowercase , __lowercase = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ )
__lowercase = na * na
__lowercase = ra * x * na + ra * y * na
return (n % m + m) % m
if __name__ == "__main__":
from doctest import testmod
testmod(name='''chinese_remainder_theorem''', verbose=True)
testmod(name='''chinese_remainder_theorem2''', verbose=True)
testmod(name='''invert_modulo''', verbose=True)
testmod(name='''extended_euclid''', verbose=True)
| 41 | 0 |
"""simple docstring"""
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all image processors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...image_processing_utils import ImageProcessingMixin
from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = OrderedDict(
[
('''align''', '''EfficientNetImageProcessor'''),
('''beit''', '''BeitImageProcessor'''),
('''bit''', '''BitImageProcessor'''),
('''blip''', '''BlipImageProcessor'''),
('''blip-2''', '''BlipImageProcessor'''),
('''bridgetower''', '''BridgeTowerImageProcessor'''),
('''chinese_clip''', '''ChineseCLIPImageProcessor'''),
('''clip''', '''CLIPImageProcessor'''),
('''clipseg''', '''ViTImageProcessor'''),
('''conditional_detr''', '''ConditionalDetrImageProcessor'''),
('''convnext''', '''ConvNextImageProcessor'''),
('''convnextv2''', '''ConvNextImageProcessor'''),
('''cvt''', '''ConvNextImageProcessor'''),
('''data2vec-vision''', '''BeitImageProcessor'''),
('''deformable_detr''', '''DeformableDetrImageProcessor'''),
('''deit''', '''DeiTImageProcessor'''),
('''deta''', '''DetaImageProcessor'''),
('''detr''', '''DetrImageProcessor'''),
('''dinat''', '''ViTImageProcessor'''),
('''donut-swin''', '''DonutImageProcessor'''),
('''dpt''', '''DPTImageProcessor'''),
('''efficientformer''', '''EfficientFormerImageProcessor'''),
('''efficientnet''', '''EfficientNetImageProcessor'''),
('''flava''', '''FlavaImageProcessor'''),
('''focalnet''', '''BitImageProcessor'''),
('''git''', '''CLIPImageProcessor'''),
('''glpn''', '''GLPNImageProcessor'''),
('''groupvit''', '''CLIPImageProcessor'''),
('''imagegpt''', '''ImageGPTImageProcessor'''),
('''instructblip''', '''BlipImageProcessor'''),
('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''),
('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''),
('''levit''', '''LevitImageProcessor'''),
('''mask2former''', '''Mask2FormerImageProcessor'''),
('''maskformer''', '''MaskFormerImageProcessor'''),
('''mgp-str''', '''ViTImageProcessor'''),
('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''),
('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''),
('''mobilevit''', '''MobileViTImageProcessor'''),
('''mobilevit''', '''MobileViTImageProcessor'''),
('''mobilevitv2''', '''MobileViTImageProcessor'''),
('''nat''', '''ViTImageProcessor'''),
('''oneformer''', '''OneFormerImageProcessor'''),
('''owlvit''', '''OwlViTImageProcessor'''),
('''perceiver''', '''PerceiverImageProcessor'''),
('''pix2struct''', '''Pix2StructImageProcessor'''),
('''poolformer''', '''PoolFormerImageProcessor'''),
('''regnet''', '''ConvNextImageProcessor'''),
('''resnet''', '''ConvNextImageProcessor'''),
('''sam''', '''SamImageProcessor'''),
('''segformer''', '''SegformerImageProcessor'''),
('''swiftformer''', '''ViTImageProcessor'''),
('''swin''', '''ViTImageProcessor'''),
('''swin2sr''', '''Swin2SRImageProcessor'''),
('''swinv2''', '''ViTImageProcessor'''),
('''table-transformer''', '''DetrImageProcessor'''),
('''timesformer''', '''VideoMAEImageProcessor'''),
('''tvlt''', '''TvltImageProcessor'''),
('''upernet''', '''SegformerImageProcessor'''),
('''van''', '''ConvNextImageProcessor'''),
('''videomae''', '''VideoMAEImageProcessor'''),
('''vilt''', '''ViltImageProcessor'''),
('''vit''', '''ViTImageProcessor'''),
('''vit_hybrid''', '''ViTHybridImageProcessor'''),
('''vit_mae''', '''ViTImageProcessor'''),
('''vit_msn''', '''ViTImageProcessor'''),
('''xclip''', '''CLIPImageProcessor'''),
('''yolos''', '''YolosImageProcessor'''),
]
)
lowerCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES)
def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> List[Any]:
for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items():
if class_name in extractors:
_SCREAMING_SNAKE_CASE : int = model_type_to_module_name(A__ )
_SCREAMING_SNAKE_CASE : Tuple = importlib.import_module(F""".{module_name}""" , """transformers.models""" )
try:
return getattr(A__ , A__ )
except AttributeError:
continue
for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items():
if getattr(A__ , """__name__""" , A__ ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
_SCREAMING_SNAKE_CASE : Tuple = importlib.import_module("""transformers""" )
if hasattr(A__ , A__ ):
return getattr(A__ , A__ )
return None
def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , **__SCREAMING_SNAKE_CASE , )-> Dict:
_SCREAMING_SNAKE_CASE : List[str] = get_file_from_repo(
A__ , A__ , cache_dir=A__ , force_download=A__ , resume_download=A__ , proxies=A__ , use_auth_token=A__ , revision=A__ , local_files_only=A__ , )
if resolved_config_file is None:
logger.info(
"""Could not locate the image processor configuration file, will try to use the model config instead.""" )
return {}
with open(A__ , encoding="""utf-8""" ) as reader:
return json.load(A__ )
class _snake_case :
"""simple docstring"""
def __init__( self : int):
"""simple docstring"""
raise EnvironmentError(
"""AutoImageProcessor is designed to be instantiated """
"""using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.""")
@classmethod
@replace_list_option_in_docstrings(lowercase__)
def _lowerCAmelCase ( cls : str , _A : str , **_A : int):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : int = kwargs.pop("""config""" , lowercase__)
_SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop("""trust_remote_code""" , lowercase__)
_SCREAMING_SNAKE_CASE : Union[str, Any] = True
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = ImageProcessingMixin.get_image_processor_dict(lowercase__ , **lowercase__)
_SCREAMING_SNAKE_CASE : Tuple = config_dict.get("""image_processor_type""" , lowercase__)
_SCREAMING_SNAKE_CASE : Optional[Any] = None
if "AutoImageProcessor" in config_dict.get("""auto_map""" , {}):
_SCREAMING_SNAKE_CASE : List[Any] = config_dict["""auto_map"""]["""AutoImageProcessor"""]
# If we still don't have the image processor class, check if we're loading from a previous feature extractor config
# and if so, infer the image processor class from there.
if image_processor_class is None and image_processor_auto_map is None:
_SCREAMING_SNAKE_CASE : int = config_dict.pop("""feature_extractor_type""" , lowercase__)
if feature_extractor_class is not None:
logger.warning(
"""Could not find image processor class in the image processor config or the model config. Loading"""
""" based on pattern matching with the model\'s feature extractor configuration.""")
_SCREAMING_SNAKE_CASE : List[str] = feature_extractor_class.replace("""FeatureExtractor""" , """ImageProcessor""")
if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {}):
_SCREAMING_SNAKE_CASE : Tuple = config_dict["""auto_map"""]["""AutoFeatureExtractor"""]
_SCREAMING_SNAKE_CASE : Union[str, Any] = feature_extractor_auto_map.replace("""FeatureExtractor""" , """ImageProcessor""")
logger.warning(
"""Could not find image processor auto map in the image processor config or the model config."""
""" Loading based on pattern matching with the model\'s feature extractor configuration.""")
# If we don't find the image processor class in the image processor config, let's try the model config.
if image_processor_class is None and image_processor_auto_map is None:
if not isinstance(lowercase__ , lowercase__):
_SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained(lowercase__ , **lowercase__)
# It could be in `config.image_processor_type``
_SCREAMING_SNAKE_CASE : str = getattr(lowercase__ , """image_processor_type""" , lowercase__)
if hasattr(lowercase__ , """auto_map""") and "AutoImageProcessor" in config.auto_map:
_SCREAMING_SNAKE_CASE : List[str] = config.auto_map["""AutoImageProcessor"""]
if image_processor_class is not None:
_SCREAMING_SNAKE_CASE : Optional[int] = image_processor_class_from_name(lowercase__)
_SCREAMING_SNAKE_CASE : Any = image_processor_auto_map is not None
_SCREAMING_SNAKE_CASE : Any = image_processor_class is not None or type(lowercase__) in IMAGE_PROCESSOR_MAPPING
_SCREAMING_SNAKE_CASE : int = resolve_trust_remote_code(
lowercase__ , lowercase__ , lowercase__ , lowercase__)
if has_remote_code and trust_remote_code:
_SCREAMING_SNAKE_CASE : Union[str, Any] = get_class_from_dynamic_module(
lowercase__ , lowercase__ , **lowercase__)
_SCREAMING_SNAKE_CASE : List[str] = kwargs.pop("""code_revision""" , lowercase__)
if os.path.isdir(lowercase__):
image_processor_class.register_for_auto_class()
return image_processor_class.from_dict(lowercase__ , **lowercase__)
elif image_processor_class is not None:
return image_processor_class.from_dict(lowercase__ , **lowercase__)
# Last try: we use the IMAGE_PROCESSOR_MAPPING.
elif type(lowercase__) in IMAGE_PROCESSOR_MAPPING:
_SCREAMING_SNAKE_CASE : Any = IMAGE_PROCESSOR_MAPPING[type(lowercase__)]
return image_processor_class.from_dict(lowercase__ , **lowercase__)
raise ValueError(
f"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """
f"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """
f"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys())}""")
@staticmethod
def _lowerCAmelCase ( _A : Tuple , _A : Any):
"""simple docstring"""
IMAGE_PROCESSOR_MAPPING.register(lowercase__ , lowercase__)
| 338 |
'''simple docstring'''
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def _A ( ):
"""simple docstring"""
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
__lowercase = '''__test_patch_submodule_mock__'''
with patch_submodule(_test_patching , '''os.path.join''' , A__ ):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os , _PatchedModuleObj )
assert isinstance(_test_patching.os.path , _PatchedModuleObj )
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path , _PatchedModuleObj )
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os , _PatchedModuleObj )
assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj )
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path , _PatchedModuleObj )
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def _A ( ):
"""simple docstring"""
assert _test_patching.open is open
__lowercase = '''__test_patch_submodule_builtin_mock__'''
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching , '''open''' , A__ ):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def _A ( ):
"""simple docstring"""
__lowercase = '''__test_patch_submodule_missing_mock__'''
with patch_submodule(_test_patching , '''pandas.read_csv''' , A__ ):
pass
def _A ( ):
"""simple docstring"""
__lowercase = '''__test_patch_submodule_missing_builtin_mock__'''
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching , '''len''' , A__ ) is None
with patch_submodule(_test_patching , '''len''' , A__ ):
assert _test_patching.len is mock
assert _test_patching.len is len
def _A ( ):
"""simple docstring"""
__lowercase = '''__test_patch_submodule_start_and_stop_mock__'''
__lowercase = patch_submodule(_test_patching , '''open''' , A__ )
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def _A ( ):
"""simple docstring"""
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
__lowercase = '''__test_patch_submodule_successive_join__'''
__lowercase = '''__test_patch_submodule_successive_dirname__'''
__lowercase = '''__test_patch_submodule_successive_rename__'''
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching , '''os.path.join''' , A__ ):
with patch_submodule(_test_patching , '''os.rename''' , A__ ):
with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching , '''os.rename''' , A__ ):
with patch_submodule(_test_patching , '''os.path.join''' , A__ ):
with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def _A ( ):
"""simple docstring"""
__lowercase = '''__test_patch_submodule_doesnt_exist_mock__'''
with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , A__ ):
pass
with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , A__ ):
pass
| 41 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class snake_case_ ( lowerCamelCase__ , unittest.TestCase ):
"""simple docstring"""
snake_case__ = KandinskyVaaImgaImgPipeline
snake_case__ = ['image_embeds', 'negative_image_embeds', 'image']
snake_case__ = [
'image_embeds',
'negative_image_embeds',
'image',
]
snake_case__ = [
'generator',
'height',
'width',
'strength',
'guidance_scale',
'num_inference_steps',
'return_dict',
'guidance_scale',
'num_images_per_prompt',
'output_type',
'return_dict',
]
snake_case__ = False
@property
def UpperCAmelCase__ (self: int ) -> int:
'''simple docstring'''
return 32
@property
def UpperCAmelCase__ (self: Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
return 32
@property
def UpperCAmelCase__ (self: Optional[int] ) -> str:
'''simple docstring'''
return self.time_input_dim
@property
def UpperCAmelCase__ (self: Tuple ) -> int:
'''simple docstring'''
return self.time_input_dim * 4
@property
def UpperCAmelCase__ (self: Dict ) -> Dict:
'''simple docstring'''
return 100
@property
def UpperCAmelCase__ (self: List[Any] ) -> Union[str, Any]:
'''simple docstring'''
torch.manual_seed(0 )
__a : Any = {
"in_channels": 4,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
__a : List[str] = UNetaDConditionModel(**lowercase__ )
return model
@property
def UpperCAmelCase__ (self: Dict ) -> Tuple:
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def UpperCAmelCase__ (self: List[Any] ) -> List[str]:
'''simple docstring'''
torch.manual_seed(0 )
__a : int = VQModel(**self.dummy_movq_kwargs )
return model
def UpperCAmelCase__ (self: str ) -> List[str]:
'''simple docstring'''
__a : List[str] = self.dummy_unet
__a : Optional[Any] = self.dummy_movq
__a : Optional[int] = {
"num_train_timesteps": 1000,
"beta_schedule": "linear",
"beta_start": 0.0_00_85,
"beta_end": 0.0_12,
"clip_sample": False,
"set_alpha_to_one": False,
"steps_offset": 0,
"prediction_type": "epsilon",
"thresholding": False,
}
__a : Union[str, Any] = DDIMScheduler(**lowercase__ )
__a : Any = {
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def UpperCAmelCase__ (self: Union[str, Any] , __UpperCAmelCase: str , __UpperCAmelCase: List[str]=0 ) -> str:
'''simple docstring'''
__a : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowercase__ ) ).to(lowercase__ )
__a : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
lowercase__ )
# create init_image
__a : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase__ ) ).to(lowercase__ )
__a : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__a : Union[str, Any] = Image.fromarray(np.uinta(lowercase__ ) ).convert("RGB" ).resize((256, 256) )
if str(lowercase__ ).startswith("mps" ):
__a : Optional[int] = torch.manual_seed(lowercase__ )
else:
__a : Dict = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ )
__a : int = {
"image": init_image,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 10,
"guidance_scale": 7.0,
"strength": 0.2,
"output_type": "np",
}
return inputs
def UpperCAmelCase__ (self: Union[str, Any] ) -> Any:
'''simple docstring'''
__a : int = "cpu"
__a : Tuple = self.get_dummy_components()
__a : Optional[Any] = self.pipeline_class(**lowercase__ )
__a : Union[str, Any] = pipe.to(lowercase__ )
pipe.set_progress_bar_config(disable=lowercase__ )
__a : Any = pipe(**self.get_dummy_inputs(lowercase__ ) )
__a : Dict = output.images
__a : str = pipe(
**self.get_dummy_inputs(lowercase__ ) , return_dict=lowercase__ , )[0]
__a : List[Any] = image[0, -3:, -3:, -1]
__a : int = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__a : Union[str, Any] = np.array(
[0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
@slow
@require_torch_gpu
class snake_case_ ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase__ (self: Dict ) -> Tuple:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self: List[Any] ) -> Optional[Any]:
'''simple docstring'''
__a : Tuple = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_img2img_frog.npy" )
__a : Optional[Any] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
__a : str = "A red cartoon frog, 4k"
__a : List[Any] = KandinskyVaaPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa )
pipe_prior.to(lowercase__ )
__a : str = KandinskyVaaImgaImgPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa )
__a : Union[str, Any] = pipeline.to(lowercase__ )
pipeline.set_progress_bar_config(disable=lowercase__ )
__a : Tuple = torch.Generator(device="cpu" ).manual_seed(0 )
__a , __a : Union[str, Any] = pipe_prior(
lowercase__ , generator=lowercase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
__a : Any = pipeline(
image=lowercase__ , image_embeds=lowercase__ , negative_image_embeds=lowercase__ , generator=lowercase__ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , )
__a : Dict = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(lowercase__ , lowercase__ )
| 351 |
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import NezhaConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
)
from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST
class lowercase_ :
"""simple docstring"""
def __init__( self : Dict ,lowercase__ : Dict ,lowercase__ : int=1_3 ,lowercase__ : List[str]=7 ,lowercase__ : int=True ,lowercase__ : int=True ,lowercase__ : Union[str, Any]=True ,lowercase__ : List[Any]=True ,lowercase__ : str=9_9 ,lowercase__ : Optional[Any]=3_2 ,lowercase__ : Union[str, Any]=5 ,lowercase__ : List[Any]=4 ,lowercase__ : str=3_7 ,lowercase__ : Tuple="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : Dict=0.1 ,lowercase__ : int=1_2_8 ,lowercase__ : Dict=3_2 ,lowercase__ : Dict=1_6 ,lowercase__ : Any=2 ,lowercase__ : int=0.0_2 ,lowercase__ : List[str]=3 ,lowercase__ : Dict=4 ,lowercase__ : Optional[int]=None ,):
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_token_type_ids
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = type_sequence_label_size
__lowercase = initializer_range
__lowercase = num_labels
__lowercase = num_choices
__lowercase = scope
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
__lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size )
__lowercase = None
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
__lowercase = ids_tensor([self.batch_size] ,self.num_choices )
__lowercase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
return NezhaConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = self.prepare_config_and_inputs()
__lowercase = True
__lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__lowercase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : str ):
__lowercase = NezhaModel(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ )
__lowercase = model(lowercase__ ,token_type_ids=lowercase__ )
__lowercase = model(lowercase__ )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Dict ,lowercase__ : str ,lowercase__ : Optional[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,):
__lowercase = True
__lowercase = NezhaModel(lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(
lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,encoder_attention_mask=lowercase__ ,)
__lowercase = model(
lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,)
__lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ):
__lowercase = NezhaForMaskedLM(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ):
__lowercase = NezhaForNextSentencePrediction(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(
lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) )
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ):
__lowercase = NezhaForPreTraining(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(
lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,next_sentence_label=lowercase__ ,)
self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ):
__lowercase = NezhaForQuestionAnswering(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(
lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,start_positions=lowercase__ ,end_positions=lowercase__ ,)
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Tuple ,lowercase__ : str ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : Optional[int] ,lowercase__ : int ):
__lowercase = self.num_labels
__lowercase = NezhaForSequenceClassification(lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Any ,lowercase__ : Optional[Any] ):
__lowercase = self.num_labels
__lowercase = NezhaForTokenClassification(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : str ):
__lowercase = self.num_choices
__lowercase = NezhaForMultipleChoice(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
__lowercase = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
__lowercase = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
__lowercase = model(
lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = config_and_inputs
__lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = (
(
NezhaModel,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE : Tuple = (
{
'feature-extraction': NezhaModel,
'fill-mask': NezhaForMaskedLM,
'question-answering': NezhaForQuestionAnswering,
'text-classification': NezhaForSequenceClassification,
'token-classification': NezhaForTokenClassification,
'zero-shot': NezhaForSequenceClassification,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE : List[str] = True
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : Any=False ):
__lowercase = super()._prepare_for_class(lowercase__ ,lowercase__ ,return_labels=lowercase__ )
if return_labels:
if model_class in get_values(lowercase__ ):
__lowercase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowercase__ )
__lowercase = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=lowercase__ )
return inputs_dict
def SCREAMING_SNAKE_CASE ( self : Tuple ):
__lowercase = NezhaModelTester(self )
__lowercase = ConfigTester(self ,config_class=lowercase__ ,hidden_size=3_7 )
def SCREAMING_SNAKE_CASE ( self : int ):
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Any ):
__lowercase = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Any ):
# This regression test was failing with PyTorch < 1.3
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = self.model_tester.prepare_config_and_inputs_for_decoder()
__lowercase = None
self.model_tester.create_and_check_model_as_decoder(
lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,)
def SCREAMING_SNAKE_CASE ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_next_sequence_prediction(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : str ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : str ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowercase__ )
@slow
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = NezhaModel.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
@slow
@require_torch_gpu
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# NezhaForMultipleChoice behaves incorrectly in JIT environments.
if model_class == NezhaForMultipleChoice:
return
__lowercase = True
__lowercase = model_class(config=lowercase__ )
__lowercase = self._prepare_for_class(lowercase__ ,lowercase__ )
__lowercase = torch.jit.trace(
lowercase__ ,(inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(lowercase__ ,os.path.join(lowercase__ ,'''bert.pt''' ) )
__lowercase = torch.jit.load(os.path.join(lowercase__ ,'''bert.pt''' ) ,map_location=lowercase__ )
loaded(inputs_dict['''input_ids'''].to(lowercase__ ) ,inputs_dict['''attention_mask'''].to(lowercase__ ) )
@require_torch
class lowercase_ (unittest.TestCase ):
"""simple docstring"""
@slow
def SCREAMING_SNAKE_CASE ( self : int ):
__lowercase = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' )
__lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] )
__lowercase = torch.tensor([[0, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0]
__lowercase = torch.Size((1, 6, 7_6_8) )
self.assertEqual(output.shape ,lowercase__ )
__lowercase = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) )
@slow
def SCREAMING_SNAKE_CASE ( self : Dict ):
__lowercase = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' )
__lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] )
__lowercase = torch.tensor([[1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0]
__lowercase = torch.Size((1, 6, 2_1_1_2_8) )
self.assertEqual(output.shape ,lowercase__ )
__lowercase = torch.tensor(
[[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) )
| 41 | 0 |
"""simple docstring"""
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
A_ : Optional[Any] = logging.get_logger(__name__)
def __snake_case ( __A : Dict , __A : Dict=False ) -> str:
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith('head' ):
SCREAMING_SNAKE_CASE : Optional[int] = 'segformer.encoder.' + key
if key.startswith('backbone' ):
SCREAMING_SNAKE_CASE : Optional[Any] = key.replace('backbone' , 'segformer.encoder' )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
SCREAMING_SNAKE_CASE : Optional[int] = key[key.find('patch_embed' ) + len('patch_embed' )]
SCREAMING_SNAKE_CASE : Tuple = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(A__ )-1}""" )
if "norm" in key:
SCREAMING_SNAKE_CASE : Optional[int] = key.replace('norm' , 'layer_norm' )
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
SCREAMING_SNAKE_CASE : Optional[int] = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )]
SCREAMING_SNAKE_CASE : List[str] = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(A__ )-1}""" )
if "layer_norm1" in key:
SCREAMING_SNAKE_CASE : Any = key.replace('layer_norm1' , 'layer_norm_1' )
if "layer_norm2" in key:
SCREAMING_SNAKE_CASE : Optional[Any] = key.replace('layer_norm2' , 'layer_norm_2' )
if "block" in key:
# replace for example block1 by block.0
SCREAMING_SNAKE_CASE : Optional[Any] = key[key.find('block' ) + len('block' )]
SCREAMING_SNAKE_CASE : str = key.replace(F"""block{idx}""" , F"""block.{int(A__ )-1}""" )
if "attn.q" in key:
SCREAMING_SNAKE_CASE : Dict = key.replace('attn.q' , 'attention.self.query' )
if "attn.proj" in key:
SCREAMING_SNAKE_CASE : Tuple = key.replace('attn.proj' , 'attention.output.dense' )
if "attn" in key:
SCREAMING_SNAKE_CASE : Union[str, Any] = key.replace('attn' , 'attention.self' )
if "fc1" in key:
SCREAMING_SNAKE_CASE : List[Any] = key.replace('fc1' , 'dense1' )
if "fc2" in key:
SCREAMING_SNAKE_CASE : List[str] = key.replace('fc2' , 'dense2' )
if "linear_pred" in key:
SCREAMING_SNAKE_CASE : Dict = key.replace('linear_pred' , 'classifier' )
if "linear_fuse" in key:
SCREAMING_SNAKE_CASE : Any = key.replace('linear_fuse.conv' , 'linear_fuse' )
SCREAMING_SNAKE_CASE : Optional[Any] = key.replace('linear_fuse.bn' , 'batch_norm' )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
SCREAMING_SNAKE_CASE : str = key[key.find('linear_c' ) + len('linear_c' )]
SCREAMING_SNAKE_CASE : Union[str, Any] = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(A__ )-1}""" )
if key.startswith('head' ):
SCREAMING_SNAKE_CASE : List[str] = key.replace('head' , 'classifier' )
SCREAMING_SNAKE_CASE : List[Any] = value
return new_state_dict
def __snake_case ( __A : List[Any] , __A : Tuple ) -> Optional[Any]:
'''simple docstring'''
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
SCREAMING_SNAKE_CASE : Any = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" )
SCREAMING_SNAKE_CASE : int = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" )
# next, add keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE : Union[str, Any] = kv_weight[
: config.hidden_sizes[i], :
]
SCREAMING_SNAKE_CASE : str = kv_bias[: config.hidden_sizes[i]]
SCREAMING_SNAKE_CASE : List[str] = kv_weight[
config.hidden_sizes[i] :, :
]
SCREAMING_SNAKE_CASE : List[str] = kv_bias[
config.hidden_sizes[i] :
]
def __snake_case ( ) -> Dict:
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg'
SCREAMING_SNAKE_CASE : List[str] = Image.open(requests.get(A__ , stream=A__ ).raw )
return image
@torch.no_grad()
def __snake_case ( __A : Dict , __A : List[str] , __A : int ) -> Tuple:
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = SegformerConfig()
SCREAMING_SNAKE_CASE : Optional[int] = False
# set attributes based on model_name
SCREAMING_SNAKE_CASE : Dict = 'huggingface/label-files'
if "segformer" in model_name:
SCREAMING_SNAKE_CASE : Tuple = model_name[len('segformer.' ) : len('segformer.' ) + 2]
if "ade" in model_name:
SCREAMING_SNAKE_CASE : Union[str, Any] = 150
SCREAMING_SNAKE_CASE : str = 'ade20k-id2label.json'
SCREAMING_SNAKE_CASE : int = (1, 150, 128, 128)
elif "city" in model_name:
SCREAMING_SNAKE_CASE : Dict = 19
SCREAMING_SNAKE_CASE : Optional[int] = 'cityscapes-id2label.json'
SCREAMING_SNAKE_CASE : List[Any] = (1, 19, 128, 128)
else:
raise ValueError(F"""Model {model_name} not supported""" )
elif "mit" in model_name:
SCREAMING_SNAKE_CASE : str = True
SCREAMING_SNAKE_CASE : List[Any] = model_name[4:6]
SCREAMING_SNAKE_CASE : List[Any] = 1000
SCREAMING_SNAKE_CASE : List[str] = 'imagenet-1k-id2label.json'
SCREAMING_SNAKE_CASE : Optional[int] = (1, 1000)
else:
raise ValueError(F"""Model {model_name} not supported""" )
# set config attributes
SCREAMING_SNAKE_CASE : Any = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) )
SCREAMING_SNAKE_CASE : Optional[int] = {int(A__ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE : Optional[Any] = idalabel
SCREAMING_SNAKE_CASE : Tuple = {v: k for k, v in idalabel.items()}
if size == "b0":
pass
elif size == "b1":
SCREAMING_SNAKE_CASE : Any = [64, 128, 320, 512]
SCREAMING_SNAKE_CASE : Dict = 256
elif size == "b2":
SCREAMING_SNAKE_CASE : int = [64, 128, 320, 512]
SCREAMING_SNAKE_CASE : Dict = 768
SCREAMING_SNAKE_CASE : Dict = [3, 4, 6, 3]
elif size == "b3":
SCREAMING_SNAKE_CASE : List[str] = [64, 128, 320, 512]
SCREAMING_SNAKE_CASE : Optional[Any] = 768
SCREAMING_SNAKE_CASE : Union[str, Any] = [3, 4, 18, 3]
elif size == "b4":
SCREAMING_SNAKE_CASE : Optional[int] = [64, 128, 320, 512]
SCREAMING_SNAKE_CASE : Any = 768
SCREAMING_SNAKE_CASE : Union[str, Any] = [3, 8, 27, 3]
elif size == "b5":
SCREAMING_SNAKE_CASE : Tuple = [64, 128, 320, 512]
SCREAMING_SNAKE_CASE : List[str] = 768
SCREAMING_SNAKE_CASE : Optional[int] = [3, 6, 40, 3]
else:
raise ValueError(F"""Size {size} not supported""" )
# load image processor (only resize + normalize)
SCREAMING_SNAKE_CASE : Any = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=A__ , align=A__ , do_random_crop=A__ )
# prepare image
SCREAMING_SNAKE_CASE : str = prepare_img()
SCREAMING_SNAKE_CASE : Any = image_processor(images=A__ , return_tensors='pt' ).pixel_values
logger.info(F"""Converting model {model_name}...""" )
# load original state dict
if encoder_only:
SCREAMING_SNAKE_CASE : Optional[int] = torch.load(A__ , map_location=torch.device('cpu' ) )
else:
SCREAMING_SNAKE_CASE : List[Any] = torch.load(A__ , map_location=torch.device('cpu' ) )['state_dict']
# rename keys
SCREAMING_SNAKE_CASE : Dict = rename_keys(A__ , encoder_only=A__ )
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(A__ , A__ )
# create HuggingFace model and load state dict
if encoder_only:
SCREAMING_SNAKE_CASE : int = False
SCREAMING_SNAKE_CASE : str = SegformerForImageClassification(A__ )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = SegformerForSemanticSegmentation(A__ )
model.load_state_dict(A__ )
model.eval()
# forward pass
SCREAMING_SNAKE_CASE : Optional[int] = model(A__ )
SCREAMING_SNAKE_CASE : str = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
SCREAMING_SNAKE_CASE : List[str] = torch.tensor(
[
[[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]],
[[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]],
[[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]],
] )
elif model_name == "segformer.b1.512x512.ade.160k":
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(
[
[[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -10.3529, -10.0304], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]],
[[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]],
[[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]],
] )
elif model_name == "segformer.b2.512x512.ade.160k":
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(
[
[[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]],
[[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]],
[[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]],
] )
elif model_name == "segformer.b3.512x512.ade.160k":
SCREAMING_SNAKE_CASE : str = torch.tensor(
[
[[-9.0_8_7_8, -10.2081, -10.1891], [-9.3_1_4_4, -10.7941, -10.9843], [-9.2_2_9_4, -10.3855, -10.5704]],
[[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]],
[[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]],
] )
elif model_name == "segformer.b4.512x512.ade.160k":
SCREAMING_SNAKE_CASE : Dict = torch.tensor(
[
[[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]],
[[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]],
[[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]],
] )
elif model_name == "segformer.b5.640x640.ade.160k":
SCREAMING_SNAKE_CASE : int = torch.tensor(
[
[[-9.5_5_2_4, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5_8_4_2, -12.8851, -13.9414]],
[[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]],
[[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]],
] )
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
SCREAMING_SNAKE_CASE : List[str] = torch.tensor(
[
[[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]],
[[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]],
[[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]],
] )
elif model_name == "segformer.b0.512x1024.city.160k":
SCREAMING_SNAKE_CASE : str = torch.tensor(
[
[[-7.8_2_1_7, -9.8_7_6_7, -10.1717], [-9.4_4_3_8, -10.9058, -11.4047], [-9.7_9_3_9, -12.3495, -12.1079]],
[[-7.1_5_1_4, -9.5_3_3_6, -10.0860], [-9.7_7_7_6, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]],
[[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]],
] )
elif model_name == "segformer.b0.640x1280.city.160k":
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(
[
[
[-1.1372E01, -1.2787E01, -1.3477E01],
[-1.2536E01, -1.4194E01, -1.4409E01],
[-1.3217E01, -1.4888E01, -1.5327E01],
],
[
[-1.4791E01, -1.7122E01, -1.8277E01],
[-1.7163E01, -1.9192E01, -1.9533E01],
[-1.7897E01, -1.9991E01, -2.0315E01],
],
[
[7.6723E-01, 4.1921E-01, -7.7878E-02],
[4.7772E-01, 9.5557E-03, -2.8082E-01],
[3.6032E-01, -2.4826E-01, -5.1168E-01],
],
] )
elif model_name == "segformer.b0.768x768.city.160k":
SCREAMING_SNAKE_CASE : str = torch.tensor(
[
[[-9.4_9_5_9, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]],
[[-9.8_9_0_5, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]],
[[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]],
] )
elif model_name == "segformer.b1.1024x1024.city.160k":
SCREAMING_SNAKE_CASE : Dict = torch.tensor(
[
[[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]],
[[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]],
[[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]],
] )
elif model_name == "segformer.b2.1024x1024.city.160k":
SCREAMING_SNAKE_CASE : List[str] = torch.tensor(
[
[[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]],
[[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]],
[[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]],
] )
elif model_name == "segformer.b3.1024x1024.city.160k":
SCREAMING_SNAKE_CASE : List[str] = torch.tensor(
[
[[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]],
[[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]],
[[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]],
] )
elif model_name == "segformer.b4.1024x1024.city.160k":
SCREAMING_SNAKE_CASE : int = torch.tensor(
[
[[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]],
[[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]],
[[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]],
] )
elif model_name == "segformer.b5.1024x1024.city.160k":
SCREAMING_SNAKE_CASE : Any = torch.tensor(
[
[[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]],
[[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]],
[[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]],
] )
else:
SCREAMING_SNAKE_CASE : Any = logits.argmax(-1 ).item()
print('Predicted class:' , model.config.idalabel[predicted_class_idx] )
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3] , A__ , atol=1E-2 )
# finally, save model and image processor
logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" )
Path(A__ ).mkdir(exist_ok=A__ )
model.save_pretrained(A__ )
image_processor.save_pretrained(A__ )
if __name__ == "__main__":
A_ : Dict = argparse.ArgumentParser()
parser.add_argument(
'--model_name',
default='segformer.b0.512x512.ade.160k',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
A_ : List[Any] = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 265 |
'''simple docstring'''
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
lowerCAmelCase__ = TypeVar('''KEY''')
lowerCAmelCase__ = TypeVar('''VAL''')
@dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ )
class lowercase_ (Generic[KEY, VAL] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : KEY
SCREAMING_SNAKE_CASE : VAL
class lowercase_ (_Item ):
"""simple docstring"""
def __init__( self : Optional[int] ):
super().__init__(lowercase__ ,lowercase__ )
def __bool__( self : List[str] ):
return False
lowerCAmelCase__ = _DeletedItem()
class lowercase_ (MutableMapping[KEY, VAL] ):
"""simple docstring"""
def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ):
__lowercase = initial_block_size
__lowercase = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
__lowercase = capacity_factor
__lowercase = 0
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ):
return hash(lowercase__ ) % len(self._buckets )
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ):
return (ind + 1) % len(self._buckets )
def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ):
__lowercase = self._buckets[ind]
if not stored:
__lowercase = _Item(lowercase__ ,lowercase__ )
self._len += 1
return True
elif stored.key == key:
__lowercase = _Item(lowercase__ ,lowercase__ )
return True
else:
return False
def SCREAMING_SNAKE_CASE ( self : Dict ):
__lowercase = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : int ):
if len(self._buckets ) <= self._initial_block_size:
return False
__lowercase = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ):
__lowercase = self._buckets
__lowercase = [None] * new_size
__lowercase = 0
for item in old_buckets:
if item:
self._add_item(item.key ,item.val )
def SCREAMING_SNAKE_CASE ( self : str ):
self._resize(len(self._buckets ) * 2 )
def SCREAMING_SNAKE_CASE ( self : Tuple ):
self._resize(len(self._buckets ) // 2 )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ):
__lowercase = self._get_bucket_index(lowercase__ )
for _ in range(len(self._buckets ) ):
yield ind
__lowercase = self._get_next_ind(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ):
for ind in self._iterate_buckets(lowercase__ ):
if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ):
break
def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ):
if self._is_full():
self._size_up()
self._add_item(lowercase__ ,lowercase__ )
def __delitem__( self : Tuple ,lowercase__ : KEY ):
for ind in self._iterate_buckets(lowercase__ ):
__lowercase = self._buckets[ind]
if item is None:
raise KeyError(lowercase__ )
if item is _deleted:
continue
if item.key == key:
__lowercase = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self : Tuple ,lowercase__ : KEY ):
for ind in self._iterate_buckets(lowercase__ ):
__lowercase = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(lowercase__ )
def __len__( self : Optional[int] ):
return self._len
def __iter__( self : str ):
yield from (item.key for item in self._buckets if item)
def __repr__( self : Optional[Any] ):
__lowercase = ''' ,'''.join(
F"{item.key}: {item.val}" for item in self._buckets if item )
return F"HashMap({val_string})"
| 41 | 0 |
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .attention_processor import AttentionProcessor, AttnProcessor
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder
@dataclass
class __A ( lowerCamelCase__ ):
UpperCamelCase = 42
class __A ( lowerCamelCase__ , lowerCamelCase__ ):
UpperCamelCase = True
@register_to_config
def __init__( self :Optional[int] , __snake_case :int = 3 , __snake_case :int = 3 , __snake_case :Tuple[str] = ("DownEncoderBlock2D",) , __snake_case :Tuple[str] = ("UpDecoderBlock2D",) , __snake_case :Tuple[int] = (64,) , __snake_case :int = 1 , __snake_case :str = "silu" , __snake_case :int = 4 , __snake_case :int = 32 , __snake_case :int = 32 , __snake_case :float = 0.18215 , ):
'''simple docstring'''
super().__init__()
# pass init params to Encoder
__magic_name__ : Any =Encoder(
in_channels=lowercase__ , out_channels=lowercase__ , down_block_types=lowercase__ , block_out_channels=lowercase__ , layers_per_block=lowercase__ , act_fn=lowercase__ , norm_num_groups=lowercase__ , double_z=lowercase__ , )
# pass init params to Decoder
__magic_name__ : Any =Decoder(
in_channels=lowercase__ , out_channels=lowercase__ , up_block_types=lowercase__ , block_out_channels=lowercase__ , layers_per_block=lowercase__ , norm_num_groups=lowercase__ , act_fn=lowercase__ , )
__magic_name__ : Union[str, Any] =nn.Convad(2 * latent_channels , 2 * latent_channels , 1 )
__magic_name__ : int =nn.Convad(lowercase__ , lowercase__ , 1 )
__magic_name__ : Tuple =False
__magic_name__ : Union[str, Any] =False
# only relevant if vae tiling is enabled
__magic_name__ : List[str] =self.config.sample_size
__magic_name__ : Tuple =(
self.config.sample_size[0]
if isinstance(self.config.sample_size , (list, tuple) )
else self.config.sample_size
)
__magic_name__ : List[Any] =int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) )
__magic_name__ : str =0.25
def A__ ( self :Optional[int] , __snake_case :str , __snake_case :str=False ):
'''simple docstring'''
if isinstance(lowercase__ , (Encoder, Decoder) ):
__magic_name__ : Dict =value
def A__ ( self :Any , __snake_case :bool = True ):
'''simple docstring'''
__magic_name__ : Tuple =use_tiling
def A__ ( self :int ):
'''simple docstring'''
self.enable_tiling(lowercase__ )
def A__ ( self :Optional[int] ):
'''simple docstring'''
__magic_name__ : str =True
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : Optional[Any] =False
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : Any ={}
def fn_recursive_add_processors(__snake_case :str , __snake_case :torch.nn.Module , __snake_case :Dict[str, AttentionProcessor] ):
if hasattr(lowercase__ , """set_processor""" ):
__magic_name__ : Optional[Any] =module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}" , lowercase__ , lowercase__ )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(lowercase__ , lowercase__ , lowercase__ )
return processors
def A__ ( self :Union[str, Any] , __snake_case :Union[AttentionProcessor, Dict[str, AttentionProcessor]] ):
'''simple docstring'''
__magic_name__ : List[Any] =len(self.attn_processors.keys() )
if isinstance(lowercase__ , lowercase__ ) and len(lowercase__ ) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(lowercase__ )} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." )
def fn_recursive_attn_processor(__snake_case :str , __snake_case :torch.nn.Module , __snake_case :Tuple ):
if hasattr(lowercase__ , """set_processor""" ):
if not isinstance(lowercase__ , lowercase__ ):
module.set_processor(lowercase__ )
else:
module.set_processor(processor.pop(f"{name}.processor" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}" , lowercase__ , lowercase__ )
for name, module in self.named_children():
fn_recursive_attn_processor(lowercase__ , lowercase__ , lowercase__ )
def A__ ( self :Dict ):
'''simple docstring'''
self.set_attn_processor(AttnProcessor() )
@apply_forward_hook
def A__ ( self :Optional[int] , __snake_case :torch.FloatTensor , __snake_case :bool = True ):
'''simple docstring'''
if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
return self.tiled_encode(lowercase__ , return_dict=lowercase__ )
if self.use_slicing and x.shape[0] > 1:
__magic_name__ : str =[self.encoder(lowercase__ ) for x_slice in x.split(1 )]
__magic_name__ : Any =torch.cat(lowercase__ )
else:
__magic_name__ : Tuple =self.encoder(lowercase__ )
__magic_name__ : Optional[Any] =self.quant_conv(lowercase__ )
__magic_name__ : Dict =DiagonalGaussianDistribution(lowercase__ )
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=lowercase__ )
def A__ ( self :List[str] , __snake_case :torch.FloatTensor , __snake_case :bool = True ):
'''simple docstring'''
if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
return self.tiled_decode(lowercase__ , return_dict=lowercase__ )
__magic_name__ : Optional[Any] =self.post_quant_conv(lowercase__ )
__magic_name__ : List[Any] =self.decoder(lowercase__ )
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase__ )
@apply_forward_hook
def A__ ( self :int , __snake_case :torch.FloatTensor , __snake_case :bool = True ):
'''simple docstring'''
if self.use_slicing and z.shape[0] > 1:
__magic_name__ : str =[self._decode(lowercase__ ).sample for z_slice in z.split(1 )]
__magic_name__ : Tuple =torch.cat(lowercase__ )
else:
__magic_name__ : Union[str, Any] =self._decode(lowercase__ ).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=lowercase__ )
def A__ ( self :Any , __snake_case :Tuple , __snake_case :Optional[int] , __snake_case :Tuple ):
'''simple docstring'''
__magic_name__ : List[str] =min(a.shape[2] , b.shape[2] , lowercase__ )
for y in range(lowercase__ ):
__magic_name__ : List[Any] =a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
return b
def A__ ( self :Optional[int] , __snake_case :Any , __snake_case :Union[str, Any] , __snake_case :Any ):
'''simple docstring'''
__magic_name__ : Dict =min(a.shape[3] , b.shape[3] , lowercase__ )
for x in range(lowercase__ ):
__magic_name__ : List[Any] =a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
return b
def A__ ( self :int , __snake_case :torch.FloatTensor , __snake_case :bool = True ):
'''simple docstring'''
__magic_name__ : List[Any] =int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) )
__magic_name__ : Dict =int(self.tile_latent_min_size * self.tile_overlap_factor )
__magic_name__ : Any =self.tile_latent_min_size - blend_extent
# Split the image into 512x512 tiles and encode them separately.
__magic_name__ : Union[str, Any] =[]
for i in range(0 , x.shape[2] , lowercase__ ):
__magic_name__ : Optional[Any] =[]
for j in range(0 , x.shape[3] , lowercase__ ):
__magic_name__ : int =x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
__magic_name__ : List[str] =self.encoder(lowercase__ )
__magic_name__ : Any =self.quant_conv(lowercase__ )
row.append(lowercase__ )
rows.append(lowercase__ )
__magic_name__ : List[Any] =[]
for i, row in enumerate(lowercase__ ):
__magic_name__ : Tuple =[]
for j, tile in enumerate(lowercase__ ):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
__magic_name__ : Optional[int] =self.blend_v(rows[i - 1][j] , lowercase__ , lowercase__ )
if j > 0:
__magic_name__ : Union[str, Any] =self.blend_h(row[j - 1] , lowercase__ , lowercase__ )
result_row.append(tile[:, :, :row_limit, :row_limit] )
result_rows.append(torch.cat(lowercase__ , dim=3 ) )
__magic_name__ : Optional[int] =torch.cat(lowercase__ , dim=2 )
__magic_name__ : Union[str, Any] =DiagonalGaussianDistribution(lowercase__ )
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=lowercase__ )
def A__ ( self :List[str] , __snake_case :torch.FloatTensor , __snake_case :bool = True ):
'''simple docstring'''
__magic_name__ : Any =int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) )
__magic_name__ : int =int(self.tile_sample_min_size * self.tile_overlap_factor )
__magic_name__ : Optional[Any] =self.tile_sample_min_size - blend_extent
# Split z into overlapping 64x64 tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
__magic_name__ : List[str] =[]
for i in range(0 , z.shape[2] , lowercase__ ):
__magic_name__ : Any =[]
for j in range(0 , z.shape[3] , lowercase__ ):
__magic_name__ : Optional[int] =z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
__magic_name__ : Optional[Any] =self.post_quant_conv(lowercase__ )
__magic_name__ : Optional[int] =self.decoder(lowercase__ )
row.append(lowercase__ )
rows.append(lowercase__ )
__magic_name__ : Optional[Any] =[]
for i, row in enumerate(lowercase__ ):
__magic_name__ : Tuple =[]
for j, tile in enumerate(lowercase__ ):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
__magic_name__ : Dict =self.blend_v(rows[i - 1][j] , lowercase__ , lowercase__ )
if j > 0:
__magic_name__ : Tuple =self.blend_h(row[j - 1] , lowercase__ , lowercase__ )
result_row.append(tile[:, :, :row_limit, :row_limit] )
result_rows.append(torch.cat(lowercase__ , dim=3 ) )
__magic_name__ : List[Any] =torch.cat(lowercase__ , dim=2 )
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase__ )
def A__ ( self :Tuple , __snake_case :torch.FloatTensor , __snake_case :bool = False , __snake_case :bool = True , __snake_case :Optional[torch.Generator] = None , ):
'''simple docstring'''
__magic_name__ : Any =sample
__magic_name__ : List[Any] =self.encode(lowercase__ ).latent_dist
if sample_posterior:
__magic_name__ : Optional[int] =posterior.sample(generator=lowercase__ )
else:
__magic_name__ : List[Any] =posterior.mode()
__magic_name__ : Union[str, Any] =self.decode(lowercase__ ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase__ )
| 21 |
'''simple docstring'''
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
lowerCAmelCase__ = logging.get_logger(__name__)
@add_end_docstrings(lowerCamelCase__ )
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
def __init__( self : List[str] ,**lowercase__ : Tuple ):
super().__init__(**lowercase__ )
if self.framework == "tf":
raise ValueError(F"The {self.__class__} is only available in PyTorch." )
requires_backends(self ,'''vision''' )
self.check_model_type(lowercase__ )
def __call__( self : List[str] ,lowercase__ : Union[str, "Image.Image", List[Dict[str, Any]]] ,lowercase__ : Union[str, List[str]] = None ,**lowercase__ : str ,):
if "text_queries" in kwargs:
__lowercase = kwargs.pop('''text_queries''' )
if isinstance(lowercase__ ,(str, Image.Image) ):
__lowercase = {'''image''': image, '''candidate_labels''': candidate_labels}
else:
__lowercase = image
__lowercase = super().__call__(lowercase__ ,**lowercase__ )
return results
def SCREAMING_SNAKE_CASE ( self : int ,**lowercase__ : List[Any] ):
__lowercase = {}
if "threshold" in kwargs:
__lowercase = kwargs['''threshold''']
if "top_k" in kwargs:
__lowercase = kwargs['''top_k''']
return {}, {}, postprocess_params
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[Any] ):
__lowercase = load_image(inputs['''image'''] )
__lowercase = inputs['''candidate_labels''']
if isinstance(lowercase__ ,lowercase__ ):
__lowercase = candidate_labels.split(''',''' )
__lowercase = torch.tensor([[image.height, image.width]] ,dtype=torch.intaa )
for i, candidate_label in enumerate(lowercase__ ):
__lowercase = self.tokenizer(lowercase__ ,return_tensors=self.framework )
__lowercase = self.image_processor(lowercase__ ,return_tensors=self.framework )
yield {
"is_last": i == len(lowercase__ ) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ):
__lowercase = model_inputs.pop('''target_size''' )
__lowercase = model_inputs.pop('''candidate_label''' )
__lowercase = model_inputs.pop('''is_last''' )
__lowercase = self.model(**lowercase__ )
__lowercase = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs}
return model_outputs
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : List[Any]=0.1 ,lowercase__ : List[str]=None ):
__lowercase = []
for model_output in model_outputs:
__lowercase = model_output['''candidate_label''']
__lowercase = BaseModelOutput(lowercase__ )
__lowercase = self.image_processor.post_process_object_detection(
outputs=lowercase__ ,threshold=lowercase__ ,target_sizes=model_output['''target_size'''] )[0]
for index in outputs["scores"].nonzero():
__lowercase = outputs['''scores'''][index].item()
__lowercase = self._get_bounding_box(outputs['''boxes'''][index][0] )
__lowercase = {'''score''': score, '''label''': label, '''box''': box}
results.append(lowercase__ )
__lowercase = sorted(lowercase__ ,key=lambda lowercase__ : x["score"] ,reverse=lowercase__ )
if top_k:
__lowercase = results[:top_k]
return results
def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : "torch.Tensor" ):
if self.framework != "pt":
raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' )
__lowercase , __lowercase , __lowercase , __lowercase = box.int().tolist()
__lowercase = {
'''xmin''': xmin,
'''ymin''': ymin,
'''xmax''': xmax,
'''ymax''': ymax,
}
return bbox
| 41 | 0 |
"""simple docstring"""
import argparse
import struct
import unittest
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self ,lowerCamelCase_ ) -> Optional[Any]:
A = data
# Initialize hash values
A = [
0x6A09E667,
0xBB67AE85,
0x3C6EF372,
0xA54FF53A,
0x510E527F,
0x9B05688C,
0x1F83D9AB,
0x5BE0CD19,
]
# Initialize round constants
A = [
0x428A2F98,
0x71374491,
0xB5C0FBCF,
0xE9B5DBA5,
0x3956C25B,
0x59F111F1,
0x923F82A4,
0xAB1C5ED5,
0xD807AA98,
0x12835B01,
0x243185BE,
0x550C7DC3,
0x72BE5D74,
0x80DEB1FE,
0x9BDC06A7,
0xC19BF174,
0xE49B69C1,
0xEFBE4786,
0x0FC19DC6,
0x240CA1CC,
0x2DE92C6F,
0x4A7484AA,
0x5CB0A9DC,
0x76F988DA,
0x983E5152,
0xA831C66D,
0xB00327C8,
0xBF597FC7,
0xC6E00BF3,
0xD5A79147,
0x06CA6351,
0x14292967,
0x27B70A85,
0x2E1B2138,
0x4D2C6DFC,
0x53380D13,
0x650A7354,
0x766A0ABB,
0x81C2C92E,
0x92722C85,
0xA2BFE8A1,
0xA81A664B,
0xC24B8B70,
0xC76C51A3,
0xD192E819,
0xD6990624,
0xF40E3585,
0x106AA070,
0x19A4C116,
0x1E376C08,
0x2748774C,
0x34B0BCB5,
0x391C0CB3,
0x4ED8AA4A,
0x5B9CCA4F,
0x682E6FF3,
0x748F82EE,
0x78A5636F,
0x84C87814,
0x8CC70208,
0x90BEFFFA,
0xA4506CEB,
0xBEF9A3F7,
0xC67178F2,
]
A = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def UpperCamelCase__ ( lowerCamelCase_ ) -> Union[str, Any]:
A = b"""\x80""" + (b"""\x00""" * (6_3 - (len(lowercase__ ) + 8) % 6_4))
A = struct.pack(""">Q""" ,(len(lowercase__ ) * 8) )
return data + padding + big_endian_integer
def UpperCamelCase__ ( self ) -> List[str]:
# Convert into blocks of 64 bytes
A = [
self.preprocessed_data[x : x + 6_4]
for x in range(0 ,len(self.preprocessed_data ) ,6_4 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
A = list(struct.unpack(""">16L""" ,lowercase__ ) )
# add 48 0-ed integers
words += [0] * 4_8
A , A , A , A , A , A , A , A = self.hashes
for index in range(0 ,6_4 ):
if index > 1_5:
# modify the zero-ed indexes at the end of the array
A = (
self.ror(words[index - 1_5] ,7 )
^ self.ror(words[index - 1_5] ,1_8 )
^ (words[index - 1_5] >> 3)
)
A = (
self.ror(words[index - 2] ,1_7 )
^ self.ror(words[index - 2] ,1_9 )
^ (words[index - 2] >> 1_0)
)
A = (
words[index - 1_6] + sa + words[index - 7] + sa
) % 0x100000000
# Compression
A = self.ror(lowercase__ ,6 ) ^ self.ror(lowercase__ ,1_1 ) ^ self.ror(lowercase__ ,2_5 )
A = (e & f) ^ ((~e & 0xFFFFFFFF) & g)
A = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0x100000000
A = self.ror(lowercase__ ,2 ) ^ self.ror(lowercase__ ,1_3 ) ^ self.ror(lowercase__ ,2_2 )
A = (a & b) ^ (a & c) ^ (b & c)
A = (sa + maj) % 0x100000000
A , A , A , A , A , A , A , A = (
g,
f,
e,
((d + tempa) % 0x100000000),
c,
b,
a,
((tempa + tempa) % 0x100000000),
)
A = [a, b, c, d, e, f, g, h]
# Modify final values
A = [
((element + mutated_hash_values[index]) % 0x100000000)
for index, element in enumerate(self.hashes )
]
A = """""".join([hex(lowercase__ )[2:].zfill(8 ) for value in self.hashes] )
def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> Any:
return 0xFFFFFFFF & (value << (3_2 - rotations)) | (value >> rotations)
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ) -> str:
import hashlib
A = bytes("""Test String""" ,"""utf-8""" )
self.assertEqual(SHAaaa(lowercase__ ).hash ,hashlib.shaaaa(lowercase__ ).hexdigest() )
def _A ( ):
"""simple docstring"""
import doctest
doctest.testmod()
A = argparse.ArgumentParser()
parser.add_argument(
"""-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , )
parser.add_argument(
"""-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" )
A = parser.parse_args()
A = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , """rb""" ) as f:
A = f.read()
else:
A = bytes(A__ , """utf-8""" )
print(SHAaaa(A__ ).hash )
if __name__ == "__main__":
main()
| 617 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = 'facebook/bart-large-mnli'
SCREAMING_SNAKE_CASE : Optional[Any] = (
'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which '
'should be the text to classify, and `labels`, which should be the list of labels to use for classification. '
'It returns the most likely label in the list of provided `labels` for the input text.'
)
SCREAMING_SNAKE_CASE : Any = 'text_classifier'
SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer
SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForSequenceClassification
SCREAMING_SNAKE_CASE : Tuple = ['text', ['text']]
SCREAMING_SNAKE_CASE : List[str] = ['text']
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
super().setup()
__lowercase = self.model.config
__lowercase = -1
for idx, label in config.idalabel.items():
if label.lower().startswith('''entail''' ):
__lowercase = int(lowercase__ )
if self.entailment_id == -1:
raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Dict ,lowercase__ : List[Any] ):
__lowercase = labels
return self.pre_processor(
[text] * len(lowercase__ ) ,[F"This example is {label}" for label in labels] ,return_tensors='''pt''' ,padding='''max_length''' ,)
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ):
__lowercase = outputs.logits
__lowercase = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id]
| 41 | 0 |
"""simple docstring"""
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
lowerCAmelCase_ : Any = getLogger(__name__)
lowerCAmelCase_ : List[str] = '''cuda''' if torch.cuda.is_available() else '''cpu'''
def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 8 , lowerCAmelCase = DEFAULT_DEVICE , lowerCAmelCase=False , lowerCAmelCase="summarization" , lowerCAmelCase=None , **lowerCAmelCase , ):
'''simple docstring'''
UpperCAmelCase = Path(A__ ).open("""w""" , encoding="""utf-8""" )
UpperCAmelCase = str(A__ )
UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(A__ ).to(A__ )
if fpaa:
UpperCAmelCase = model.half()
UpperCAmelCase = AutoTokenizer.from_pretrained(A__ )
logger.info(F'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type.
UpperCAmelCase = time.time()
# update config with task specific params
use_task_specific_params(A__ , A__ )
if prefix is None:
UpperCAmelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """"""
for examples_chunk in tqdm(list(chunks(A__ , A__ ) ) ):
UpperCAmelCase = [prefix + text for text in examples_chunk]
UpperCAmelCase = tokenizer(A__ , return_tensors="""pt""" , truncation=A__ , padding="""longest""" ).to(A__ )
UpperCAmelCase = model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **A__ , )
UpperCAmelCase = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ )
for hypothesis in dec:
fout.write(hypothesis + """\n""" )
fout.flush()
fout.close()
UpperCAmelCase = int(time.time() - start_time ) # seconds
UpperCAmelCase = len(A__ )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )}
def _lowerCAmelCase ( ):
'''simple docstring'''
return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" )
def _lowerCAmelCase ( lowerCAmelCase=True ):
'''simple docstring'''
UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument("""model_name""" , type=A__ , help="""like facebook/bart-large-cnn,t5-base, etc.""" )
parser.add_argument("""input_path""" , type=A__ , help="""like cnn_dm/test.source""" )
parser.add_argument("""save_path""" , type=A__ , help="""where to save summaries""" )
parser.add_argument("""--reference_path""" , type=A__ , required=A__ , help="""like cnn_dm/test.target""" )
parser.add_argument("""--score_path""" , type=A__ , required=A__ , default="""metrics.json""" , help="""where to save metrics""" )
parser.add_argument("""--device""" , type=A__ , required=A__ , default=A__ , help="""cuda, cuda:1, cpu etc.""" )
parser.add_argument(
"""--prefix""" , type=A__ , required=A__ , default=A__ , help="""will be added to the begininng of src examples""" )
parser.add_argument("""--task""" , type=A__ , default="""summarization""" , help="""used for task_specific_params + metrics""" )
parser.add_argument("""--bs""" , type=A__ , default=8 , required=A__ , help="""batch size""" )
parser.add_argument(
"""--n_obs""" , type=A__ , default=-1 , required=A__ , help="""How many observations. Defaults to all.""" )
parser.add_argument("""--fp16""" , action="""store_true""" )
parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" )
parser.add_argument(
"""--info""" , nargs="""?""" , type=A__ , const=datetime_now() , help=(
"""use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g."""
""" lang=en-ru. If no value is passed, the current datetime string will be used."""
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
UpperCAmelCase , UpperCAmelCase = parser.parse_known_args()
UpperCAmelCase = parse_numeric_n_bool_cl_kwargs(A__ )
if parsed_args and verbose:
print(F'''parsed the following generate kwargs: {parsed_args}''' )
UpperCAmelCase = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
UpperCAmelCase = examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=A__ )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(F'''score_path {args.score_path} will be overwritten unless you type ctrl-c.''' )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError("""Can\'t mix --fp16 and --device cpu""" )
UpperCAmelCase = generate_summaries_or_translations(
A__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **A__ , )
if args.reference_path is None:
return {}
# Compute scores
UpperCAmelCase = calculate_bleu if """translation""" in args.task else calculate_rouge
UpperCAmelCase = [x.rstrip() for x in open(args.save_path ).readlines()]
UpperCAmelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(A__ )]
UpperCAmelCase = score_fn(A__ , A__ )
scores.update(A__ )
if args.dump_args:
scores.update(A__ )
if args.info:
UpperCAmelCase = args.info
if verbose:
print(A__ )
if args.score_path is not None:
json.dump(A__ , open(args.score_path , """w""" ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 673 |
'''simple docstring'''
from collections.abc import Callable
class lowercase_ :
"""simple docstring"""
def __init__( self : Optional[int] ,lowercase__ : Callable | None = None ):
# Stores actual heap items.
__lowercase = []
# Stores indexes of each item for supporting updates and deletion.
__lowercase = {}
# Stores current size of heap.
__lowercase = 0
# Stores function used to evaluate the score of an item on which basis ordering
# will be done.
__lowercase = key or (lambda lowercase__ : x)
def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : int ):
return int((i - 1) / 2 ) if i > 0 else None
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ):
__lowercase = int(2 * i + 1 )
return left if 0 < left < self.size else None
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ):
__lowercase = int(2 * i + 2 )
return right if 0 < right < self.size else None
def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : int ,lowercase__ : int ):
__lowercase , __lowercase = (
self.pos_map[self.arr[j][0]],
self.pos_map[self.arr[i][0]],
)
# Then swap the items in the list.
__lowercase , __lowercase = self.arr[j], self.arr[i]
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ):
return self.arr[i][1] < self.arr[j][1]
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ):
__lowercase = self._left(lowercase__ )
__lowercase = self._right(lowercase__ )
__lowercase = i
if left is not None and not self._cmp(lowercase__ ,lowercase__ ):
__lowercase = left
if right is not None and not self._cmp(lowercase__ ,lowercase__ ):
__lowercase = right
return valid_parent
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ):
__lowercase = self._parent(lowercase__ )
while parent is not None and not self._cmp(lowercase__ ,lowercase__ ):
self._swap(lowercase__ ,lowercase__ )
__lowercase , __lowercase = parent, self._parent(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ):
__lowercase = self._get_valid_parent(lowercase__ )
while valid_parent != index:
self._swap(lowercase__ ,lowercase__ )
__lowercase , __lowercase = valid_parent, self._get_valid_parent(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ):
if item not in self.pos_map:
return
__lowercase = self.pos_map[item]
__lowercase = [item, self.key(lowercase__ )]
# Make sure heap is right in both up and down direction.
# Ideally only one of them will make any change.
self._heapify_up(lowercase__ )
self._heapify_down(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ):
if item not in self.pos_map:
return
__lowercase = self.pos_map[item]
del self.pos_map[item]
__lowercase = self.arr[self.size - 1]
__lowercase = index
self.size -= 1
# Make sure heap is right in both up and down direction. Ideally only one
# of them will make any change- so no performance loss in calling both.
if self.size > index:
self._heapify_up(lowercase__ )
self._heapify_down(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : int ):
__lowercase = len(self.arr )
if arr_len == self.size:
self.arr.append([item, self.key(lowercase__ )] )
else:
__lowercase = [item, self.key(lowercase__ )]
__lowercase = self.size
self.size += 1
self._heapify_up(self.size - 1 )
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
return self.arr[0] if self.size else None
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
__lowercase = self.get_top()
if top_item_tuple:
self.delete_item(top_item_tuple[0] )
return top_item_tuple
def _A ( ):
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 41 | 0 |
from collections.abc import Callable
class _UpperCamelCase :
'''simple docstring'''
def __init__( self : Optional[int] , _lowerCamelCase : Callable | None = None ):
'''simple docstring'''
__lowerCamelCase : Union[str, Any] = []
# Stores indexes of each item for supporting updates and deletion.
__lowerCamelCase : Optional[int] = {}
# Stores current size of heap.
__lowerCamelCase : Any = 0
# Stores function used to evaluate the score of an item on which basis ordering
# will be done.
__lowerCamelCase : Union[str, Any] = key or (lambda _lowerCamelCase : x)
def _snake_case ( self : Tuple , _lowerCamelCase : int ):
'''simple docstring'''
return int((i - 1) / 2 ) if i > 0 else None
def _snake_case ( self : Optional[int] , _lowerCamelCase : int ):
'''simple docstring'''
__lowerCamelCase : Union[str, Any] = int(2 * i + 1 )
return left if 0 < left < self.size else None
def _snake_case ( self : Optional[Any] , _lowerCamelCase : int ):
'''simple docstring'''
__lowerCamelCase : Tuple = int(2 * i + 2 )
return right if 0 < right < self.size else None
def _snake_case ( self : List[Any] , _lowerCamelCase : int , _lowerCamelCase : int ):
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase : Tuple = (
self.pos_map[self.arr[j][0]],
self.pos_map[self.arr[i][0]],
)
# Then swap the items in the list.
__lowerCamelCase , __lowerCamelCase : Optional[int] = self.arr[j], self.arr[i]
def _snake_case ( self : Any , _lowerCamelCase : int , _lowerCamelCase : int ):
'''simple docstring'''
return self.arr[i][1] < self.arr[j][1]
def _snake_case ( self : int , _lowerCamelCase : int ):
'''simple docstring'''
__lowerCamelCase : Union[str, Any] = self._left(lowercase__ )
__lowerCamelCase : Union[str, Any] = self._right(lowercase__ )
__lowerCamelCase : Optional[int] = i
if left is not None and not self._cmp(lowercase__ , lowercase__ ):
__lowerCamelCase : Any = left
if right is not None and not self._cmp(lowercase__ , lowercase__ ):
__lowerCamelCase : List[str] = right
return valid_parent
def _snake_case ( self : int , _lowerCamelCase : int ):
'''simple docstring'''
__lowerCamelCase : Optional[int] = self._parent(lowercase__ )
while parent is not None and not self._cmp(lowercase__ , lowercase__ ):
self._swap(lowercase__ , lowercase__ )
__lowerCamelCase , __lowerCamelCase : Union[str, Any] = parent, self._parent(lowercase__ )
def _snake_case ( self : Optional[int] , _lowerCamelCase : int ):
'''simple docstring'''
__lowerCamelCase : Any = self._get_valid_parent(lowercase__ )
while valid_parent != index:
self._swap(lowercase__ , lowercase__ )
__lowerCamelCase , __lowerCamelCase : List[Any] = valid_parent, self._get_valid_parent(lowercase__ )
def _snake_case ( self : Any , _lowerCamelCase : int , _lowerCamelCase : int ):
'''simple docstring'''
if item not in self.pos_map:
return
__lowerCamelCase : List[str] = self.pos_map[item]
__lowerCamelCase : Union[str, Any] = [item, self.key(lowercase__ )]
# Make sure heap is right in both up and down direction.
# Ideally only one of them will make any change.
self._heapify_up(lowercase__ )
self._heapify_down(lowercase__ )
def _snake_case ( self : int , _lowerCamelCase : int ):
'''simple docstring'''
if item not in self.pos_map:
return
__lowerCamelCase : List[Any] = self.pos_map[item]
del self.pos_map[item]
__lowerCamelCase : Optional[int] = self.arr[self.size - 1]
__lowerCamelCase : Tuple = index
self.size -= 1
# Make sure heap is right in both up and down direction. Ideally only one
# of them will make any change- so no performance loss in calling both.
if self.size > index:
self._heapify_up(lowercase__ )
self._heapify_down(lowercase__ )
def _snake_case ( self : List[str] , _lowerCamelCase : int , _lowerCamelCase : int ):
'''simple docstring'''
__lowerCamelCase : Optional[int] = len(self.arr )
if arr_len == self.size:
self.arr.append([item, self.key(lowercase__ )] )
else:
__lowerCamelCase : Dict = [item, self.key(lowercase__ )]
__lowerCamelCase : Optional[Any] = self.size
self.size += 1
self._heapify_up(self.size - 1 )
def _snake_case ( self : List[Any] ):
'''simple docstring'''
return self.arr[0] if self.size else None
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
__lowerCamelCase : int = self.get_top()
if top_item_tuple:
self.delete_item(top_item_tuple[0] )
return top_item_tuple
def _UpperCAmelCase ( ):
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 519 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
def __init__( self : List[str] ):
__lowercase = []
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : str ,**lowercase__ : Any ):
self.events.append('''on_init_end''' )
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : int ,**lowercase__ : Optional[int] ):
self.events.append('''on_train_begin''' )
def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ,**lowercase__ : List[str] ):
self.events.append('''on_train_end''' )
def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,**lowercase__ : Optional[Any] ):
self.events.append('''on_epoch_begin''' )
def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : Any ,**lowercase__ : Optional[int] ):
self.events.append('''on_epoch_end''' )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[str] ,**lowercase__ : List[str] ):
self.events.append('''on_step_begin''' )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : Optional[int] ,**lowercase__ : Dict ):
self.events.append('''on_step_end''' )
def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,**lowercase__ : Any ):
self.events.append('''on_evaluate''' )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : int ,**lowercase__ : Optional[Any] ):
self.events.append('''on_predict''' )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,**lowercase__ : int ):
self.events.append('''on_save''' )
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : List[str] ,**lowercase__ : List[str] ):
self.events.append('''on_log''' )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : int ,lowercase__ : Dict ,**lowercase__ : str ):
self.events.append('''on_prediction_step''' )
@require_torch
class lowercase_ (unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE ( self : List[str] ):
__lowercase = tempfile.mkdtemp()
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
shutil.rmtree(self.output_dir )
def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any]=0 ,lowercase__ : Any=0 ,lowercase__ : Tuple=6_4 ,lowercase__ : Optional[int]=6_4 ,lowercase__ : Optional[Any]=None ,lowercase__ : str=False ,**lowercase__ : Any ):
# disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure
# its set to False since the tests later on depend on its value.
__lowercase = RegressionDataset(length=lowercase__ )
__lowercase = RegressionDataset(length=lowercase__ )
__lowercase = RegressionModelConfig(a=lowercase__ ,b=lowercase__ )
__lowercase = RegressionPreTrainedModel(lowercase__ )
__lowercase = TrainingArguments(self.output_dir ,disable_tqdm=lowercase__ ,report_to=[] ,**lowercase__ )
return Trainer(
lowercase__ ,lowercase__ ,train_dataset=lowercase__ ,eval_dataset=lowercase__ ,callbacks=lowercase__ ,)
def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ):
self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) )
# Order doesn't matter
__lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ )
__lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ )
for cba, cba in zip(lowercase__ ,lowercase__ ):
if isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ):
self.assertEqual(lowercase__ ,lowercase__ )
elif isinstance(lowercase__ ,lowercase__ ) and not isinstance(lowercase__ ,lowercase__ ):
self.assertEqual(lowercase__ ,cba.__class__ )
elif not isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ):
self.assertEqual(cba.__class__ ,lowercase__ )
else:
self.assertEqual(lowercase__ ,lowercase__ )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ):
__lowercase = ['''on_init_end''', '''on_train_begin''']
__lowercase = 0
__lowercase = len(trainer.get_eval_dataloader() )
__lowercase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate''']
for _ in range(trainer.state.num_train_epochs ):
expected_events.append('''on_epoch_begin''' )
for _ in range(lowercase__ ):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append('''on_log''' )
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append('''on_save''' )
expected_events.append('''on_epoch_end''' )
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def SCREAMING_SNAKE_CASE ( self : str ):
__lowercase = self.get_trainer()
__lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
# Callbacks passed at init are added to the default callbacks
__lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] )
expected_callbacks.append(lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
__lowercase = self.get_trainer(disable_tqdm=lowercase__ )
__lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
__lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
__lowercase = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(lowercase__ )
expected_callbacks.remove(lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
__lowercase = self.get_trainer()
__lowercase = trainer.pop_callback(lowercase__ )
self.assertEqual(cb.__class__ ,lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
trainer.add_callback(lowercase__ )
expected_callbacks.insert(0 ,lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
# We can also add, pop, or remove by instance
__lowercase = self.get_trainer()
__lowercase = trainer.callback_handler.callbacks[0]
trainer.remove_callback(lowercase__ )
expected_callbacks.remove(lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
__lowercase = self.get_trainer()
__lowercase = trainer.callback_handler.callbacks[0]
__lowercase = trainer.pop_callback(lowercase__ )
self.assertEqual(lowercase__ ,lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
trainer.add_callback(lowercase__ )
expected_callbacks.insert(0 ,lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Dict ):
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action='''ignore''' ,category=lowercase__ )
__lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] )
trainer.train()
__lowercase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
# Independent log/save/eval
__lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 )
trainer.train()
__lowercase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
__lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 )
trainer.train()
__lowercase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
__lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='''steps''' )
trainer.train()
__lowercase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
__lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='''epoch''' )
trainer.train()
__lowercase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
# A bit of everything
__lowercase = self.get_trainer(
callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=1_0 ,eval_steps=5 ,evaluation_strategy='''steps''' ,)
trainer.train()
__lowercase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
# warning should be emitted for duplicated callbacks
with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock:
__lowercase = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,)
assert str(lowercase__ ) in warn_mock.call_args[0][0]
| 41 | 0 |
"""simple docstring"""
import inspect
import unittest
import torch
import torch.nn as nn
from accelerate.hooks import (
AlignDevicesHook,
ModelHook,
SequentialHook,
add_hook_to_module,
attach_align_device_hook,
remove_hook_from_module,
remove_hook_from_submodules,
)
from accelerate.test_utils import require_multi_gpu
class UpperCamelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Tuple ):
super().__init__()
A__ = nn.Linear(3 , 4 )
A__ = nn.BatchNormad(4 )
A__ = nn.Linear(4 , 5 )
def A__ ( self : List[str] , _lowerCamelCase : List[Any] ):
return self.lineara(self.batchnorm(self.lineara(lowercase__ ) ) )
class UpperCamelCase ( lowerCamelCase__ ):
"""simple docstring"""
def A__ ( self : List[Any] , _lowerCamelCase : Dict , *_lowerCamelCase : List[str] , **_lowerCamelCase : List[str] ):
return (args[0] + 1,) + args[1:], kwargs
class UpperCamelCase ( lowerCamelCase__ ):
"""simple docstring"""
def A__ ( self : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] ):
return output + 1
class UpperCamelCase ( unittest.TestCase ):
"""simple docstring"""
def A__ ( self : str ):
A__ = ModelForTest()
A__ = ModelHook()
add_hook_to_module(lowercase__ , lowercase__ )
self.assertEqual(test_model._hf_hook , lowercase__ )
self.assertTrue(hasattr(lowercase__ , '''_old_forward''' ) )
# Check adding the hook did not change the name or the signature
self.assertEqual(test_model.forward.__name__ , '''forward''' )
self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] )
remove_hook_from_module(lowercase__ )
self.assertFalse(hasattr(lowercase__ , '''_hf_hook''' ) )
self.assertFalse(hasattr(lowercase__ , '''_old_forward''' ) )
def A__ ( self : List[str] ):
A__ = ModelForTest()
A__ = ModelHook()
add_hook_to_module(lowercase__ , lowercase__ )
add_hook_to_module(lowercase__ , lowercase__ , append=lowercase__ )
self.assertEqual(isinstance(test_model._hf_hook , lowercase__ ) , lowercase__ )
self.assertEqual(len(test_model._hf_hook.hooks ) , 2 )
self.assertTrue(hasattr(lowercase__ , '''_old_forward''' ) )
# Check adding the hook did not change the name or the signature
self.assertEqual(test_model.forward.__name__ , '''forward''' )
self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] )
remove_hook_from_module(lowercase__ )
self.assertFalse(hasattr(lowercase__ , '''_hf_hook''' ) )
self.assertFalse(hasattr(lowercase__ , '''_old_forward''' ) )
def A__ ( self : Optional[int] ):
A__ = ModelForTest()
A__ = torch.randn(2 , 3 )
A__ = test_model(x + 1 )
A__ = test_model(x + 2 )
A__ = PreForwardHook()
add_hook_to_module(lowercase__ , lowercase__ )
A__ = test_model(lowercase__ )
self.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1E-5 ) )
# Attaching a hook to a model when it already has one replaces, does not chain
A__ = PreForwardHook()
add_hook_to_module(lowercase__ , lowercase__ )
A__ = test_model(lowercase__ )
self.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1E-5 ) )
# You need to use the sequential hook to chain two or more hooks
A__ = SequentialHook(PreForwardHook() , PreForwardHook() )
add_hook_to_module(lowercase__ , lowercase__ )
A__ = test_model(lowercase__ )
assert torch.allclose(lowercase__ , lowercase__ , atol=1E-5 )
def A__ ( self : Optional[int] ):
A__ = ModelForTest()
A__ = torch.randn(2 , 3 )
A__ = test_model(lowercase__ )
A__ = PostForwardHook()
add_hook_to_module(lowercase__ , lowercase__ )
A__ = test_model(lowercase__ )
self.assertTrue(torch.allclose(lowercase__ , output + 1 , atol=1E-5 ) )
# Attaching a hook to a model when it already has one replaces, does not chain
A__ = PostForwardHook()
add_hook_to_module(lowercase__ , lowercase__ )
A__ = test_model(lowercase__ )
self.assertTrue(torch.allclose(lowercase__ , output + 1 , atol=1E-5 ) )
# You need to use the sequential hook to chain two or more hooks
A__ = SequentialHook(PostForwardHook() , PostForwardHook() )
add_hook_to_module(lowercase__ , lowercase__ )
A__ = test_model(lowercase__ )
assert torch.allclose(lowercase__ , output + 2 , atol=1E-5 )
def A__ ( self : int ):
A__ = ModelForTest()
A__ = torch.randn(2 , 3 )
A__ = test_model(lowercase__ )
A__ = PostForwardHook()
add_hook_to_module(lowercase__ , lowercase__ )
A__ = test_model(lowercase__ )
self.assertTrue(torch.allclose(lowercase__ , output + 1 ) )
self.assertTrue(outputa.requires_grad )
A__ = True
A__ = test_model(lowercase__ )
self.assertFalse(outputa.requires_grad )
@require_multi_gpu
def A__ ( self : Dict ):
A__ = ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) )
self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
# This will move each submodule on different devices
add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) )
add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) )
add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) )
self.assertEqual(model.lineara.weight.device , torch.device(0 ) )
self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) )
self.assertEqual(model.lineara.weight.device , torch.device(1 ) )
# We can still make a forward pass. The input does not need to be on any particular device
A__ = torch.randn(2 , 3 )
A__ = model(lowercase__ )
self.assertEqual(output.device , torch.device(1 ) )
# We can add a general hook to put back output on same device as input.
add_hook_to_module(lowercase__ , AlignDevicesHook(io_same_device=lowercase__ ) )
A__ = torch.randn(2 , 3 ).to(0 )
A__ = model(lowercase__ )
self.assertEqual(output.device , torch.device(0 ) )
def A__ ( self : str ):
A__ = ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) )
self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
# This will move each submodule on different devices
A__ = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True}
add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase__ ) )
add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowercase__ ) )
add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase__ ) )
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) )
self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) )
self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) )
# Buffers are not included in the offload by default, so are on the execution device
A__ = torch.device(hook_kwargs['''execution_device'''] )
self.assertEqual(model.batchnorm.running_mean.device , lowercase__ )
A__ = torch.randn(2 , 3 )
A__ = model(lowercase__ )
self.assertEqual(output.device , lowercase__ )
# Removing hooks loads back the weights in the model.
remove_hook_from_module(model.lineara )
remove_hook_from_module(model.batchnorm )
remove_hook_from_module(model.lineara )
self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) )
self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
# Now test with buffers included in the offload
A__ = {
'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''',
'''offload''': True,
'''offload_buffers''': True,
}
add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase__ ) )
add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowercase__ ) )
add_hook_to_module(model.lineara , AlignDevicesHook(**lowercase__ ) )
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) )
self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) )
self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) )
A__ = torch.randn(2 , 3 )
A__ = model(lowercase__ )
self.assertEqual(output.device , lowercase__ )
# Removing hooks loads back the weights in the model.
remove_hook_from_module(model.lineara )
remove_hook_from_module(model.batchnorm )
remove_hook_from_module(model.lineara )
self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) )
self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
def A__ ( self : int ):
A__ = ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) )
self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
# This will move each submodule on different devices
A__ = 0 if torch.cuda.is_available() else '''cpu'''
attach_align_device_hook(lowercase__ , execution_device=lowercase__ , offload=lowercase__ )
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) )
self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) )
self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) )
# Buffers are not included in the offload by default, so are on the execution device
A__ = torch.device(lowercase__ )
self.assertEqual(model.batchnorm.running_mean.device , lowercase__ )
A__ = torch.randn(2 , 3 )
A__ = model(lowercase__ )
self.assertEqual(output.device , lowercase__ )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(lowercase__ )
self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) )
self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
# Now test with buffers included in the offload
attach_align_device_hook(lowercase__ , execution_device=lowercase__ , offload=lowercase__ , offload_buffers=lowercase__ )
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) )
self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) )
self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) )
A__ = torch.randn(2 , 3 )
A__ = model(lowercase__ )
self.assertEqual(output.device , lowercase__ )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(lowercase__ )
self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) )
self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
def A__ ( self : List[Any] ):
A__ = ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) )
self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
# This will move each submodule on different devices
A__ = 0 if torch.cuda.is_available() else '''cpu'''
attach_align_device_hook(
lowercase__ , execution_device=lowercase__ , offload=lowercase__ , weights_map=model.state_dict() )
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) )
self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) )
self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) )
# Buffers are not included in the offload by default, so are on the execution device
A__ = torch.device(lowercase__ )
self.assertEqual(model.batchnorm.running_mean.device , lowercase__ )
A__ = torch.randn(2 , 3 )
A__ = model(lowercase__ )
self.assertEqual(output.device , lowercase__ )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(lowercase__ )
self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) )
self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
# Now test with buffers included in the offload
attach_align_device_hook(
lowercase__ , execution_device=lowercase__ , offload=lowercase__ , weights_map=model.state_dict() , offload_buffers=lowercase__ , )
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) )
self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) )
self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) )
A__ = torch.randn(2 , 3 )
A__ = model(lowercase__ )
self.assertEqual(output.device , lowercase__ )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(lowercase__ )
self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) )
self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
| 571 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
)
@flax.struct.dataclass
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : jnp.ndarray
SCREAMING_SNAKE_CASE : jnp.ndarray
class lowercase_ (nn.Module ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int
SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6)
SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa
def SCREAMING_SNAKE_CASE ( self : Dict ):
__lowercase = nn.Conv(
self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
__lowercase = []
for i in range(len(self.block_out_channels ) - 1 ):
__lowercase = self.block_out_channels[i]
__lowercase = self.block_out_channels[i + 1]
__lowercase = nn.Conv(
lowercase__ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
blocks.append(lowercase__ )
__lowercase = nn.Conv(
lowercase__ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
blocks.append(lowercase__ )
__lowercase = blocks
__lowercase = nn.Conv(
self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,)
def __call__( self : List[str] ,lowercase__ : Optional[int] ):
__lowercase = self.conv_in(lowercase__ )
__lowercase = nn.silu(lowercase__ )
for block in self.blocks:
__lowercase = block(lowercase__ )
__lowercase = nn.silu(lowercase__ )
__lowercase = self.conv_out(lowercase__ )
return embedding
@flax_register_to_config
class lowercase_ (nn.Module , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = 3_2
SCREAMING_SNAKE_CASE : int = 4
SCREAMING_SNAKE_CASE : Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False
SCREAMING_SNAKE_CASE : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0)
SCREAMING_SNAKE_CASE : int = 2
SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8
SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None
SCREAMING_SNAKE_CASE : int = 1_2_8_0
SCREAMING_SNAKE_CASE : float = 0.0
SCREAMING_SNAKE_CASE : bool = False
SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa
SCREAMING_SNAKE_CASE : bool = True
SCREAMING_SNAKE_CASE : int = 0
SCREAMING_SNAKE_CASE : str = "rgb"
SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6)
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : jax.random.KeyArray ):
# init input tensors
__lowercase = (1, self.in_channels, self.sample_size, self.sample_size)
__lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa )
__lowercase = jnp.ones((1,) ,dtype=jnp.intaa )
__lowercase = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa )
__lowercase = (1, 3, self.sample_size * 8, self.sample_size * 8)
__lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa )
__lowercase , __lowercase = jax.random.split(lowercase__ )
__lowercase = {'''params''': params_rng, '''dropout''': dropout_rng}
return self.init(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )["params"]
def SCREAMING_SNAKE_CASE ( self : Any ):
__lowercase = self.block_out_channels
__lowercase = block_out_channels[0] * 4
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
__lowercase = self.num_attention_heads or self.attention_head_dim
# input
__lowercase = nn.Conv(
block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
# time
__lowercase = FlaxTimesteps(
block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift )
__lowercase = FlaxTimestepEmbedding(lowercase__ ,dtype=self.dtype )
__lowercase = FlaxControlNetConditioningEmbedding(
conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,)
__lowercase = self.only_cross_attention
if isinstance(lowercase__ ,lowercase__ ):
__lowercase = (only_cross_attention,) * len(self.down_block_types )
if isinstance(lowercase__ ,lowercase__ ):
__lowercase = (num_attention_heads,) * len(self.down_block_types )
# down
__lowercase = []
__lowercase = []
__lowercase = block_out_channels[0]
__lowercase = nn.Conv(
lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,)
controlnet_down_blocks.append(lowercase__ )
for i, down_block_type in enumerate(self.down_block_types ):
__lowercase = output_channel
__lowercase = block_out_channels[i]
__lowercase = i == len(lowercase__ ) - 1
if down_block_type == "CrossAttnDownBlock2D":
__lowercase = FlaxCrossAttnDownBlockaD(
in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,)
else:
__lowercase = FlaxDownBlockaD(
in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,)
down_blocks.append(lowercase__ )
for _ in range(self.layers_per_block ):
__lowercase = nn.Conv(
lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,)
controlnet_down_blocks.append(lowercase__ )
if not is_final_block:
__lowercase = nn.Conv(
lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,)
controlnet_down_blocks.append(lowercase__ )
__lowercase = down_blocks
__lowercase = controlnet_down_blocks
# mid
__lowercase = block_out_channels[-1]
__lowercase = FlaxUNetMidBlockaDCrossAttn(
in_channels=lowercase__ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,)
__lowercase = nn.Conv(
lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,)
def __call__( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : float = 1.0 ,lowercase__ : bool = True ,lowercase__ : bool = False ,):
__lowercase = self.controlnet_conditioning_channel_order
if channel_order == "bgr":
__lowercase = jnp.flip(lowercase__ ,axis=1 )
# 1. time
if not isinstance(lowercase__ ,jnp.ndarray ):
__lowercase = jnp.array([timesteps] ,dtype=jnp.intaa )
elif isinstance(lowercase__ ,jnp.ndarray ) and len(timesteps.shape ) == 0:
__lowercase = timesteps.astype(dtype=jnp.floataa )
__lowercase = jnp.expand_dims(lowercase__ ,0 )
__lowercase = self.time_proj(lowercase__ )
__lowercase = self.time_embedding(lowercase__ )
# 2. pre-process
__lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) )
__lowercase = self.conv_in(lowercase__ )
__lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) )
__lowercase = self.controlnet_cond_embedding(lowercase__ )
sample += controlnet_cond
# 3. down
__lowercase = (sample,)
for down_block in self.down_blocks:
if isinstance(lowercase__ ,lowercase__ ):
__lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train )
else:
__lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,deterministic=not train )
down_block_res_samples += res_samples
# 4. mid
__lowercase = self.mid_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train )
# 5. contronet blocks
__lowercase = ()
for down_block_res_sample, controlnet_block in zip(lowercase__ ,self.controlnet_down_blocks ):
__lowercase = controlnet_block(lowercase__ )
controlnet_down_block_res_samples += (down_block_res_sample,)
__lowercase = controlnet_down_block_res_samples
__lowercase = self.controlnet_mid_block(lowercase__ )
# 6. scaling
__lowercase = [sample * conditioning_scale for sample in down_block_res_samples]
mid_block_res_sample *= conditioning_scale
if not return_dict:
return (down_block_res_samples, mid_block_res_sample)
return FlaxControlNetOutput(
down_block_res_samples=lowercase__ ,mid_block_res_sample=lowercase__ )
| 41 | 0 |
import argparse
import collections
import json
import os
import re
import string
import sys
import numpy as np
__SCREAMING_SNAKE_CASE =re.compile(r"""\b(a|an|the)\b""", re.UNICODE)
__SCREAMING_SNAKE_CASE =None
def a ():
SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' )
parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' )
parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' )
parser.add_argument(
'''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' )
parser.add_argument(
'''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' )
parser.add_argument(
'''--na-prob-thresh''' , '''-t''' , type=A__ , default=1.0 , help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' , )
parser.add_argument(
'''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=A__ , help='''Save precision-recall curves to directory.''' )
parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' )
if len(sys.argv ) == 1:
parser.print_help()
sys.exit(1 )
return parser.parse_args()
def a (_lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
SCREAMING_SNAKE_CASE_ = bool(qa['''answers''']['''text'''] )
return qid_to_has_ans
def a (_lowerCAmelCase ):
def remove_articles(_lowerCAmelCase ):
return ARTICLES_REGEX.sub(''' ''' , A__ )
def white_space_fix(_lowerCAmelCase ):
return " ".join(text.split() )
def remove_punc(_lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_lowerCAmelCase ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(A__ ) ) ) )
def a (_lowerCAmelCase ):
if not s:
return []
return normalize_answer(A__ ).split()
def a (_lowerCAmelCase , _lowerCAmelCase ):
return int(normalize_answer(A__ ) == normalize_answer(A__ ) )
def a (_lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = get_tokens(A__ )
SCREAMING_SNAKE_CASE_ = get_tokens(A__ )
SCREAMING_SNAKE_CASE_ = collections.Counter(A__ ) & collections.Counter(A__ )
SCREAMING_SNAKE_CASE_ = sum(common.values() )
if len(A__ ) == 0 or len(A__ ) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks )
if num_same == 0:
return 0
SCREAMING_SNAKE_CASE_ = 1.0 * num_same / len(A__ )
SCREAMING_SNAKE_CASE_ = 1.0 * num_same / len(A__ )
SCREAMING_SNAKE_CASE_ = (2 * precision * recall) / (precision + recall)
return fa
def a (_lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = {}
SCREAMING_SNAKE_CASE_ = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
SCREAMING_SNAKE_CASE_ = qa['''id''']
SCREAMING_SNAKE_CASE_ = [t for t in qa['''answers''']['''text'''] if normalize_answer(A__ )]
if not gold_answers:
# For unanswerable questions, only correct answer is empty string
SCREAMING_SNAKE_CASE_ = ['''''']
if qid not in preds:
print(F"Missing prediction for {qid}" )
continue
SCREAMING_SNAKE_CASE_ = preds[qid]
# Take max over all gold answers
SCREAMING_SNAKE_CASE_ = max(compute_exact(A__ , A__ ) for a in gold_answers )
SCREAMING_SNAKE_CASE_ = max(compute_fa(A__ , A__ ) for a in gold_answers )
return exact_scores, fa_scores
def a (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = {}
for qid, s in scores.items():
SCREAMING_SNAKE_CASE_ = na_probs[qid] > na_prob_thresh
if pred_na:
SCREAMING_SNAKE_CASE_ = float(not qid_to_has_ans[qid] )
else:
SCREAMING_SNAKE_CASE_ = s
return new_scores
def a (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ):
if not qid_list:
SCREAMING_SNAKE_CASE_ = len(A__ )
return collections.OrderedDict(
[
('''exact''', 1_0_0.0 * sum(exact_scores.values() ) / total),
('''f1''', 1_0_0.0 * sum(fa_scores.values() ) / total),
('''total''', total),
] )
else:
SCREAMING_SNAKE_CASE_ = len(A__ )
return collections.OrderedDict(
[
('''exact''', 1_0_0.0 * sum(exact_scores[k] for k in qid_list ) / total),
('''f1''', 1_0_0.0 * sum(fa_scores[k] for k in qid_list ) / total),
('''total''', total),
] )
def a (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
for k in new_eval:
SCREAMING_SNAKE_CASE_ = new_eval[k]
def a (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
plt.step(A__ , A__ , color='''b''' , alpha=0.2 , where='''post''' )
plt.fill_between(A__ , A__ , step='''post''' , alpha=0.2 , color='''b''' )
plt.xlabel('''Recall''' )
plt.ylabel('''Precision''' )
plt.xlim([0.0, 1.05] )
plt.ylim([0.0, 1.05] )
plt.title(A__ )
plt.savefig(A__ )
plt.clf()
def a (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None ):
SCREAMING_SNAKE_CASE_ = sorted(A__ , key=lambda _lowerCAmelCase : na_probs[k] )
SCREAMING_SNAKE_CASE_ = 0.0
SCREAMING_SNAKE_CASE_ = 1.0
SCREAMING_SNAKE_CASE_ = 0.0
SCREAMING_SNAKE_CASE_ = [1.0]
SCREAMING_SNAKE_CASE_ = [0.0]
SCREAMING_SNAKE_CASE_ = 0.0
for i, qid in enumerate(A__ ):
if qid_to_has_ans[qid]:
true_pos += scores[qid]
SCREAMING_SNAKE_CASE_ = true_pos / float(i + 1 )
SCREAMING_SNAKE_CASE_ = true_pos / float(A__ )
if i == len(A__ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]:
# i.e., if we can put a threshold after this point
avg_prec += cur_p * (cur_r - recalls[-1])
precisions.append(A__ )
recalls.append(A__ )
if out_image:
plot_pr_curve(A__ , A__ , A__ , A__ )
return {"ap": 1_0_0.0 * avg_prec}
def a (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
if out_image_dir and not os.path.exists(A__ ):
os.makedirs(A__ )
SCREAMING_SNAKE_CASE_ = sum(1 for v in qid_to_has_ans.values() if v )
if num_true_pos == 0:
return
SCREAMING_SNAKE_CASE_ = make_precision_recall_eval(
A__ , A__ , A__ , A__ , out_image=os.path.join(A__ , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , )
SCREAMING_SNAKE_CASE_ = make_precision_recall_eval(
A__ , A__ , A__ , A__ , out_image=os.path.join(A__ , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , )
SCREAMING_SNAKE_CASE_ = {k: float(A__ ) for k, v in qid_to_has_ans.items()}
SCREAMING_SNAKE_CASE_ = make_precision_recall_eval(
A__ , A__ , A__ , A__ , out_image=os.path.join(A__ , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , )
merge_eval(A__ , A__ , '''pr_exact''' )
merge_eval(A__ , A__ , '''pr_f1''' )
merge_eval(A__ , A__ , '''pr_oracle''' )
def a (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
if not qid_list:
return
SCREAMING_SNAKE_CASE_ = [na_probs[k] for k in qid_list]
SCREAMING_SNAKE_CASE_ = np.ones_like(A__ ) / float(len(A__ ) )
plt.hist(A__ , weights=A__ , bins=2_0 , range=(0.0, 1.0) )
plt.xlabel('''Model probability of no-answer''' )
plt.ylabel('''Proportion of dataset''' )
plt.title(F"Histogram of no-answer probability: {name}" )
plt.savefig(os.path.join(A__ , F"na_prob_hist_{name}.png" ) )
plt.clf()
def a (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] )
SCREAMING_SNAKE_CASE_ = num_no_ans
SCREAMING_SNAKE_CASE_ = cur_score
SCREAMING_SNAKE_CASE_ = 0.0
SCREAMING_SNAKE_CASE_ = sorted(A__ , key=lambda _lowerCAmelCase : na_probs[k] )
for i, qid in enumerate(A__ ):
if qid not in scores:
continue
if qid_to_has_ans[qid]:
SCREAMING_SNAKE_CASE_ = scores[qid]
else:
if preds[qid]:
SCREAMING_SNAKE_CASE_ = -1
else:
SCREAMING_SNAKE_CASE_ = 0
cur_score += diff
if cur_score > best_score:
SCREAMING_SNAKE_CASE_ = cur_score
SCREAMING_SNAKE_CASE_ = na_probs[qid]
return 1_0_0.0 * best_score / len(A__ ), best_thresh
def a (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = find_best_thresh(A__ , A__ , A__ , A__ )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = find_best_thresh(A__ , A__ , A__ , A__ )
SCREAMING_SNAKE_CASE_ = best_exact
SCREAMING_SNAKE_CASE_ = exact_thresh
SCREAMING_SNAKE_CASE_ = best_fa
SCREAMING_SNAKE_CASE_ = fa_thresh
def a ():
with open(OPTS.data_file ) as f:
SCREAMING_SNAKE_CASE_ = json.load(A__ )
SCREAMING_SNAKE_CASE_ = dataset_json['''data''']
with open(OPTS.pred_file ) as f:
SCREAMING_SNAKE_CASE_ = json.load(A__ )
if OPTS.na_prob_file:
with open(OPTS.na_prob_file ) as f:
SCREAMING_SNAKE_CASE_ = json.load(A__ )
else:
SCREAMING_SNAKE_CASE_ = {k: 0.0 for k in preds}
SCREAMING_SNAKE_CASE_ = make_qid_to_has_ans(A__ ) # maps qid to True/False
SCREAMING_SNAKE_CASE_ = [k for k, v in qid_to_has_ans.items() if v]
SCREAMING_SNAKE_CASE_ = [k for k, v in qid_to_has_ans.items() if not v]
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = get_raw_scores(A__ , A__ )
SCREAMING_SNAKE_CASE_ = apply_no_ans_threshold(A__ , A__ , A__ , OPTS.na_prob_thresh )
SCREAMING_SNAKE_CASE_ = apply_no_ans_threshold(A__ , A__ , A__ , OPTS.na_prob_thresh )
SCREAMING_SNAKE_CASE_ = make_eval_dict(A__ , A__ )
if has_ans_qids:
SCREAMING_SNAKE_CASE_ = make_eval_dict(A__ , A__ , qid_list=A__ )
merge_eval(A__ , A__ , '''HasAns''' )
if no_ans_qids:
SCREAMING_SNAKE_CASE_ = make_eval_dict(A__ , A__ , qid_list=A__ )
merge_eval(A__ , A__ , '''NoAns''' )
if OPTS.na_prob_file:
find_all_best_thresh(A__ , A__ , A__ , A__ , A__ , A__ )
if OPTS.na_prob_file and OPTS.out_image_dir:
run_precision_recall_analysis(A__ , A__ , A__ , A__ , A__ , OPTS.out_image_dir )
histogram_na_prob(A__ , A__ , OPTS.out_image_dir , '''hasAns''' )
histogram_na_prob(A__ , A__ , OPTS.out_image_dir , '''noAns''' )
if OPTS.out_file:
with open(OPTS.out_file , '''w''' ) as f:
json.dump(A__ , A__ )
else:
print(json.dumps(A__ , indent=2 ) )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =parse_args()
if OPTS.out_image_dir:
import matplotlib
matplotlib.use("""Agg""")
import matplotlib.pyplot as plt
main()
| 234 |
'''simple docstring'''
import io
import math
from typing import Dict, Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
get_image_size,
infer_channel_dimension_format,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_vision_available, logging
from ...utils.import_utils import requires_backends
if is_vision_available():
import textwrap
from PIL import Image, ImageDraw, ImageFont
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
lowerCAmelCase__ = False
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = '''ybelkada/fonts'''
def _A ( ):
"""simple docstring"""
if is_torch_available() and not is_torch_greater_or_equal_than_1_11:
raise ImportError(
F"You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use "
'''Pix2StructImageProcessor. Please upgrade torch.''' )
def _A ( A__ , A__ , A__ ):
"""simple docstring"""
requires_backends(A__ , ['''torch'''] )
_check_torch_version()
__lowercase = image_tensor.unsqueeze(0 )
__lowercase = torch.nn.functional.unfold(A__ , (patch_height, patch_width) , stride=(patch_height, patch_width) )
__lowercase = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , A__ , A__ , -1 )
__lowercase = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape(
image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , )
return patches.unsqueeze(0 )
def _A ( A__ , A__ = 36 , A__ = "black" , A__ = "white" , A__ = 5 , A__ = 5 , A__ = 5 , A__ = 5 , A__ = None , A__ = None , ):
"""simple docstring"""
requires_backends(A__ , '''vision''' )
# Add new lines so that each line is no more than 80 characters.
__lowercase = textwrap.TextWrapper(width=80 )
__lowercase = wrapper.wrap(text=A__ )
__lowercase = '''\n'''.join(A__ )
if font_bytes is not None and font_path is None:
__lowercase = io.BytesIO(A__ )
elif font_path is not None:
__lowercase = font_path
else:
__lowercase = hf_hub_download(A__ , '''Arial.TTF''' )
__lowercase = ImageFont.truetype(A__ , encoding='''UTF-8''' , size=A__ )
# Use a temporary canvas to determine the width and height in pixels when
# rendering the text.
__lowercase = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , A__ ) )
__lowercase , __lowercase , __lowercase , __lowercase = temp_draw.textbbox((0, 0) , A__ , A__ )
# Create the actual image with a bit of padding around the text.
__lowercase = text_width + left_padding + right_padding
__lowercase = text_height + top_padding + bottom_padding
__lowercase = Image.new('''RGB''' , (image_width, image_height) , A__ )
__lowercase = ImageDraw.Draw(A__ )
draw.text(xy=(left_padding, top_padding) , text=A__ , fill=A__ , font=A__ )
return image
def _A ( A__ , A__ , **A__ ):
"""simple docstring"""
requires_backends(A__ , '''vision''' )
# Convert to PIL image if necessary
__lowercase = to_pil_image(A__ )
__lowercase = render_text(A__ , **A__ )
__lowercase = max(header_image.width , image.width )
__lowercase = int(image.height * (new_width / image.width) )
__lowercase = int(header_image.height * (new_width / header_image.width) )
__lowercase = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' )
new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) )
new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) )
# Convert back to the original framework if necessary
__lowercase = to_numpy_array(A__ )
if infer_channel_dimension_format(A__ ) == ChannelDimension.LAST:
__lowercase = to_channel_dimension_format(A__ , ChannelDimension.LAST )
return new_image
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = ['flattened_patches']
def __init__( self : Any ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : int = 2_0_4_8 ,lowercase__ : bool = False ,**lowercase__ : List[str] ,):
super().__init__(**lowercase__ )
__lowercase = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6}
__lowercase = do_normalize
__lowercase = do_convert_rgb
__lowercase = max_patches
__lowercase = is_vqa
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : np.ndarray ,lowercase__ : int ,lowercase__ : dict ,**lowercase__ : Tuple ):
requires_backends(self.extract_flattened_patches ,'''torch''' )
_check_torch_version()
# convert to torch
__lowercase = to_channel_dimension_format(lowercase__ ,ChannelDimension.FIRST )
__lowercase = torch.from_numpy(lowercase__ )
__lowercase , __lowercase = patch_size['''height'''], patch_size['''width''']
__lowercase , __lowercase = get_image_size(lowercase__ )
# maximize scale s.t.
__lowercase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) )
__lowercase = max(min(math.floor(scale * image_height / patch_height ) ,lowercase__ ) ,1 )
__lowercase = max(min(math.floor(scale * image_width / patch_width ) ,lowercase__ ) ,1 )
__lowercase = max(num_feasible_rows * patch_height ,1 )
__lowercase = max(num_feasible_cols * patch_width ,1 )
__lowercase = torch.nn.functional.interpolate(
image.unsqueeze(0 ) ,size=(resized_height, resized_width) ,mode='''bilinear''' ,align_corners=lowercase__ ,antialias=lowercase__ ,).squeeze(0 )
# [1, rows, columns, patch_height * patch_width * image_channels]
__lowercase = torch_extract_patches(lowercase__ ,lowercase__ ,lowercase__ )
__lowercase = patches.shape
__lowercase = patches_shape[1]
__lowercase = patches_shape[2]
__lowercase = patches_shape[3]
# [rows * columns, patch_height * patch_width * image_channels]
__lowercase = patches.reshape([rows * columns, depth] )
# [rows * columns, 1]
__lowercase = torch.arange(lowercase__ ).reshape([rows, 1] ).repeat(1 ,lowercase__ ).reshape([rows * columns, 1] )
__lowercase = torch.arange(lowercase__ ).reshape([1, columns] ).repeat(lowercase__ ,1 ).reshape([rows * columns, 1] )
# Offset by 1 so the ids do not contain zeros, which represent padding.
row_ids += 1
col_ids += 1
# Prepare additional patch features.
# [rows * columns, 1]
__lowercase = row_ids.to(torch.floataa )
__lowercase = col_ids.to(torch.floataa )
# [rows * columns, 2 + patch_height * patch_width * image_channels]
__lowercase = torch.cat([row_ids, col_ids, patches] ,-1 )
# [max_patches, 2 + patch_height * patch_width * image_channels]
__lowercase = torch.nn.functional.pad(lowercase__ ,[0, 0, 0, max_patches - (rows * columns)] ).float()
__lowercase = to_numpy_array(lowercase__ )
return result
def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : np.ndarray ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ):
if image.dtype == np.uinta:
__lowercase = image.astype(np.floataa )
# take mean across the whole `image`
__lowercase = np.mean(lowercase__ )
__lowercase = np.std(lowercase__ )
__lowercase = max(lowercase__ ,1.0 / math.sqrt(np.prod(image.shape ) ) )
return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,**lowercase__ )
def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : ImageInput ,lowercase__ : Optional[str] = None ,lowercase__ : bool = None ,lowercase__ : Optional[bool] = None ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[Dict[str, int]] = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : ChannelDimension = ChannelDimension.FIRST ,**lowercase__ : List[Any] ,):
__lowercase = do_normalize if do_normalize is not None else self.do_normalize
__lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__lowercase = patch_size if patch_size is not None else self.patch_size
__lowercase = max_patches if max_patches is not None else self.max_patches
__lowercase = self.is_vqa
if kwargs.get('''data_format''' ,lowercase__ ) is not None:
raise ValueError('''data_format is not an accepted input as the outputs are ''' )
__lowercase = make_list_of_images(lowercase__ )
if not valid_images(lowercase__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__lowercase = [convert_to_rgb(lowercase__ ) for image in images]
# All transformations expect numpy arrays.
__lowercase = [to_numpy_array(lowercase__ ) for image in images]
if is_vqa:
if header_text is None:
raise ValueError('''A header text must be provided for VQA models.''' )
__lowercase = kwargs.pop('''font_bytes''' ,lowercase__ )
__lowercase = kwargs.pop('''font_path''' ,lowercase__ )
if isinstance(lowercase__ ,lowercase__ ):
__lowercase = [header_text] * len(lowercase__ )
__lowercase = [
render_header(lowercase__ ,header_text[i] ,font_bytes=lowercase__ ,font_path=lowercase__ )
for i, image in enumerate(lowercase__ )
]
if do_normalize:
__lowercase = [self.normalize(image=lowercase__ ) for image in images]
# convert to torch tensor and permute
__lowercase = [
self.extract_flattened_patches(image=lowercase__ ,max_patches=lowercase__ ,patch_size=lowercase__ )
for image in images
]
# create attention mask in numpy
__lowercase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images]
__lowercase = BatchFeature(
data={'''flattened_patches''': images, '''attention_mask''': attention_masks} ,tensor_type=lowercase__ )
return encoded_outputs
| 41 | 0 |
'''simple docstring'''
def __UpperCamelCase ( UpperCAmelCase ):
if not grid or not grid[0]:
raise TypeError('''The grid does not contain the appropriate information''' )
for cell_n in range(1 , len(grid[0] ) ):
grid[0][cell_n] += grid[0][cell_n - 1]
lowercase__ : Optional[Any] = grid[0]
for row_n in range(1 , len(A__ ) ):
lowercase__ : Optional[int] = grid[row_n]
lowercase__ : List[str] = fill_row(A__ , A__ )
lowercase__ : Dict = grid[row_n]
return grid[-1][-1]
def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ):
current_row[0] += row_above[0]
for cell_n in range(1 , len(A__ ) ):
current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] )
return current_row
if __name__ == "__main__":
import doctest
doctest.testmod()
| 152 |
'''simple docstring'''
import doctest
from collections import deque
import numpy as np
class lowercase_ :
"""simple docstring"""
def __init__( self : Optional[Any] ):
__lowercase = [2, 1, 2, -1]
__lowercase = [1, 2, 3, 4]
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
__lowercase = len(self.first_signal )
__lowercase = len(self.second_signal )
__lowercase = max(lowercase__ ,lowercase__ )
# create a zero matrix of max_length x max_length
__lowercase = [[0] * max_length for i in range(lowercase__ )]
# fills the smaller signal with zeros to make both signals of same length
if length_first_signal < length_second_signal:
self.first_signal += [0] * (max_length - length_first_signal)
elif length_first_signal > length_second_signal:
self.second_signal += [0] * (max_length - length_second_signal)
for i in range(lowercase__ ):
__lowercase = deque(self.second_signal )
rotated_signal.rotate(lowercase__ )
for j, item in enumerate(lowercase__ ):
matrix[i][j] += item
# multiply the matrix with the first signal
__lowercase = np.matmul(np.transpose(lowercase__ ) ,np.transpose(self.first_signal ) )
# rounding-off to two decimal places
return [round(lowercase__ ,2 ) for i in final_signal]
if __name__ == "__main__":
doctest.testmod()
| 41 | 0 |
"""simple docstring"""
from __future__ import annotations
from pprint import pformat
from typing import Generic, TypeVar
__A = TypeVar("T")
class UpperCAmelCase (Generic[T] ):
"""simple docstring"""
def __init__( self , _UpperCAmelCase = True ):
lowercase__: int = {} # dictionary of lists
lowercase__: int = directed
def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ):
if not self.directed: # For undirected graphs
# if both source vertex and destination vertex are both present in the
# adjacency list, add destination vertex to source vertex list of adjacent
# vertices and add source vertex to destination vertex list of adjacent
# vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(lowercase__ )
self.adj_list[destination_vertex].append(lowercase__ )
# if only source vertex is present in adjacency list, add destination vertex
# to source vertex list of adjacent vertices, then create a new vertex with
# destination vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(lowercase__ )
lowercase__: List[str] = [source_vertex]
# if only destination vertex is present in adjacency list, add source vertex
# to destination vertex list of adjacent vertices, then create a new vertex
# with source vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif destination_vertex in self.adj_list:
self.adj_list[destination_vertex].append(lowercase__ )
lowercase__: Optional[Any] = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and assign a list
# containing the destination vertex as it's first adjacent vertex also
# create a new vertex with destination vertex as key and assign a list
# containing the source vertex as it's first adjacent vertex.
else:
lowercase__: Optional[Any] = [destination_vertex]
lowercase__: List[Any] = [source_vertex]
else: # For directed graphs
# if both source vertex and destination vertex are present in adjacency
# list, add destination vertex to source vertex list of adjacent vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(lowercase__ )
# if only source vertex is present in adjacency list, add destination
# vertex to source vertex list of adjacent vertices and create a new vertex
# with destination vertex as key, which has no adjacent vertex
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(lowercase__ )
lowercase__: Union[str, Any] = []
# if only destination vertex is present in adjacency list, create a new
# vertex with source vertex as key and assign a list containing destination
# vertex as first adjacent vertex
elif destination_vertex in self.adj_list:
lowercase__: List[Any] = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and a list containing
# destination vertex as it's first adjacent vertex. Then create a new vertex
# with destination vertex as key, which has no adjacent vertex
else:
lowercase__: int = [destination_vertex]
lowercase__: List[Any] = []
return self
def __repr__( self ):
return pformat(self.adj_list )
| 586 |
'''simple docstring'''
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[List[np.ndarray], torch.FloatTensor]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 41 | 0 |
"""simple docstring"""
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def lowerCamelCase_()-> Dict:
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
_SCREAMING_SNAKE_CASE : Optional[int] = """__test_patch_submodule_mock__"""
with patch_submodule(_test_patching , """os.path.join""" , A__ ):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os , _PatchedModuleObj )
assert isinstance(_test_patching.os.path , _PatchedModuleObj )
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path , _PatchedModuleObj )
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os , _PatchedModuleObj )
assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj )
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path , _PatchedModuleObj )
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def lowerCamelCase_()-> Dict:
assert _test_patching.open is open
_SCREAMING_SNAKE_CASE : Optional[int] = """__test_patch_submodule_builtin_mock__"""
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching , """open""" , A__ ):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def lowerCamelCase_()-> Any:
_SCREAMING_SNAKE_CASE : int = """__test_patch_submodule_missing_mock__"""
with patch_submodule(_test_patching , """pandas.read_csv""" , A__ ):
pass
def lowerCamelCase_()-> Union[str, Any]:
_SCREAMING_SNAKE_CASE : Any = """__test_patch_submodule_missing_builtin_mock__"""
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching , """len""" , A__ ) is None
with patch_submodule(_test_patching , """len""" , A__ ):
assert _test_patching.len is mock
assert _test_patching.len is len
def lowerCamelCase_()-> Any:
_SCREAMING_SNAKE_CASE : Dict = """__test_patch_submodule_start_and_stop_mock__"""
_SCREAMING_SNAKE_CASE : List[str] = patch_submodule(_test_patching , """open""" , A__ )
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def lowerCamelCase_()-> Optional[int]:
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
_SCREAMING_SNAKE_CASE : Any = """__test_patch_submodule_successive_join__"""
_SCREAMING_SNAKE_CASE : Union[str, Any] = """__test_patch_submodule_successive_dirname__"""
_SCREAMING_SNAKE_CASE : int = """__test_patch_submodule_successive_rename__"""
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching , """os.path.join""" , A__ ):
with patch_submodule(_test_patching , """os.rename""" , A__ ):
with patch_submodule(_test_patching , """os.path.dirname""" , A__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching , """os.rename""" , A__ ):
with patch_submodule(_test_patching , """os.path.join""" , A__ ):
with patch_submodule(_test_patching , """os.path.dirname""" , A__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def lowerCamelCase_()-> Dict:
_SCREAMING_SNAKE_CASE : List[Any] = """__test_patch_submodule_doesnt_exist_mock__"""
with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , A__ ):
pass
with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , A__ ):
pass
| 338 |
'''simple docstring'''
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
lowerCAmelCase__ = getLogger(__name__)
lowerCAmelCase__ = '''cuda''' if torch.cuda.is_available() else '''cpu'''
def _A ( A__ , A__ , A__ , A__ = 8 , A__ = DEFAULT_DEVICE , A__=False , A__="summarization" , A__=None , **A__ , ):
"""simple docstring"""
__lowercase = Path(A__ ).open('''w''' , encoding='''utf-8''' )
__lowercase = str(A__ )
__lowercase = AutoModelForSeqaSeqLM.from_pretrained(A__ ).to(A__ )
if fpaa:
__lowercase = model.half()
__lowercase = AutoTokenizer.from_pretrained(A__ )
logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type.
__lowercase = time.time()
# update config with task specific params
use_task_specific_params(A__ , A__ )
if prefix is None:
__lowercase = prefix or getattr(model.config , '''prefix''' , '''''' ) or ''''''
for examples_chunk in tqdm(list(chunks(A__ , A__ ) ) ):
__lowercase = [prefix + text for text in examples_chunk]
__lowercase = tokenizer(A__ , return_tensors='''pt''' , truncation=A__ , padding='''longest''' ).to(A__ )
__lowercase = model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **A__ , )
__lowercase = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ )
for hypothesis in dec:
fout.write(hypothesis + '''\n''' )
fout.flush()
fout.close()
__lowercase = int(time.time() - start_time ) # seconds
__lowercase = len(A__ )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )}
def _A ( ):
"""simple docstring"""
return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' )
def _A ( A__=True ):
"""simple docstring"""
__lowercase = argparse.ArgumentParser()
parser.add_argument('''model_name''' , type=A__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' )
parser.add_argument('''input_path''' , type=A__ , help='''like cnn_dm/test.source''' )
parser.add_argument('''save_path''' , type=A__ , help='''where to save summaries''' )
parser.add_argument('''--reference_path''' , type=A__ , required=A__ , help='''like cnn_dm/test.target''' )
parser.add_argument('''--score_path''' , type=A__ , required=A__ , default='''metrics.json''' , help='''where to save metrics''' )
parser.add_argument('''--device''' , type=A__ , required=A__ , default=A__ , help='''cuda, cuda:1, cpu etc.''' )
parser.add_argument(
'''--prefix''' , type=A__ , required=A__ , default=A__ , help='''will be added to the begininng of src examples''' )
parser.add_argument('''--task''' , type=A__ , default='''summarization''' , help='''used for task_specific_params + metrics''' )
parser.add_argument('''--bs''' , type=A__ , default=8 , required=A__ , help='''batch size''' )
parser.add_argument(
'''--n_obs''' , type=A__ , default=-1 , required=A__ , help='''How many observations. Defaults to all.''' )
parser.add_argument('''--fp16''' , action='''store_true''' )
parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' )
parser.add_argument(
'''--info''' , nargs='''?''' , type=A__ , const=datetime_now() , help=(
'''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.'''
''' lang=en-ru. If no value is passed, the current datetime string will be used.'''
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
__lowercase , __lowercase = parser.parse_known_args()
__lowercase = parse_numeric_n_bool_cl_kwargs(A__ )
if parsed_args and verbose:
print(F"parsed the following generate kwargs: {parsed_args}" )
__lowercase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
__lowercase = examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=A__ )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError('''Can\'t mix --fp16 and --device cpu''' )
__lowercase = generate_summaries_or_translations(
A__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **A__ , )
if args.reference_path is None:
return {}
# Compute scores
__lowercase = calculate_bleu if '''translation''' in args.task else calculate_rouge
__lowercase = [x.rstrip() for x in open(args.save_path ).readlines()]
__lowercase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(A__ )]
__lowercase = score_fn(A__ , A__ )
scores.update(A__ )
if args.dump_args:
scores.update(A__ )
if args.info:
__lowercase = args.info
if verbose:
print(A__ )
if args.score_path is not None:
json.dump(A__ , open(args.score_path , '''w''' ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 41 | 0 |
import sys
import turtle
def a_ (__A , __A ) -> Union[str, Any]:
"""simple docstring"""
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def a_ (__A , __A , __A , __A , ) -> str:
"""simple docstring"""
my_pen.up()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
if depth == 0:
return
triangle(A__ , get_mid(A__ , A__ ) , get_mid(A__ , A__ ) , depth - 1 )
triangle(A__ , get_mid(A__ , A__ ) , get_mid(A__ , A__ ) , depth - 1 )
triangle(A__ , get_mid(A__ , A__ ) , get_mid(A__ , A__ ) , depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
'''Correct format for using this script: '''
'''python fractals.py <int:depth_for_fractal>'''
)
UpperCAmelCase__ = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor('''red''')
UpperCAmelCase__ = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 351 |
'''simple docstring'''
from __future__ import annotations
def _A ( A__ , A__ ):
"""simple docstring"""
print(F"Vertex\tShortest Distance from vertex {src}" )
for i, d in enumerate(A__ ):
print(F"{i}\t\t{d}" )
def _A ( A__ , A__ , A__ ):
"""simple docstring"""
for j in range(A__ ):
__lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight'''])
if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]:
return True
return False
def _A ( A__ , A__ , A__ , A__ ):
"""simple docstring"""
__lowercase = [float('''inf''' )] * vertex_count
__lowercase = 0.0
for _ in range(vertex_count - 1 ):
for j in range(A__ ):
__lowercase , __lowercase , __lowercase = (graph[j][k] for k in ['''src''', '''dst''', '''weight'''])
if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]:
__lowercase = distance[u] + w
__lowercase = check_negative_cycle(A__ , A__ , A__ )
if negative_cycle_exists:
raise Exception('''Negative cycle found''' )
return distance
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase__ = int(input('''Enter number of vertices: ''').strip())
lowerCAmelCase__ = int(input('''Enter number of edges: ''').strip())
lowerCAmelCase__ = [{} for _ in range(E)]
for i in range(E):
print('''Edge ''', i + 1)
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = (
int(x)
for x in input('''Enter source, destination, weight: ''').strip().split(''' ''')
)
lowerCAmelCase__ = {'''src''': src, '''dst''': dest, '''weight''': weight}
lowerCAmelCase__ = int(input('''\nEnter shortest path source:''').strip())
lowerCAmelCase__ = bellman_ford(graph, V, E, source)
print_distance(shortest_distance, 0)
| 41 | 0 |
"""simple docstring"""
def __snake_case ( __A : int = 1000 ) -> Optional[Any]:
'''simple docstring'''
return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) )
if __name__ == "__main__":
print(solution())
| 265 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
lowerCAmelCase__ = logging.get_logger(__name__)
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
def __init__( self : List[Any] ,*lowercase__ : Optional[Any] ,**lowercase__ : int ):
warnings.warn(
'''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use YolosImageProcessor instead.''' ,lowercase__ ,)
super().__init__(*lowercase__ ,**lowercase__ )
| 41 | 0 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class __A ( unittest.TestCase ):
def __init__( self :Tuple , __snake_case :Dict , __snake_case :Union[str, Any]=7 , __snake_case :List[Any]=3 , __snake_case :List[Any]=30 , __snake_case :List[Any]=4_00 , __snake_case :List[str]=True , __snake_case :Tuple=None , __snake_case :Optional[Any]=0.9 , __snake_case :List[str]=None , __snake_case :str=True , __snake_case :Dict=[0.5, 0.5, 0.5] , __snake_case :Dict=[0.5, 0.5, 0.5] , ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =size if size is not None else {"""shortest_edge""": 30}
__magic_name__ : str =crop_size if crop_size is not None else {"""height""": 30, """width""": 30}
__magic_name__ : Dict =parent
__magic_name__ : Optional[Any] =batch_size
__magic_name__ : List[str] =num_channels
__magic_name__ : int =min_resolution
__magic_name__ : Optional[Any] =max_resolution
__magic_name__ : Any =do_resize_and_center_crop
__magic_name__ : Optional[int] =size
__magic_name__ : str =crop_pct
__magic_name__ : Optional[int] =crop_size
__magic_name__ : Any =do_normalize
__magic_name__ : Optional[int] =image_mean
__magic_name__ : Optional[int] =image_std
def A__ ( self :str ):
'''simple docstring'''
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class __A ( lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = PoolFormerImageProcessor if is_vision_available() else None
def A__ ( self :int ):
'''simple docstring'''
__magic_name__ : List[str] =PoolFormerImageProcessingTester(self )
@property
def A__ ( self :Dict ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def A__ ( self :Any ):
'''simple docstring'''
__magic_name__ : List[Any] =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase__ , """do_resize_and_center_crop""" ) )
self.assertTrue(hasattr(lowercase__ , """size""" ) )
self.assertTrue(hasattr(lowercase__ , """crop_pct""" ) )
self.assertTrue(hasattr(lowercase__ , """do_normalize""" ) )
self.assertTrue(hasattr(lowercase__ , """image_mean""" ) )
self.assertTrue(hasattr(lowercase__ , """image_std""" ) )
def A__ ( self :Optional[int] ):
'''simple docstring'''
__magic_name__ : Optional[int] =self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 30} )
self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} )
__magic_name__ : Optional[Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} )
def A__ ( self :int ):
'''simple docstring'''
pass
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : Any =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__magic_name__ : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ )
for image in image_inputs:
self.assertIsInstance(lowercase__ , Image.Image )
# Test not batched input
__magic_name__ : str =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
__magic_name__ : Optional[Any] =image_processing(lowercase__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def A__ ( self :int ):
'''simple docstring'''
__magic_name__ : Union[str, Any] =self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__magic_name__ : Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , numpify=lowercase__ )
for image in image_inputs:
self.assertIsInstance(lowercase__ , np.ndarray )
# Test not batched input
__magic_name__ : int =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
__magic_name__ : int =image_processing(lowercase__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def A__ ( self :Optional[Any] ):
'''simple docstring'''
__magic_name__ : int =self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__magic_name__ : Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__ )
for image in image_inputs:
self.assertIsInstance(lowercase__ , torch.Tensor )
# Test not batched input
__magic_name__ : Optional[Any] =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
__magic_name__ : List[Any] =image_processing(lowercase__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 21 |
'''simple docstring'''
import os
import time
import pytest
from datasets.utils.filelock import FileLock, Timeout
def _A ( A__ ):
"""simple docstring"""
__lowercase = FileLock(str(tmpdir / '''foo.lock''' ) )
__lowercase = FileLock(str(tmpdir / '''foo.lock''' ) )
__lowercase = 0.0_1
with locka.acquire():
with pytest.raises(A__ ):
__lowercase = time.time()
locka.acquire(A__ )
assert time.time() - _start > timeout
def _A ( A__ ):
"""simple docstring"""
__lowercase = '''a''' * 1000 + '''.lock'''
__lowercase = FileLock(str(tmpdir / filename ) )
assert locka._lock_file.endswith('''.lock''' )
assert not locka._lock_file.endswith(A__ )
assert len(os.path.basename(locka._lock_file ) ) <= 255
__lowercase = FileLock(tmpdir / filename )
with locka.acquire():
with pytest.raises(A__ ):
locka.acquire(0 )
| 41 | 0 |
"""simple docstring"""
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class lowerCamelCase__ ( lowerCamelCase__ ):
'''simple docstring'''
def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = False ,**lowerCamelCase_ ,) -> int:
super().__init__(features=lowercase__ ,cache_dir=lowercase__ ,keep_in_memory=lowercase__ ,**lowercase__ )
A = Sql(
cache_dir=lowercase__ ,features=lowercase__ ,sql=lowercase__ ,con=lowercase__ ,**lowercase__ ,)
def UpperCamelCase__ ( self ) -> Optional[int]:
A = None
A = None
A = None
A = None
self.builder.download_and_prepare(
download_config=lowercase__ ,download_mode=lowercase__ ,verification_mode=lowercase__ ,base_path=lowercase__ ,)
# Build dataset for splits
A = self.builder.as_dataset(
split="""train""" ,verification_mode=lowercase__ ,in_memory=self.keep_in_memory )
return dataset
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,**lowerCamelCase_ ,) -> Tuple:
if num_proc is not None and num_proc <= 0:
raise ValueError(f'num_proc {num_proc} must be an integer > 0.' )
A = dataset
A = name
A = con
A = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
A = num_proc
A = to_sql_kwargs
def UpperCamelCase__ ( self ) -> Optional[Any]:
A = self.to_sql_kwargs.pop("""sql""" ,lowercase__ )
A = self.to_sql_kwargs.pop("""con""" ,lowercase__ )
A = self.to_sql_kwargs.pop("""index""" ,lowercase__ )
A = self._write(index=lowercase__ ,**self.to_sql_kwargs )
return written
def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> Optional[Any]:
A , A , A = args
A = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs
A = query_table(
table=self.dataset.data ,key=slice(lowercase__ ,offset + self.batch_size ) ,indices=self.dataset._indices ,)
A = batch.to_pandas()
A = df.to_sql(self.name ,self.con ,index=lowercase__ ,**lowercase__ )
return num_rows or len(lowercase__ )
def UpperCamelCase__ ( self ,lowerCamelCase_ ,**lowerCamelCase_ ) -> str:
A = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 ,len(self.dataset ) ,self.batch_size ) ,unit="""ba""" ,disable=not logging.is_progress_bar_enabled() ,desc="""Creating SQL from Arrow format""" ,):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
A , A = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql ,[(offset, index, to_sql_kwargs) for offset in range(0 ,lowercase__ ,lowercase__ )] ,) ,total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size ,unit="""ba""" ,disable=not logging.is_progress_bar_enabled() ,desc="""Creating SQL from Arrow format""" ,):
written += num_rows
return written
| 617 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
lowerCAmelCase__ = {
'''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GPTBigCodeForSequenceClassification''',
'''GPTBigCodeForTokenClassification''',
'''GPTBigCodeForCausalLM''',
'''GPTBigCodeModel''',
'''GPTBigCodePreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_bigcode import (
GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTBigCodeForCausalLM,
GPTBigCodeForSequenceClassification,
GPTBigCodeForTokenClassification,
GPTBigCodeModel,
GPTBigCodePreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 41 | 0 |
"""simple docstring"""
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
from .record_evaluation import evaluate as evaluate_record
lowerCAmelCase_ : str = '''\
@article{wang2019superglue,
title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},
author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},
journal={arXiv preprint arXiv:1905.00537},
year={2019}
}
'''
lowerCAmelCase_ : Union[str, Any] = '''\
SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after
GLUE with a new set of more difficult language understanding tasks, improved
resources, and a new public leaderboard.
'''
lowerCAmelCase_ : List[Any] = '''
Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset.
Args:
predictions: list of predictions to score. Depending on the SuperGlUE subset:
- for \'record\': list of question-answer dictionaries with the following keys:
- \'idx\': index of the question as specified by the dataset
- \'prediction_text\': the predicted answer text
- for \'multirc\': list of question-answer dictionaries with the following keys:
- \'idx\': index of the question-answer pair as specified by the dataset
- \'prediction\': the predicted answer label
- otherwise: list of predicted labels
references: list of reference labels. Depending on the SuperGLUE subset:
- for \'record\': list of question-answers dictionaries with the following keys:
- \'idx\': index of the question as specified by the dataset
- \'answers\': list of possible answers
- otherwise: list of reference labels
Returns: depending on the SuperGLUE subset:
- for \'record\':
- \'exact_match\': Exact match between answer and gold answer
- \'f1\': F1 score
- for \'multirc\':
- \'exact_match\': Exact match between answer and gold answer
- \'f1_m\': Per-question macro-F1 score
- \'f1_a\': Average F1 score over all answers
- for \'axb\':
\'matthews_correlation\': Matthew Correlation
- for \'cb\':
- \'accuracy\': Accuracy
- \'f1\': F1 score
- for all others:
- \'accuracy\': Accuracy
Examples:
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'accuracy\': 1.0}
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'accuracy\': 1.0, \'f1\': 1.0}
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')
>>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]
>>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'exact_match\': 1.0, \'f1\': 1.0}
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')
>>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'matthews_correlation\': 1.0}
'''
def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ):
'''simple docstring'''
return float((preds == labels).mean() )
def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase="binary" ):
'''simple docstring'''
UpperCAmelCase = simple_accuracy(A__ , A__ )
UpperCAmelCase = float(fa_score(y_true=A__ , y_pred=A__ , average=A__ ) )
return {
"accuracy": acc,
"f1": fa,
}
def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase = {}
for id_pred, label in zip(A__ , A__ ):
UpperCAmelCase = F'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}'''
UpperCAmelCase = id_pred["""prediction"""]
if question_id in question_map:
question_map[question_id].append((pred, label) )
else:
UpperCAmelCase = [(pred, label)]
UpperCAmelCase , UpperCAmelCase = [], []
for question, preds_labels in question_map.items():
UpperCAmelCase , UpperCAmelCase = zip(*A__ )
UpperCAmelCase = fa_score(y_true=A__ , y_pred=A__ , average="""macro""" )
fas.append(A__ )
UpperCAmelCase = int(sum(pred == label for pred, label in preds_labels ) == len(A__ ) )
ems.append(A__ )
UpperCAmelCase = float(sum(A__ ) / len(A__ ) )
UpperCAmelCase = sum(A__ ) / len(A__ )
UpperCAmelCase = float(fa_score(y_true=A__ , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) )
return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase_ ( datasets.Metric ):
def UpperCamelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
if self.config_name not in [
"boolq",
"cb",
"copa",
"multirc",
"record",
"rte",
"wic",
"wsc",
"wsc.fixed",
"axb",
"axg",
]:
raise KeyError(
"""You should supply a configuration name selected in """
"""[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , )
def UpperCamelCase_ ( self ) -> int:
"""simple docstring"""
if self.config_name == "record":
return {
"predictions": {
"idx": {
"passage": datasets.Value("""int64""" ),
"query": datasets.Value("""int64""" ),
},
"prediction_text": datasets.Value("""string""" ),
},
"references": {
"idx": {
"passage": datasets.Value("""int64""" ),
"query": datasets.Value("""int64""" ),
},
"answers": datasets.Sequence(datasets.Value("""string""" ) ),
},
}
elif self.config_name == "multirc":
return {
"predictions": {
"idx": {
"answer": datasets.Value("""int64""" ),
"paragraph": datasets.Value("""int64""" ),
"question": datasets.Value("""int64""" ),
},
"prediction": datasets.Value("""int64""" ),
},
"references": datasets.Value("""int64""" ),
}
else:
return {
"predictions": datasets.Value("""int64""" ),
"references": datasets.Value("""int64""" ),
}
def UpperCamelCase_ ( self , snake_case__ , snake_case__ ) -> int:
"""simple docstring"""
if self.config_name == "axb":
return {"matthews_correlation": matthews_corrcoef(lowercase__ , lowercase__ )}
elif self.config_name == "cb":
return acc_and_fa(lowercase__ , lowercase__ , fa_avg="""macro""" )
elif self.config_name == "record":
UpperCAmelCase = [
{
"""qas""": [
{"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]}
for ref in references
]
}
]
UpperCAmelCase = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions}
return evaluate_record(lowercase__ , lowercase__ )[0]
elif self.config_name == "multirc":
return evaluate_multirc(lowercase__ , lowercase__ )
elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]:
return {"accuracy": simple_accuracy(lowercase__ , lowercase__ )}
else:
raise KeyError(
"""You should supply a configuration name selected in """
"""[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
| 673 |
'''simple docstring'''
import argparse
import os
import re
lowerCAmelCase__ = '''src/diffusers'''
# Pattern that looks at the indentation in a line.
lowerCAmelCase__ = re.compile(R'''^(\s*)\S''')
# Pattern that matches `"key":" and puts `key` in group 0.
lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)":''')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''')
# Pattern that matches `"key",` and puts `key` in group 0.
lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)",\s*$''')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
lowerCAmelCase__ = re.compile(R'''\[([^\]]+)\]''')
def _A ( A__ ):
"""simple docstring"""
__lowercase = _re_indent.search(A__ )
return "" if search is None else search.groups()[0]
def _A ( A__ , A__="" , A__=None , A__=None ):
"""simple docstring"""
__lowercase = 0
__lowercase = code.split('''\n''' )
if start_prompt is not None:
while not lines[index].startswith(A__ ):
index += 1
__lowercase = ['''\n'''.join(lines[:index] )]
else:
__lowercase = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
__lowercase = [lines[index]]
index += 1
while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ):
current_block.append(lines[index] )
blocks.append('''\n'''.join(A__ ) )
if index < len(A__ ) - 1:
__lowercase = [lines[index + 1]]
index += 1
else:
__lowercase = []
else:
blocks.append('''\n'''.join(A__ ) )
__lowercase = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(A__ ) > 0:
blocks.append('''\n'''.join(A__ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(A__ ):
blocks.append('''\n'''.join(lines[index:] ) )
return blocks
def _A ( A__ ):
"""simple docstring"""
def _inner(A__ ):
return key(A__ ).lower().replace('''_''' , '''''' )
return _inner
def _A ( A__ , A__=None ):
"""simple docstring"""
def noop(A__ ):
return x
if key is None:
__lowercase = noop
# Constants are all uppercase, they go first.
__lowercase = [obj for obj in objects if key(A__ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
__lowercase = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()]
# Functions begin with a lowercase, they go last.
__lowercase = [obj for obj in objects if not key(A__ )[0].isupper()]
__lowercase = ignore_underscore(A__ )
return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ )
def _A ( A__ ):
"""simple docstring"""
def _replace(A__ ):
__lowercase = match.groups()[0]
if "," not in imports:
return F"[{imports}]"
__lowercase = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
__lowercase = keys[:-1]
return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) + "]"
__lowercase = import_statement.split('''\n''' )
if len(A__ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
__lowercase = 2 if lines[1].strip() == '''[''' else 1
__lowercase = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
__lowercase = sort_objects(A__ , key=lambda A__ : x[1] )
__lowercase = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(A__ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
__lowercase = _re_bracket_content.sub(_replace , lines[1] )
else:
__lowercase = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
__lowercase = keys[:-1]
__lowercase = get_indent(lines[1] ) + ''', '''.join([F"\"{k}\"" for k in sort_objects(A__ )] )
return "\n".join(A__ )
else:
# Finally we have to deal with imports fitting on one line
__lowercase = _re_bracket_content.sub(_replace , A__ )
return import_statement
def _A ( A__ , A__=True ):
"""simple docstring"""
with open(A__ , '''r''' ) as f:
__lowercase = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
__lowercase = split_code_in_indented_blocks(
A__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(A__ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
__lowercase = main_blocks[block_idx]
__lowercase = block.split('''\n''' )
# Get to the start of the imports.
__lowercase = 0
while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
__lowercase = len(A__ )
else:
line_idx += 1
if line_idx >= len(A__ ):
continue
# Ignore beginning and last line: they don't contain anything.
__lowercase = '''\n'''.join(block_lines[line_idx:-1] )
__lowercase = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
__lowercase = split_code_in_indented_blocks(A__ , indent_level=A__ )
# We have two categories of import key: list or _import_structure[key].append/extend
__lowercase = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
__lowercase = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
__lowercase = [(i, key) for i, key in enumerate(A__ ) if key is not None]
__lowercase = [x[0] for x in sorted(A__ , key=lambda A__ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
__lowercase = 0
__lowercase = []
for i in range(len(A__ ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
__lowercase = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(A__ )
count += 1
# And we put our main block back together with its first and last line.
__lowercase = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(A__ ):
if check_only:
return True
else:
print(F"Overwriting {file}." )
with open(A__ , '''w''' ) as f:
f.write('''\n'''.join(A__ ) )
def _A ( A__=True ):
"""simple docstring"""
__lowercase = []
for root, _, files in os.walk(A__ ):
if "__init__.py" in files:
__lowercase = sort_imports(os.path.join(A__ , '''__init__.py''' ) , check_only=A__ )
if result:
__lowercase = [os.path.join(A__ , '''__init__.py''' )]
if len(A__ ) > 0:
raise ValueError(F"Would overwrite {len(A__ )} files, run `make style`." )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
lowerCAmelCase__ = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 41 | 0 |
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def _UpperCAmelCase ( UpperCAmelCase : Optional[int] = 3 ):
"""simple docstring"""
if isinstance(A__ , A__ ):
raise TypeError("""number of qubits must be a integer.""" )
if number_of_qubits <= 0:
raise ValueError("""number of qubits must be > 0.""" )
if math.floor(A__ ) != number_of_qubits:
raise ValueError("""number of qubits must be exact integer.""" )
if number_of_qubits > 10:
raise ValueError("""number of qubits too large to simulate(>10).""" )
__lowerCamelCase : List[Any] = QuantumRegister(A__ , """qr""" )
__lowerCamelCase : List[str] = ClassicalRegister(A__ , """cr""" )
__lowerCamelCase : int = QuantumCircuit(A__ , A__ )
__lowerCamelCase : int = number_of_qubits
for i in range(A__ ):
quantum_circuit.h(number_of_qubits - i - 1 )
counter -= 1
for j in range(A__ ):
quantum_circuit.cp(np.pi / 2 ** (counter - j) , A__ , A__ )
for k in range(number_of_qubits // 2 ):
quantum_circuit.swap(A__ , number_of_qubits - k - 1 )
# measure all the qubits
quantum_circuit.measure(A__ , A__ )
# simulate with 10000 shots
__lowerCamelCase : List[str] = Aer.get_backend("""qasm_simulator""" )
__lowerCamelCase : Optional[Any] = execute(A__ , A__ , shots=10_000 )
return job.result().get_counts(A__ )
if __name__ == "__main__":
print(
F'''Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}'''
)
| 519 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
TextToVideoSDPipeline,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class lowercase_ (lowerCamelCase__ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = TextToVideoSDPipeline
SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_PARAMS
SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS
# No `output_type`.
SCREAMING_SNAKE_CASE : Optional[int] = frozenset(
[
'num_inference_steps',
'generator',
'latents',
'return_dict',
'callback',
'callback_steps',
] )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
torch.manual_seed(0 )
__lowercase = UNetaDConditionModel(
block_out_channels=(3_2, 6_4, 6_4, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') ,up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') ,cross_attention_dim=3_2 ,attention_head_dim=4 ,)
__lowercase = DDIMScheduler(
beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,clip_sample=lowercase__ ,set_alpha_to_one=lowercase__ ,)
torch.manual_seed(0 )
__lowercase = AutoencoderKL(
block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=1_2_8 ,)
torch.manual_seed(0 )
__lowercase = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''gelu''' ,projection_dim=5_1_2 ,)
__lowercase = CLIPTextModel(lowercase__ )
__lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
__lowercase = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : List[str]=0 ):
if str(lowercase__ ).startswith('''mps''' ):
__lowercase = torch.manual_seed(lowercase__ )
else:
__lowercase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ )
__lowercase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''pt''',
}
return inputs
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
__lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__lowercase = self.get_dummy_components()
__lowercase = TextToVideoSDPipeline(**lowercase__ )
__lowercase = sd_pipe.to(lowercase__ )
sd_pipe.set_progress_bar_config(disable=lowercase__ )
__lowercase = self.get_dummy_inputs(lowercase__ )
__lowercase = '''np'''
__lowercase = sd_pipe(**lowercase__ ).frames
__lowercase = frames[0][-3:, -3:, -1]
assert frames[0].shape == (6_4, 6_4, 3)
__lowercase = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=3e-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,)
def SCREAMING_SNAKE_CASE ( self : Any ):
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=1e-2 )
@unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' )
def SCREAMING_SNAKE_CASE ( self : List[str] ):
pass
@unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' )
def SCREAMING_SNAKE_CASE ( self : Tuple ):
pass
@unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' )
def SCREAMING_SNAKE_CASE ( self : Tuple ):
pass
def SCREAMING_SNAKE_CASE ( self : List[str] ):
return super().test_progress_bar()
@slow
@skip_mps
class lowercase_ (unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE ( self : int ):
__lowercase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' )
__lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' )
__lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
__lowercase = pipe.to('''cuda''' )
__lowercase = '''Spiderman is surfing'''
__lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 )
__lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2_5 ,output_type='''pt''' ).frames
__lowercase = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
__lowercase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' )
__lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' )
__lowercase = pipe.to('''cuda''' )
__lowercase = '''Spiderman is surfing'''
__lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 )
__lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2 ,output_type='''pt''' ).frames
__lowercase = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
| 41 | 0 |
"""simple docstring"""
import sacrebleu as scb
from packaging import version
from sacrebleu import CHRF
import datasets
__snake_case : List[Any] = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n'
__snake_case : int = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n'
__snake_case : Any = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase ( datasets.Metric ):
"""simple docstring"""
def A__ ( self : List[Any] ):
if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ):
raise ImportWarning(
'''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n'''
'''You can install it with `pip install "sacrebleu>=1.4.12"`.''' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/mjpost/sacreBLEU#chrf--chrf''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#chrf--chrf'''] , reference_urls=[
'''https://github.com/m-popovic/chrF''',
] , )
def A__ ( self : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : List[Any] , _lowerCamelCase : int = CHRF.CHAR_ORDER , _lowerCamelCase : int = CHRF.WORD_ORDER , _lowerCamelCase : int = CHRF.BETA , _lowerCamelCase : bool = False , _lowerCamelCase : bool = False , _lowerCamelCase : bool = False , ):
A__ = len(references[0] )
if any(len(lowercase__ ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
A__ = [[refs[i] for refs in references] for i in range(lowercase__ )]
A__ = CHRF(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )
A__ = sb_chrf.corpus_score(lowercase__ , lowercase__ )
return {
"score": output.score,
"char_order": output.char_order,
"word_order": output.word_order,
"beta": output.beta,
}
| 571 |
'''simple docstring'''
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def _A ( A__ ):
"""simple docstring"""
__lowercase = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''_float_tensor''',
'''decoder.output_projection.weight''',
]
for k in ignore_keys:
state_dict.pop(A__ , A__ )
def _A ( A__ ):
"""simple docstring"""
__lowercase , __lowercase = emb.weight.shape
__lowercase = nn.Linear(A__ , A__ , bias=A__ )
__lowercase = emb.weight.data
return lin_layer
def _A ( A__ , A__="facebook/mbart-large-en-ro" , A__=False , A__=False ):
"""simple docstring"""
__lowercase = torch.load(A__ , map_location='''cpu''' )['''model''']
remove_ignore_keys_(A__ )
__lowercase = state_dict['''encoder.embed_tokens.weight'''].shape[0]
__lowercase = MBartConfig.from_pretrained(A__ , vocab_size=A__ )
if mbart_aa and finetuned:
__lowercase = '''relu'''
__lowercase = state_dict['''decoder.embed_tokens.weight''']
__lowercase = MBartForConditionalGeneration(A__ )
model.model.load_state_dict(A__ )
if finetuned:
__lowercase = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.'''
)
parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--hf_config''',
default='''facebook/mbart-large-cc25''',
type=str,
help='''Which huggingface architecture to use: mbart-large''',
)
parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''')
parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''')
lowerCAmelCase__ = parser.parse_args()
lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 41 | 0 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
__SCREAMING_SNAKE_CASE =logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE ={
"""microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""",
"""microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""",
"""microsoft/deberta-v2-xlarge-mnli""": (
"""https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json"""
),
"""microsoft/deberta-v2-xxlarge-mnli""": (
"""https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json"""
),
}
class __magic_name__ ( lowerCamelCase__):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[Any] = 'deberta-v2'
def __init__( self: int , _lowerCamelCase: Optional[Any]=12_81_00 , _lowerCamelCase: str=15_36 , _lowerCamelCase: List[Any]=24 , _lowerCamelCase: Union[str, Any]=24 , _lowerCamelCase: Optional[Any]=61_44 , _lowerCamelCase: Union[str, Any]="gelu" , _lowerCamelCase: Union[str, Any]=0.1 , _lowerCamelCase: Tuple=0.1 , _lowerCamelCase: Dict=5_12 , _lowerCamelCase: List[str]=0 , _lowerCamelCase: int=0.02 , _lowerCamelCase: str=1E-7 , _lowerCamelCase: Any=False , _lowerCamelCase: Union[str, Any]=-1 , _lowerCamelCase: Optional[int]=0 , _lowerCamelCase: List[str]=True , _lowerCamelCase: List[str]=None , _lowerCamelCase: Optional[int]=0 , _lowerCamelCase: str="gelu" , **_lowerCamelCase: Optional[Any] , ):
super().__init__(**lowercase__ )
SCREAMING_SNAKE_CASE_ = hidden_size
SCREAMING_SNAKE_CASE_ = num_hidden_layers
SCREAMING_SNAKE_CASE_ = num_attention_heads
SCREAMING_SNAKE_CASE_ = intermediate_size
SCREAMING_SNAKE_CASE_ = hidden_act
SCREAMING_SNAKE_CASE_ = hidden_dropout_prob
SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ = max_position_embeddings
SCREAMING_SNAKE_CASE_ = type_vocab_size
SCREAMING_SNAKE_CASE_ = initializer_range
SCREAMING_SNAKE_CASE_ = relative_attention
SCREAMING_SNAKE_CASE_ = max_relative_positions
SCREAMING_SNAKE_CASE_ = pad_token_id
SCREAMING_SNAKE_CASE_ = position_biased_input
# Backwards compatibility
if type(lowercase__ ) == str:
SCREAMING_SNAKE_CASE_ = [x.strip() for x in pos_att_type.lower().split('''|''' )]
SCREAMING_SNAKE_CASE_ = pos_att_type
SCREAMING_SNAKE_CASE_ = vocab_size
SCREAMING_SNAKE_CASE_ = layer_norm_eps
SCREAMING_SNAKE_CASE_ = kwargs.get('''pooler_hidden_size''' , lowercase__ )
SCREAMING_SNAKE_CASE_ = pooler_dropout
SCREAMING_SNAKE_CASE_ = pooler_hidden_act
class __magic_name__ ( lowerCamelCase__):
'''simple docstring'''
@property
def _A ( self: Dict ):
if self.task == "multiple-choice":
SCREAMING_SNAKE_CASE_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
SCREAMING_SNAKE_CASE_ = {0: '''batch''', 1: '''sequence'''}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] )
else:
return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] )
@property
def _A ( self: str ):
return 12
def _A ( self: List[Any] , _lowerCamelCase: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _lowerCamelCase: int = -1 , _lowerCamelCase: int = -1 , _lowerCamelCase: int = -1 , _lowerCamelCase: bool = False , _lowerCamelCase: Optional["TensorType"] = None , _lowerCamelCase: int = 3 , _lowerCamelCase: int = 40 , _lowerCamelCase: int = 40 , _lowerCamelCase: "PreTrainedTokenizerBase" = None , ):
SCREAMING_SNAKE_CASE_ = super().generate_dummy_inputs(preprocessor=lowercase__ , framework=lowercase__ )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 234 |
'''simple docstring'''
import os
from math import logaa
def _A ( A__ = "base_exp.txt" ):
"""simple docstring"""
__lowercase = 0
__lowercase = 0
for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ):
__lowercase , __lowercase = list(map(A__ , line.split(''',''' ) ) )
if x * logaa(A__ ) > largest:
__lowercase = x * logaa(A__ )
__lowercase = i + 1
return result
if __name__ == "__main__":
print(solution())
| 41 | 0 |
'''simple docstring'''
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a: Any = logging.get_logger(__name__)
__a: str = {
"""huggingface/time-series-transformer-tourism-monthly""": (
"""https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json"""
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class UpperCAmelCase ( lowerCamelCase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE = 'time_series_transformer'
SCREAMING_SNAKE_CASE = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
'num_hidden_layers': 'encoder_layers',
}
def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = "student_t" , __lowerCAmelCase = "nll" , __lowerCAmelCase = 1 , __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7] , __lowerCAmelCase = "mean" , __lowerCAmelCase = 0 , __lowerCAmelCase = 0 , __lowerCAmelCase = 0 , __lowerCAmelCase = 0 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 32 , __lowerCAmelCase = 32 , __lowerCAmelCase = 2 , __lowerCAmelCase = 2 , __lowerCAmelCase = 2 , __lowerCAmelCase = 2 , __lowerCAmelCase = True , __lowerCAmelCase = "gelu" , __lowerCAmelCase = 64 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 100 , __lowerCAmelCase = 0.0_2 , __lowerCAmelCase=True , **__lowerCAmelCase , ) -> List[str]:
# time series specific configuration
lowercase__ : Tuple = prediction_length
lowercase__ : Any = context_length or prediction_length
lowercase__ : Union[str, Any] = distribution_output
lowercase__ : str = loss
lowercase__ : int = input_size
lowercase__ : Optional[Any] = num_time_features
lowercase__ : Optional[Any] = lags_sequence
lowercase__ : List[Any] = scaling
lowercase__ : int = num_dynamic_real_features
lowercase__ : Optional[int] = num_static_real_features
lowercase__ : str = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(lowercase__ ) != num_static_categorical_features:
raise ValueError(
'''The cardinality should be a list of the same length as `num_static_categorical_features`''' )
lowercase__ : Optional[int] = cardinality
else:
lowercase__ : int = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(lowercase__ ) != num_static_categorical_features:
raise ValueError(
'''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' )
lowercase__ : Optional[Any] = embedding_dimension
else:
lowercase__ : Union[str, Any] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
lowercase__ : List[Any] = num_parallel_samples
# Transformer architecture configuration
lowercase__ : Dict = input_size * len(lowercase__ ) + self._number_of_features
lowercase__ : str = d_model
lowercase__ : Optional[Any] = encoder_attention_heads
lowercase__ : Any = decoder_attention_heads
lowercase__ : Tuple = encoder_ffn_dim
lowercase__ : Optional[Any] = decoder_ffn_dim
lowercase__ : Optional[int] = encoder_layers
lowercase__ : Optional[int] = decoder_layers
lowercase__ : List[str] = dropout
lowercase__ : List[Any] = attention_dropout
lowercase__ : Optional[Any] = activation_dropout
lowercase__ : List[Any] = encoder_layerdrop
lowercase__ : Dict = decoder_layerdrop
lowercase__ : Optional[int] = activation_function
lowercase__ : List[str] = init_std
lowercase__ : List[Any] = use_cache
super().__init__(is_encoder_decoder=lowercase__ , **lowercase__ )
@property
def _lowerCAmelCase( self ) -> List[Any]:
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 152 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''',
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = 'blenderbot-small'
SCREAMING_SNAKE_CASE : int = ['past_key_values']
SCREAMING_SNAKE_CASE : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self : Optional[int] ,lowercase__ : List[str]=5_0_2_6_5 ,lowercase__ : Optional[Any]=5_1_2 ,lowercase__ : Optional[int]=8 ,lowercase__ : List[Any]=2_0_4_8 ,lowercase__ : List[str]=1_6 ,lowercase__ : str=8 ,lowercase__ : Any=2_0_4_8 ,lowercase__ : Tuple=1_6 ,lowercase__ : Tuple=0.0 ,lowercase__ : List[str]=0.0 ,lowercase__ : Any=True ,lowercase__ : str=True ,lowercase__ : int="gelu" ,lowercase__ : Tuple=5_1_2 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : str=0.0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : List[Any]=False ,lowercase__ : Optional[int]=0 ,lowercase__ : Optional[int]=1 ,lowercase__ : str=2 ,lowercase__ : int=2 ,**lowercase__ : List[str] ,):
__lowercase = vocab_size
__lowercase = max_position_embeddings
__lowercase = d_model
__lowercase = encoder_ffn_dim
__lowercase = encoder_layers
__lowercase = encoder_attention_heads
__lowercase = decoder_ffn_dim
__lowercase = decoder_layers
__lowercase = decoder_attention_heads
__lowercase = dropout
__lowercase = attention_dropout
__lowercase = activation_dropout
__lowercase = activation_function
__lowercase = init_std
__lowercase = encoder_layerdrop
__lowercase = decoder_layerdrop
__lowercase = use_cache
__lowercase = encoder_layers
__lowercase = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,is_encoder_decoder=lowercase__ ,decoder_start_token_id=lowercase__ ,forced_eos_token_id=lowercase__ ,**lowercase__ ,)
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
@property
def SCREAMING_SNAKE_CASE ( self : Dict ):
if self.task in ["default", "seq2seq-lm"]:
__lowercase = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
__lowercase = {0: '''batch'''}
__lowercase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
__lowercase = {0: '''batch''', 1: '''decoder_sequence'''}
__lowercase = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(lowercase__ ,direction='''inputs''' )
elif self.task == "causal-lm":
# TODO: figure this case out.
__lowercase = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
__lowercase , __lowercase = self.num_layers
for i in range(lowercase__ ):
__lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''}
__lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''}
else:
__lowercase = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}),
('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}),
] )
return common_inputs
@property
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
if self.task in ["default", "seq2seq-lm"]:
__lowercase = super().outputs
else:
__lowercase = super(lowercase__ ,self ).outputs
if self.use_past:
__lowercase , __lowercase = self.num_layers
for i in range(lowercase__ ):
__lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''}
__lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''}
return common_outputs
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,):
__lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
# Generate decoder inputs
__lowercase = seq_length if not self.use_past else 1
__lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
__lowercase = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
__lowercase = dict(**lowercase__ ,**lowercase__ )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
__lowercase , __lowercase = common_inputs['''input_ids'''].shape
__lowercase = common_inputs['''decoder_input_ids'''].shape[1]
__lowercase , __lowercase = self.num_attention_heads
__lowercase = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
__lowercase = decoder_seq_length + 3
__lowercase = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
__lowercase = torch.cat(
[common_inputs['''decoder_attention_mask'''], torch.ones(lowercase__ ,lowercase__ )] ,dim=1 )
__lowercase = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
__lowercase , __lowercase = self.num_layers
__lowercase = min(lowercase__ ,lowercase__ )
__lowercase = max(lowercase__ ,lowercase__ ) - min_num_layers
__lowercase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder'''
for _ in range(lowercase__ ):
common_inputs["past_key_values"].append(
(
torch.zeros(lowercase__ ),
torch.zeros(lowercase__ ),
torch.zeros(lowercase__ ),
torch.zeros(lowercase__ ),
) )
# TODO: test this.
__lowercase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape
for _ in range(lowercase__ ,lowercase__ ):
common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) )
return common_inputs
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,):
__lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
__lowercase , __lowercase = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
__lowercase = seqlen + 2
__lowercase , __lowercase = self.num_layers
__lowercase , __lowercase = self.num_attention_heads
__lowercase = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
__lowercase = common_inputs['''attention_mask'''].dtype
__lowercase = torch.cat(
[common_inputs['''attention_mask'''], torch.ones(lowercase__ ,lowercase__ ,dtype=lowercase__ )] ,dim=1 )
__lowercase = [
(torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ )
]
return common_inputs
def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,):
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__lowercase = compute_effective_axis_dimension(
lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase = tokenizer.num_special_tokens_to_add(lowercase__ )
__lowercase = compute_effective_axis_dimension(
lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowercase__ )
# Generate dummy inputs according to compute batch and sequence
__lowercase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size
__lowercase = dict(tokenizer(lowercase__ ,return_tensors=lowercase__ ) )
return common_inputs
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,):
if self.task in ["default", "seq2seq-lm"]:
__lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ )
elif self.task == "causal-lm":
__lowercase = self._generate_dummy_inputs_for_causal_lm(
lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ )
else:
__lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ )
return common_inputs
def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ):
if self.task in ["default", "seq2seq-lm"]:
__lowercase = super()._flatten_past_key_values_(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
else:
__lowercase = super(lowercase__ ,self )._flatten_past_key_values_(
lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
| 41 | 0 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
__A = logging.get_logger(__name__)
if is_vision_available():
import PIL
class UpperCAmelCase (lowerCamelCase__ ):
"""simple docstring"""
_UpperCAmelCase :str = ['pixel_values']
def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BICUBIC , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , **_UpperCAmelCase , ):
super().__init__(**lowercase__ )
lowercase__: Optional[int] = size if size is not None else {'''shortest_edge''': 224}
lowercase__: Dict = get_size_dict(lowercase__ , default_to_square=lowercase__ )
lowercase__: Optional[int] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
lowercase__: Optional[int] = get_size_dict(lowercase__ , default_to_square=lowercase__ , param_name='''crop_size''' )
lowercase__: Any = do_resize
lowercase__: int = size
lowercase__: Optional[Any] = resample
lowercase__: str = do_center_crop
lowercase__: Tuple = crop_size
lowercase__: int = do_rescale
lowercase__: Optional[int] = rescale_factor
lowercase__: str = do_normalize
lowercase__: Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
lowercase__: Dict = image_std if image_std is not None else OPENAI_CLIP_STD
lowercase__: Dict = do_convert_rgb
def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BICUBIC , _UpperCAmelCase = None , **_UpperCAmelCase , ):
lowercase__: Optional[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ )
if "shortest_edge" not in size:
raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" )
lowercase__: List[str] = get_resize_output_image_size(lowercase__ , size=size['''shortest_edge'''] , default_to_square=lowercase__ )
return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ )
def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ):
lowercase__: str = get_size_dict(lowercase__ )
if "height" not in size or "width" not in size:
raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" )
return center_crop(lowercase__ , size=(size['''height'''], size['''width''']) , data_format=lowercase__ , **lowercase__ )
def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ):
return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ )
def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ):
return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ )
def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ):
lowercase__: Dict = do_resize if do_resize is not None else self.do_resize
lowercase__: Union[str, Any] = size if size is not None else self.size
lowercase__: List[Any] = get_size_dict(lowercase__ , param_name='''size''' , default_to_square=lowercase__ )
lowercase__: Any = resample if resample is not None else self.resample
lowercase__: int = do_center_crop if do_center_crop is not None else self.do_center_crop
lowercase__: Tuple = crop_size if crop_size is not None else self.crop_size
lowercase__: Optional[int] = get_size_dict(lowercase__ , param_name='''crop_size''' , default_to_square=lowercase__ )
lowercase__: Any = do_rescale if do_rescale is not None else self.do_rescale
lowercase__: int = rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase__: int = do_normalize if do_normalize is not None else self.do_normalize
lowercase__: Union[str, Any] = image_mean if image_mean is not None else self.image_mean
lowercase__: int = image_std if image_std is not None else self.image_std
lowercase__: List[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
lowercase__: Tuple = make_list_of_images(lowercase__ )
if not valid_images(lowercase__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
lowercase__: int = [convert_to_rgb(lowercase__ ) for image in images]
# All transformations expect numpy arrays.
lowercase__: Tuple = [to_numpy_array(lowercase__ ) for image in images]
if do_resize:
lowercase__: Union[str, Any] = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images]
if do_center_crop:
lowercase__: Tuple = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images]
if do_rescale:
lowercase__: Optional[Any] = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images]
if do_normalize:
lowercase__: Optional[int] = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__ ) for image in images]
lowercase__: int = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images]
lowercase__: Optional[Any] = {'''pixel_values''': images}
return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
| 586 |
'''simple docstring'''
from __future__ import annotations
def _A ( A__ , A__ ):
"""simple docstring"""
if b == 0:
return (1, 0)
((__lowercase) , (__lowercase)) = extended_euclid(A__ , a % b )
__lowercase = a // b
return (y, x - k * y)
def _A ( A__ , A__ , A__ , A__ ):
"""simple docstring"""
((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ )
__lowercase = na * na
__lowercase = ra * x * na + ra * y * na
return (n % m + m) % m
def _A ( A__ , A__ ):
"""simple docstring"""
((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ )
if b < 0:
__lowercase = (b % n + n) % n
return b
def _A ( A__ , A__ , A__ , A__ ):
"""simple docstring"""
__lowercase , __lowercase = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ )
__lowercase = na * na
__lowercase = ra * x * na + ra * y * na
return (n % m + m) % m
if __name__ == "__main__":
from doctest import testmod
testmod(name='''chinese_remainder_theorem''', verbose=True)
testmod(name='''chinese_remainder_theorem2''', verbose=True)
testmod(name='''invert_modulo''', verbose=True)
testmod(name='''extended_euclid''', verbose=True)
| 41 | 0 |
"""simple docstring"""
from random import shuffle
import tensorflow as tf
from numpy import array
def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Optional[Any]:
_SCREAMING_SNAKE_CASE : Union[str, Any] = int(A__ )
assert noofclusters < len(A__ )
# Find out the dimensionality
_SCREAMING_SNAKE_CASE : Any = len(vectors[0] )
# Will help select random centroids from among the available vectors
_SCREAMING_SNAKE_CASE : List[Any] = list(range(len(A__ ) ) )
shuffle(A__ )
# GRAPH OF COMPUTATION
# We initialize a new graph and set it as the default during each run
# of this algorithm. This ensures that as this function is called
# multiple times, the default graph doesn't keep getting crowded with
# unused ops and Variables from previous function calls.
_SCREAMING_SNAKE_CASE : List[Any] = tf.Graph()
with graph.as_default():
# SESSION OF COMPUTATION
_SCREAMING_SNAKE_CASE : Dict = tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
_SCREAMING_SNAKE_CASE : Tuple = [
tf.Variable(vectors[vector_indices[i]] ) for i in range(A__ )
]
##These nodes will assign the centroid Variables the appropriate
##values
_SCREAMING_SNAKE_CASE : Any = tf.placeholder("""float64""" , [dim] )
_SCREAMING_SNAKE_CASE : int = []
for centroid in centroids:
cent_assigns.append(tf.assign(A__ , A__ ) )
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
_SCREAMING_SNAKE_CASE : Union[str, Any] = [tf.Variable(0 ) for i in range(len(A__ ) )]
##These nodes will assign an assignment Variable the appropriate
##value
_SCREAMING_SNAKE_CASE : Tuple = tf.placeholder("""int32""" )
_SCREAMING_SNAKE_CASE : int = []
for assignment in assignments:
cluster_assigns.append(tf.assign(A__ , A__ ) )
##Now lets construct the node that will compute the mean
# The placeholder for the input
_SCREAMING_SNAKE_CASE : List[str] = tf.placeholder("""float""" , [None, dim] )
# The Node/op takes the input and computes a mean along the 0th
# dimension, i.e. the list of input vectors
_SCREAMING_SNAKE_CASE : List[str] = tf.reduce_mean(A__ , 0 )
##Node for computing Euclidean distances
# Placeholders for input
_SCREAMING_SNAKE_CASE : str = tf.placeholder("""float""" , [dim] )
_SCREAMING_SNAKE_CASE : str = tf.placeholder("""float""" , [dim] )
_SCREAMING_SNAKE_CASE : List[Any] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(A__ , A__ ) , 2 ) ) )
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
# Placeholder for input
_SCREAMING_SNAKE_CASE : List[str] = tf.placeholder("""float""" , [noofclusters] )
_SCREAMING_SNAKE_CASE : List[Any] = tf.argmin(A__ , 0 )
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
_SCREAMING_SNAKE_CASE : Tuple = tf.initialize_all_variables()
# Initialize all variables
sess.run(A__ )
##CLUSTERING ITERATIONS
# Now perform the Expectation-Maximization steps of K-Means clustering
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
_SCREAMING_SNAKE_CASE : List[str] = 100
for _ in range(A__ ):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
# Iterate over each vector
for vector_n in range(len(A__ ) ):
_SCREAMING_SNAKE_CASE : Any = vectors[vector_n]
# Compute Euclidean distance between this vector and each
# centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
# cluster assignment node.
_SCREAMING_SNAKE_CASE : int = [
sess.run(A__ , feed_dict={va: vect, va: sess.run(A__ )} )
for centroid in centroids
]
# Now use the cluster assignment node, with the distances
# as the input
_SCREAMING_SNAKE_CASE : List[str] = sess.run(
A__ , feed_dict={centroid_distances: distances} )
# Now assign the value to the appropriate state variable
sess.run(
cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} )
##MAXIMIZATION STEP
# Based on the expected state computed from the Expectation Step,
# compute the locations of the centroids so as to maximize the
# overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(A__ ):
# Collect all the vectors assigned to this cluster
_SCREAMING_SNAKE_CASE : Any = [
vectors[i]
for i in range(len(A__ ) )
if sess.run(assignments[i] ) == cluster_n
]
# Compute new centroid location
_SCREAMING_SNAKE_CASE : Any = sess.run(
A__ , feed_dict={mean_input: array(A__ )} )
# Assign value to appropriate variable
sess.run(
cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} )
# Return centroids and assignments
_SCREAMING_SNAKE_CASE : Dict = sess.run(A__ )
_SCREAMING_SNAKE_CASE : Union[str, Any] = sess.run(A__ )
return centroids, assignments
| 338 |
'''simple docstring'''
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def _A ( ):
"""simple docstring"""
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
__lowercase = '''__test_patch_submodule_mock__'''
with patch_submodule(_test_patching , '''os.path.join''' , A__ ):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os , _PatchedModuleObj )
assert isinstance(_test_patching.os.path , _PatchedModuleObj )
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path , _PatchedModuleObj )
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os , _PatchedModuleObj )
assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj )
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path , _PatchedModuleObj )
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def _A ( ):
"""simple docstring"""
assert _test_patching.open is open
__lowercase = '''__test_patch_submodule_builtin_mock__'''
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching , '''open''' , A__ ):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def _A ( ):
"""simple docstring"""
__lowercase = '''__test_patch_submodule_missing_mock__'''
with patch_submodule(_test_patching , '''pandas.read_csv''' , A__ ):
pass
def _A ( ):
"""simple docstring"""
__lowercase = '''__test_patch_submodule_missing_builtin_mock__'''
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching , '''len''' , A__ ) is None
with patch_submodule(_test_patching , '''len''' , A__ ):
assert _test_patching.len is mock
assert _test_patching.len is len
def _A ( ):
"""simple docstring"""
__lowercase = '''__test_patch_submodule_start_and_stop_mock__'''
__lowercase = patch_submodule(_test_patching , '''open''' , A__ )
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def _A ( ):
"""simple docstring"""
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
__lowercase = '''__test_patch_submodule_successive_join__'''
__lowercase = '''__test_patch_submodule_successive_dirname__'''
__lowercase = '''__test_patch_submodule_successive_rename__'''
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching , '''os.path.join''' , A__ ):
with patch_submodule(_test_patching , '''os.rename''' , A__ ):
with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching , '''os.rename''' , A__ ):
with patch_submodule(_test_patching , '''os.path.join''' , A__ ):
with patch_submodule(_test_patching , '''os.path.dirname''' , A__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def _A ( ):
"""simple docstring"""
__lowercase = '''__test_patch_submodule_doesnt_exist_mock__'''
with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , A__ ):
pass
with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , A__ ):
pass
| 41 | 0 |
from typing import TYPE_CHECKING
from ...utils import _LazyModule
UpperCAmelCase__ = {'''tokenization_byt5''': ['''ByT5Tokenizer''']}
if TYPE_CHECKING:
from .tokenization_byta import ByTaTokenizer
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 351 |
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import NezhaConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
)
from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST
class lowercase_ :
"""simple docstring"""
def __init__( self : Dict ,lowercase__ : Dict ,lowercase__ : int=1_3 ,lowercase__ : List[str]=7 ,lowercase__ : int=True ,lowercase__ : int=True ,lowercase__ : Union[str, Any]=True ,lowercase__ : List[Any]=True ,lowercase__ : str=9_9 ,lowercase__ : Optional[Any]=3_2 ,lowercase__ : Union[str, Any]=5 ,lowercase__ : List[Any]=4 ,lowercase__ : str=3_7 ,lowercase__ : Tuple="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : Dict=0.1 ,lowercase__ : int=1_2_8 ,lowercase__ : Dict=3_2 ,lowercase__ : Dict=1_6 ,lowercase__ : Any=2 ,lowercase__ : int=0.0_2 ,lowercase__ : List[str]=3 ,lowercase__ : Dict=4 ,lowercase__ : Optional[int]=None ,):
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_token_type_ids
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = type_sequence_label_size
__lowercase = initializer_range
__lowercase = num_labels
__lowercase = num_choices
__lowercase = scope
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
__lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size )
__lowercase = None
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
__lowercase = ids_tensor([self.batch_size] ,self.num_choices )
__lowercase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
return NezhaConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowercase__ ,initializer_range=self.initializer_range ,)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = self.prepare_config_and_inputs()
__lowercase = True
__lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__lowercase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : str ):
__lowercase = NezhaModel(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ )
__lowercase = model(lowercase__ ,token_type_ids=lowercase__ )
__lowercase = model(lowercase__ )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Dict ,lowercase__ : str ,lowercase__ : Optional[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,):
__lowercase = True
__lowercase = NezhaModel(lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(
lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,encoder_attention_mask=lowercase__ ,)
__lowercase = model(
lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,encoder_hidden_states=lowercase__ ,)
__lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ):
__lowercase = NezhaForMaskedLM(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ):
__lowercase = NezhaForNextSentencePrediction(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(
lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) )
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : Dict ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ):
__lowercase = NezhaForPreTraining(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(
lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,next_sentence_label=lowercase__ ,)
self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ):
__lowercase = NezhaForQuestionAnswering(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(
lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,start_positions=lowercase__ ,end_positions=lowercase__ ,)
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Tuple ,lowercase__ : str ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : Optional[int] ,lowercase__ : int ):
__lowercase = self.num_labels
__lowercase = NezhaForSequenceClassification(lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Any ,lowercase__ : Optional[Any] ):
__lowercase = self.num_labels
__lowercase = NezhaForTokenClassification(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = model(lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : str ):
__lowercase = self.num_choices
__lowercase = NezhaForMultipleChoice(config=lowercase__ )
model.to(lowercase__ )
model.eval()
__lowercase = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
__lowercase = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
__lowercase = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
__lowercase = model(
lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,labels=lowercase__ ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = config_and_inputs
__lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = (
(
NezhaModel,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE : Tuple = (
{
'feature-extraction': NezhaModel,
'fill-mask': NezhaForMaskedLM,
'question-answering': NezhaForQuestionAnswering,
'text-classification': NezhaForSequenceClassification,
'token-classification': NezhaForTokenClassification,
'zero-shot': NezhaForSequenceClassification,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE : List[str] = True
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : Any=False ):
__lowercase = super()._prepare_for_class(lowercase__ ,lowercase__ ,return_labels=lowercase__ )
if return_labels:
if model_class in get_values(lowercase__ ):
__lowercase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowercase__ )
__lowercase = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=lowercase__ )
return inputs_dict
def SCREAMING_SNAKE_CASE ( self : Tuple ):
__lowercase = NezhaModelTester(self )
__lowercase = ConfigTester(self ,config_class=lowercase__ ,hidden_size=3_7 )
def SCREAMING_SNAKE_CASE ( self : int ):
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Any ):
__lowercase = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Any ):
# This regression test was failing with PyTorch < 1.3
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = self.model_tester.prepare_config_and_inputs_for_decoder()
__lowercase = None
self.model_tester.create_and_check_model_as_decoder(
lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,)
def SCREAMING_SNAKE_CASE ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_next_sequence_prediction(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : str ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : str ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowercase__ )
def SCREAMING_SNAKE_CASE ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowercase__ )
@slow
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = NezhaModel.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
@slow
@require_torch_gpu
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# NezhaForMultipleChoice behaves incorrectly in JIT environments.
if model_class == NezhaForMultipleChoice:
return
__lowercase = True
__lowercase = model_class(config=lowercase__ )
__lowercase = self._prepare_for_class(lowercase__ ,lowercase__ )
__lowercase = torch.jit.trace(
lowercase__ ,(inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(lowercase__ ,os.path.join(lowercase__ ,'''bert.pt''' ) )
__lowercase = torch.jit.load(os.path.join(lowercase__ ,'''bert.pt''' ) ,map_location=lowercase__ )
loaded(inputs_dict['''input_ids'''].to(lowercase__ ) ,inputs_dict['''attention_mask'''].to(lowercase__ ) )
@require_torch
class lowercase_ (unittest.TestCase ):
"""simple docstring"""
@slow
def SCREAMING_SNAKE_CASE ( self : int ):
__lowercase = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' )
__lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] )
__lowercase = torch.tensor([[0, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0]
__lowercase = torch.Size((1, 6, 7_6_8) )
self.assertEqual(output.shape ,lowercase__ )
__lowercase = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) )
@slow
def SCREAMING_SNAKE_CASE ( self : Dict ):
__lowercase = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' )
__lowercase = torch.tensor([[0, 1, 2, 3, 4, 5]] )
__lowercase = torch.tensor([[1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__lowercase = model(lowercase__ ,attention_mask=lowercase__ )[0]
__lowercase = torch.Size((1, 6, 2_1_1_2_8) )
self.assertEqual(output.shape ,lowercase__ )
__lowercase = torch.tensor(
[[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowercase__ ,atol=1e-4 ) )
| 41 | 0 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
A_ : Union[str, Any] = logging.get_logger(__name__)
class lowerCAmelCase__ ( lowerCamelCase__ ):
'''simple docstring'''
_SCREAMING_SNAKE_CASE : Optional[Any] = ['pixel_values']
def __init__( self : Tuple , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : Dict[str, int] = None , _SCREAMING_SNAKE_CASE : PILImageResampling = PIL.Image.BICUBIC , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : Dict[str, int] = None , _SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 255 , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , **_SCREAMING_SNAKE_CASE : Optional[Any] , ) -> Tuple:
"""simple docstring"""
super().__init__(**lowercase__ )
SCREAMING_SNAKE_CASE : int = size if size is not None else {'height': 256, 'width': 256}
SCREAMING_SNAKE_CASE : Dict = get_size_dict(lowercase__ )
SCREAMING_SNAKE_CASE : Optional[int] = crop_size if crop_size is not None else {'height': 224, 'width': 224}
SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(lowercase__ , param_name='crop_size' )
SCREAMING_SNAKE_CASE : str = do_resize
SCREAMING_SNAKE_CASE : List[Any] = size
SCREAMING_SNAKE_CASE : List[Any] = resample
SCREAMING_SNAKE_CASE : Tuple = do_center_crop
SCREAMING_SNAKE_CASE : int = crop_size
SCREAMING_SNAKE_CASE : Dict = do_rescale
SCREAMING_SNAKE_CASE : Optional[int] = rescale_factor
SCREAMING_SNAKE_CASE : int = do_normalize
SCREAMING_SNAKE_CASE : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
SCREAMING_SNAKE_CASE : str = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _lowerCAmelCase ( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : Dict[str, int] , _SCREAMING_SNAKE_CASE : PILImageResampling = PIL.Image.BICUBIC , _SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE : List[Any] , ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = get_size_dict(lowercase__ )
if "height" not in size or "width" not in size:
raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return resize(
lowercase__ , size=(size['height'], size['width']) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ )
def _lowerCAmelCase ( self : Tuple , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : Dict[str, int] , _SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(lowercase__ )
if "height" not in size or "width" not in size:
raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return center_crop(lowercase__ , size=(size['height'], size['width']) , data_format=lowercase__ , **lowercase__ )
def _lowerCAmelCase ( self : Optional[Any] , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : Union[int, float] , _SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE : Any , ) -> Optional[int]:
"""simple docstring"""
return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ )
def _lowerCAmelCase ( self : Tuple , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : Union[float, List[float]] , _SCREAMING_SNAKE_CASE : Union[float, List[float]] , _SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE : List[Any] , ) -> Tuple:
"""simple docstring"""
return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ )
def _lowerCAmelCase ( self : Dict , _SCREAMING_SNAKE_CASE : ImageInput , _SCREAMING_SNAKE_CASE : bool = None , _SCREAMING_SNAKE_CASE : Dict[str, int] = None , _SCREAMING_SNAKE_CASE : str=None , _SCREAMING_SNAKE_CASE : bool = None , _SCREAMING_SNAKE_CASE : Dict[str, int] = None , _SCREAMING_SNAKE_CASE : bool = None , _SCREAMING_SNAKE_CASE : float = None , _SCREAMING_SNAKE_CASE : bool = None , _SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE : ChannelDimension = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = do_resize if do_resize is not None else self.do_resize
SCREAMING_SNAKE_CASE : Optional[int] = resample if resample is not None else self.resample
SCREAMING_SNAKE_CASE : Any = do_center_crop if do_center_crop is not None else self.do_center_crop
SCREAMING_SNAKE_CASE : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
SCREAMING_SNAKE_CASE : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor
SCREAMING_SNAKE_CASE : List[str] = do_normalize if do_normalize is not None else self.do_normalize
SCREAMING_SNAKE_CASE : Optional[int] = image_mean if image_mean is not None else self.image_mean
SCREAMING_SNAKE_CASE : Any = image_std if image_std is not None else self.image_std
SCREAMING_SNAKE_CASE : str = size if size is not None else self.size
SCREAMING_SNAKE_CASE : List[str] = get_size_dict(lowercase__ )
SCREAMING_SNAKE_CASE : Union[str, Any] = crop_size if crop_size is not None else self.crop_size
SCREAMING_SNAKE_CASE : int = get_size_dict(lowercase__ , param_name='crop_size' )
SCREAMING_SNAKE_CASE : Union[str, Any] = make_list_of_images(lowercase__ )
if not valid_images(lowercase__ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
SCREAMING_SNAKE_CASE : Optional[Any] = [to_numpy_array(lowercase__ ) for image in images]
if do_resize:
SCREAMING_SNAKE_CASE : str = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images]
if do_center_crop:
SCREAMING_SNAKE_CASE : Dict = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images]
if do_rescale:
SCREAMING_SNAKE_CASE : Dict = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images]
if do_normalize:
SCREAMING_SNAKE_CASE : Optional[Any] = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__ ) for image in images]
SCREAMING_SNAKE_CASE : Dict = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images]
SCREAMING_SNAKE_CASE : Dict = {'pixel_values': images}
return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
| 265 |
'''simple docstring'''
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
lowerCAmelCase__ = TypeVar('''KEY''')
lowerCAmelCase__ = TypeVar('''VAL''')
@dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ )
class lowercase_ (Generic[KEY, VAL] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : KEY
SCREAMING_SNAKE_CASE : VAL
class lowercase_ (_Item ):
"""simple docstring"""
def __init__( self : Optional[int] ):
super().__init__(lowercase__ ,lowercase__ )
def __bool__( self : List[str] ):
return False
lowerCAmelCase__ = _DeletedItem()
class lowercase_ (MutableMapping[KEY, VAL] ):
"""simple docstring"""
def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ):
__lowercase = initial_block_size
__lowercase = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
__lowercase = capacity_factor
__lowercase = 0
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ):
return hash(lowercase__ ) % len(self._buckets )
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ):
return (ind + 1) % len(self._buckets )
def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ):
__lowercase = self._buckets[ind]
if not stored:
__lowercase = _Item(lowercase__ ,lowercase__ )
self._len += 1
return True
elif stored.key == key:
__lowercase = _Item(lowercase__ ,lowercase__ )
return True
else:
return False
def SCREAMING_SNAKE_CASE ( self : Dict ):
__lowercase = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : int ):
if len(self._buckets ) <= self._initial_block_size:
return False
__lowercase = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ):
__lowercase = self._buckets
__lowercase = [None] * new_size
__lowercase = 0
for item in old_buckets:
if item:
self._add_item(item.key ,item.val )
def SCREAMING_SNAKE_CASE ( self : str ):
self._resize(len(self._buckets ) * 2 )
def SCREAMING_SNAKE_CASE ( self : Tuple ):
self._resize(len(self._buckets ) // 2 )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ):
__lowercase = self._get_bucket_index(lowercase__ )
for _ in range(len(self._buckets ) ):
yield ind
__lowercase = self._get_next_ind(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ):
for ind in self._iterate_buckets(lowercase__ ):
if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ):
break
def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ):
if self._is_full():
self._size_up()
self._add_item(lowercase__ ,lowercase__ )
def __delitem__( self : Tuple ,lowercase__ : KEY ):
for ind in self._iterate_buckets(lowercase__ ):
__lowercase = self._buckets[ind]
if item is None:
raise KeyError(lowercase__ )
if item is _deleted:
continue
if item.key == key:
__lowercase = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self : Tuple ,lowercase__ : KEY ):
for ind in self._iterate_buckets(lowercase__ ):
__lowercase = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(lowercase__ )
def __len__( self : Optional[int] ):
return self._len
def __iter__( self : str ):
yield from (item.key for item in self._buckets if item)
def __repr__( self : Optional[Any] ):
__lowercase = ''' ,'''.join(
F"{item.key}: {item.val}" for item in self._buckets if item )
return F"HashMap({val_string})"
| 41 | 0 |
import torch
from transformers import CamembertForMaskedLM, CamembertTokenizer
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=5 ):
assert masked_input.count("""<mask>""" ) == 1
__magic_name__ : Any =torch.tensor(tokenizer.encode(A__ , add_special_tokens=A__ ) ).unsqueeze(0 ) # Batch size 1
__magic_name__ : List[str] =model(A__ )[0] # The last hidden-state is the first element of the output tuple
__magic_name__ : Union[str, Any] =(input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item()
__magic_name__ : Dict =logits[0, masked_index, :]
__magic_name__ : Union[str, Any] =logits.softmax(dim=0 )
__magic_name__ , __magic_name__ : Optional[Any] =prob.topk(k=A__ , dim=0 )
__magic_name__ : Optional[Any] =""" """.join(
[tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(A__ ) )] )
__magic_name__ : str =tokenizer.mask_token
__magic_name__ : Union[str, Any] =[]
for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(""" """ ) ):
__magic_name__ : List[Any] =predicted_token_bpe.replace("""\u2581""" , """ """ )
if " {0}".format(A__ ) in masked_input:
topk_filled_outputs.append(
(
masked_input.replace(""" {0}""".format(A__ ) , A__ ),
values[index].item(),
predicted_token,
) )
else:
topk_filled_outputs.append(
(
masked_input.replace(A__ , A__ ),
values[index].item(),
predicted_token,
) )
return topk_filled_outputs
UpperCAmelCase_ : Optional[int] = CamembertTokenizer.from_pretrained("camembert-base")
UpperCAmelCase_ : str = CamembertForMaskedLM.from_pretrained("camembert-base")
model.eval()
UpperCAmelCase_ : Tuple = "Le camembert est <mask> :)"
print(fill_mask(masked_input, model, tokenizer, topk=3))
| 21 |
'''simple docstring'''
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
lowerCAmelCase__ = logging.get_logger(__name__)
@add_end_docstrings(lowerCamelCase__ )
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
def __init__( self : List[str] ,**lowercase__ : Tuple ):
super().__init__(**lowercase__ )
if self.framework == "tf":
raise ValueError(F"The {self.__class__} is only available in PyTorch." )
requires_backends(self ,'''vision''' )
self.check_model_type(lowercase__ )
def __call__( self : List[str] ,lowercase__ : Union[str, "Image.Image", List[Dict[str, Any]]] ,lowercase__ : Union[str, List[str]] = None ,**lowercase__ : str ,):
if "text_queries" in kwargs:
__lowercase = kwargs.pop('''text_queries''' )
if isinstance(lowercase__ ,(str, Image.Image) ):
__lowercase = {'''image''': image, '''candidate_labels''': candidate_labels}
else:
__lowercase = image
__lowercase = super().__call__(lowercase__ ,**lowercase__ )
return results
def SCREAMING_SNAKE_CASE ( self : int ,**lowercase__ : List[Any] ):
__lowercase = {}
if "threshold" in kwargs:
__lowercase = kwargs['''threshold''']
if "top_k" in kwargs:
__lowercase = kwargs['''top_k''']
return {}, {}, postprocess_params
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[Any] ):
__lowercase = load_image(inputs['''image'''] )
__lowercase = inputs['''candidate_labels''']
if isinstance(lowercase__ ,lowercase__ ):
__lowercase = candidate_labels.split(''',''' )
__lowercase = torch.tensor([[image.height, image.width]] ,dtype=torch.intaa )
for i, candidate_label in enumerate(lowercase__ ):
__lowercase = self.tokenizer(lowercase__ ,return_tensors=self.framework )
__lowercase = self.image_processor(lowercase__ ,return_tensors=self.framework )
yield {
"is_last": i == len(lowercase__ ) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ):
__lowercase = model_inputs.pop('''target_size''' )
__lowercase = model_inputs.pop('''candidate_label''' )
__lowercase = model_inputs.pop('''is_last''' )
__lowercase = self.model(**lowercase__ )
__lowercase = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs}
return model_outputs
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : List[Any]=0.1 ,lowercase__ : List[str]=None ):
__lowercase = []
for model_output in model_outputs:
__lowercase = model_output['''candidate_label''']
__lowercase = BaseModelOutput(lowercase__ )
__lowercase = self.image_processor.post_process_object_detection(
outputs=lowercase__ ,threshold=lowercase__ ,target_sizes=model_output['''target_size'''] )[0]
for index in outputs["scores"].nonzero():
__lowercase = outputs['''scores'''][index].item()
__lowercase = self._get_bounding_box(outputs['''boxes'''][index][0] )
__lowercase = {'''score''': score, '''label''': label, '''box''': box}
results.append(lowercase__ )
__lowercase = sorted(lowercase__ ,key=lambda lowercase__ : x["score"] ,reverse=lowercase__ )
if top_k:
__lowercase = results[:top_k]
return results
def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : "torch.Tensor" ):
if self.framework != "pt":
raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' )
__lowercase , __lowercase , __lowercase , __lowercase = box.int().tolist()
__lowercase = {
'''xmin''': xmin,
'''ymin''': ymin,
'''xmax''': xmax,
'''ymax''': ymax,
}
return bbox
| 41 | 0 |
"""simple docstring"""
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class lowerCamelCase__ ( lowerCamelCase__ ):
'''simple docstring'''
def __init__( self ) -> int:
A = []
def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,**lowerCamelCase_ ) -> Optional[Any]:
self.events.append("""on_init_end""" )
def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,**lowerCamelCase_ ) -> Optional[int]:
self.events.append("""on_train_begin""" )
def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,**lowerCamelCase_ ) -> List[Any]:
self.events.append("""on_train_end""" )
def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,**lowerCamelCase_ ) -> Optional[int]:
self.events.append("""on_epoch_begin""" )
def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,**lowerCamelCase_ ) -> int:
self.events.append("""on_epoch_end""" )
def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,**lowerCamelCase_ ) -> Dict:
self.events.append("""on_step_begin""" )
def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,**lowerCamelCase_ ) -> Any:
self.events.append("""on_step_end""" )
def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,**lowerCamelCase_ ) -> str:
self.events.append("""on_evaluate""" )
def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,**lowerCamelCase_ ) -> Union[str, Any]:
self.events.append("""on_predict""" )
def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,**lowerCamelCase_ ) -> List[Any]:
self.events.append("""on_save""" )
def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,**lowerCamelCase_ ) -> str:
self.events.append("""on_log""" )
def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,**lowerCamelCase_ ) -> List[Any]:
self.events.append("""on_prediction_step""" )
@require_torch
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self ) -> Optional[int]:
A = tempfile.mkdtemp()
def UpperCamelCase__ ( self ) -> int:
shutil.rmtree(self.output_dir )
def UpperCamelCase__ ( self ,lowerCamelCase_=0 ,lowerCamelCase_=0 ,lowerCamelCase_=6_4 ,lowerCamelCase_=6_4 ,lowerCamelCase_=None ,lowerCamelCase_=False ,**lowerCamelCase_ ) -> Any:
# disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure
# its set to False since the tests later on depend on its value.
A = RegressionDataset(length=lowercase__ )
A = RegressionDataset(length=lowercase__ )
A = RegressionModelConfig(a=lowercase__ ,b=lowercase__ )
A = RegressionPreTrainedModel(lowercase__ )
A = TrainingArguments(self.output_dir ,disable_tqdm=lowercase__ ,report_to=[] ,**lowercase__ )
return Trainer(
lowercase__ ,lowercase__ ,train_dataset=lowercase__ ,eval_dataset=lowercase__ ,callbacks=lowercase__ ,)
def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> Union[str, Any]:
self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) )
# Order doesn't matter
A = sorted(lowercase__ ,key=lambda lowerCamelCase_ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ )
A = sorted(lowercase__ ,key=lambda lowerCamelCase_ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ )
for cba, cba in zip(lowercase__ ,lowercase__ ):
if isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ):
self.assertEqual(lowercase__ ,lowercase__ )
elif isinstance(lowercase__ ,lowercase__ ) and not isinstance(lowercase__ ,lowercase__ ):
self.assertEqual(lowercase__ ,cba.__class__ )
elif not isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ):
self.assertEqual(cba.__class__ ,lowercase__ )
else:
self.assertEqual(lowercase__ ,lowercase__ )
def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> Union[str, Any]:
A = ["""on_init_end""", """on_train_begin"""]
A = 0
A = len(trainer.get_eval_dataloader() )
A = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""]
for _ in range(trainer.state.num_train_epochs ):
expected_events.append("""on_epoch_begin""" )
for _ in range(lowercase__ ):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append("""on_log""" )
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append("""on_save""" )
expected_events.append("""on_epoch_end""" )
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def UpperCamelCase__ ( self ) -> Optional[int]:
A = self.get_trainer()
A = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
# Callbacks passed at init are added to the default callbacks
A = self.get_trainer(callbacks=[MyTestTrainerCallback] )
expected_callbacks.append(lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
A = self.get_trainer(disable_tqdm=lowercase__ )
A = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
def UpperCamelCase__ ( self ) -> List[Any]:
A = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
A = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(lowercase__ )
expected_callbacks.remove(lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
A = self.get_trainer()
A = trainer.pop_callback(lowercase__ )
self.assertEqual(cb.__class__ ,lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
trainer.add_callback(lowercase__ )
expected_callbacks.insert(0 ,lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
# We can also add, pop, or remove by instance
A = self.get_trainer()
A = trainer.callback_handler.callbacks[0]
trainer.remove_callback(lowercase__ )
expected_callbacks.remove(lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
A = self.get_trainer()
A = trainer.callback_handler.callbacks[0]
A = trainer.pop_callback(lowercase__ )
self.assertEqual(lowercase__ ,lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
trainer.add_callback(lowercase__ )
expected_callbacks.insert(0 ,lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
def UpperCamelCase__ ( self ) -> List[str]:
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action="""ignore""" ,category=lowercase__ )
A = self.get_trainer(callbacks=[MyTestTrainerCallback] )
trainer.train()
A = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
# Independent log/save/eval
A = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 )
trainer.train()
A = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
A = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 )
trainer.train()
A = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
A = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy="""steps""" )
trainer.train()
A = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
A = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy="""epoch""" )
trainer.train()
A = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
# A bit of everything
A = self.get_trainer(
callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=1_0 ,eval_steps=5 ,evaluation_strategy="""steps""" ,)
trainer.train()
A = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
# warning should be emitted for duplicated callbacks
with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock:
A = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,)
assert str(lowercase__ ) in warn_mock.call_args[0][0]
| 617 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = 'facebook/bart-large-mnli'
SCREAMING_SNAKE_CASE : Optional[Any] = (
'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which '
'should be the text to classify, and `labels`, which should be the list of labels to use for classification. '
'It returns the most likely label in the list of provided `labels` for the input text.'
)
SCREAMING_SNAKE_CASE : Any = 'text_classifier'
SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer
SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForSequenceClassification
SCREAMING_SNAKE_CASE : Tuple = ['text', ['text']]
SCREAMING_SNAKE_CASE : List[str] = ['text']
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
super().setup()
__lowercase = self.model.config
__lowercase = -1
for idx, label in config.idalabel.items():
if label.lower().startswith('''entail''' ):
__lowercase = int(lowercase__ )
if self.entailment_id == -1:
raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Dict ,lowercase__ : List[Any] ):
__lowercase = labels
return self.pre_processor(
[text] * len(lowercase__ ) ,[F"This example is {label}" for label in labels] ,return_tensors='''pt''' ,padding='''max_length''' ,)
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ):
__lowercase = outputs.logits
__lowercase = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id]
| 41 | 0 |
"""simple docstring"""
import math
def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase = 0 , lowerCAmelCase = 0 ):
'''simple docstring'''
UpperCAmelCase = end or len(A__ )
for i in range(A__ , A__ ):
UpperCAmelCase = i
UpperCAmelCase = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
UpperCAmelCase = array[temp_index - 1]
temp_index -= 1
UpperCAmelCase = temp_index_value
return array
def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): # Max Heap
'''simple docstring'''
UpperCAmelCase = index
UpperCAmelCase = 2 * index + 1 # Left Node
UpperCAmelCase = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
UpperCAmelCase = left_index
if right_index < heap_size and array[largest] < array[right_index]:
UpperCAmelCase = right_index
if largest != index:
UpperCAmelCase , UpperCAmelCase = array[largest], array[index]
heapify(A__ , A__ , A__ )
def _lowerCAmelCase ( lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase = len(A__ )
for i in range(n // 2 , -1 , -1 ):
heapify(A__ , A__ , A__ )
for i in range(n - 1 , 0 , -1 ):
UpperCAmelCase , UpperCAmelCase = array[0], array[i]
heapify(A__ , 0 , A__ )
return array
def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ):
'''simple docstring'''
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase = low
UpperCAmelCase = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
UpperCAmelCase , UpperCAmelCase = array[j], array[i]
i += 1
def _lowerCAmelCase ( lowerCAmelCase ):
'''simple docstring'''
if len(A__ ) == 0:
return array
UpperCAmelCase = 2 * math.ceil(math.loga(len(A__ ) ) )
UpperCAmelCase = 16
return intro_sort(A__ , 0 , len(A__ ) , A__ , A__ )
def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ):
'''simple docstring'''
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(A__ )
max_depth -= 1
UpperCAmelCase = median_of_a(A__ , A__ , start + ((end - start) // 2) + 1 , end - 1 )
UpperCAmelCase = partition(A__ , A__ , A__ , A__ )
intro_sort(A__ , A__ , A__ , A__ , A__ )
UpperCAmelCase = p
return insertion_sort(A__ , A__ , A__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase_ : Optional[int] = input('''Enter numbers separated by a comma : ''').strip()
lowerCAmelCase_ : str = [float(item) for item in user_input.split(''',''')]
print(sort(unsorted))
| 673 |
'''simple docstring'''
from collections.abc import Callable
class lowercase_ :
"""simple docstring"""
def __init__( self : Optional[int] ,lowercase__ : Callable | None = None ):
# Stores actual heap items.
__lowercase = []
# Stores indexes of each item for supporting updates and deletion.
__lowercase = {}
# Stores current size of heap.
__lowercase = 0
# Stores function used to evaluate the score of an item on which basis ordering
# will be done.
__lowercase = key or (lambda lowercase__ : x)
def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : int ):
return int((i - 1) / 2 ) if i > 0 else None
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ):
__lowercase = int(2 * i + 1 )
return left if 0 < left < self.size else None
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ):
__lowercase = int(2 * i + 2 )
return right if 0 < right < self.size else None
def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : int ,lowercase__ : int ):
__lowercase , __lowercase = (
self.pos_map[self.arr[j][0]],
self.pos_map[self.arr[i][0]],
)
# Then swap the items in the list.
__lowercase , __lowercase = self.arr[j], self.arr[i]
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ):
return self.arr[i][1] < self.arr[j][1]
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ):
__lowercase = self._left(lowercase__ )
__lowercase = self._right(lowercase__ )
__lowercase = i
if left is not None and not self._cmp(lowercase__ ,lowercase__ ):
__lowercase = left
if right is not None and not self._cmp(lowercase__ ,lowercase__ ):
__lowercase = right
return valid_parent
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ):
__lowercase = self._parent(lowercase__ )
while parent is not None and not self._cmp(lowercase__ ,lowercase__ ):
self._swap(lowercase__ ,lowercase__ )
__lowercase , __lowercase = parent, self._parent(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ):
__lowercase = self._get_valid_parent(lowercase__ )
while valid_parent != index:
self._swap(lowercase__ ,lowercase__ )
__lowercase , __lowercase = valid_parent, self._get_valid_parent(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ,lowercase__ : int ):
if item not in self.pos_map:
return
__lowercase = self.pos_map[item]
__lowercase = [item, self.key(lowercase__ )]
# Make sure heap is right in both up and down direction.
# Ideally only one of them will make any change.
self._heapify_up(lowercase__ )
self._heapify_down(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : int ):
if item not in self.pos_map:
return
__lowercase = self.pos_map[item]
del self.pos_map[item]
__lowercase = self.arr[self.size - 1]
__lowercase = index
self.size -= 1
# Make sure heap is right in both up and down direction. Ideally only one
# of them will make any change- so no performance loss in calling both.
if self.size > index:
self._heapify_up(lowercase__ )
self._heapify_down(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : int ):
__lowercase = len(self.arr )
if arr_len == self.size:
self.arr.append([item, self.key(lowercase__ )] )
else:
__lowercase = [item, self.key(lowercase__ )]
__lowercase = self.size
self.size += 1
self._heapify_up(self.size - 1 )
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
return self.arr[0] if self.size else None
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
__lowercase = self.get_top()
if top_item_tuple:
self.delete_item(top_item_tuple[0] )
return top_item_tuple
def _A ( ):
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 41 | 0 |
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def _UpperCAmelCase ( ):
"""simple docstring"""
__lowerCamelCase : Any = ArgumentParser(
description=(
"""PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes"""
) )
# Optional arguments for the launch helper
parser.add_argument("""--num_cores""" , type=A__ , default=1 , help="""Number of TPU cores to use (1 or 8).""" )
# positional
parser.add_argument(
"""training_script""" , type=A__ , help=(
"""The full path to the single TPU training """
"""program/script to be launched in parallel, """
"""followed by all the arguments for the """
"""training script"""
) , )
# rest from the training program
parser.add_argument("""training_script_args""" , nargs=A__ )
return parser.parse_args()
def _UpperCAmelCase ( ):
"""simple docstring"""
__lowerCamelCase : Optional[int] = parse_args()
# Import training_script as a module.
__lowerCamelCase : Optional[Any] = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
__lowerCamelCase : str = script_fpath.stem
__lowerCamelCase : Dict = importlib.import_module(A__ )
# Patch sys.argv
__lowerCamelCase : Union[str, Any] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 519 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
def __init__( self : List[str] ):
__lowercase = []
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : str ,**lowercase__ : Any ):
self.events.append('''on_init_end''' )
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : int ,**lowercase__ : Optional[int] ):
self.events.append('''on_train_begin''' )
def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ,**lowercase__ : List[str] ):
self.events.append('''on_train_end''' )
def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,**lowercase__ : Optional[Any] ):
self.events.append('''on_epoch_begin''' )
def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : Any ,**lowercase__ : Optional[int] ):
self.events.append('''on_epoch_end''' )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[str] ,**lowercase__ : List[str] ):
self.events.append('''on_step_begin''' )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : Optional[int] ,**lowercase__ : Dict ):
self.events.append('''on_step_end''' )
def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,**lowercase__ : Any ):
self.events.append('''on_evaluate''' )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : int ,**lowercase__ : Optional[Any] ):
self.events.append('''on_predict''' )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,**lowercase__ : int ):
self.events.append('''on_save''' )
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : List[str] ,**lowercase__ : List[str] ):
self.events.append('''on_log''' )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : int ,lowercase__ : Dict ,**lowercase__ : str ):
self.events.append('''on_prediction_step''' )
@require_torch
class lowercase_ (unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE ( self : List[str] ):
__lowercase = tempfile.mkdtemp()
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
shutil.rmtree(self.output_dir )
def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any]=0 ,lowercase__ : Any=0 ,lowercase__ : Tuple=6_4 ,lowercase__ : Optional[int]=6_4 ,lowercase__ : Optional[Any]=None ,lowercase__ : str=False ,**lowercase__ : Any ):
# disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure
# its set to False since the tests later on depend on its value.
__lowercase = RegressionDataset(length=lowercase__ )
__lowercase = RegressionDataset(length=lowercase__ )
__lowercase = RegressionModelConfig(a=lowercase__ ,b=lowercase__ )
__lowercase = RegressionPreTrainedModel(lowercase__ )
__lowercase = TrainingArguments(self.output_dir ,disable_tqdm=lowercase__ ,report_to=[] ,**lowercase__ )
return Trainer(
lowercase__ ,lowercase__ ,train_dataset=lowercase__ ,eval_dataset=lowercase__ ,callbacks=lowercase__ ,)
def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ):
self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) )
# Order doesn't matter
__lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ )
__lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ )
for cba, cba in zip(lowercase__ ,lowercase__ ):
if isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ):
self.assertEqual(lowercase__ ,lowercase__ )
elif isinstance(lowercase__ ,lowercase__ ) and not isinstance(lowercase__ ,lowercase__ ):
self.assertEqual(lowercase__ ,cba.__class__ )
elif not isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ):
self.assertEqual(cba.__class__ ,lowercase__ )
else:
self.assertEqual(lowercase__ ,lowercase__ )
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ):
__lowercase = ['''on_init_end''', '''on_train_begin''']
__lowercase = 0
__lowercase = len(trainer.get_eval_dataloader() )
__lowercase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate''']
for _ in range(trainer.state.num_train_epochs ):
expected_events.append('''on_epoch_begin''' )
for _ in range(lowercase__ ):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append('''on_log''' )
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append('''on_save''' )
expected_events.append('''on_epoch_end''' )
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def SCREAMING_SNAKE_CASE ( self : str ):
__lowercase = self.get_trainer()
__lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
# Callbacks passed at init are added to the default callbacks
__lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] )
expected_callbacks.append(lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
__lowercase = self.get_trainer(disable_tqdm=lowercase__ )
__lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
__lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
__lowercase = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(lowercase__ )
expected_callbacks.remove(lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
__lowercase = self.get_trainer()
__lowercase = trainer.pop_callback(lowercase__ )
self.assertEqual(cb.__class__ ,lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
trainer.add_callback(lowercase__ )
expected_callbacks.insert(0 ,lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
# We can also add, pop, or remove by instance
__lowercase = self.get_trainer()
__lowercase = trainer.callback_handler.callbacks[0]
trainer.remove_callback(lowercase__ )
expected_callbacks.remove(lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
__lowercase = self.get_trainer()
__lowercase = trainer.callback_handler.callbacks[0]
__lowercase = trainer.pop_callback(lowercase__ )
self.assertEqual(lowercase__ ,lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
trainer.add_callback(lowercase__ )
expected_callbacks.insert(0 ,lowercase__ )
self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Dict ):
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action='''ignore''' ,category=lowercase__ )
__lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] )
trainer.train()
__lowercase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
# Independent log/save/eval
__lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 )
trainer.train()
__lowercase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
__lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 )
trainer.train()
__lowercase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
__lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='''steps''' )
trainer.train()
__lowercase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
__lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='''epoch''' )
trainer.train()
__lowercase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
# A bit of everything
__lowercase = self.get_trainer(
callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=1_0 ,eval_steps=5 ,evaluation_strategy='''steps''' ,)
trainer.train()
__lowercase = trainer.callback_handler.callbacks[-2].events
self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) )
# warning should be emitted for duplicated callbacks
with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock:
__lowercase = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,)
assert str(lowercase__ ) in warn_mock.call_args[0][0]
| 41 | 0 |
"""simple docstring"""
def a_ ( __a , __a ):
return int((input_a, input_a).count(1 ) != 0 )
def a_ ( ):
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 571 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
)
@flax.struct.dataclass
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : jnp.ndarray
SCREAMING_SNAKE_CASE : jnp.ndarray
class lowercase_ (nn.Module ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int
SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6)
SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa
def SCREAMING_SNAKE_CASE ( self : Dict ):
__lowercase = nn.Conv(
self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
__lowercase = []
for i in range(len(self.block_out_channels ) - 1 ):
__lowercase = self.block_out_channels[i]
__lowercase = self.block_out_channels[i + 1]
__lowercase = nn.Conv(
lowercase__ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
blocks.append(lowercase__ )
__lowercase = nn.Conv(
lowercase__ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
blocks.append(lowercase__ )
__lowercase = blocks
__lowercase = nn.Conv(
self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,)
def __call__( self : List[str] ,lowercase__ : Optional[int] ):
__lowercase = self.conv_in(lowercase__ )
__lowercase = nn.silu(lowercase__ )
for block in self.blocks:
__lowercase = block(lowercase__ )
__lowercase = nn.silu(lowercase__ )
__lowercase = self.conv_out(lowercase__ )
return embedding
@flax_register_to_config
class lowercase_ (nn.Module , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = 3_2
SCREAMING_SNAKE_CASE : int = 4
SCREAMING_SNAKE_CASE : Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False
SCREAMING_SNAKE_CASE : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0)
SCREAMING_SNAKE_CASE : int = 2
SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8
SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None
SCREAMING_SNAKE_CASE : int = 1_2_8_0
SCREAMING_SNAKE_CASE : float = 0.0
SCREAMING_SNAKE_CASE : bool = False
SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa
SCREAMING_SNAKE_CASE : bool = True
SCREAMING_SNAKE_CASE : int = 0
SCREAMING_SNAKE_CASE : str = "rgb"
SCREAMING_SNAKE_CASE : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6)
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : jax.random.KeyArray ):
# init input tensors
__lowercase = (1, self.in_channels, self.sample_size, self.sample_size)
__lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa )
__lowercase = jnp.ones((1,) ,dtype=jnp.intaa )
__lowercase = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa )
__lowercase = (1, 3, self.sample_size * 8, self.sample_size * 8)
__lowercase = jnp.zeros(lowercase__ ,dtype=jnp.floataa )
__lowercase , __lowercase = jax.random.split(lowercase__ )
__lowercase = {'''params''': params_rng, '''dropout''': dropout_rng}
return self.init(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )["params"]
def SCREAMING_SNAKE_CASE ( self : Any ):
__lowercase = self.block_out_channels
__lowercase = block_out_channels[0] * 4
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
__lowercase = self.num_attention_heads or self.attention_head_dim
# input
__lowercase = nn.Conv(
block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
# time
__lowercase = FlaxTimesteps(
block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift )
__lowercase = FlaxTimestepEmbedding(lowercase__ ,dtype=self.dtype )
__lowercase = FlaxControlNetConditioningEmbedding(
conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,)
__lowercase = self.only_cross_attention
if isinstance(lowercase__ ,lowercase__ ):
__lowercase = (only_cross_attention,) * len(self.down_block_types )
if isinstance(lowercase__ ,lowercase__ ):
__lowercase = (num_attention_heads,) * len(self.down_block_types )
# down
__lowercase = []
__lowercase = []
__lowercase = block_out_channels[0]
__lowercase = nn.Conv(
lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,)
controlnet_down_blocks.append(lowercase__ )
for i, down_block_type in enumerate(self.down_block_types ):
__lowercase = output_channel
__lowercase = block_out_channels[i]
__lowercase = i == len(lowercase__ ) - 1
if down_block_type == "CrossAttnDownBlock2D":
__lowercase = FlaxCrossAttnDownBlockaD(
in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,)
else:
__lowercase = FlaxDownBlockaD(
in_channels=lowercase__ ,out_channels=lowercase__ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,)
down_blocks.append(lowercase__ )
for _ in range(self.layers_per_block ):
__lowercase = nn.Conv(
lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,)
controlnet_down_blocks.append(lowercase__ )
if not is_final_block:
__lowercase = nn.Conv(
lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,)
controlnet_down_blocks.append(lowercase__ )
__lowercase = down_blocks
__lowercase = controlnet_down_blocks
# mid
__lowercase = block_out_channels[-1]
__lowercase = FlaxUNetMidBlockaDCrossAttn(
in_channels=lowercase__ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,)
__lowercase = nn.Conv(
lowercase__ ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,)
def __call__( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : float = 1.0 ,lowercase__ : bool = True ,lowercase__ : bool = False ,):
__lowercase = self.controlnet_conditioning_channel_order
if channel_order == "bgr":
__lowercase = jnp.flip(lowercase__ ,axis=1 )
# 1. time
if not isinstance(lowercase__ ,jnp.ndarray ):
__lowercase = jnp.array([timesteps] ,dtype=jnp.intaa )
elif isinstance(lowercase__ ,jnp.ndarray ) and len(timesteps.shape ) == 0:
__lowercase = timesteps.astype(dtype=jnp.floataa )
__lowercase = jnp.expand_dims(lowercase__ ,0 )
__lowercase = self.time_proj(lowercase__ )
__lowercase = self.time_embedding(lowercase__ )
# 2. pre-process
__lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) )
__lowercase = self.conv_in(lowercase__ )
__lowercase = jnp.transpose(lowercase__ ,(0, 2, 3, 1) )
__lowercase = self.controlnet_cond_embedding(lowercase__ )
sample += controlnet_cond
# 3. down
__lowercase = (sample,)
for down_block in self.down_blocks:
if isinstance(lowercase__ ,lowercase__ ):
__lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train )
else:
__lowercase , __lowercase = down_block(lowercase__ ,lowercase__ ,deterministic=not train )
down_block_res_samples += res_samples
# 4. mid
__lowercase = self.mid_block(lowercase__ ,lowercase__ ,lowercase__ ,deterministic=not train )
# 5. contronet blocks
__lowercase = ()
for down_block_res_sample, controlnet_block in zip(lowercase__ ,self.controlnet_down_blocks ):
__lowercase = controlnet_block(lowercase__ )
controlnet_down_block_res_samples += (down_block_res_sample,)
__lowercase = controlnet_down_block_res_samples
__lowercase = self.controlnet_mid_block(lowercase__ )
# 6. scaling
__lowercase = [sample * conditioning_scale for sample in down_block_res_samples]
mid_block_res_sample *= conditioning_scale
if not return_dict:
return (down_block_res_samples, mid_block_res_sample)
return FlaxControlNetOutput(
down_block_res_samples=lowercase__ ,mid_block_res_sample=lowercase__ )
| 41 | 0 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import GLPNImageProcessor
class __magic_name__ ( unittest.TestCase):
'''simple docstring'''
def __init__( self: Union[str, Any] , _lowerCamelCase: int , _lowerCamelCase: Any=7 , _lowerCamelCase: Optional[Any]=3 , _lowerCamelCase: Any=18 , _lowerCamelCase: Optional[Any]=30 , _lowerCamelCase: Any=4_00 , _lowerCamelCase: str=True , _lowerCamelCase: Union[str, Any]=32 , _lowerCamelCase: Tuple=True , ):
SCREAMING_SNAKE_CASE_ = parent
SCREAMING_SNAKE_CASE_ = batch_size
SCREAMING_SNAKE_CASE_ = num_channels
SCREAMING_SNAKE_CASE_ = image_size
SCREAMING_SNAKE_CASE_ = min_resolution
SCREAMING_SNAKE_CASE_ = max_resolution
SCREAMING_SNAKE_CASE_ = do_resize
SCREAMING_SNAKE_CASE_ = size_divisor
SCREAMING_SNAKE_CASE_ = do_rescale
def _A ( self: Optional[Any] ):
return {
"do_resize": self.do_resize,
"size_divisor": self.size_divisor,
"do_rescale": self.do_rescale,
}
@require_torch
@require_vision
class __magic_name__ ( lowerCamelCase__ , unittest.TestCase):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Tuple = GLPNImageProcessor if is_vision_available() else None
def _A ( self: Union[str, Any] ):
SCREAMING_SNAKE_CASE_ = GLPNImageProcessingTester(self )
@property
def _A ( self: str ):
return self.image_processor_tester.prepare_image_processor_dict()
def _A ( self: int ):
SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase__ , '''do_resize''' ) )
self.assertTrue(hasattr(lowercase__ , '''size_divisor''' ) )
self.assertTrue(hasattr(lowercase__ , '''resample''' ) )
self.assertTrue(hasattr(lowercase__ , '''do_rescale''' ) )
def _A ( self: Union[str, Any] ):
pass
def _A ( self: List[str] ):
# Initialize image_processing
SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ )
for image in image_inputs:
self.assertIsInstance(lowercase__ , Image.Image )
# Test not batched input (GLPNImageProcessor doesn't support batching)
SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def _A ( self: Optional[Any] ):
# Initialize image_processing
SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , numpify=lowercase__ )
for image in image_inputs:
self.assertIsInstance(lowercase__ , np.ndarray )
# Test not batched input (GLPNImageProcessor doesn't support batching)
SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def _A ( self: Dict ):
# Initialize image_processing
SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__ )
for image in image_inputs:
self.assertIsInstance(lowercase__ , torch.Tensor )
# Test not batched input (GLPNImageProcessor doesn't support batching)
SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
| 234 |
'''simple docstring'''
import io
import math
from typing import Dict, Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
get_image_size,
infer_channel_dimension_format,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_vision_available, logging
from ...utils.import_utils import requires_backends
if is_vision_available():
import textwrap
from PIL import Image, ImageDraw, ImageFont
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
lowerCAmelCase__ = False
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = '''ybelkada/fonts'''
def _A ( ):
"""simple docstring"""
if is_torch_available() and not is_torch_greater_or_equal_than_1_11:
raise ImportError(
F"You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use "
'''Pix2StructImageProcessor. Please upgrade torch.''' )
def _A ( A__ , A__ , A__ ):
"""simple docstring"""
requires_backends(A__ , ['''torch'''] )
_check_torch_version()
__lowercase = image_tensor.unsqueeze(0 )
__lowercase = torch.nn.functional.unfold(A__ , (patch_height, patch_width) , stride=(patch_height, patch_width) )
__lowercase = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , A__ , A__ , -1 )
__lowercase = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape(
image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , )
return patches.unsqueeze(0 )
def _A ( A__ , A__ = 36 , A__ = "black" , A__ = "white" , A__ = 5 , A__ = 5 , A__ = 5 , A__ = 5 , A__ = None , A__ = None , ):
"""simple docstring"""
requires_backends(A__ , '''vision''' )
# Add new lines so that each line is no more than 80 characters.
__lowercase = textwrap.TextWrapper(width=80 )
__lowercase = wrapper.wrap(text=A__ )
__lowercase = '''\n'''.join(A__ )
if font_bytes is not None and font_path is None:
__lowercase = io.BytesIO(A__ )
elif font_path is not None:
__lowercase = font_path
else:
__lowercase = hf_hub_download(A__ , '''Arial.TTF''' )
__lowercase = ImageFont.truetype(A__ , encoding='''UTF-8''' , size=A__ )
# Use a temporary canvas to determine the width and height in pixels when
# rendering the text.
__lowercase = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , A__ ) )
__lowercase , __lowercase , __lowercase , __lowercase = temp_draw.textbbox((0, 0) , A__ , A__ )
# Create the actual image with a bit of padding around the text.
__lowercase = text_width + left_padding + right_padding
__lowercase = text_height + top_padding + bottom_padding
__lowercase = Image.new('''RGB''' , (image_width, image_height) , A__ )
__lowercase = ImageDraw.Draw(A__ )
draw.text(xy=(left_padding, top_padding) , text=A__ , fill=A__ , font=A__ )
return image
def _A ( A__ , A__ , **A__ ):
"""simple docstring"""
requires_backends(A__ , '''vision''' )
# Convert to PIL image if necessary
__lowercase = to_pil_image(A__ )
__lowercase = render_text(A__ , **A__ )
__lowercase = max(header_image.width , image.width )
__lowercase = int(image.height * (new_width / image.width) )
__lowercase = int(header_image.height * (new_width / header_image.width) )
__lowercase = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' )
new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) )
new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) )
# Convert back to the original framework if necessary
__lowercase = to_numpy_array(A__ )
if infer_channel_dimension_format(A__ ) == ChannelDimension.LAST:
__lowercase = to_channel_dimension_format(A__ , ChannelDimension.LAST )
return new_image
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = ['flattened_patches']
def __init__( self : Any ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : int = 2_0_4_8 ,lowercase__ : bool = False ,**lowercase__ : List[str] ,):
super().__init__(**lowercase__ )
__lowercase = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6}
__lowercase = do_normalize
__lowercase = do_convert_rgb
__lowercase = max_patches
__lowercase = is_vqa
def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : np.ndarray ,lowercase__ : int ,lowercase__ : dict ,**lowercase__ : Tuple ):
requires_backends(self.extract_flattened_patches ,'''torch''' )
_check_torch_version()
# convert to torch
__lowercase = to_channel_dimension_format(lowercase__ ,ChannelDimension.FIRST )
__lowercase = torch.from_numpy(lowercase__ )
__lowercase , __lowercase = patch_size['''height'''], patch_size['''width''']
__lowercase , __lowercase = get_image_size(lowercase__ )
# maximize scale s.t.
__lowercase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) )
__lowercase = max(min(math.floor(scale * image_height / patch_height ) ,lowercase__ ) ,1 )
__lowercase = max(min(math.floor(scale * image_width / patch_width ) ,lowercase__ ) ,1 )
__lowercase = max(num_feasible_rows * patch_height ,1 )
__lowercase = max(num_feasible_cols * patch_width ,1 )
__lowercase = torch.nn.functional.interpolate(
image.unsqueeze(0 ) ,size=(resized_height, resized_width) ,mode='''bilinear''' ,align_corners=lowercase__ ,antialias=lowercase__ ,).squeeze(0 )
# [1, rows, columns, patch_height * patch_width * image_channels]
__lowercase = torch_extract_patches(lowercase__ ,lowercase__ ,lowercase__ )
__lowercase = patches.shape
__lowercase = patches_shape[1]
__lowercase = patches_shape[2]
__lowercase = patches_shape[3]
# [rows * columns, patch_height * patch_width * image_channels]
__lowercase = patches.reshape([rows * columns, depth] )
# [rows * columns, 1]
__lowercase = torch.arange(lowercase__ ).reshape([rows, 1] ).repeat(1 ,lowercase__ ).reshape([rows * columns, 1] )
__lowercase = torch.arange(lowercase__ ).reshape([1, columns] ).repeat(lowercase__ ,1 ).reshape([rows * columns, 1] )
# Offset by 1 so the ids do not contain zeros, which represent padding.
row_ids += 1
col_ids += 1
# Prepare additional patch features.
# [rows * columns, 1]
__lowercase = row_ids.to(torch.floataa )
__lowercase = col_ids.to(torch.floataa )
# [rows * columns, 2 + patch_height * patch_width * image_channels]
__lowercase = torch.cat([row_ids, col_ids, patches] ,-1 )
# [max_patches, 2 + patch_height * patch_width * image_channels]
__lowercase = torch.nn.functional.pad(lowercase__ ,[0, 0, 0, max_patches - (rows * columns)] ).float()
__lowercase = to_numpy_array(lowercase__ )
return result
def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : np.ndarray ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ):
if image.dtype == np.uinta:
__lowercase = image.astype(np.floataa )
# take mean across the whole `image`
__lowercase = np.mean(lowercase__ )
__lowercase = np.std(lowercase__ )
__lowercase = max(lowercase__ ,1.0 / math.sqrt(np.prod(image.shape ) ) )
return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,**lowercase__ )
def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : ImageInput ,lowercase__ : Optional[str] = None ,lowercase__ : bool = None ,lowercase__ : Optional[bool] = None ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[Dict[str, int]] = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : ChannelDimension = ChannelDimension.FIRST ,**lowercase__ : List[Any] ,):
__lowercase = do_normalize if do_normalize is not None else self.do_normalize
__lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__lowercase = patch_size if patch_size is not None else self.patch_size
__lowercase = max_patches if max_patches is not None else self.max_patches
__lowercase = self.is_vqa
if kwargs.get('''data_format''' ,lowercase__ ) is not None:
raise ValueError('''data_format is not an accepted input as the outputs are ''' )
__lowercase = make_list_of_images(lowercase__ )
if not valid_images(lowercase__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__lowercase = [convert_to_rgb(lowercase__ ) for image in images]
# All transformations expect numpy arrays.
__lowercase = [to_numpy_array(lowercase__ ) for image in images]
if is_vqa:
if header_text is None:
raise ValueError('''A header text must be provided for VQA models.''' )
__lowercase = kwargs.pop('''font_bytes''' ,lowercase__ )
__lowercase = kwargs.pop('''font_path''' ,lowercase__ )
if isinstance(lowercase__ ,lowercase__ ):
__lowercase = [header_text] * len(lowercase__ )
__lowercase = [
render_header(lowercase__ ,header_text[i] ,font_bytes=lowercase__ ,font_path=lowercase__ )
for i, image in enumerate(lowercase__ )
]
if do_normalize:
__lowercase = [self.normalize(image=lowercase__ ) for image in images]
# convert to torch tensor and permute
__lowercase = [
self.extract_flattened_patches(image=lowercase__ ,max_patches=lowercase__ ,patch_size=lowercase__ )
for image in images
]
# create attention mask in numpy
__lowercase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images]
__lowercase = BatchFeature(
data={'''flattened_patches''': images, '''attention_mask''': attention_masks} ,tensor_type=lowercase__ )
return encoded_outputs
| 41 | 0 |
'''simple docstring'''
__a: Optional[Any] = """
# Installazione di Transformers
! pip install transformers datasets
# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e
# rimuovi la modalità commento al comando seguente.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
__a: Any = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
__a: Any = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 152 |
'''simple docstring'''
import doctest
from collections import deque
import numpy as np
class lowercase_ :
"""simple docstring"""
def __init__( self : Optional[Any] ):
__lowercase = [2, 1, 2, -1]
__lowercase = [1, 2, 3, 4]
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
__lowercase = len(self.first_signal )
__lowercase = len(self.second_signal )
__lowercase = max(lowercase__ ,lowercase__ )
# create a zero matrix of max_length x max_length
__lowercase = [[0] * max_length for i in range(lowercase__ )]
# fills the smaller signal with zeros to make both signals of same length
if length_first_signal < length_second_signal:
self.first_signal += [0] * (max_length - length_first_signal)
elif length_first_signal > length_second_signal:
self.second_signal += [0] * (max_length - length_second_signal)
for i in range(lowercase__ ):
__lowercase = deque(self.second_signal )
rotated_signal.rotate(lowercase__ )
for j, item in enumerate(lowercase__ ):
matrix[i][j] += item
# multiply the matrix with the first signal
__lowercase = np.matmul(np.transpose(lowercase__ ) ,np.transpose(self.first_signal ) )
# rounding-off to two decimal places
return [round(lowercase__ ,2 ) for i in final_signal]
if __name__ == "__main__":
doctest.testmod()
| 41 | 0 |
"""simple docstring"""
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print("Googling.....")
__A = "https://www.google.com/search?q=" + " ".join(sys.argv[1:])
__A = requests.get(url, headers={"UserAgent": UserAgent().random})
# res.raise_for_status()
with open("project1a.html", "wb") as out_file: # only for knowing the class
for data in res.iter_content(1_0_0_0_0):
out_file.write(data)
__A = BeautifulSoup(res.text, "html.parser")
__A = list(soup.select(".eZt8xd"))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get("href"))
else:
webbrowser.open(f'''https://google.com{link.get('href')}''')
| 586 |
'''simple docstring'''
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[List[np.ndarray], torch.FloatTensor]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 41 | 0 |
"""simple docstring"""
class _snake_case :
"""simple docstring"""
def __init__( self : Optional[int]):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : List[str] = 0
_SCREAMING_SNAKE_CASE : Optional[int] = 0
_SCREAMING_SNAKE_CASE : Tuple = {}
def _lowerCAmelCase ( self : Union[str, Any] , _A : str):
"""simple docstring"""
if vertex not in self.adjacency:
_SCREAMING_SNAKE_CASE : List[Any] = {}
self.num_vertices += 1
def _lowerCAmelCase ( self : List[Any] , _A : Optional[Any] , _A : List[str] , _A : Any):
"""simple docstring"""
self.add_vertex(lowercase__)
self.add_vertex(lowercase__)
if head == tail:
return
_SCREAMING_SNAKE_CASE : int = weight
_SCREAMING_SNAKE_CASE : List[Any] = weight
def _lowerCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : str = self.get_edges()
for edge in edges:
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = edge
edges.remove((tail, head, weight))
for i in range(len(lowercase__)):
_SCREAMING_SNAKE_CASE : str = list(edges[i])
edges.sort(key=lambda _A: e[2])
for i in range(len(lowercase__) - 1):
if edges[i][2] >= edges[i + 1][2]:
_SCREAMING_SNAKE_CASE : Any = edges[i][2] + 1
for edge in edges:
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = edge
_SCREAMING_SNAKE_CASE : Dict = weight
_SCREAMING_SNAKE_CASE : Optional[int] = weight
def __str__( self : Union[str, Any]):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Optional[int] = """"""
for tail in self.adjacency:
for head in self.adjacency[tail]:
_SCREAMING_SNAKE_CASE : Optional[int] = self.adjacency[head][tail]
string += f"""{head} -> {tail} == {weight}\n"""
return string.rstrip("""\n""")
def _lowerCAmelCase ( self : Tuple):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Optional[Any] = []
for tail in self.adjacency:
for head in self.adjacency[tail]:
output.append((tail, head, self.adjacency[head][tail]))
return output
def _lowerCAmelCase ( self : Optional[int]):
"""simple docstring"""
return self.adjacency.keys()
@staticmethod
def _lowerCAmelCase ( _A : str=None , _A : Any=None):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Tuple = Graph()
if vertices is None:
_SCREAMING_SNAKE_CASE : Optional[Any] = []
if edges is None:
_SCREAMING_SNAKE_CASE : int = []
for vertex in vertices:
g.add_vertex(lowercase__)
for edge in edges:
g.add_edge(*lowercase__)
return g
class _snake_case :
"""simple docstring"""
def __init__( self : List[str]):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Tuple = {}
_SCREAMING_SNAKE_CASE : Any = {}
def __len__( self : Dict):
"""simple docstring"""
return len(self.parent)
def _lowerCAmelCase ( self : Any , _A : Any):
"""simple docstring"""
if item in self.parent:
return self.find(lowercase__)
_SCREAMING_SNAKE_CASE : Dict = item
_SCREAMING_SNAKE_CASE : Optional[Any] = 0
return item
def _lowerCAmelCase ( self : Union[str, Any] , _A : Dict):
"""simple docstring"""
if item not in self.parent:
return self.make_set(lowercase__)
if item != self.parent[item]:
_SCREAMING_SNAKE_CASE : Optional[int] = self.find(self.parent[item])
return self.parent[item]
def _lowerCAmelCase ( self : int , _A : Tuple , _A : Dict):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Dict = self.find(lowercase__)
_SCREAMING_SNAKE_CASE : List[str] = self.find(lowercase__)
if roota == roota:
return roota
if self.rank[roota] > self.rank[roota]:
_SCREAMING_SNAKE_CASE : List[Any] = roota
return roota
if self.rank[roota] < self.rank[roota]:
_SCREAMING_SNAKE_CASE : Tuple = roota
return roota
if self.rank[roota] == self.rank[roota]:
self.rank[roota] += 1
_SCREAMING_SNAKE_CASE : Any = roota
return roota
return None
@staticmethod
def _lowerCAmelCase ( _A : Optional[int]):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Dict = graph.num_vertices
_SCREAMING_SNAKE_CASE : str = Graph.UnionFind()
_SCREAMING_SNAKE_CASE : Tuple = []
while num_components > 1:
_SCREAMING_SNAKE_CASE : List[Any] = {}
for vertex in graph.get_vertices():
_SCREAMING_SNAKE_CASE : List[Any] = -1
_SCREAMING_SNAKE_CASE : int = graph.get_edges()
for edge in edges:
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Tuple = edge
edges.remove((tail, head, weight))
for edge in edges:
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = edge
_SCREAMING_SNAKE_CASE : Optional[Any] = union_find.find(lowercase__)
_SCREAMING_SNAKE_CASE : List[str] = union_find.find(lowercase__)
if seta != seta:
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
_SCREAMING_SNAKE_CASE : Union[str, Any] = [head, tail, weight]
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
_SCREAMING_SNAKE_CASE : Optional[Any] = [head, tail, weight]
for vertex in cheap_edge:
if cheap_edge[vertex] != -1:
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = cheap_edge[vertex]
if union_find.find(lowercase__) != union_find.find(lowercase__):
union_find.union(lowercase__ , lowercase__)
mst_edges.append(cheap_edge[vertex])
_SCREAMING_SNAKE_CASE : str = num_components - 1
_SCREAMING_SNAKE_CASE : Union[str, Any] = Graph.build(edges=lowercase__)
return mst
| 338 |
'''simple docstring'''
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
lowerCAmelCase__ = getLogger(__name__)
lowerCAmelCase__ = '''cuda''' if torch.cuda.is_available() else '''cpu'''
def _A ( A__ , A__ , A__ , A__ = 8 , A__ = DEFAULT_DEVICE , A__=False , A__="summarization" , A__=None , **A__ , ):
"""simple docstring"""
__lowercase = Path(A__ ).open('''w''' , encoding='''utf-8''' )
__lowercase = str(A__ )
__lowercase = AutoModelForSeqaSeqLM.from_pretrained(A__ ).to(A__ )
if fpaa:
__lowercase = model.half()
__lowercase = AutoTokenizer.from_pretrained(A__ )
logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type.
__lowercase = time.time()
# update config with task specific params
use_task_specific_params(A__ , A__ )
if prefix is None:
__lowercase = prefix or getattr(model.config , '''prefix''' , '''''' ) or ''''''
for examples_chunk in tqdm(list(chunks(A__ , A__ ) ) ):
__lowercase = [prefix + text for text in examples_chunk]
__lowercase = tokenizer(A__ , return_tensors='''pt''' , truncation=A__ , padding='''longest''' ).to(A__ )
__lowercase = model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **A__ , )
__lowercase = tokenizer.batch_decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ )
for hypothesis in dec:
fout.write(hypothesis + '''\n''' )
fout.flush()
fout.close()
__lowercase = int(time.time() - start_time ) # seconds
__lowercase = len(A__ )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )}
def _A ( ):
"""simple docstring"""
return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' )
def _A ( A__=True ):
"""simple docstring"""
__lowercase = argparse.ArgumentParser()
parser.add_argument('''model_name''' , type=A__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' )
parser.add_argument('''input_path''' , type=A__ , help='''like cnn_dm/test.source''' )
parser.add_argument('''save_path''' , type=A__ , help='''where to save summaries''' )
parser.add_argument('''--reference_path''' , type=A__ , required=A__ , help='''like cnn_dm/test.target''' )
parser.add_argument('''--score_path''' , type=A__ , required=A__ , default='''metrics.json''' , help='''where to save metrics''' )
parser.add_argument('''--device''' , type=A__ , required=A__ , default=A__ , help='''cuda, cuda:1, cpu etc.''' )
parser.add_argument(
'''--prefix''' , type=A__ , required=A__ , default=A__ , help='''will be added to the begininng of src examples''' )
parser.add_argument('''--task''' , type=A__ , default='''summarization''' , help='''used for task_specific_params + metrics''' )
parser.add_argument('''--bs''' , type=A__ , default=8 , required=A__ , help='''batch size''' )
parser.add_argument(
'''--n_obs''' , type=A__ , default=-1 , required=A__ , help='''How many observations. Defaults to all.''' )
parser.add_argument('''--fp16''' , action='''store_true''' )
parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' )
parser.add_argument(
'''--info''' , nargs='''?''' , type=A__ , const=datetime_now() , help=(
'''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.'''
''' lang=en-ru. If no value is passed, the current datetime string will be used.'''
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
__lowercase , __lowercase = parser.parse_known_args()
__lowercase = parse_numeric_n_bool_cl_kwargs(A__ )
if parsed_args and verbose:
print(F"parsed the following generate kwargs: {parsed_args}" )
__lowercase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
__lowercase = examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=A__ )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(F"score_path {args.score_path} will be overwritten unless you type ctrl-c." )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError('''Can\'t mix --fp16 and --device cpu''' )
__lowercase = generate_summaries_or_translations(
A__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **A__ , )
if args.reference_path is None:
return {}
# Compute scores
__lowercase = calculate_bleu if '''translation''' in args.task else calculate_rouge
__lowercase = [x.rstrip() for x in open(args.save_path ).readlines()]
__lowercase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(A__ )]
__lowercase = score_fn(A__ , A__ )
scores.update(A__ )
if args.dump_args:
scores.update(A__ )
if args.info:
__lowercase = args.info
if verbose:
print(A__ )
if args.score_path is not None:
json.dump(A__ , open(args.score_path , '''w''' ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 41 | 0 |
'''simple docstring'''
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
A_ = logging.get_logger(__name__)
def _UpperCamelCase ( __UpperCamelCase ) -> Dict:
print('Loading config file...' )
def flatten_yaml_as_dict(__UpperCamelCase ,__UpperCamelCase="" ,__UpperCamelCase="." ):
lowerCamelCase_ = []
for k, v in d.items():
lowerCamelCase_ = parent_key + sep + k if parent_key else k
if isinstance(__UpperCamelCase ,collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(__UpperCamelCase ,__UpperCamelCase ,sep=__UpperCamelCase ).items() )
else:
items.append((new_key, v) )
return dict(__UpperCamelCase )
lowerCamelCase_ = argparse.Namespace()
with open(__UpperCamelCase ,'r' ) as yaml_file:
try:
lowerCamelCase_ = yaml.load(__UpperCamelCase ,Loader=yaml.FullLoader )
lowerCamelCase_ = flatten_yaml_as_dict(__UpperCamelCase )
for k, v in flat_cfg.items():
setattr(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
except yaml.YAMLError as exc:
logger.error('Error while loading config file: {}. Error message: {}'.format(__UpperCamelCase ,str(__UpperCamelCase ) ) )
return config
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Optional[int]:
lowerCamelCase_ = MobileViTVaConfig()
lowerCamelCase_ = False
# dataset
if task_name.startswith('imagenet1k_' ):
lowerCamelCase_ = 10_00
if int(task_name.strip().split('_' )[-1] ) == 3_84:
lowerCamelCase_ = 3_84
else:
lowerCamelCase_ = 2_56
lowerCamelCase_ = 'imagenet-1k-id2label.json'
elif task_name.startswith('imagenet21k_to_1k_' ):
lowerCamelCase_ = 2_10_00
if int(task_name.strip().split('_' )[-1] ) == 3_84:
lowerCamelCase_ = 3_84
else:
lowerCamelCase_ = 2_56
lowerCamelCase_ = 'imagenet-22k-id2label.json'
elif task_name.startswith('ade20k_' ):
lowerCamelCase_ = 1_51
lowerCamelCase_ = 5_12
lowerCamelCase_ = 'ade20k-id2label.json'
lowerCamelCase_ = True
elif task_name.startswith('voc_' ):
lowerCamelCase_ = 21
lowerCamelCase_ = 5_12
lowerCamelCase_ = 'pascal-voc-id2label.json'
lowerCamelCase_ = True
# orig_config
lowerCamelCase_ = load_orig_config_file(__UpperCamelCase )
assert getattr(__UpperCamelCase ,'model.classification.name' ,-1 ) == "mobilevit_v2", "Invalid model"
lowerCamelCase_ = getattr(__UpperCamelCase ,'model.classification.mitv2.width_multiplier' ,1.0 )
assert (
getattr(__UpperCamelCase ,'model.classification.mitv2.attn_norm_layer' ,-1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
lowerCamelCase_ = getattr(__UpperCamelCase ,'model.classification.activation.name' ,'swish' )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
lowerCamelCase_ = getattr(__UpperCamelCase ,'model.segmentation.output_stride' ,16 )
if "_deeplabv3" in task_name:
lowerCamelCase_ = getattr(__UpperCamelCase ,'model.segmentation.deeplabv3.aspp_rates' ,[12, 24, 36] )
lowerCamelCase_ = getattr(__UpperCamelCase ,'model.segmentation.deeplabv3.aspp_out_channels' ,5_12 )
lowerCamelCase_ = getattr(__UpperCamelCase ,'model.segmentation.deeplabv3.aspp_dropout' ,0.1 )
# id2label
lowerCamelCase_ = 'huggingface/label-files'
lowerCamelCase_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type='dataset' ) ,'r' ) )
lowerCamelCase_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()}
lowerCamelCase_ = idalabel
lowerCamelCase_ = {v: k for k, v in idalabel.items()}
return config
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[str]:
lowerCamelCase_ = dct.pop(__UpperCamelCase )
lowerCamelCase_ = val
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase=False ) -> Dict:
if base_model:
lowerCamelCase_ = ''
else:
lowerCamelCase_ = 'mobilevitv2.'
lowerCamelCase_ = []
for k in state_dict.keys():
if k[:8] == "encoder.":
lowerCamelCase_ = k[8:]
else:
lowerCamelCase_ = k
if ".block." in k:
lowerCamelCase_ = k_new.replace('.block.' ,'.' )
if ".conv." in k:
lowerCamelCase_ = k_new.replace('.conv.' ,'.convolution.' )
if ".norm." in k:
lowerCamelCase_ = k_new.replace('.norm.' ,'.normalization.' )
if "conv_1." in k:
lowerCamelCase_ = k_new.replace('conv_1.' ,f'''{model_prefix}conv_stem.''' )
for i in [1, 2]:
if f'''layer_{i}.''' in k:
lowerCamelCase_ = k_new.replace(f'''layer_{i}.''' ,f'''{model_prefix}encoder.layer.{i-1}.layer.''' )
if ".exp_1x1." in k:
lowerCamelCase_ = k_new.replace('.exp_1x1.' ,'.expand_1x1.' )
if ".red_1x1." in k:
lowerCamelCase_ = k_new.replace('.red_1x1.' ,'.reduce_1x1.' )
for i in [3, 4, 5]:
if f'''layer_{i}.0.''' in k:
lowerCamelCase_ = k_new.replace(f'''layer_{i}.0.''' ,f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' )
if f'''layer_{i}.1.local_rep.0.''' in k:
lowerCamelCase_ = k_new.replace(f'''layer_{i}.1.local_rep.0.''' ,f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' )
if f'''layer_{i}.1.local_rep.1.''' in k:
lowerCamelCase_ = k_new.replace(f'''layer_{i}.1.local_rep.1.''' ,f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' )
for i in [3, 4, 5]:
if i == 3:
lowerCamelCase_ = [0, 1]
elif i == 4:
lowerCamelCase_ = [0, 1, 2, 3]
elif i == 5:
lowerCamelCase_ = [0, 1, 2]
for j in j_in:
if f'''layer_{i}.1.global_rep.{j}.''' in k:
lowerCamelCase_ = k_new.replace(
f'''layer_{i}.1.global_rep.{j}.''' ,f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' )
if f'''layer_{i}.1.global_rep.{j+1}.''' in k:
lowerCamelCase_ = k_new.replace(
f'''layer_{i}.1.global_rep.{j+1}.''' ,f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' )
if f'''layer_{i}.1.conv_proj.''' in k:
lowerCamelCase_ = k_new.replace(f'''layer_{i}.1.conv_proj.''' ,f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' )
if "pre_norm_attn.0." in k:
lowerCamelCase_ = k_new.replace('pre_norm_attn.0.' ,'layernorm_before.' )
if "pre_norm_attn.1." in k:
lowerCamelCase_ = k_new.replace('pre_norm_attn.1.' ,'attention.' )
if "pre_norm_ffn.0." in k:
lowerCamelCase_ = k_new.replace('pre_norm_ffn.0.' ,'layernorm_after.' )
if "pre_norm_ffn.1." in k:
lowerCamelCase_ = k_new.replace('pre_norm_ffn.1.' ,'ffn.conv1.' )
if "pre_norm_ffn.3." in k:
lowerCamelCase_ = k_new.replace('pre_norm_ffn.3.' ,'ffn.conv2.' )
if "classifier.1." in k:
lowerCamelCase_ = k_new.replace('classifier.1.' ,'classifier.' )
if "seg_head." in k:
lowerCamelCase_ = k_new.replace('seg_head.' ,'segmentation_head.' )
if ".aspp_layer." in k:
lowerCamelCase_ = k_new.replace('.aspp_layer.' ,'.' )
if ".aspp_pool." in k:
lowerCamelCase_ = k_new.replace('.aspp_pool.' ,'.' )
rename_keys.append((k, k_new) )
return rename_keys
def _UpperCamelCase ( __UpperCamelCase ) -> Optional[Any]:
lowerCamelCase_ = []
for k in state_dict.keys():
if k.startswith('seg_head.aux_head.' ):
keys_to_ignore.append(__UpperCamelCase )
for k in keys_to_ignore:
state_dict.pop(__UpperCamelCase ,__UpperCamelCase )
def _UpperCamelCase ( ) -> Optional[Any]:
lowerCamelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg'
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
lowerCamelCase_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw )
return im
@torch.no_grad()
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[int]:
lowerCamelCase_ = get_mobilevitva_config(__UpperCamelCase ,__UpperCamelCase )
# load original state_dict
lowerCamelCase_ = torch.load(__UpperCamelCase ,map_location='cpu' )
# load huggingface model
if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ):
lowerCamelCase_ = MobileViTVaForSemanticSegmentation(__UpperCamelCase ).eval()
lowerCamelCase_ = False
else:
lowerCamelCase_ = MobileViTVaForImageClassification(__UpperCamelCase ).eval()
lowerCamelCase_ = False
# remove and rename some keys of load the original model
lowerCamelCase_ = checkpoint
remove_unused_keys(__UpperCamelCase )
lowerCamelCase_ = create_rename_keys(__UpperCamelCase ,base_model=__UpperCamelCase )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
# load modified state_dict
model.load_state_dict(__UpperCamelCase )
# Check outputs on an image, prepared by MobileViTImageProcessor
lowerCamelCase_ = MobileViTImageProcessor(crop_size=config.image_size ,size=config.image_size + 32 )
lowerCamelCase_ = image_processor(images=prepare_img() ,return_tensors='pt' )
lowerCamelCase_ = model(**__UpperCamelCase )
# verify classification model
if task_name.startswith('imagenet' ):
lowerCamelCase_ = outputs.logits
lowerCamelCase_ = logits.argmax(-1 ).item()
print('Predicted class:' ,model.config.idalabel[predicted_class_idx] )
if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0:
# expected_logits for base variant
lowerCamelCase_ = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] )
assert torch.allclose(logits[0, :3] ,__UpperCamelCase ,atol=1e-4 )
Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase )
print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(__UpperCamelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task",
default="imagenet1k_256",
type=str,
help=(
"Name of the task for which the MobileViTV2 model you'd like to convert is trained on . "
"\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n "
),
choices=[
"imagenet1k_256",
"imagenet1k_384",
"imagenet21k_to_1k_256",
"imagenet21k_to_1k_384",
"ade20k_deeplabv3",
"voc_deeplabv3",
],
)
parser.add_argument(
"--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)."
)
parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
A_ = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 42 |
'''simple docstring'''
from __future__ import annotations
def _UpperCamelCase ( __UpperCamelCase ) -> bool:
lowerCamelCase_ = str(__UpperCamelCase )
return len(__UpperCamelCase ) == 9 and set(__UpperCamelCase ) == set('123456789' )
def _UpperCamelCase ( ) -> int | None:
for base_num in range(99_99 ,49_99 ,-1 ):
lowerCamelCase_ = 10_00_02 * base_num
if is_9_pandigital(__UpperCamelCase ):
return candidate
for base_num in range(3_33 ,99 ,-1 ):
lowerCamelCase_ = 1_00_20_03 * base_num
if is_9_pandigital(__UpperCamelCase ):
return candidate
return None
if __name__ == "__main__":
print(f'''{solution() = }''')
| 42 | 1 |
'''simple docstring'''
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
A_ = logging.get_logger(__name__)
class UpperCAmelCase ( UpperCAmelCase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ = ['input_features', 'is_longer']
def __init__( self , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=48000 , SCREAMING_SNAKE_CASE_=480 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 14000 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "fusion" , SCREAMING_SNAKE_CASE_ = "repeatpad" , **SCREAMING_SNAKE_CASE_ , ) -> List[Any]:
'''simple docstring'''
super().__init__(
feature_size=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , padding_value=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
lowerCamelCase_ = top_db
lowerCamelCase_ = truncation
lowerCamelCase_ = padding
lowerCamelCase_ = fft_window_size
lowerCamelCase_ = (fft_window_size >> 1) + 1
lowerCamelCase_ = hop_length
lowerCamelCase_ = max_length_s
lowerCamelCase_ = max_length_s * sampling_rate
lowerCamelCase_ = sampling_rate
lowerCamelCase_ = frequency_min
lowerCamelCase_ = frequency_max
lowerCamelCase_ = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=SCREAMING_SNAKE_CASE_ , min_frequency=SCREAMING_SNAKE_CASE_ , max_frequency=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , norm=SCREAMING_SNAKE_CASE_ , mel_scale='htk' , )
lowerCamelCase_ = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=SCREAMING_SNAKE_CASE_ , min_frequency=SCREAMING_SNAKE_CASE_ , max_frequency=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , norm='slaney' , mel_scale='slaney' , )
def UpperCamelCase( self ) -> Dict[str, Any]:
'''simple docstring'''
lowerCamelCase_ = copy.deepcopy(self.__dict__ )
lowerCamelCase_ = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "mel_filters_slaney" in output:
del output["mel_filters_slaney"]
return output
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> np.ndarray:
'''simple docstring'''
lowerCamelCase_ = spectrogram(
SCREAMING_SNAKE_CASE_ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=SCREAMING_SNAKE_CASE_ , log_mel='dB' , )
return log_mel_spectrogram.T
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]:
'''simple docstring'''
lowerCamelCase_ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 )
if len(ranges[1] ) == 0:
# if the audio is too short, we just use the first chunk
lowerCamelCase_ = [0]
if len(ranges[2] ) == 0:
# if the audio is too short, we just use the first chunk
lowerCamelCase_ = [0]
# randomly choose index for each part
lowerCamelCase_ = np.random.choice(ranges[0] )
lowerCamelCase_ = np.random.choice(ranges[1] )
lowerCamelCase_ = np.random.choice(ranges[2] )
lowerCamelCase_ = mel[idx_front : idx_front + chunk_frames, :]
lowerCamelCase_ = mel[idx_middle : idx_middle + chunk_frames, :]
lowerCamelCase_ = mel[idx_back : idx_back + chunk_frames, :]
lowerCamelCase_ = torch.tensor(mel[None, None, :] )
lowerCamelCase_ = torch.nn.functional.interpolate(
SCREAMING_SNAKE_CASE_ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = mel_shrink[0][0].numpy()
lowerCamelCase_ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 )
return mel_fusion
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> np.array:
'''simple docstring'''
if waveform.shape[0] > max_length:
if truncation == "rand_trunc":
lowerCamelCase_ = True
# random crop to max_length (for compatibility) -> this should be handled by self.pad
lowerCamelCase_ = len(SCREAMING_SNAKE_CASE_ ) - max_length
lowerCamelCase_ = np.random.randint(0 , overflow + 1 )
lowerCamelCase_ = waveform[idx : idx + max_length]
lowerCamelCase_ = self._np_extract_fbank_features(SCREAMING_SNAKE_CASE_ , self.mel_filters_slaney )[None, :]
elif truncation == "fusion":
lowerCamelCase_ = self._np_extract_fbank_features(SCREAMING_SNAKE_CASE_ , self.mel_filters )
lowerCamelCase_ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
lowerCamelCase_ = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
# In this case, we just use the whole audio.
lowerCamelCase_ = np.stack([mel, mel, mel, mel] , axis=0 )
lowerCamelCase_ = False
else:
lowerCamelCase_ = self._random_mel_fusion(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = True
else:
raise NotImplementedError(f'''data_truncating {truncation} not implemented''' )
else:
lowerCamelCase_ = False
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
if waveform.shape[0] < max_length:
if padding == "repeat":
lowerCamelCase_ = int(max_length / len(SCREAMING_SNAKE_CASE_ ) )
lowerCamelCase_ = np.stack(np.tile(SCREAMING_SNAKE_CASE_ , n_repeat + 1 ) )[:max_length]
if padding == "repeatpad":
lowerCamelCase_ = int(max_length / len(SCREAMING_SNAKE_CASE_ ) )
lowerCamelCase_ = np.stack(np.tile(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
lowerCamelCase_ = np.pad(SCREAMING_SNAKE_CASE_ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 )
if truncation == "fusion":
lowerCamelCase_ = self._np_extract_fbank_features(SCREAMING_SNAKE_CASE_ , self.mel_filters )
lowerCamelCase_ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 )
else:
lowerCamelCase_ = self._np_extract_fbank_features(SCREAMING_SNAKE_CASE_ , self.mel_filters_slaney )[None, :]
return input_mel, longer
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> BatchFeature:
'''simple docstring'''
lowerCamelCase_ = truncation if truncation is not None else self.truncation
lowerCamelCase_ = padding if padding else self.padding
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a'''
f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input'''
f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
lowerCamelCase_ = isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' )
lowerCamelCase_ = is_batched_numpy or (
isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
lowerCamelCase_ = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ):
lowerCamelCase_ = np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa )
elif isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowerCamelCase_ = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowerCamelCase_ = [np.asarray(SCREAMING_SNAKE_CASE_ )]
# convert to mel spectrogram, truncate and pad if needed.
lowerCamelCase_ = [
self._get_input_mel(SCREAMING_SNAKE_CASE_ , max_length if max_length else self.nb_max_samples , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
for waveform in raw_speech
]
lowerCamelCase_ = []
lowerCamelCase_ = []
for mel, longer in padded_inputs:
input_mel.append(SCREAMING_SNAKE_CASE_ )
is_longer.append(SCREAMING_SNAKE_CASE_ )
if truncation == "fusion" and sum(SCREAMING_SNAKE_CASE_ ) == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
lowerCamelCase_ = np.random.randint(0 , len(SCREAMING_SNAKE_CASE_ ) )
lowerCamelCase_ = True
if isinstance(input_mel[0] , SCREAMING_SNAKE_CASE_ ):
lowerCamelCase_ = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for feature in input_mel]
# is_longer is a list of bool
lowerCamelCase_ = [[longer] for longer in is_longer]
lowerCamelCase_ = {'input_features': input_mel, 'is_longer': is_longer}
lowerCamelCase_ = BatchFeature(SCREAMING_SNAKE_CASE_ )
if return_tensors is not None:
lowerCamelCase_ = input_features.convert_to_tensors(SCREAMING_SNAKE_CASE_ )
return input_features
| 42 |
'''simple docstring'''
A_ = "Input must be a string of 8 numbers plus letter"
A_ = "TRWAGMYFPDXBNJZSQVHLCKE"
def _UpperCamelCase ( __UpperCamelCase ) -> bool:
if not isinstance(__UpperCamelCase ,__UpperCamelCase ):
lowerCamelCase_ = f'''Expected string as input, found {type(__UpperCamelCase ).__name__}'''
raise TypeError(__UpperCamelCase )
lowerCamelCase_ = spanish_id.replace('-' ,'' ).upper()
if len(__UpperCamelCase ) != 9:
raise ValueError(__UpperCamelCase )
try:
lowerCamelCase_ = int(spanish_id_clean[0:8] )
lowerCamelCase_ = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(__UpperCamelCase ) from ex
if letter.isdigit():
raise ValueError(__UpperCamelCase )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 42 | 1 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_realm import RealmTokenizer
A_ = logging.get_logger(__name__)
A_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
A_ = {
"vocab_file": {
"google/realm-cc-news-pretrained-embedder": (
"https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt"
),
"google/realm-cc-news-pretrained-encoder": (
"https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt"
),
"google/realm-cc-news-pretrained-scorer": (
"https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt"
),
"google/realm-cc-news-pretrained-openqa": (
"https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt"
),
"google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt",
"google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt",
"google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt",
"google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt",
},
"tokenizer_file": {
"google/realm-cc-news-pretrained-embedder": (
"https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont"
),
"google/realm-cc-news-pretrained-encoder": (
"https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json"
),
"google/realm-cc-news-pretrained-scorer": (
"https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json"
),
"google/realm-cc-news-pretrained-openqa": (
"https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json"
),
"google/realm-orqa-nq-openqa": (
"https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json"
),
"google/realm-orqa-nq-reader": (
"https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json"
),
"google/realm-orqa-wq-openqa": (
"https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json"
),
"google/realm-orqa-wq-reader": (
"https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json"
),
},
}
A_ = {
"google/realm-cc-news-pretrained-embedder": 512,
"google/realm-cc-news-pretrained-encoder": 512,
"google/realm-cc-news-pretrained-scorer": 512,
"google/realm-cc-news-pretrained-openqa": 512,
"google/realm-orqa-nq-openqa": 512,
"google/realm-orqa-nq-reader": 512,
"google/realm-orqa-wq-openqa": 512,
"google/realm-orqa-wq-reader": 512,
}
A_ = {
"google/realm-cc-news-pretrained-embedder": {"do_lower_case": True},
"google/realm-cc-news-pretrained-encoder": {"do_lower_case": True},
"google/realm-cc-news-pretrained-scorer": {"do_lower_case": True},
"google/realm-cc-news-pretrained-openqa": {"do_lower_case": True},
"google/realm-orqa-nq-openqa": {"do_lower_case": True},
"google/realm-orqa-nq-reader": {"do_lower_case": True},
"google/realm-orqa-wq-openqa": {"do_lower_case": True},
"google/realm-orqa-wq-reader": {"do_lower_case": True},
}
class UpperCAmelCase ( UpperCAmelCase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE_ = PRETRAINED_INIT_CONFIGURATION
SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE_ = RealmTokenizer
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[Any]:
'''simple docstring'''
super().__init__(
SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
lowerCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case
or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars
):
lowerCamelCase_ = getattr(SCREAMING_SNAKE_CASE_ , normalizer_state.pop('type' ) )
lowerCamelCase_ = do_lower_case
lowerCamelCase_ = strip_accents
lowerCamelCase_ = tokenize_chinese_chars
lowerCamelCase_ = normalizer_class(**SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = do_lower_case
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[Any]:
'''simple docstring'''
lowerCamelCase_ = PaddingStrategy.MAX_LENGTH
lowerCamelCase_ = text
lowerCamelCase_ = kwargs.pop('text_pair' , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = kwargs.pop('return_tensors' , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = {
'input_ids': [],
'attention_mask': [],
'token_type_ids': [],
}
for idx, candidate_text in enumerate(SCREAMING_SNAKE_CASE_ ):
if batch_text_pair is not None:
lowerCamelCase_ = batch_text_pair[idx]
else:
lowerCamelCase_ = None
lowerCamelCase_ = super().__call__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = encoded_candidates.get('input_ids' )
lowerCamelCase_ = encoded_candidates.get('attention_mask' )
lowerCamelCase_ = encoded_candidates.get('token_type_ids' )
if encoded_input_ids is not None:
output_data["input_ids"].append(SCREAMING_SNAKE_CASE_ )
if encoded_attention_mask is not None:
output_data["attention_mask"].append(SCREAMING_SNAKE_CASE_ )
if encoded_token_type_ids is not None:
output_data["token_type_ids"].append(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = {key: item for key, item in output_data.items() if len(SCREAMING_SNAKE_CASE_ ) != 0}
return BatchEncoding(SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> List[Any]:
'''simple docstring'''
lowerCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
'''simple docstring'''
lowerCamelCase_ = [self.sep_token_id]
lowerCamelCase_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]:
'''simple docstring'''
lowerCamelCase_ = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ )
return tuple(SCREAMING_SNAKE_CASE_ )
| 42 |
'''simple docstring'''
import json
import os
import unittest
from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import (
VOCAB_FILES_NAMES,
GPTSanJapaneseTokenizer,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ = GPTSanJapaneseTokenizer
SCREAMING_SNAKE_CASE_ = False
SCREAMING_SNAKE_CASE_ = {'do_clean_text': False, 'add_prefix_space': False}
def UpperCamelCase( self ) -> Optional[Any]:
'''simple docstring'''
super().setUp()
# fmt: off
lowerCamelCase_ = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>']
# fmt: on
lowerCamelCase_ = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀
lowerCamelCase_ = {'unk_token': '<unk>'}
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
with open(self.emoji_file , 'w' ) as emoji_writer:
emoji_writer.write(json.dumps(SCREAMING_SNAKE_CASE_ ) )
def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> Dict:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
'''simple docstring'''
lowerCamelCase_ = 'こんにちは、世界。 \nこんばんは、㔺界。😀'
lowerCamelCase_ = 'こんにちは、世界。 \nこんばんは、世界。😀'
return input_text, output_text
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> int:
'''simple docstring'''
lowerCamelCase_ ,lowerCamelCase_ = self.get_input_output_texts(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )
return text, ids
def UpperCamelCase( self ) -> Tuple:
'''simple docstring'''
pass # TODO add if relevant
def UpperCamelCase( self ) -> Optional[int]:
'''simple docstring'''
pass # TODO add if relevant
def UpperCamelCase( self ) -> List[Any]:
'''simple docstring'''
pass # TODO add if relevant
def UpperCamelCase( self ) -> int:
'''simple docstring'''
lowerCamelCase_ = self.get_tokenizer()
# Testing tokenization
lowerCamelCase_ = 'こんにちは、世界。 こんばんは、㔺界。'
lowerCamelCase_ = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。']
lowerCamelCase_ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Testing conversion to ids without special tokens
lowerCamelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6]
lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Testing conversion to ids with special tokens
lowerCamelCase_ = tokens + [tokenizer.unk_token]
lowerCamelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19]
lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> Dict:
'''simple docstring'''
lowerCamelCase_ = self.get_tokenizer()
# Testing tokenization
lowerCamelCase_ = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。'
lowerCamelCase_ = 'こんにちは、、、、世界。こんばんは、、、、世界。'
lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@slow
def UpperCamelCase( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
# Testing tokenization
lowerCamelCase_ = 'こんにちは、世界。'
lowerCamelCase_ = 'こんばんは、㔺界。😀'
lowerCamelCase_ = 'こんにちは、世界。こんばんは、世界。😀'
lowerCamelCase_ = tokenizer.encode(prefix_text + input_text )
lowerCamelCase_ = tokenizer.encode('' , prefix_text=prefix_text + input_text )
lowerCamelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , prefix_text=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@slow
def UpperCamelCase( self ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
# Testing tokenization
lowerCamelCase_ = 'こんにちは、世界。'
lowerCamelCase_ = 'こんばんは、㔺界。😀'
lowerCamelCase_ = len(tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) - 2
lowerCamelCase_ = len(tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) - 2
lowerCamelCase_ = [1] + [0] * (len_prefix + len_text + 1)
lowerCamelCase_ = [1] * (len_prefix + len_text + 1) + [0]
lowerCamelCase_ = [1] + [1] * (len_prefix) + [0] * (len_text + 1)
lowerCamelCase_ = tokenizer(prefix_text + input_text ).token_type_ids
lowerCamelCase_ = tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids
lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , prefix_text=SCREAMING_SNAKE_CASE_ ).token_type_ids
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@slow
def UpperCamelCase( self ) -> Dict:
'''simple docstring'''
lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
lowerCamelCase_ = tokenizer.encode('あンいワ' )
lowerCamelCase_ = tokenizer.encode('' , prefix_text='あンいワ' )
lowerCamelCase_ = tokenizer.encode('いワ' , prefix_text='あン' )
self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE_ ) , tokenizer.decode(SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE_ ) , tokenizer.decode(SCREAMING_SNAKE_CASE_ ) )
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token
self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token
@slow
def UpperCamelCase( self ) -> List[str]:
'''simple docstring'''
lowerCamelCase_ = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
lowerCamelCase_ = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']]
lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer.batch_encode_plus(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ )
# fmt: off
lowerCamelCase_ = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]]
lowerCamelCase_ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]]
lowerCamelCase_ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]]
# fmt: on
self.assertListEqual(x_token.input_ids , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(x_token.token_type_ids , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(x_token.attention_mask , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(x_token_a.input_ids , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(x_token_a.token_type_ids , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(x_token_a.attention_mask , SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> Any:
'''simple docstring'''
pass
def UpperCamelCase( self ) -> List[Any]:
'''simple docstring'''
pass
| 42 | 1 |
'''simple docstring'''
import doctest
from collections import deque
import numpy as np
class UpperCAmelCase :
'''simple docstring'''
def __init__( self ) -> None:
'''simple docstring'''
lowerCamelCase_ = [2, 1, 2, -1]
lowerCamelCase_ = [1, 2, 3, 4]
def UpperCamelCase( self ) -> list[float]:
'''simple docstring'''
lowerCamelCase_ = len(self.first_signal )
lowerCamelCase_ = len(self.second_signal )
lowerCamelCase_ = max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# create a zero matrix of max_length x max_length
lowerCamelCase_ = [[0] * max_length for i in range(SCREAMING_SNAKE_CASE_ )]
# fills the smaller signal with zeros to make both signals of same length
if length_first_signal < length_second_signal:
self.first_signal += [0] * (max_length - length_first_signal)
elif length_first_signal > length_second_signal:
self.second_signal += [0] * (max_length - length_second_signal)
for i in range(SCREAMING_SNAKE_CASE_ ):
lowerCamelCase_ = deque(self.second_signal )
rotated_signal.rotate(SCREAMING_SNAKE_CASE_ )
for j, item in enumerate(SCREAMING_SNAKE_CASE_ ):
matrix[i][j] += item
# multiply the matrix with the first signal
lowerCamelCase_ = np.matmul(np.transpose(SCREAMING_SNAKE_CASE_ ) , np.transpose(self.first_signal ) )
# rounding-off to two decimal places
return [round(SCREAMING_SNAKE_CASE_ , 2 ) for i in final_signal]
if __name__ == "__main__":
doctest.testmod()
| 42 |
'''simple docstring'''
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import DiffusionPipeline
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import logging
A_ = logging.get_logger(__name__) # pylint: disable=invalid-name
class UpperCAmelCase ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> Dict:
'''simple docstring'''
super().__init__()
self.register_modules(
vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , )
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ = "auto" ) -> List[str]:
'''simple docstring'''
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
lowerCamelCase_ = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> Dict:
'''simple docstring'''
self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ )
@torch.no_grad()
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]:
'''simple docstring'''
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
lowerCamelCase_ = 1
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
lowerCamelCase_ = len(SCREAMING_SNAKE_CASE_ )
else:
raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE_ )}''' )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or callback_steps <= 0)
):
raise ValueError(
f'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
f''' {type(SCREAMING_SNAKE_CASE_ )}.''' )
# get prompt text embeddings
lowerCamelCase_ = self.tokenizer(
SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , )
lowerCamelCase_ = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
lowerCamelCase_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
'The following part of your input was truncated because CLIP can only handle sequences up to'
f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' )
lowerCamelCase_ = text_input_ids[:, : self.tokenizer.model_max_length]
if text_embeddings is None:
lowerCamelCase_ = self.text_encoder(text_input_ids.to(self.device ) )[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = text_embeddings.shape
lowerCamelCase_ = text_embeddings.repeat(1 , SCREAMING_SNAKE_CASE_ , 1 )
lowerCamelCase_ = text_embeddings.view(bs_embed * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
lowerCamelCase_ = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
lowerCamelCase_ = 42
if negative_prompt is None:
lowerCamelCase_ = ['']
elif type(SCREAMING_SNAKE_CASE_ ) is not type(SCREAMING_SNAKE_CASE_ ):
raise TypeError(
f'''`negative_prompt` should be the same type to `prompt`, but got {type(SCREAMING_SNAKE_CASE_ )} !='''
f''' {type(SCREAMING_SNAKE_CASE_ )}.''' )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
lowerCamelCase_ = [negative_prompt]
elif batch_size != len(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
f'''`negative_prompt`: {negative_prompt} has batch size {len(SCREAMING_SNAKE_CASE_ )}, but `prompt`:'''
f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches'''
' the batch size of `prompt`.' )
else:
lowerCamelCase_ = negative_prompt
lowerCamelCase_ = text_input_ids.shape[-1]
lowerCamelCase_ = self.tokenizer(
SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='pt' , )
lowerCamelCase_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
lowerCamelCase_ = uncond_embeddings.shape[1]
lowerCamelCase_ = uncond_embeddings.repeat(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 )
lowerCamelCase_ = uncond_embeddings.view(batch_size * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
lowerCamelCase_ = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
lowerCamelCase_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
lowerCamelCase_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64)
lowerCamelCase_ = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
lowerCamelCase_ = torch.randn(
SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device='cpu' , dtype=SCREAMING_SNAKE_CASE_ ).to(self.device )
lowerCamelCase_ = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device='cpu' , dtype=SCREAMING_SNAKE_CASE_ ).to(
self.device )
else:
lowerCamelCase_ = torch.randn(
SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ )
else:
if latents_reference.shape != latents_shape:
raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
lowerCamelCase_ = latents_reference.to(self.device )
lowerCamelCase_ = latents.to(self.device )
# This is the key part of the pipeline where we
# try to ensure that the generated images w/ the same seed
# but different sizes actually result in similar images
lowerCamelCase_ = (latents_shape[3] - latents_shape_reference[3]) // 2
lowerCamelCase_ = (latents_shape[2] - latents_shape_reference[2]) // 2
lowerCamelCase_ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx
lowerCamelCase_ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy
lowerCamelCase_ = 0 if dx < 0 else dx
lowerCamelCase_ = 0 if dy < 0 else dy
lowerCamelCase_ = max(-dx , 0 )
lowerCamelCase_ = max(-dy , 0 )
# import pdb
# pdb.set_trace()
lowerCamelCase_ = latents_reference[:, :, dy : dy + h, dx : dx + w]
# set timesteps
self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
lowerCamelCase_ = self.scheduler.timesteps.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
lowerCamelCase_ = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
lowerCamelCase_ = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
lowerCamelCase_ = {}
if accepts_eta:
lowerCamelCase_ = eta
for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ):
# expand the latents if we are doing classifier free guidance
lowerCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
lowerCamelCase_ = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# predict the noise residual
lowerCamelCase_ = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ ).sample
# perform guidance
if do_classifier_free_guidance:
lowerCamelCase_ ,lowerCamelCase_ = noise_pred.chunk(2 )
lowerCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
lowerCamelCase_ = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = 1 / 0.18_215 * latents
lowerCamelCase_ = self.vae.decode(SCREAMING_SNAKE_CASE_ ).sample
lowerCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if self.safety_checker is not None:
lowerCamelCase_ = self.feature_extractor(self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) , return_tensors='pt' ).to(
self.device )
lowerCamelCase_ ,lowerCamelCase_ = self.safety_checker(
images=SCREAMING_SNAKE_CASE_ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) )
else:
lowerCamelCase_ = None
if output_type == "pil":
lowerCamelCase_ = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ )
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=SCREAMING_SNAKE_CASE_ , nsfw_content_detected=SCREAMING_SNAKE_CASE_ )
| 42 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
A_ = {"configuration_unispeech": ["UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST",
"UniSpeechForCTC",
"UniSpeechForPreTraining",
"UniSpeechForSequenceClassification",
"UniSpeechModel",
"UniSpeechPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 42 |
'''simple docstring'''
import pprint
import requests
A_ = "https://zenquotes.io/api"
def _UpperCamelCase ( ) -> list:
return requests.get(API_ENDPOINT_URL + '/today' ).json()
def _UpperCamelCase ( ) -> list:
return requests.get(API_ENDPOINT_URL + '/random' ).json()
if __name__ == "__main__":
A_ = random_quotes()
pprint.pprint(response)
| 42 | 1 |
'''simple docstring'''
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = [0.48_145_466, 0.4_578_275, 0.40_821_073] , SCREAMING_SNAKE_CASE_ = [0.26_862_954, 0.26_130_258, 0.27_577_711] , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=400 , SCREAMING_SNAKE_CASE_=3 , ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ = parent
lowerCamelCase_ = do_resize
lowerCamelCase_ = size if size is not None else {'shortest_edge': 288}
lowerCamelCase_ = size_divisor
lowerCamelCase_ = do_rescale
lowerCamelCase_ = rescale_factor
lowerCamelCase_ = do_normalize
lowerCamelCase_ = do_center_crop
lowerCamelCase_ = image_mean
lowerCamelCase_ = image_std
lowerCamelCase_ = do_pad
lowerCamelCase_ = batch_size
lowerCamelCase_ = num_channels
lowerCamelCase_ = min_resolution
lowerCamelCase_ = max_resolution
def UpperCamelCase( self ) -> Dict:
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> List[str]:
'''simple docstring'''
if not batched:
lowerCamelCase_ = self.size['shortest_edge']
lowerCamelCase_ = image_inputs[0]
if isinstance(SCREAMING_SNAKE_CASE_ , Image.Image ):
lowerCamelCase_ ,lowerCamelCase_ = image.size
else:
lowerCamelCase_ ,lowerCamelCase_ = image.shape[1], image.shape[2]
lowerCamelCase_ = size / min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if h < w:
lowerCamelCase_ ,lowerCamelCase_ = size, scale * w
else:
lowerCamelCase_ ,lowerCamelCase_ = scale * h, size
lowerCamelCase_ = int((1333 / 800) * size )
if max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) > max_size:
lowerCamelCase_ = max_size / max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = newh * scale
lowerCamelCase_ = neww * scale
lowerCamelCase_ ,lowerCamelCase_ = int(newh + 0.5 ), int(neww + 0.5 )
lowerCamelCase_ ,lowerCamelCase_ = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
lowerCamelCase_ = []
for image in image_inputs:
lowerCamelCase_ ,lowerCamelCase_ = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
lowerCamelCase_ = max(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : item[0] )[0]
lowerCamelCase_ = max(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ = BridgeTowerImageProcessor if is_vision_available() else None
def UpperCamelCase( self ) -> int:
'''simple docstring'''
lowerCamelCase_ = BridgeTowerImageProcessingTester(self )
@property
def UpperCamelCase( self ) -> List[Any]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase( self ) -> str:
'''simple docstring'''
lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'image_mean' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'image_std' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'do_normalize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'do_resize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'size' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'size_divisor' ) )
def UpperCamelCase( self ) -> Any:
'''simple docstring'''
pass
def UpperCamelCase( self ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image )
# Test not batched input
lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
lowerCamelCase_ ,lowerCamelCase_ = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCamelCase_ = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).pixel_values
lowerCamelCase_ ,lowerCamelCase_ = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCamelCase( self ) -> Any:
'''simple docstring'''
lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray )
# Test not batched input
lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
lowerCamelCase_ ,lowerCamelCase_ = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCamelCase_ = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).pixel_values
lowerCamelCase_ ,lowerCamelCase_ = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCamelCase( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor )
# Test not batched input
lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
lowerCamelCase_ ,lowerCamelCase_ = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCamelCase_ = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).pixel_values
lowerCamelCase_ ,lowerCamelCase_ = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 42 |
'''simple docstring'''
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel
from transformers.models.esm.modeling_esm import (
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
EsmEmbeddings,
create_position_ids_from_input_ids,
)
class UpperCAmelCase :
'''simple docstring'''
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=33 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , ) -> int:
'''simple docstring'''
lowerCamelCase_ = parent
lowerCamelCase_ = batch_size
lowerCamelCase_ = seq_length
lowerCamelCase_ = is_training
lowerCamelCase_ = use_input_mask
lowerCamelCase_ = use_token_type_ids
lowerCamelCase_ = use_labels
lowerCamelCase_ = vocab_size
lowerCamelCase_ = hidden_size
lowerCamelCase_ = num_hidden_layers
lowerCamelCase_ = num_attention_heads
lowerCamelCase_ = intermediate_size
lowerCamelCase_ = hidden_act
lowerCamelCase_ = hidden_dropout_prob
lowerCamelCase_ = attention_probs_dropout_prob
lowerCamelCase_ = max_position_embeddings
lowerCamelCase_ = type_vocab_size
lowerCamelCase_ = type_sequence_label_size
lowerCamelCase_ = initializer_range
lowerCamelCase_ = num_labels
lowerCamelCase_ = num_choices
lowerCamelCase_ = scope
def UpperCamelCase( self ) -> str:
'''simple docstring'''
lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase_ = None
if self.use_input_mask:
lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase_ = None
lowerCamelCase_ = None
lowerCamelCase_ = None
if self.use_labels:
lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase_ = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase( self ) -> List[str]:
'''simple docstring'''
return EsmConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ = EsmModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple:
'''simple docstring'''
lowerCamelCase_ = EsmForMaskedLM(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any:
'''simple docstring'''
lowerCamelCase_ = self.num_labels
lowerCamelCase_ = EsmForTokenClassification(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase( self ) -> Any:
'''simple docstring'''
lowerCamelCase_ = self.prepare_config_and_inputs()
(
(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,
) = config_and_inputs
lowerCamelCase_ = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ = False
SCREAMING_SNAKE_CASE_ = (
(
EsmForMaskedLM,
EsmModel,
EsmForSequenceClassification,
EsmForTokenClassification,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE_ = ()
SCREAMING_SNAKE_CASE_ = (
{
'feature-extraction': EsmModel,
'fill-mask': EsmForMaskedLM,
'text-classification': EsmForSequenceClassification,
'token-classification': EsmForTokenClassification,
'zero-shot': EsmForSequenceClassification,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE_ = True
def UpperCamelCase( self ) -> List[Any]:
'''simple docstring'''
lowerCamelCase_ = EsmModelTester(self )
lowerCamelCase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 )
def UpperCamelCase( self ) -> List[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCamelCase( self ) -> Any:
'''simple docstring'''
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> str:
'''simple docstring'''
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCamelCase_ = type
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> Dict:
'''simple docstring'''
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> int:
'''simple docstring'''
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ )
@slow
def UpperCamelCase( self ) -> Any:
'''simple docstring'''
for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase_ = EsmModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> Any:
'''simple docstring'''
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()[0]
lowerCamelCase_ = EsmEmbeddings(config=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = torch.as_tensor([[12, 31, 13, model.padding_idx]] )
lowerCamelCase_ = torch.as_tensor(
[
[
0 + model.padding_idx + 1,
1 + model.padding_idx + 1,
2 + model.padding_idx + 1,
model.padding_idx,
]
] )
lowerCamelCase_ = create_position_ids_from_input_ids(SCREAMING_SNAKE_CASE_ , model.padding_idx )
self.assertEqual(position_ids.shape , expected_positions.shape )
self.assertTrue(torch.all(torch.eq(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) )
def UpperCamelCase( self ) -> List[Any]:
'''simple docstring'''
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()[0]
lowerCamelCase_ = EsmEmbeddings(config=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = torch.empty(2 , 4 , 30 )
lowerCamelCase_ = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
lowerCamelCase_ = torch.as_tensor([expected_single_positions, expected_single_positions] )
lowerCamelCase_ = embeddings.create_position_ids_from_inputs_embeds(SCREAMING_SNAKE_CASE_ )
self.assertEqual(position_ids.shape , expected_positions.shape )
self.assertTrue(torch.all(torch.eq(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) )
@unittest.skip('Esm does not support embedding resizing' )
def UpperCamelCase( self ) -> Dict:
'''simple docstring'''
pass
@unittest.skip('Esm does not support embedding resizing' )
def UpperCamelCase( self ) -> Any:
'''simple docstring'''
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def UpperCamelCase( self ) -> List[Any]:
'''simple docstring'''
pass
@require_torch
class UpperCAmelCase ( UpperCAmelCase__ ):
'''simple docstring'''
@slow
def UpperCamelCase( self ) -> Any:
'''simple docstring'''
with torch.no_grad():
lowerCamelCase_ = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
lowerCamelCase_ = torch.tensor([[0, 1, 2, 3, 4, 5]] )
lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ )[0]
lowerCamelCase_ = 33
lowerCamelCase_ = torch.Size((1, 6, vocab_size) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = torch.tensor(
[[[8.9_215, -10.5_898, -6.4_671], [-6.3_967, -13.9_114, -1.1_212], [-7.7_812, -13.9_516, -3.7_406]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
@slow
def UpperCamelCase( self ) -> Tuple:
'''simple docstring'''
with torch.no_grad():
lowerCamelCase_ = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
lowerCamelCase_ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ )[0]
# compare the actual values for a slice.
lowerCamelCase_ = torch.tensor(
[[[0.1_444, 0.5_413, 0.3_248], [0.3_034, 0.0_053, 0.3_108], [0.3_228, -0.2_499, 0.3_415]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
| 42 | 1 |
'''simple docstring'''
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
A_ = logging.get_logger(__name__)
class UpperCAmelCase :
'''simple docstring'''
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
'''simple docstring'''
lowerCamelCase_ = question_encoder
lowerCamelCase_ = generator
lowerCamelCase_ = self.question_encoder
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> List[str]:
'''simple docstring'''
if os.path.isfile(SCREAMING_SNAKE_CASE_ ):
raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' )
os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = os.path.join(SCREAMING_SNAKE_CASE_ , 'question_encoder_tokenizer' )
lowerCamelCase_ = os.path.join(SCREAMING_SNAKE_CASE_ , 'generator_tokenizer' )
self.question_encoder.save_pretrained(SCREAMING_SNAKE_CASE_ )
self.generator.save_pretrained(SCREAMING_SNAKE_CASE_ )
@classmethod
def UpperCamelCase( cls , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Dict:
'''simple docstring'''
from ..auto.tokenization_auto import AutoTokenizer
lowerCamelCase_ = kwargs.pop('config' , SCREAMING_SNAKE_CASE_ )
if config is None:
lowerCamelCase_ = RagConfig.from_pretrained(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = AutoTokenizer.from_pretrained(
SCREAMING_SNAKE_CASE_ , config=config.question_encoder , subfolder='question_encoder_tokenizer' )
lowerCamelCase_ = AutoTokenizer.from_pretrained(
SCREAMING_SNAKE_CASE_ , config=config.generator , subfolder='generator_tokenizer' )
return cls(question_encoder=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ )
def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
'''simple docstring'''
return self.current_tokenizer(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Dict:
'''simple docstring'''
return self.generator.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Dict:
'''simple docstring'''
return self.generator.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> Dict:
'''simple docstring'''
lowerCamelCase_ = self.question_encoder
def UpperCamelCase( self ) -> Optional[Any]:
'''simple docstring'''
lowerCamelCase_ = self.generator
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "longest" , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , **SCREAMING_SNAKE_CASE_ , ) -> BatchEncoding:
'''simple docstring'''
warnings.warn(
'`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the '
'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` '
'context manager to prepare your targets. See the documentation of your specific tokenizer for more '
'details' , SCREAMING_SNAKE_CASE_ , )
if max_length is None:
lowerCamelCase_ = self.current_tokenizer.model_max_length
lowerCamelCase_ = self(
SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
lowerCamelCase_ = self.current_tokenizer.model_max_length
lowerCamelCase_ = self(
text_target=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
lowerCamelCase_ = labels['input_ids']
return model_inputs
| 42 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
A_ = {
"configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"RESNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"ResNetForImageClassification",
"ResNetModel",
"ResNetPreTrainedModel",
"ResNetBackbone",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFResNetForImageClassification",
"TFResNetModel",
"TFResNetPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"FlaxResNetForImageClassification",
"FlaxResNetModel",
"FlaxResNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_resnet import (
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
ResNetBackbone,
ResNetForImageClassification,
ResNetModel,
ResNetPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_resnet import (
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFResNetForImageClassification,
TFResNetModel,
TFResNetPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel
else:
import sys
A_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 42 | 1 |
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import NezhaConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
)
from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST
class UpperCAmelCase :
'''simple docstring'''
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=128 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , ) -> Tuple:
'''simple docstring'''
lowerCamelCase_ = parent
lowerCamelCase_ = batch_size
lowerCamelCase_ = seq_length
lowerCamelCase_ = is_training
lowerCamelCase_ = use_input_mask
lowerCamelCase_ = use_token_type_ids
lowerCamelCase_ = use_labels
lowerCamelCase_ = vocab_size
lowerCamelCase_ = hidden_size
lowerCamelCase_ = num_hidden_layers
lowerCamelCase_ = num_attention_heads
lowerCamelCase_ = intermediate_size
lowerCamelCase_ = hidden_act
lowerCamelCase_ = hidden_dropout_prob
lowerCamelCase_ = attention_probs_dropout_prob
lowerCamelCase_ = max_position_embeddings
lowerCamelCase_ = type_vocab_size
lowerCamelCase_ = type_sequence_label_size
lowerCamelCase_ = initializer_range
lowerCamelCase_ = num_labels
lowerCamelCase_ = num_choices
lowerCamelCase_ = scope
def UpperCamelCase( self ) -> Optional[Any]:
'''simple docstring'''
lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase_ = None
if self.use_input_mask:
lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase_ = None
if self.use_token_type_ids:
lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase_ = None
lowerCamelCase_ = None
lowerCamelCase_ = None
if self.use_labels:
lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase_ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase( self ) -> Dict:
'''simple docstring'''
return NezhaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , )
def UpperCamelCase( self ) -> Optional[int]:
'''simple docstring'''
(
(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,
) = self.prepare_config_and_inputs()
lowerCamelCase_ = True
lowerCamelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
'''simple docstring'''
lowerCamelCase_ = NezhaModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> Dict:
'''simple docstring'''
lowerCamelCase_ = True
lowerCamelCase_ = NezhaModel(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
lowerCamelCase_ = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=SCREAMING_SNAKE_CASE_ , )
lowerCamelCase_ = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , )
lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ = NezhaForMaskedLM(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
'''simple docstring'''
lowerCamelCase_ = NezhaForNextSentencePrediction(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
lowerCamelCase_ = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ = NezhaForPreTraining(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
lowerCamelCase_ = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , next_sentence_label=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]:
'''simple docstring'''
lowerCamelCase_ = NezhaForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
lowerCamelCase_ = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str:
'''simple docstring'''
lowerCamelCase_ = self.num_labels
lowerCamelCase_ = NezhaForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]:
'''simple docstring'''
lowerCamelCase_ = self.num_labels
lowerCamelCase_ = NezhaForTokenClassification(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
'''simple docstring'''
lowerCamelCase_ = self.num_choices
lowerCamelCase_ = NezhaForMultipleChoice(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
lowerCamelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase_ = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCamelCase( self ) -> int:
'''simple docstring'''
lowerCamelCase_ = self.prepare_config_and_inputs()
(
(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,
) = config_and_inputs
lowerCamelCase_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ = (
(
NezhaModel,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE_ = (
{
'feature-extraction': NezhaModel,
'fill-mask': NezhaForMaskedLM,
'question-answering': NezhaForQuestionAnswering,
'text-classification': NezhaForSequenceClassification,
'token-classification': NezhaForTokenClassification,
'zero-shot': NezhaForSequenceClassification,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE_ = True
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> List[str]:
'''simple docstring'''
lowerCamelCase_ = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
if return_labels:
if model_class in get_values(SCREAMING_SNAKE_CASE_ ):
lowerCamelCase_ = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ )
return inputs_dict
def UpperCamelCase( self ) -> List[str]:
'''simple docstring'''
lowerCamelCase_ = NezhaModelTester(self )
lowerCamelCase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 )
def UpperCamelCase( self ) -> Tuple:
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCamelCase( self ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> int:
'''simple docstring'''
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> Union[str, Any]:
'''simple docstring'''
(
(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,(
lowerCamelCase_
) ,
) = self.model_tester.prepare_config_and_inputs_for_decoder()
lowerCamelCase_ = None
self.model_tester.create_and_check_model_as_decoder(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , )
def UpperCamelCase( self ) -> Dict:
'''simple docstring'''
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> Tuple:
'''simple docstring'''
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> Optional[Any]:
'''simple docstring'''
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_next_sequence_prediction(*SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> str:
'''simple docstring'''
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> List[Any]:
'''simple docstring'''
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> Any:
'''simple docstring'''
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ )
@slow
def UpperCamelCase( self ) -> Tuple:
'''simple docstring'''
for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase_ = NezhaModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@slow
@require_torch_gpu
def UpperCamelCase( self ) -> List[Any]:
'''simple docstring'''
lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# NezhaForMultipleChoice behaves incorrectly in JIT environments.
if model_class == NezhaForMultipleChoice:
return
lowerCamelCase_ = True
lowerCamelCase_ = model_class(config=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = torch.jit.trace(
SCREAMING_SNAKE_CASE_ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , 'bert.pt' ) )
lowerCamelCase_ = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE_ , 'bert.pt' ) , map_location=SCREAMING_SNAKE_CASE_ )
loaded(inputs_dict['input_ids'].to(SCREAMING_SNAKE_CASE_ ) , inputs_dict['attention_mask'].to(SCREAMING_SNAKE_CASE_ ) )
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCamelCase_ = NezhaModel.from_pretrained('sijunhe/nezha-cn-base' )
lowerCamelCase_ = torch.tensor([[0, 1, 2, 3, 4, 5]] )
lowerCamelCase_ = torch.tensor([[0, 1, 1, 1, 1, 1]] )
with torch.no_grad():
lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0]
lowerCamelCase_ = torch.Size((1, 6, 768) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = torch.tensor([[[0.0_685, 0.2_441, 0.1_102], [0.0_600, 0.1_906, 0.1_349], [0.0_221, 0.0_819, 0.0_586]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
@slow
def UpperCamelCase( self ) -> Optional[Any]:
'''simple docstring'''
lowerCamelCase_ = NezhaForMaskedLM.from_pretrained('sijunhe/nezha-cn-base' )
lowerCamelCase_ = torch.tensor([[0, 1, 2, 3, 4, 5]] )
lowerCamelCase_ = torch.tensor([[1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0]
lowerCamelCase_ = torch.Size((1, 6, 21128) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = torch.tensor(
[[-2.7_939, -1.7_902, -2.2_189], [-2.8_585, -1.8_908, -2.3_723], [-2.6_499, -1.7_750, -2.2_558]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
| 42 |
'''simple docstring'''
from typing import Callable, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ = logging.get_logger(__name__)
A_ = {
"microsoft/xprophetnet-large-wiki100-cased": (
"https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json"
),
}
class UpperCAmelCase ( UpperCAmelCase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ = 'xlm-prophetnet'
SCREAMING_SNAKE_CASE_ = ['past_key_values']
SCREAMING_SNAKE_CASE_ = {
'num_attention_heads': 'num_encoder_attention_heads',
}
def __init__( self , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = "gelu" , SCREAMING_SNAKE_CASE_ = 30522 , SCREAMING_SNAKE_CASE_ = 1024 , SCREAMING_SNAKE_CASE_ = 4096 , SCREAMING_SNAKE_CASE_ = 12 , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 4096 , SCREAMING_SNAKE_CASE_ = 12 , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 0.02 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 128 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 2 , **SCREAMING_SNAKE_CASE_ , ) -> Tuple:
'''simple docstring'''
lowerCamelCase_ = vocab_size
lowerCamelCase_ = hidden_size
lowerCamelCase_ = encoder_ffn_dim
lowerCamelCase_ = num_encoder_layers
lowerCamelCase_ = num_encoder_attention_heads
lowerCamelCase_ = decoder_ffn_dim
lowerCamelCase_ = num_decoder_layers
lowerCamelCase_ = num_decoder_attention_heads
lowerCamelCase_ = max_position_embeddings
lowerCamelCase_ = init_std # Normal(0, this parameter)
lowerCamelCase_ = activation_function
# parameters for xlmprophetnet
lowerCamelCase_ = ngram
lowerCamelCase_ = num_buckets
lowerCamelCase_ = relative_max_distance
lowerCamelCase_ = disable_ngram_loss
lowerCamelCase_ = eps
# 3 Types of Dropout
lowerCamelCase_ = attention_dropout
lowerCamelCase_ = activation_dropout
lowerCamelCase_ = dropout
lowerCamelCase_ = use_cache
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , add_cross_attention=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
@property
def UpperCamelCase( self ) -> int:
'''simple docstring'''
return self.num_encoder_layers + self.num_decoder_layers
@num_hidden_layers.setter
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Tuple:
'''simple docstring'''
raise NotImplementedError(
'This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and'
' `num_decoder_layers`.' )
| 42 | 1 |
'''simple docstring'''
import argparse
import glob
import importlib.util
import os
import re
import black
from doc_builder.style_doc import style_docstrings_in_code
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
A_ = "src/diffusers"
A_ = "."
# This is to make sure the diffusers module imported is the one in the repo.
A_ = importlib.util.spec_from_file_location(
"diffusers",
os.path.join(DIFFUSERS_PATH, "__init__.py"),
submodule_search_locations=[DIFFUSERS_PATH],
)
A_ = spec.loader.load_module()
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Optional[int]:
return line.startswith(__UpperCamelCase ) or len(__UpperCamelCase ) <= 1 or re.search(R'^\s*\)(\s*->.*:|:)\s*$' ,__UpperCamelCase ) is not None
def _UpperCamelCase ( __UpperCamelCase ) -> Optional[Any]:
lowerCamelCase_ = object_name.split('.' )
lowerCamelCase_ = 0
# First let's find the module where our object lives.
lowerCamelCase_ = parts[i]
while i < len(__UpperCamelCase ) and not os.path.isfile(os.path.join(__UpperCamelCase ,f'''{module}.py''' ) ):
i += 1
if i < len(__UpperCamelCase ):
lowerCamelCase_ = os.path.join(__UpperCamelCase ,parts[i] )
if i >= len(__UpperCamelCase ):
raise ValueError(f'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' )
with open(os.path.join(__UpperCamelCase ,f'''{module}.py''' ) ,'r' ,encoding='utf-8' ,newline='\n' ) as f:
lowerCamelCase_ = f.readlines()
# Now let's find the class / func in the code!
lowerCamelCase_ = ''
lowerCamelCase_ = 0
for name in parts[i + 1 :]:
while (
line_index < len(__UpperCamelCase ) and re.search(Rf'''^{indent}(class|def)\s+{name}(\(|\:)''' ,lines[line_index] ) is None
):
line_index += 1
indent += " "
line_index += 1
if line_index >= len(__UpperCamelCase ):
raise ValueError(f''' {object_name} does not match any function or class in {module}.''' )
# We found the beginning of the class / func, now let's find the end (when the indent diminishes).
lowerCamelCase_ = line_index
while line_index < len(__UpperCamelCase ) and _should_continue(lines[line_index] ,__UpperCamelCase ):
line_index += 1
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
lowerCamelCase_ = lines[start_index:line_index]
return "".join(__UpperCamelCase )
A_ = re.compile(R"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)")
A_ = re.compile(R"^\s*(\S+)->(\S+)(\s+.*|$)")
A_ = re.compile(R"<FILL\s+[^>]*>")
def _UpperCamelCase ( __UpperCamelCase ) -> List[Any]:
lowerCamelCase_ = code.split('\n' )
lowerCamelCase_ = 0
while idx < len(__UpperCamelCase ) and len(lines[idx] ) == 0:
idx += 1
if idx < len(__UpperCamelCase ):
return re.search(R'^(\s*)\S' ,lines[idx] ).groups()[0]
return ""
def _UpperCamelCase ( __UpperCamelCase ) -> Optional[int]:
lowerCamelCase_ = len(get_indent(__UpperCamelCase ) ) > 0
if has_indent:
lowerCamelCase_ = f'''class Bla:\n{code}'''
lowerCamelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} ,line_length=1_19 ,preview=__UpperCamelCase )
lowerCamelCase_ = black.format_str(__UpperCamelCase ,mode=__UpperCamelCase )
lowerCamelCase_ ,lowerCamelCase_ = style_docstrings_in_code(__UpperCamelCase )
return result[len('class Bla:\n' ) :] if has_indent else result
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase=False ) -> List[str]:
with open(__UpperCamelCase ,'r' ,encoding='utf-8' ,newline='\n' ) as f:
lowerCamelCase_ = f.readlines()
lowerCamelCase_ = []
lowerCamelCase_ = 0
# Not a for loop cause `lines` is going to change (if `overwrite=True`).
while line_index < len(__UpperCamelCase ):
lowerCamelCase_ = _re_copy_warning.search(lines[line_index] )
if search is None:
line_index += 1
continue
# There is some copied code here, let's retrieve the original.
lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = search.groups()
lowerCamelCase_ = find_code_in_diffusers(__UpperCamelCase )
lowerCamelCase_ = get_indent(__UpperCamelCase )
lowerCamelCase_ = line_index + 1 if indent == theoretical_indent else line_index + 2
lowerCamelCase_ = theoretical_indent
lowerCamelCase_ = start_index
# Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment.
lowerCamelCase_ = True
while line_index < len(__UpperCamelCase ) and should_continue:
line_index += 1
if line_index >= len(__UpperCamelCase ):
break
lowerCamelCase_ = lines[line_index]
lowerCamelCase_ = _should_continue(__UpperCamelCase ,__UpperCamelCase ) and re.search(f'''^{indent}# End copy''' ,__UpperCamelCase ) is None
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
lowerCamelCase_ = lines[start_index:line_index]
lowerCamelCase_ = ''.join(__UpperCamelCase )
# Remove any nested `Copied from` comments to avoid circular copies
lowerCamelCase_ = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(__UpperCamelCase ) is None]
lowerCamelCase_ = '\n'.join(__UpperCamelCase )
# Before comparing, use the `replace_pattern` on the original code.
if len(__UpperCamelCase ) > 0:
lowerCamelCase_ = replace_pattern.replace('with' ,'' ).split(',' )
lowerCamelCase_ = [_re_replace_pattern.search(__UpperCamelCase ) for p in patterns]
for pattern in patterns:
if pattern is None:
continue
lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = pattern.groups()
lowerCamelCase_ = re.sub(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
if option.strip() == "all-casing":
lowerCamelCase_ = re.sub(obja.lower() ,obja.lower() ,__UpperCamelCase )
lowerCamelCase_ = re.sub(obja.upper() ,obja.upper() ,__UpperCamelCase )
# Blackify after replacement. To be able to do that, we need the header (class or function definition)
# from the previous line
lowerCamelCase_ = blackify(lines[start_index - 1] + theoretical_code )
lowerCamelCase_ = theoretical_code[len(lines[start_index - 1] ) :]
# Test for a diff and act accordingly.
if observed_code != theoretical_code:
diffs.append([object_name, start_index] )
if overwrite:
lowerCamelCase_ = lines[:start_index] + [theoretical_code] + lines[line_index:]
lowerCamelCase_ = start_index + 1
if overwrite and len(__UpperCamelCase ) > 0:
# Warn the user a file has been modified.
print(f'''Detected changes, rewriting {filename}.''' )
with open(__UpperCamelCase ,'w' ,encoding='utf-8' ,newline='\n' ) as f:
f.writelines(__UpperCamelCase )
return diffs
def _UpperCamelCase ( __UpperCamelCase = False ) -> Tuple:
lowerCamelCase_ = glob.glob(os.path.join(__UpperCamelCase ,'**/*.py' ) ,recursive=__UpperCamelCase )
lowerCamelCase_ = []
for filename in all_files:
lowerCamelCase_ = is_copy_consistent(__UpperCamelCase ,__UpperCamelCase )
diffs += [f'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs]
if not overwrite and len(__UpperCamelCase ) > 0:
lowerCamelCase_ = '\n'.join(__UpperCamelCase )
raise Exception(
'Found the following copy inconsistencies:\n'
+ diff
+ '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
A_ = parser.parse_args()
check_copies(args.fix_and_overwrite)
| 42 |
'''simple docstring'''
import colorsys
from PIL import Image # type: ignore
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> float:
lowerCamelCase_ = x
lowerCamelCase_ = y
for step in range(__UpperCamelCase ): # noqa: B007
lowerCamelCase_ = a * a - b * b + x
lowerCamelCase_ = 2 * a * b + y
lowerCamelCase_ = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def _UpperCamelCase ( __UpperCamelCase ) -> tuple:
if distance == 1:
return (0, 0, 0)
else:
return (2_55, 2_55, 2_55)
def _UpperCamelCase ( __UpperCamelCase ) -> tuple:
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(__UpperCamelCase ,1 ,1 ) )
def _UpperCamelCase ( __UpperCamelCase = 8_00 ,__UpperCamelCase = 6_00 ,__UpperCamelCase = -0.6 ,__UpperCamelCase = 0 ,__UpperCamelCase = 3.2 ,__UpperCamelCase = 50 ,__UpperCamelCase = True ,) -> Image.Image:
lowerCamelCase_ = Image.new('RGB' ,(image_width, image_height) )
lowerCamelCase_ = img.load()
# loop through the image-coordinates
for image_x in range(__UpperCamelCase ):
for image_y in range(__UpperCamelCase ):
# determine the figure-coordinates based on the image-coordinates
lowerCamelCase_ = figure_width / image_width * image_height
lowerCamelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width
lowerCamelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height
lowerCamelCase_ = get_distance(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
lowerCamelCase_ = get_color_coded_rgb(__UpperCamelCase )
else:
lowerCamelCase_ = get_black_and_white_rgb(__UpperCamelCase )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
A_ = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 42 | 1 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ = ViTImageProcessor if is_vision_available() else None
@property
def UpperCamelCase( self ) -> int:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase( self ) -> List[str]:
'''simple docstring'''
lowerCamelCase_ = (3, 32, 128)
lowerCamelCase_ = tempfile.mkdtemp()
# fmt: off
lowerCamelCase_ = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
# fmt: on
lowerCamelCase_ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' )
lowerCamelCase_ = {
'do_normalize': False,
'do_resize': True,
'image_processor_type': 'ViTImageProcessor',
'resample': 3,
'size': {'height': 32, 'width': 128},
}
lowerCamelCase_ = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ )
with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> List[str]:
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> Dict:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> str:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def UpperCamelCase( self ) -> Any:
'''simple docstring'''
lowerCamelCase_ = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )
lowerCamelCase_ = Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) )
return image_input
def UpperCamelCase( self ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase_ = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE_ )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , SCREAMING_SNAKE_CASE_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> Optional[Any]:
'''simple docstring'''
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase_ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
lowerCamelCase_ = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 )
lowerCamelCase_ = MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , SCREAMING_SNAKE_CASE_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> Optional[Any]:
'''simple docstring'''
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = self.prepare_image_inputs()
lowerCamelCase_ = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' )
lowerCamelCase_ = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='np' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def UpperCamelCase( self ) -> Tuple:
'''simple docstring'''
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = 'test'
lowerCamelCase_ = processor(text=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def UpperCamelCase( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = 'test'
lowerCamelCase_ = self.prepare_image_inputs()
lowerCamelCase_ = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'labels'] )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE_ ):
processor()
def UpperCamelCase( self ) -> Dict:
'''simple docstring'''
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
lowerCamelCase_ = processor.char_decode(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = [seq.replace(' ' , '' ) for seq in decoded_tok]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> Optional[Any]:
'''simple docstring'''
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = None
lowerCamelCase_ = self.prepare_image_inputs()
lowerCamelCase_ = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
def UpperCamelCase( self ) -> int:
'''simple docstring'''
lowerCamelCase_ = self.get_image_processor()
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = MgpstrProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = torch.randn(1 , 27 , 38 )
lowerCamelCase_ = torch.randn(1 , 27 , 50257 )
lowerCamelCase_ = torch.randn(1 , 27 , 30522 )
lowerCamelCase_ = processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ) , ['generated_text', 'scores', 'char_preds', 'bpe_preds', 'wp_preds'] )
| 42 |
'''simple docstring'''
from math import isclose, sqrt
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> tuple[float, float, float]:
lowerCamelCase_ = point_y / 4 / point_x
lowerCamelCase_ = 2 * normal_gradient / (1 + normal_gradient * normal_gradient)
lowerCamelCase_ = (1 - normal_gradient * normal_gradient) / (
1 + normal_gradient * normal_gradient
)
lowerCamelCase_ = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient)
# to find the next point, solve the simultaeneous equations:
# y^2 + 4x^2 = 100
# y - b = m * (x - a)
# ==> A x^2 + B x + C = 0
lowerCamelCase_ = outgoing_gradient**2 + 4
lowerCamelCase_ = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x)
lowerCamelCase_ = (point_y - outgoing_gradient * point_x) ** 2 - 1_00
lowerCamelCase_ = (
-linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
lowerCamelCase_ = (
-linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
# two solutions, one of which is our input point
lowerCamelCase_ = x_minus if isclose(__UpperCamelCase ,__UpperCamelCase ) else x_plus
lowerCamelCase_ = point_y + outgoing_gradient * (next_x - point_x)
return next_x, next_y, outgoing_gradient
def _UpperCamelCase ( __UpperCamelCase = 1.4 ,__UpperCamelCase = -9.6 ) -> int:
lowerCamelCase_ = 0
lowerCamelCase_ = first_x_coord
lowerCamelCase_ = first_y_coord
lowerCamelCase_ = (10.1 - point_y) / (0.0 - point_x)
while not (-0.01 <= point_x <= 0.01 and point_y > 0):
lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = next_point(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
num_reflections += 1
return num_reflections
if __name__ == "__main__":
print(f'''{solution() = }''')
| 42 | 1 |
'''simple docstring'''
from pathlib import Path
import cva
import numpy as np
from matplotlib import pyplot as plt
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> np.ndarray:
lowerCamelCase_ = cva.getAffineTransform(__UpperCamelCase ,__UpperCamelCase )
return cva.warpAffine(__UpperCamelCase ,__UpperCamelCase ,(rows, cols) )
if __name__ == "__main__":
# read original image
A_ = cva.imread(
str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg")
)
# turn image in gray scale value
A_ = cva.cvtColor(image, cva.COLOR_BGR2GRAY)
# get image shape
A_ , A_ = gray_img.shape
# set different points to rotate image
A_ = np.array([[50, 50], [200, 50], [50, 200]], np.floataa)
A_ = np.array([[10, 100], [200, 50], [100, 250]], np.floataa)
A_ = np.array([[50, 50], [150, 50], [120, 200]], np.floataa)
A_ = np.array([[10, 100], [80, 50], [180, 250]], np.floataa)
# add all rotated images in a list
A_ = [
gray_img,
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
]
# plot different image rotations
A_ = plt.figure(1)
A_ = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"]
for i, image in enumerate(images):
plt.subplot(2, 2, i + 1), plt.imshow(image, "gray")
plt.title(titles[i])
plt.axis("off")
plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95)
plt.show()
| 42 |
'''simple docstring'''
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase = False ) -> bool:
if n == 2:
return True
if not n % 2 or n < 2:
return False
if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit
return False
if n > 3_31_70_44_06_46_79_88_73_85_96_19_81 and not allow_probable:
raise ValueError(
'Warning: upper bound of deterministic test is exceeded. '
'Pass allow_probable=True to allow probabilistic test. '
'A return value of True indicates a probable prime.' )
# array bounds provided by analysis
lowerCamelCase_ = [
20_47,
1_37_36_53,
25_32_60_01,
32_15_03_17_51,
2_15_23_02_89_87_47,
3_47_47_49_66_03_83,
3_41_55_00_71_72_83_21,
1,
3_82_51_23_05_65_46_41_30_51,
1,
1,
31_86_65_85_78_34_03_11_51_16_74_61,
3_31_70_44_06_46_79_88_73_85_96_19_81,
]
lowerCamelCase_ = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41]
for idx, _p in enumerate(__UpperCamelCase ,1 ):
if n < _p:
# then we have our last prime to check
lowerCamelCase_ = primes[:idx]
break
lowerCamelCase_ ,lowerCamelCase_ = n - 1, 0
# break up n -1 into a power of 2 (s) and
# remaining odd component
# essentially, solve for d * 2 ** s == n - 1
while d % 2 == 0:
d //= 2
s += 1
for prime in plist:
lowerCamelCase_ = False
for r in range(__UpperCamelCase ):
lowerCamelCase_ = pow(__UpperCamelCase ,d * 2**r ,__UpperCamelCase )
# see article for analysis explanation for m
if (r == 0 and m == 1) or ((m + 1) % n == 0):
lowerCamelCase_ = True
# this loop will not determine compositeness
break
if pr:
continue
# if pr is False, then the above loop never evaluated to true,
# and the n MUST be composite
return False
return True
def _UpperCamelCase ( ) -> None:
assert not miller_rabin(5_61 )
assert miller_rabin(5_63 )
# 2047
assert not miller_rabin(83_82_01 )
assert miller_rabin(83_82_07 )
# 1_373_653
assert not miller_rabin(17_31_60_01 )
assert miller_rabin(17_31_60_17 )
# 25_326_001
assert not miller_rabin(30_78_38_66_41 )
assert miller_rabin(30_78_38_66_53 )
# 3_215_031_751
assert not miller_rabin(1_71_30_45_57_48_01 )
assert miller_rabin(1_71_30_45_57_48_19 )
# 2_152_302_898_747
assert not miller_rabin(2_77_97_99_72_83_07 )
assert miller_rabin(2_77_97_99_72_83_27 )
# 3_474_749_660_383
assert not miller_rabin(1_13_85_00_23_90_94_41 )
assert miller_rabin(1_13_85_00_23_90_95_27 )
# 341_550_071_728_321
assert not miller_rabin(1_27_50_41_01_88_48_80_43_51 )
assert miller_rabin(1_27_50_41_01_88_48_80_43_91 )
# 3_825_123_056_546_413_051
assert not miller_rabin(7_96_66_46_44_58_50_77_87_79_18_67 )
assert miller_rabin(7_96_66_46_44_58_50_77_87_79_19_51 )
# 318_665_857_834_031_151_167_461
assert not miller_rabin(55_28_40_67_74_46_64_78_97_66_03_33 )
assert miller_rabin(55_28_40_67_74_46_64_78_97_66_03_59 )
# 3_317_044_064_679_887_385_961_981
# upper limit for probabilistic test
if __name__ == "__main__":
test_miller_rabin()
| 42 | 1 |
'''simple docstring'''
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import sys
import transformers
A_ = "3"
print("Python version:", sys.version)
print("transformers version:", transformers.__version__)
try:
import torch
print("Torch version:", torch.__version__)
print("Cuda available:", torch.cuda.is_available())
print("Cuda version:", torch.version.cuda)
print("CuDNN version:", torch.backends.cudnn.version())
print("Number of GPUs available:", torch.cuda.device_count())
print("NCCL version:", torch.cuda.nccl.version())
except ImportError:
print("Torch version:", None)
try:
import deepspeed
print("DeepSpeed version:", deepspeed.__version__)
except ImportError:
print("DeepSpeed version:", None)
try:
import tensorflow as tf
print("TensorFlow version:", tf.__version__)
print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU")))
print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU")))
except ImportError:
print("TensorFlow version:", None)
| 42 |
'''simple docstring'''
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
A_ = 16
A_ = 32
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase = 16 ,__UpperCamelCase = "bert-base-cased" ) -> List[Any]:
lowerCamelCase_ = AutoTokenizer.from_pretrained(__UpperCamelCase )
lowerCamelCase_ = load_dataset('glue' ,'mrpc' )
def tokenize_function(__UpperCamelCase ):
# max_length=None => use the model max length (it's actually the default)
lowerCamelCase_ = tokenizer(examples['sentence1'] ,examples['sentence2'] ,truncation=__UpperCamelCase ,max_length=__UpperCamelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
lowerCamelCase_ = datasets.map(
__UpperCamelCase ,batched=__UpperCamelCase ,remove_columns=['idx', 'sentence1', 'sentence2'] ,load_from_cache_file=__UpperCamelCase )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowerCamelCase_ = tokenized_datasets.rename_column('label' ,'labels' )
def collate_fn(__UpperCamelCase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(__UpperCamelCase ,padding='max_length' ,max_length=1_28 ,return_tensors='pt' )
return tokenizer.pad(__UpperCamelCase ,padding='longest' ,return_tensors='pt' )
# Instantiate dataloaders.
lowerCamelCase_ = DataLoader(
tokenized_datasets['train'] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase )
lowerCamelCase_ = DataLoader(
tokenized_datasets['validation'] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase )
return train_dataloader, eval_dataloader
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]:
model.eval()
lowerCamelCase_ = 0
for step, batch in enumerate(__UpperCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowerCamelCase_ = model(**__UpperCamelCase )
lowerCamelCase_ = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
lowerCamelCase_ ,lowerCamelCase_ = accelerator.gather(
(predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(__UpperCamelCase ) - 1:
lowerCamelCase_ = predictions[: len(eval_dataloader.dataset ) - samples_seen]
lowerCamelCase_ = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=__UpperCamelCase ,references=__UpperCamelCase ,)
lowerCamelCase_ = metric.compute()
return eval_metric["accuracy"]
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> List[str]:
# Initialize accelerator
lowerCamelCase_ = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowerCamelCase_ = config['lr']
lowerCamelCase_ = int(config['num_epochs'] )
lowerCamelCase_ = int(config['seed'] )
lowerCamelCase_ = int(config['batch_size'] )
lowerCamelCase_ = args.model_name_or_path
set_seed(__UpperCamelCase )
lowerCamelCase_ ,lowerCamelCase_ = get_dataloaders(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained(__UpperCamelCase ,return_dict=__UpperCamelCase )
# Instantiate optimizer
lowerCamelCase_ = (
AdamW
if accelerator.state.deepspeed_plugin is None
or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
lowerCamelCase_ = optimizer_cls(params=model.parameters() ,lr=__UpperCamelCase )
if accelerator.state.deepspeed_plugin is not None:
lowerCamelCase_ = accelerator.state.deepspeed_plugin.deepspeed_config[
'gradient_accumulation_steps'
]
else:
lowerCamelCase_ = 1
lowerCamelCase_ = (len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
lowerCamelCase_ = get_linear_schedule_with_warmup(
optimizer=__UpperCamelCase ,num_warmup_steps=0 ,num_training_steps=__UpperCamelCase ,)
else:
lowerCamelCase_ = DummyScheduler(__UpperCamelCase ,total_num_steps=__UpperCamelCase ,warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = accelerator.prepare(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
# We need to keep track of how many total steps we have iterated over
lowerCamelCase_ = 0
# We also need to keep track of the stating epoch so files are named properly
lowerCamelCase_ = 0
lowerCamelCase_ = evaluate.load('glue' ,'mrpc' )
lowerCamelCase_ = num_epochs
if args.partial_train_epoch is not None:
lowerCamelCase_ = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
lowerCamelCase_ = args.resume_from_checkpoint.split('epoch_' )[1]
lowerCamelCase_ = ''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
lowerCamelCase_ = int(__UpperCamelCase ) + 1
lowerCamelCase_ = evaluation_loop(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
accelerator.print('resumed checkpoint performance:' ,__UpperCamelCase )
accelerator.print('resumed checkpoint\'s scheduler\'s lr:' ,lr_scheduler.get_lr()[0] )
accelerator.print('resumed optimizers\'s lr:' ,optimizer.param_groups[0]['lr'] )
with open(os.path.join(args.output_dir ,f'''state_{starting_epoch-1}.json''' ) ,'r' ) as f:
lowerCamelCase_ = json.load(__UpperCamelCase )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
lowerCamelCase_ = {}
for epoch in range(__UpperCamelCase ,__UpperCamelCase ):
model.train()
for step, batch in enumerate(__UpperCamelCase ):
lowerCamelCase_ = model(**__UpperCamelCase )
lowerCamelCase_ = outputs.loss
lowerCamelCase_ = loss / gradient_accumulation_steps
accelerator.backward(__UpperCamelCase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
lowerCamelCase_ = f'''epoch_{epoch}'''
lowerCamelCase_ = os.path.join(args.output_dir ,__UpperCamelCase )
accelerator.save_state(__UpperCamelCase )
lowerCamelCase_ = evaluation_loop(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
lowerCamelCase_ = accuracy
lowerCamelCase_ = lr_scheduler.get_lr()[0]
lowerCamelCase_ = optimizer.param_groups[0]['lr']
lowerCamelCase_ = epoch
lowerCamelCase_ = overall_step
accelerator.print(f'''epoch {epoch}:''' ,__UpperCamelCase )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir ,f'''state_{epoch}.json''' ) ,'w' ) as f:
json.dump(__UpperCamelCase ,__UpperCamelCase )
def _UpperCamelCase ( ) -> str:
lowerCamelCase_ = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' )
parser.add_argument(
'--model_name_or_path' ,type=__UpperCamelCase ,default='bert-base-cased' ,help='Path to pretrained model or model identifier from huggingface.co/models.' ,required=__UpperCamelCase ,)
parser.add_argument(
'--output_dir' ,type=__UpperCamelCase ,default='.' ,help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' ,)
parser.add_argument(
'--resume_from_checkpoint' ,type=__UpperCamelCase ,default=__UpperCamelCase ,help='If the training should continue from a checkpoint folder.' ,)
parser.add_argument(
'--partial_train_epoch' ,type=__UpperCamelCase ,default=__UpperCamelCase ,help='If passed, the training will stop after this number of epochs.' ,)
parser.add_argument(
'--num_epochs' ,type=__UpperCamelCase ,default=2 ,help='Number of train epochs.' ,)
lowerCamelCase_ = parser.parse_args()
lowerCamelCase_ = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16}
training_function(__UpperCamelCase ,__UpperCamelCase )
if __name__ == "__main__":
main()
| 42 | 1 |
'''simple docstring'''
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class UpperCAmelCase ( UpperCAmelCase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ = (KDPMaDiscreteScheduler,)
SCREAMING_SNAKE_CASE_ = 10
def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> str:
'''simple docstring'''
lowerCamelCase_ = {
'num_train_timesteps': 1100,
'beta_start': 0.0_001,
'beta_end': 0.02,
'beta_schedule': 'linear',
}
config.update(**SCREAMING_SNAKE_CASE_ )
return config
def UpperCamelCase( self ) -> Any:
'''simple docstring'''
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> Tuple:
'''simple docstring'''
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> str:
'''simple docstring'''
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> Optional[Any]:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> List[Any]:
'''simple docstring'''
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config(prediction_type='v_prediction' )
lowerCamelCase_ = scheduler_class(**SCREAMING_SNAKE_CASE_ )
scheduler.set_timesteps(self.num_inference_steps )
lowerCamelCase_ = self.dummy_model()
lowerCamelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma
lowerCamelCase_ = sample.to(SCREAMING_SNAKE_CASE_ )
for i, t in enumerate(scheduler.timesteps ):
lowerCamelCase_ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = output.prev_sample
lowerCamelCase_ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) )
lowerCamelCase_ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2
assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 4.693428650170972E-07 ) < 1E-2
assert abs(result_mean.item() - 0.0_002 ) < 1E-3
def UpperCamelCase( self ) -> int:
'''simple docstring'''
if torch_device == "mps":
return
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**SCREAMING_SNAKE_CASE_ )
scheduler.set_timesteps(self.num_inference_steps )
lowerCamelCase_ = self.dummy_model()
lowerCamelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma
lowerCamelCase_ = sample.to(SCREAMING_SNAKE_CASE_ )
for i, t in enumerate(scheduler.timesteps ):
lowerCamelCase_ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = output.prev_sample
lowerCamelCase_ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) )
lowerCamelCase_ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
def UpperCamelCase( self ) -> str:
'''simple docstring'''
if torch_device == "mps":
return
lowerCamelCase_ = self.scheduler_classes[0]
lowerCamelCase_ = self.get_scheduler_config()
lowerCamelCase_ = scheduler_class(**SCREAMING_SNAKE_CASE_ )
scheduler.set_timesteps(self.num_inference_steps , device=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = self.dummy_model()
lowerCamelCase_ = self.dummy_sample_deter.to(SCREAMING_SNAKE_CASE_ ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
lowerCamelCase_ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = output.prev_sample
lowerCamelCase_ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) )
lowerCamelCase_ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) )
if str(SCREAMING_SNAKE_CASE_ ).startswith('cpu' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
| 42 |
'''simple docstring'''
import numpy as np
from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> np.ndarray:
# prepare kernel
# the kernel size have to be odd
if (ksize % 2) == 0:
lowerCamelCase_ = ksize + 1
lowerCamelCase_ = np.zeros((ksize, ksize) ,dtype=np.floataa )
# each value
for y in range(__UpperCamelCase ):
for x in range(__UpperCamelCase ):
# distance from center
lowerCamelCase_ = x - ksize // 2
lowerCamelCase_ = y - ksize // 2
# degree to radiant
lowerCamelCase_ = theta / 1_80 * np.pi
lowerCamelCase_ = np.cos(_theta )
lowerCamelCase_ = np.sin(_theta )
# get kernel x
lowerCamelCase_ = cos_theta * px + sin_theta * py
# get kernel y
lowerCamelCase_ = -sin_theta * px + cos_theta * py
# fill kernel
lowerCamelCase_ = np.exp(
-(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi )
return gabor
if __name__ == "__main__":
import doctest
doctest.testmod()
# read original image
A_ = imread("../image_data/lena.jpg")
# turn image in gray scale value
A_ = cvtColor(img, COLOR_BGR2GRAY)
# Apply multiple Kernel to detect edges
A_ = np.zeros(gray.shape[:2])
for theta in [0, 30, 60, 90, 120, 150]:
A_ = gabor_filter_kernel(10, 8, theta, 10, 0, 0)
out += filteraD(gray, CV_8UC3, kernel_aa)
A_ = out / out.max() * 255
A_ = out.astype(np.uinta)
imshow("Original", gray)
imshow("Gabor filter with 20x20 mask and 6 directions", out)
waitKey(0)
| 42 | 1 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .modeling_utils import ModelMixin
@dataclass
class UpperCAmelCase ( UpperCAmelCase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ = 42
class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ ):
'''simple docstring'''
@register_to_config
def __init__( self , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 88 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "geglu" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , ) -> Tuple:
'''simple docstring'''
super().__init__()
lowerCamelCase_ = num_attention_heads
lowerCamelCase_ = attention_head_dim
lowerCamelCase_ = num_attention_heads * attention_head_dim
lowerCamelCase_ = in_channels
lowerCamelCase_ = torch.nn.GroupNorm(num_groups=SCREAMING_SNAKE_CASE_ , num_channels=SCREAMING_SNAKE_CASE_ , eps=1E-6 , affine=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# 3. Define transformers blocks
lowerCamelCase_ = nn.ModuleList(
[
BasicTransformerBlock(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , dropout=SCREAMING_SNAKE_CASE_ , cross_attention_dim=SCREAMING_SNAKE_CASE_ , activation_fn=SCREAMING_SNAKE_CASE_ , attention_bias=SCREAMING_SNAKE_CASE_ , double_self_attention=SCREAMING_SNAKE_CASE_ , norm_elementwise_affine=SCREAMING_SNAKE_CASE_ , )
for d in range(SCREAMING_SNAKE_CASE_ )
] )
lowerCamelCase_ = nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = True , ) -> Any:
'''simple docstring'''
lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = hidden_states.shape
lowerCamelCase_ = batch_frames // num_frames
lowerCamelCase_ = hidden_states
lowerCamelCase_ = hidden_states[None, :].reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = hidden_states.permute(0 , 2 , 1 , 3 , 4 )
lowerCamelCase_ = self.norm(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = self.proj_in(SCREAMING_SNAKE_CASE_ )
# 2. Blocks
for block in self.transformer_blocks:
lowerCamelCase_ = block(
SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , cross_attention_kwargs=SCREAMING_SNAKE_CASE_ , class_labels=SCREAMING_SNAKE_CASE_ , )
# 3. Output
lowerCamelCase_ = self.proj_out(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = (
hidden_states[None, None, :]
.reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
.permute(0 , 3 , 4 , 1 , 2 )
.contiguous()
)
lowerCamelCase_ = hidden_states.reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = hidden_states + residual
if not return_dict:
return (output,)
return TransformerTemporalModelOutput(sample=SCREAMING_SNAKE_CASE_ )
| 42 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class UpperCAmelCase ( metaclass=UpperCAmelCase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ = ['transformers', 'torch', 'note_seq']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['transformers', 'torch', 'note_seq'] )
@classmethod
def UpperCamelCase( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
'''simple docstring'''
requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
@classmethod
def UpperCamelCase( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[str]:
'''simple docstring'''
requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
| 42 | 1 |
'''simple docstring'''
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> float:
if density <= 0:
raise ValueError('Impossible fluid density' )
if bulk_modulus <= 0:
raise ValueError('Impossible bulk modulus' )
return (bulk_modulus / density) ** 0.5
if __name__ == "__main__":
import doctest
doctest.testmod()
| 42 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from diffusers import (
AudioDiffusionPipeline,
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
DiffusionPipeline,
Mel,
UNetaDConditionModel,
UNetaDModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase( self ) -> List[str]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def UpperCamelCase( self ) -> List[Any]:
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase_ = UNetaDModel(
sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , )
return model
@property
def UpperCamelCase( self ) -> int:
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase_ = UNetaDConditionModel(
sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , cross_attention_dim=10 , )
return model
@property
def UpperCamelCase( self ) -> Dict:
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase_ = AutoencoderKL(
sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , )
lowerCamelCase_ = UNetaDModel(
sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , )
return vqvae, unet
@slow
def UpperCamelCase( self ) -> str:
'''simple docstring'''
lowerCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator
lowerCamelCase_ = Mel(
x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , )
lowerCamelCase_ = DDPMScheduler()
lowerCamelCase_ = AudioDiffusionPipeline(vqvae=SCREAMING_SNAKE_CASE_ , unet=self.dummy_unet , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 )
lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ , steps=4 )
lowerCamelCase_ = output.audios[0]
lowerCamelCase_ = output.images[0]
lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 )
lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ , steps=4 , return_dict=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = output[0][0]
assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length)
assert (
image.height == self.dummy_unet.config.sample_size[0]
and image.width == self.dummy_unet.config.sample_size[1]
)
lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10]
lowerCamelCase_ = np.frombuffer(image_from_tuple.tobytes() , dtype='uint8' )[:10]
lowerCamelCase_ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0
lowerCamelCase_ = Mel(
x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , )
lowerCamelCase_ = DDIMScheduler()
lowerCamelCase_ = self.dummy_vqvae_and_unet
lowerCamelCase_ = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
np.random.seed(0 )
lowerCamelCase_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) )
lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 )
lowerCamelCase_ = pipe(raw_audio=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , start_step=5 , steps=10 )
lowerCamelCase_ = output.images[0]
assert (
image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0]
and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1]
)
lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10]
lowerCamelCase_ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
lowerCamelCase_ = self.dummy_unet_condition
lowerCamelCase_ = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0] , unet=SCREAMING_SNAKE_CASE_ , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
np.random.seed(0 )
lowerCamelCase_ = torch.rand((1, 1, 10) )
lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ , encoding=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = output.images[0]
lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10]
lowerCamelCase_ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
@slow
@require_torch_gpu
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase( self ) -> Tuple:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase( self ) -> Union[str, Any]:
'''simple docstring'''
lowerCamelCase_ = torch_device
lowerCamelCase_ = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256' )
lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 )
lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = output.audios[0]
lowerCamelCase_ = output.images[0]
assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length)
assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1]
lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10]
lowerCamelCase_ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
| 42 | 1 |
'''simple docstring'''
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
A_ = 0
A_ = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
A_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
A_ = tuple[int, int]
class UpperCAmelCase :
'''simple docstring'''
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> None:
'''simple docstring'''
lowerCamelCase_ = pos_x
lowerCamelCase_ = pos_y
lowerCamelCase_ = (pos_y, pos_x)
lowerCamelCase_ = goal_x
lowerCamelCase_ = goal_y
lowerCamelCase_ = g_cost
lowerCamelCase_ = parent
lowerCamelCase_ = self.calculate_heuristic()
lowerCamelCase_ = self.g_cost + self.h_cost
def UpperCamelCase( self ) -> float:
'''simple docstring'''
lowerCamelCase_ = self.pos_x - self.goal_x
lowerCamelCase_ = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(SCREAMING_SNAKE_CASE_ ) + abs(SCREAMING_SNAKE_CASE_ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self , SCREAMING_SNAKE_CASE_ ) -> bool:
'''simple docstring'''
return self.f_cost < other.f_cost
class UpperCAmelCase :
'''simple docstring'''
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict:
'''simple docstring'''
lowerCamelCase_ = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = [self.start]
lowerCamelCase_ = []
lowerCamelCase_ = False
def UpperCamelCase( self ) -> list[TPosition]:
'''simple docstring'''
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
lowerCamelCase_ = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(SCREAMING_SNAKE_CASE_ )
self.closed_nodes.append(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = self.get_successors(SCREAMING_SNAKE_CASE_ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(SCREAMING_SNAKE_CASE_ )
else:
# retrieve the best current path
lowerCamelCase_ = self.open_nodes.pop(self.open_nodes.index(SCREAMING_SNAKE_CASE_ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(SCREAMING_SNAKE_CASE_ )
else:
self.open_nodes.append(SCREAMING_SNAKE_CASE_ )
return [self.start.pos]
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> list[Node]:
'''simple docstring'''
lowerCamelCase_ = []
for action in delta:
lowerCamelCase_ = parent.pos_x + action[1]
lowerCamelCase_ = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE_ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , SCREAMING_SNAKE_CASE_ , ) )
return successors
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> list[TPosition]:
'''simple docstring'''
lowerCamelCase_ = node
lowerCamelCase_ = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
lowerCamelCase_ = current_node.parent
path.reverse()
return path
class UpperCAmelCase :
'''simple docstring'''
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
'''simple docstring'''
lowerCamelCase_ = AStar(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = AStar(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = False
def UpperCamelCase( self ) -> list[TPosition]:
'''simple docstring'''
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
lowerCamelCase_ = self.fwd_astar.open_nodes.pop(0 )
lowerCamelCase_ = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.fwd_astar.closed_nodes.append(SCREAMING_SNAKE_CASE_ )
self.bwd_astar.closed_nodes.append(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = current_bwd_node
lowerCamelCase_ = current_fwd_node
lowerCamelCase_ = {
self.fwd_astar: self.fwd_astar.get_successors(SCREAMING_SNAKE_CASE_ ),
self.bwd_astar: self.bwd_astar.get_successors(SCREAMING_SNAKE_CASE_ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(SCREAMING_SNAKE_CASE_ )
else:
# retrieve the best current path
lowerCamelCase_ = astar.open_nodes.pop(
astar.open_nodes.index(SCREAMING_SNAKE_CASE_ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(SCREAMING_SNAKE_CASE_ )
else:
astar.open_nodes.append(SCREAMING_SNAKE_CASE_ )
return [self.fwd_astar.start.pos]
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list[TPosition]:
'''simple docstring'''
lowerCamelCase_ = self.fwd_astar.retrace_path(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = self.bwd_astar.retrace_path(SCREAMING_SNAKE_CASE_ )
bwd_path.pop()
bwd_path.reverse()
lowerCamelCase_ = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
A_ = (0, 0)
A_ = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
A_ = time.time()
A_ = AStar(init, goal)
A_ = a_star.search()
A_ = time.time() - start_time
print(f'''AStar execution time = {end_time:f} seconds''')
A_ = time.time()
A_ = BidirectionalAStar(init, goal)
A_ = time.time() - bd_start_time
print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
| 42 |
'''simple docstring'''
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def _UpperCamelCase ( __UpperCamelCase = 8 ) -> str:
lowerCamelCase_ = ascii_letters + digits + punctuation
return "".join(secrets.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) )
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str:
# Password Generator = full boot with random_number, random_letters, and
# random_character FUNCTIONS
# Put your code here...
i -= len(__UpperCamelCase )
lowerCamelCase_ = i // 3
lowerCamelCase_ = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
lowerCamelCase_ = (
chars_incl
+ random(__UpperCamelCase ,quotient + remainder )
+ random(__UpperCamelCase ,__UpperCamelCase )
+ random(__UpperCamelCase ,__UpperCamelCase )
)
lowerCamelCase_ = list(__UpperCamelCase )
shuffle(__UpperCamelCase )
return "".join(__UpperCamelCase )
# random is a generalised function for letters, characters and numbers
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str:
return "".join(secrets.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) )
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Optional[int]:
pass # Put your code here...
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Tuple:
pass # Put your code here...
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str:
pass # Put your code here...
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase = 8 ) -> bool:
if len(__UpperCamelCase ) < min_length:
# Your Password must be at least 8 characters long
return False
lowerCamelCase_ = any(char in ascii_uppercase for char in password )
lowerCamelCase_ = any(char in ascii_lowercase for char in password )
lowerCamelCase_ = any(char in digits for char in password )
lowerCamelCase_ = any(char in punctuation for char in password )
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def _UpperCamelCase ( ) -> Optional[int]:
lowerCamelCase_ = int(input('Please indicate the max length of your password: ' ).strip() )
lowerCamelCase_ = input(
'Please indicate the characters that must be in your password: ' ).strip()
print('Password generated:' ,password_generator(__UpperCamelCase ) )
print(
'Alternative Password generated:' ,alternative_password_generator(__UpperCamelCase ,__UpperCamelCase ) ,)
print('[If you are thinking of using this passsword, You better save it.]' )
if __name__ == "__main__":
main()
| 42 | 1 |
'''simple docstring'''
import os
from pickle import UnpicklingError
from typing import Dict, Tuple
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict, unflatten_dict
import transformers
from .utils import logging
A_ = logging.get_logger(__name__)
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=False ) -> Tuple:
try:
import torch # noqa: F401
except ImportError:
logger.error(
'Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see'
' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'
' instructions.' )
raise
if not is_sharded:
lowerCamelCase_ = os.path.abspath(__UpperCamelCase )
logger.info(f'''Loading PyTorch weights from {pt_path}''' )
lowerCamelCase_ = torch.load(__UpperCamelCase ,map_location='cpu' )
logger.info(f'''PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.''' )
lowerCamelCase_ = convert_pytorch_state_dict_to_flax(__UpperCamelCase ,__UpperCamelCase )
else:
# model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files
lowerCamelCase_ = convert_pytorch_sharded_state_dict_to_flax(__UpperCamelCase ,__UpperCamelCase )
return flax_state_dict
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> (Tuple[str], np.ndarray):
def is_key_or_prefix_key_in_dict(__UpperCamelCase ) -> bool:
return len(set(__UpperCamelCase ) & {key, (model_prefix,) + key} ) > 0
# layer norm
lowerCamelCase_ = pt_tuple_key[:-1] + ('scale',)
if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__UpperCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer mean
lowerCamelCase_ = pt_tuple_key[:-1] + ('mean',)
if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__UpperCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer var
lowerCamelCase_ = pt_tuple_key[:-1] + ('var',)
if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__UpperCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# embedding
lowerCamelCase_ = pt_tuple_key[:-1] + ('embedding',)
if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__UpperCamelCase ):
return renamed_pt_tuple_key, pt_tensor
# conv layer
lowerCamelCase_ = pt_tuple_key[:-1] + ('kernel',)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__UpperCamelCase ):
lowerCamelCase_ = pt_tensor.transpose(2 ,3 ,1 ,0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
lowerCamelCase_ = pt_tuple_key[:-1] + ('kernel',)
if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__UpperCamelCase ):
lowerCamelCase_ = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
lowerCamelCase_ = pt_tuple_key[:-1] + ('weight',)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
lowerCamelCase_ = pt_tuple_key[:-1] + ('bias',)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
lowerCamelCase_ = None
if pt_tuple_key[-3::2] == ("parametrizations", "original0"):
lowerCamelCase_ = pt_tuple_key[-2] + '_g'
elif pt_tuple_key[-3::2] == ("parametrizations", "original1"):
lowerCamelCase_ = pt_tuple_key[-2] + '_v'
if name is not None:
lowerCamelCase_ = pt_tuple_key[:-3] + (name,)
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Optional[Any]:
# convert pytorch tensor to numpy
lowerCamelCase_ = {k: v.numpy() for k, v in pt_state_dict.items()}
lowerCamelCase_ = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers
if "params" in flax_model.params:
lowerCamelCase_ = flax_model.params['params']
else:
lowerCamelCase_ = flax_model.params
lowerCamelCase_ = flatten_dict(__UpperCamelCase )
# add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
lowerCamelCase_ = flatten_dict(flax_model.params['batch_stats'] )
random_flax_state_dict.update(__UpperCamelCase )
lowerCamelCase_ = {}
lowerCamelCase_ = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()}
)
lowerCamelCase_ = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
lowerCamelCase_ = tuple(pt_key.split('.' ) )
# remove base model prefix if necessary
lowerCamelCase_ = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
lowerCamelCase_ = pt_tuple_key[1:]
# Correctly rename weight parameters
lowerCamelCase_ ,lowerCamelCase_ = rename_key_and_reshape_tensor(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
# add model prefix if necessary
lowerCamelCase_ = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
lowerCamelCase_ = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '''
f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1] or "var" in flax_key[-1]:
lowerCamelCase_ = jnp.asarray(__UpperCamelCase )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(__UpperCamelCase ,__UpperCamelCase )
continue
# also add unexpected weight so that warning is thrown
lowerCamelCase_ = jnp.asarray(__UpperCamelCase )
else:
# also add unexpected weight so that warning is thrown
lowerCamelCase_ = jnp.asarray(__UpperCamelCase )
return unflatten_dict(__UpperCamelCase )
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Dict:
import torch
# Load the index
lowerCamelCase_ = {}
for shard_file in shard_filenames:
# load using msgpack utils
lowerCamelCase_ = torch.load(__UpperCamelCase )
lowerCamelCase_ = {k: v.numpy() for k, v in pt_state_dict.items()}
lowerCamelCase_ = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
lowerCamelCase_ = flax_model.params['params']
lowerCamelCase_ = flatten_dict(__UpperCamelCase )
random_flax_state_dict.update(flatten_dict(flax_model.params['batch_stats'] ) )
else:
lowerCamelCase_ = flax_model.params
lowerCamelCase_ = flatten_dict(__UpperCamelCase )
lowerCamelCase_ = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()}
)
lowerCamelCase_ = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
lowerCamelCase_ = tuple(pt_key.split('.' ) )
# remove base model prefix if necessary
lowerCamelCase_ = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
lowerCamelCase_ = pt_tuple_key[1:]
# Correctly rename weight parameters
lowerCamelCase_ ,lowerCamelCase_ = rename_key_and_reshape_tensor(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
# add model prefix if necessary
lowerCamelCase_ = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
lowerCamelCase_ = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '''
f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1]:
lowerCamelCase_ = jnp.asarray(__UpperCamelCase )
continue
if "var" in flax_key[-1]:
lowerCamelCase_ = jnp.asarray(__UpperCamelCase )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(__UpperCamelCase ,__UpperCamelCase )
continue
# also add unexpected weight so that warning is thrown
lowerCamelCase_ = jnp.asarray(__UpperCamelCase )
else:
# also add unexpected weight so that warning is thrown
lowerCamelCase_ = jnp.asarray(__UpperCamelCase )
return unflatten_dict(__UpperCamelCase )
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> List[Any]:
lowerCamelCase_ = os.path.abspath(__UpperCamelCase )
logger.info(f'''Loading Flax weights from {flax_checkpoint_path}''' )
# import correct flax class
lowerCamelCase_ = getattr(__UpperCamelCase ,'Flax' + model.__class__.__name__ )
# load flax weight dict
with open(__UpperCamelCase ,'rb' ) as state_f:
try:
lowerCamelCase_ = from_bytes(__UpperCamelCase ,state_f.read() )
except UnpicklingError:
raise EnvironmentError(f'''Unable to convert {flax_checkpoint_path} to Flax deserializable object. ''' )
return load_flax_weights_in_pytorch_model(__UpperCamelCase ,__UpperCamelCase )
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> List[str]:
try:
import torch # noqa: F401
except ImportError:
logger.error(
'Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see'
' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'
' instructions.' )
raise
# check if we have bf16 weights
lowerCamelCase_ = flatten_dict(jax.tree_util.tree_map(lambda __UpperCamelCase : x.dtype == jnp.bfloataa ,__UpperCamelCase ) ).values()
if any(__UpperCamelCase ):
# convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` '
'before loading those in PyTorch model.' )
lowerCamelCase_ = jax.tree_util.tree_map(
lambda __UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params ,__UpperCamelCase )
lowerCamelCase_ = flatten_dict(__UpperCamelCase )
lowerCamelCase_ = pt_model.state_dict()
lowerCamelCase_ = (pt_model.base_model_prefix in flax_state) and (
pt_model.base_model_prefix not in {k.split('.' )[0] for k in pt_model_dict.keys()}
)
lowerCamelCase_ = (pt_model.base_model_prefix not in flax_state) and (
pt_model.base_model_prefix in {k.split('.' )[0] for k in pt_model_dict.keys()}
)
# keep track of unexpected & missing keys
lowerCamelCase_ = []
lowerCamelCase_ = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
lowerCamelCase_ = flax_key_tuple[0] == pt_model.base_model_prefix
lowerCamelCase_ = '.'.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict
# adapt flax_key to prepare for loading from/to base model only
if load_model_with_head_into_base_model and has_base_model_prefix:
lowerCamelCase_ = flax_key_tuple[1:]
elif load_base_model_into_model_with_head and require_base_model_prefix:
lowerCamelCase_ = (pt_model.base_model_prefix,) + flax_key_tuple
# rename flax weights to PyTorch format
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__UpperCamelCase ) not in pt_model_dict:
# conv layer
lowerCamelCase_ = flax_key_tuple[:-1] + ('weight',)
lowerCamelCase_ = jnp.transpose(__UpperCamelCase ,(3, 2, 0, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(__UpperCamelCase ) not in pt_model_dict:
# linear layer
lowerCamelCase_ = flax_key_tuple[:-1] + ('weight',)
lowerCamelCase_ = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
lowerCamelCase_ = flax_key_tuple[:-1] + ('weight',)
# adding batch stats from flax batch norm to pt
elif "mean" in flax_key_tuple[-1]:
lowerCamelCase_ = flax_key_tuple[:-1] + ('running_mean',)
elif "var" in flax_key_tuple[-1]:
lowerCamelCase_ = flax_key_tuple[:-1] + ('running_var',)
if "batch_stats" in flax_state:
lowerCamelCase_ = '.'.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header
else:
lowerCamelCase_ = '.'.join(__UpperCamelCase )
# We also need to look at `pt_model_dict` and see if there are keys requiring further transformation.
lowerCamelCase_ = {}
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
for key in pt_model_dict:
lowerCamelCase_ = key.split('.' )
lowerCamelCase_ = None
if key_components[-3::2] == ["parametrizations", "original0"]:
lowerCamelCase_ = key_components[-2] + '_g'
elif key_components[-3::2] == ["parametrizations", "original1"]:
lowerCamelCase_ = key_components[-2] + '_v'
if name is not None:
lowerCamelCase_ = key_components[:-3] + [name]
lowerCamelCase_ = '.'.join(__UpperCamelCase )
lowerCamelCase_ = key
if flax_key in special_pt_names:
lowerCamelCase_ = special_pt_names[flax_key]
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
f'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected '''
f'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' )
else:
# add weight to pytorch dict
lowerCamelCase_ = np.asarray(__UpperCamelCase ) if not isinstance(__UpperCamelCase ,np.ndarray ) else flax_tensor
lowerCamelCase_ = torch.from_numpy(__UpperCamelCase )
# remove from missing keys
missing_keys.remove(__UpperCamelCase )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(__UpperCamelCase )
pt_model.load_state_dict(__UpperCamelCase )
# re-transform missing_keys to list
lowerCamelCase_ = list(__UpperCamelCase )
if len(__UpperCamelCase ) > 0:
logger.warning(
'Some weights of the Flax model were not used when initializing the PyTorch model'
f''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing'''
f''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture'''
' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This'
f''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect'''
' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a'
' FlaxBertForSequenceClassification model).' )
else:
logger.warning(f'''All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n''' )
if len(__UpperCamelCase ) > 0:
logger.warning(
f'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly'''
f''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to'''
' use it for predictions and inference.' )
else:
logger.warning(
f'''All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n'''
'If your task is similar to the task the model of the checkpoint was trained on, '
f'''you can already use {pt_model.__class__.__name__} for predictions without further training.''' )
return pt_model
| 42 |
'''simple docstring'''
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import debug_launcher
from accelerate.test_utils import (
execute_subprocess_async,
require_cpu,
require_huggingface_suite,
require_multi_gpu,
require_single_gpu,
)
from accelerate.utils import patch_environment
@require_huggingface_suite
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase( self ) -> Dict:
'''simple docstring'''
lowerCamelCase_ = inspect.getfile(accelerate.test_utils )
lowerCamelCase_ = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] )
from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401
lowerCamelCase_ = test_metrics
@require_cpu
def UpperCamelCase( self ) -> Union[str, Any]:
'''simple docstring'''
debug_launcher(self.test_metrics.main , num_processes=1 )
@require_cpu
def UpperCamelCase( self ) -> Tuple:
'''simple docstring'''
debug_launcher(self.test_metrics.main )
@require_single_gpu
def UpperCamelCase( self ) -> Any:
'''simple docstring'''
self.test_metrics.main()
@require_multi_gpu
def UpperCamelCase( self ) -> Any:
'''simple docstring'''
print(f'''Found {torch.cuda.device_count()} devices.''' )
lowerCamelCase_ = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() )
| 42 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ = logging.get_logger(__name__)
A_ = {
"google/realm-cc-news-pretrained-embedder": (
"https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json"
),
"google/realm-cc-news-pretrained-encoder": (
"https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json"
),
"google/realm-cc-news-pretrained-scorer": (
"https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json"
),
"google/realm-cc-news-pretrained-openqa": (
"https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json"
),
"google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json",
"google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json",
"google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json",
"google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json",
# See all REALM models at https://huggingface.co/models?filter=realm
}
class UpperCAmelCase ( UpperCAmelCase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ = 'realm'
def __init__( self , SCREAMING_SNAKE_CASE_=30522 , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=128 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=3072 , SCREAMING_SNAKE_CASE_="gelu_new" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=1E-3 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=320 , SCREAMING_SNAKE_CASE_=13353718 , SCREAMING_SNAKE_CASE_=5000 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , **SCREAMING_SNAKE_CASE_ , ) -> List[str]:
'''simple docstring'''
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
# Common config
lowerCamelCase_ = vocab_size
lowerCamelCase_ = max_position_embeddings
lowerCamelCase_ = hidden_size
lowerCamelCase_ = retriever_proj_size
lowerCamelCase_ = num_hidden_layers
lowerCamelCase_ = num_attention_heads
lowerCamelCase_ = num_candidates
lowerCamelCase_ = intermediate_size
lowerCamelCase_ = hidden_act
lowerCamelCase_ = hidden_dropout_prob
lowerCamelCase_ = attention_probs_dropout_prob
lowerCamelCase_ = initializer_range
lowerCamelCase_ = type_vocab_size
lowerCamelCase_ = layer_norm_eps
# Reader config
lowerCamelCase_ = span_hidden_size
lowerCamelCase_ = max_span_width
lowerCamelCase_ = reader_layer_norm_eps
lowerCamelCase_ = reader_beam_size
lowerCamelCase_ = reader_seq_len
# Retrieval config
lowerCamelCase_ = num_block_records
lowerCamelCase_ = searcher_beam_size
| 42 |
'''simple docstring'''
import json
import os
import torch
from diffusers import UNetaDModel
os.makedirs("hub/hopper-medium-v2/unet/hor32", exist_ok=True)
os.makedirs("hub/hopper-medium-v2/unet/hor128", exist_ok=True)
os.makedirs("hub/hopper-medium-v2/value_function", exist_ok=True)
def _UpperCamelCase ( __UpperCamelCase ) -> List[str]:
if hor == 1_28:
lowerCamelCase_ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D')
lowerCamelCase_ = (32, 1_28, 2_56)
lowerCamelCase_ = ('UpResnetBlock1D', 'UpResnetBlock1D')
elif hor == 32:
lowerCamelCase_ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D')
lowerCamelCase_ = (32, 64, 1_28, 2_56)
lowerCamelCase_ = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D')
lowerCamelCase_ = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' )
lowerCamelCase_ = model.state_dict()
lowerCamelCase_ = {
'down_block_types': down_block_types,
'block_out_channels': block_out_channels,
'up_block_types': up_block_types,
'layers_per_block': 1,
'use_timestep_embedding': True,
'out_block_type': 'OutConv1DBlock',
'norm_num_groups': 8,
'downsample_each_block': False,
'in_channels': 14,
'out_channels': 14,
'extra_in_channels': 0,
'time_embedding_type': 'positional',
'flip_sin_to_cos': False,
'freq_shift': 1,
'sample_size': 6_55_36,
'mid_block_type': 'MidResTemporalBlock1D',
'act_fn': 'mish',
}
lowerCamelCase_ = UNetaDModel(**__UpperCamelCase )
print(f'''length of state dict: {len(state_dict.keys() )}''' )
print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' )
lowerCamelCase_ = dict(zip(model.state_dict().keys() ,hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
lowerCamelCase_ = state_dict.pop(__UpperCamelCase )
hf_value_function.load_state_dict(__UpperCamelCase )
torch.save(hf_value_function.state_dict() ,f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' )
with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' ,'w' ) as f:
json.dump(__UpperCamelCase ,__UpperCamelCase )
def _UpperCamelCase ( ) -> Tuple:
lowerCamelCase_ = {
'in_channels': 14,
'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'),
'up_block_types': (),
'out_block_type': 'ValueFunction',
'mid_block_type': 'ValueFunctionMidBlock1D',
'block_out_channels': (32, 64, 1_28, 2_56),
'layers_per_block': 1,
'downsample_each_block': True,
'sample_size': 6_55_36,
'out_channels': 14,
'extra_in_channels': 0,
'time_embedding_type': 'positional',
'use_timestep_embedding': True,
'flip_sin_to_cos': False,
'freq_shift': 1,
'norm_num_groups': 8,
'act_fn': 'mish',
}
lowerCamelCase_ = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' )
lowerCamelCase_ = model
lowerCamelCase_ = UNetaDModel(**__UpperCamelCase )
print(f'''length of state dict: {len(state_dict.keys() )}''' )
print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' )
lowerCamelCase_ = dict(zip(state_dict.keys() ,hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
lowerCamelCase_ = state_dict.pop(__UpperCamelCase )
hf_value_function.load_state_dict(__UpperCamelCase )
torch.save(hf_value_function.state_dict() ,'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' )
with open('hub/hopper-medium-v2/value_function/config.json' ,'w' ) as f:
json.dump(__UpperCamelCase ,__UpperCamelCase )
if __name__ == "__main__":
unet(32)
# unet(128)
value_function()
| 42 | 1 |
'''simple docstring'''
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> int:
return int((input_a, input_a).count(0 ) != 0 )
def _UpperCamelCase ( ) -> None:
assert nand_gate(0 ,0 ) == 1
assert nand_gate(0 ,1 ) == 1
assert nand_gate(1 ,0 ) == 1
assert nand_gate(1 ,1 ) == 0
if __name__ == "__main__":
print(nand_gate(0, 0))
print(nand_gate(0, 1))
print(nand_gate(1, 0))
print(nand_gate(1, 1))
| 42 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
A_ = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
A_ = 250_004
A_ = 250_020
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ = MBartTokenizer
SCREAMING_SNAKE_CASE_ = MBartTokenizerFast
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = True
def UpperCamelCase( self ) -> List[Any]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
lowerCamelCase_ = MBartTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase( self ) -> List[Any]:
'''simple docstring'''
lowerCamelCase_ = MBartTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer.tokenize('This is a test' )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
lowerCamelCase_ = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
lowerCamelCase_ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
def UpperCamelCase( self ) -> int:
'''simple docstring'''
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
lowerCamelCase_ = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tempfile.mkdtemp()
lowerCamelCase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
lowerCamelCase_ = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f )
self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Checks everything loads correctly in the same way
lowerCamelCase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(SCREAMING_SNAKE_CASE_ )
# Save tokenizer rust, legacy_format=True
lowerCamelCase_ = tempfile.mkdtemp()
lowerCamelCase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ )
# Checks it save with the same files
self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Checks everything loads correctly in the same way
lowerCamelCase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE_ )
# Save tokenizer rust, legacy_format=False
lowerCamelCase_ = tempfile.mkdtemp()
lowerCamelCase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
lowerCamelCase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE_ )
@require_torch
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ = 'facebook/mbart-large-en-ro'
SCREAMING_SNAKE_CASE_ = [
' UN Chief Says There Is No Military Solution in Syria',
' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.',
]
SCREAMING_SNAKE_CASE_ = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'
' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.',
]
SCREAMING_SNAKE_CASE_ = [82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2, EN_CODE]
@classmethod
def UpperCamelCase( cls ) -> Optional[Any]:
'''simple docstring'''
lowerCamelCase_ = MBartTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' )
lowerCamelCase_ = 1
return cls
def UpperCamelCase( self ) -> List[Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 250001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 250004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 250020 )
def UpperCamelCase( self ) -> Dict:
'''simple docstring'''
lowerCamelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> Optional[int]:
'''simple docstring'''
self.assertIn(SCREAMING_SNAKE_CASE_ , self.tokenizer.all_special_ids )
lowerCamelCase_ = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
lowerCamelCase_ = self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> List[Any]:
'''simple docstring'''
lowerCamelCase_ = ['this is gunna be a long sentence ' * 20]
assert isinstance(src_text[0] , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = 10
lowerCamelCase_ = self.tokenizer(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , SCREAMING_SNAKE_CASE_ )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> Tuple:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [250026, 250001] )
def UpperCamelCase( self ) -> List[str]:
'''simple docstring'''
lowerCamelCase_ = tempfile.mkdtemp()
lowerCamelCase_ = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = MBartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , SCREAMING_SNAKE_CASE_ )
@require_torch
def UpperCamelCase( self ) -> Dict:
'''simple docstring'''
lowerCamelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , return_tensors='pt' )
lowerCamelCase_ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE]
assert batch.decoder_input_ids[1][0].tolist() == RO_CODE
assert batch.decoder_input_ids[1][-1] == 2
assert batch.labels[1][-2:].tolist() == [2, RO_CODE]
@require_torch
def UpperCamelCase( self ) -> Dict:
'''simple docstring'''
lowerCamelCase_ = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , )
lowerCamelCase_ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id )
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
lowerCamelCase_ = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] )
def UpperCamelCase( self ) -> Optional[Any]:
'''simple docstring'''
lowerCamelCase_ = self.tokenizer(self.src_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors='pt' )
lowerCamelCase_ = self.tokenizer(
text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=10 , return_tensors='pt' )
lowerCamelCase_ = targets['input_ids']
lowerCamelCase_ = shift_tokens_right(SCREAMING_SNAKE_CASE_ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def UpperCamelCase( self ) -> Any:
'''simple docstring'''
lowerCamelCase_ = self.tokenizer._build_translation_inputs(
'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE_ ) , {
# A, test, EOS, en_XX
'input_ids': [[62, 3034, 2, 250004]],
'attention_mask': [[1, 1, 1, 1]],
# ar_AR
'forced_bos_token_id': 250001,
} , )
| 42 | 1 |
'''simple docstring'''
def _UpperCamelCase ( __UpperCamelCase ) -> bool:
if num < 0:
return False
lowerCamelCase_ = num
lowerCamelCase_ = 0
while num > 0:
lowerCamelCase_ = rev_num * 10 + (num % 10)
num //= 10
return num_copy == rev_num
if __name__ == "__main__":
import doctest
doctest.testmod()
| 42 |
'''simple docstring'''
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase( self ) -> Any:
'''simple docstring'''
lowerCamelCase_ = 'ylacombe/bark-small'
lowerCamelCase_ = tempfile.mkdtemp()
lowerCamelCase_ = 'en_speaker_1'
lowerCamelCase_ = 'This is a test string'
lowerCamelCase_ = 'speaker_embeddings_path.json'
lowerCamelCase_ = 'speaker_embeddings'
def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> int:
'''simple docstring'''
return AutoTokenizer.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self ) -> Optional[Any]:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def UpperCamelCase( self ) -> Dict:
'''simple docstring'''
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_ )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase_ = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def UpperCamelCase( self ) -> Optional[Any]:
'''simple docstring'''
lowerCamelCase_ = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
lowerCamelCase_ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
lowerCamelCase_ = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def UpperCamelCase( self ) -> List[str]:
'''simple docstring'''
lowerCamelCase_ = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
lowerCamelCase_ = 35
lowerCamelCase_ = 2
lowerCamelCase_ = 8
lowerCamelCase_ = {
'semantic_prompt': np.ones(SCREAMING_SNAKE_CASE_ ),
'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ),
'fine_prompt': np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
lowerCamelCase_ = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = inputs['history_prompt']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([] ) ).tolist() )
# test loading voice preset from npz file
lowerCamelCase_ = os.path.join(self.tmpdirname , 'file.npz' )
np.savez(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = inputs['history_prompt']
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([] ) ).tolist() )
# test loading voice preset from the hub
lowerCamelCase_ = processor(text=self.input_string , voice_preset=self.voice_preset )
def UpperCamelCase( self ) -> List[Any]:
'''simple docstring'''
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = processor(text=self.input_string )
lowerCamelCase_ = tokenizer(
self.input_string , padding='max_length' , max_length=256 , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 42 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.