code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
def _snake_case ( _snake_case : int = 1 , _snake_case : int = 10_00 ) -> int:
'''simple docstring'''
_A = 1
_A = 0
for divide_by_number in range(_snake_case , digit + 1 ):
_A = []
_A = numerator
for _ in range(1 , digit + 1 ):
if now_divide in has_been_divided:
if longest_list_length < len(_snake_case ):
_A = len(_snake_case )
_A = divide_by_number
else:
has_been_divided.append(_snake_case )
_A = now_divide * 10 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Any = ['''image_processor''', '''tokenizer''']
UpperCAmelCase : Optional[int] = '''ViTImageProcessor'''
UpperCAmelCase : int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''')
def __init__( self : Tuple , _UpperCAmelCase : int=None , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : Dict ):
_A = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _UpperCAmelCase , )
_A = kwargs.pop('feature_extractor' )
_A = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __call__( self : Optional[Any] , _UpperCAmelCase : int=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Union[str, Any] ):
if text is None and visual_prompt is None and images is None:
raise ValueError('You have to specify either text, visual prompt or images.' )
if text is not None and visual_prompt is not None:
raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' )
if text is not None:
_A = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if visual_prompt is not None:
_A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if images is not None:
_A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if visual_prompt is not None and images is not None:
_A = {
'pixel_values': image_features.pixel_values,
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
elif text is not None and images is not None:
_A = image_features.pixel_values
return encoding
elif text is not None:
return encoding
elif visual_prompt is not None:
_A = {
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
else:
return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase )
def lowerCAmelCase_ ( self : str , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Union[str, Any] ):
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def lowerCAmelCase_ ( self : Union[str, Any] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ):
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
def lowerCAmelCase_ ( self : Dict ):
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , )
return self.image_processor_class
@property
def lowerCAmelCase_ ( self : Tuple ):
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , )
return self.image_processor
| 7 | 1 |
"""simple docstring"""
a = '''
# Installazione di Transformers
! pip install transformers datasets
# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e
# rimuovi la modalità commento al comando seguente.
# ! pip install git+https://github.com/huggingface/transformers.git
'''
a = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}]
a = {
'''{processor_class}''': '''FakeProcessorClass''',
'''{model_class}''': '''FakeModelClass''',
'''{object_class}''': '''FakeObjectClass''',
}
| 7 |
"""simple docstring"""
import math
from datetime import datetime, timedelta
def _snake_case ( _snake_case : int ) -> datetime:
'''simple docstring'''
_A = year % 19
_A = year % 4
_A = year % 7
_A = math.floor(year / 1_00 )
_A = math.floor((13 + 8 * leap_day_inhibits) / 25 )
_A = leap_day_inhibits / 4
_A = (
15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 30
_A = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
_A = (19 * metonic_cycle + secular_moon_shift) % 30
# PHM -> Paschal Full Moon
_A = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 29 and days_from_phm_to_sunday == 6:
return datetime(_snake_case , 4 , 19 )
elif days_to_add == 28 and days_from_phm_to_sunday == 6:
return datetime(_snake_case , 4 , 18 )
else:
return datetime(_snake_case , 3 , 22 ) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday ) )
if __name__ == "__main__":
for year in (1_994, 2_000, 2_010, 2_021, 2_023):
a = '''will be''' if year > datetime.now().year else '''was'''
print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
| 7 | 1 |
"""simple docstring"""
# Lint as: python3
import itertools
import os
import re
a = re.compile(r'''([A-Z]+)([A-Z][a-z])''')
a = re.compile(r'''([a-z\d])([A-Z])''')
a = re.compile(r'''(?<!_)_(?!_)''')
a = re.compile(r'''(_{2,})''')
a = r'''^\w+(\.\w+)*$'''
a = r'''<>:/\|?*'''
def _snake_case ( _snake_case : int ) -> List[Any]:
'''simple docstring'''
_A = _uppercase_uppercase_re.sub(R'\1_\2' , _snake_case )
_A = _lowercase_uppercase_re.sub(R'\1_\2' , _snake_case )
return name.lower()
def _snake_case ( _snake_case : List[str] ) -> Optional[int]:
'''simple docstring'''
_A = _single_underscore_re.split(_snake_case )
_A = [_multiple_underscores_re.split(_snake_case ) for n in name]
return "".join(n.capitalize() for n in itertools.chain.from_iterable(_snake_case ) if n != '' )
def _snake_case ( _snake_case : List[str] ) -> List[str]:
'''simple docstring'''
if os.path.basename(_snake_case ) != name:
raise ValueError(F'''Should be a dataset name, not a path: {name}''' )
return camelcase_to_snakecase(_snake_case )
def _snake_case ( _snake_case : int , _snake_case : Any ) -> Optional[int]:
'''simple docstring'''
if os.path.basename(_snake_case ) != name:
raise ValueError(F'''Should be a dataset name, not a path: {name}''' )
if not re.match(_split_re , _snake_case ):
raise ValueError(F'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' )
return F'''{filename_prefix_for_name(_snake_case )}-{split}'''
def _snake_case ( _snake_case : Optional[int] , _snake_case : str , _snake_case : int , _snake_case : Union[str, Any]=None ) -> Any:
'''simple docstring'''
_A = filename_prefix_for_split(_snake_case , _snake_case )
if filetype_suffix:
prefix += F'''.{filetype_suffix}'''
_A = os.path.join(_snake_case , _snake_case )
return F'''{filepath}*'''
def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Union[str, Any] , _snake_case : str=None , _snake_case : List[Any]=None ) -> Dict:
'''simple docstring'''
_A = filename_prefix_for_split(_snake_case , _snake_case )
_A = os.path.join(_snake_case , _snake_case )
if shard_lengths:
_A = len(_snake_case )
_A = [F'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(_snake_case )]
if filetype_suffix:
_A = [filename + F'''.{filetype_suffix}''' for filename in filenames]
return filenames
else:
_A = prefix
if filetype_suffix:
filename += F'''.{filetype_suffix}'''
return [filename]
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''gpt_bigcode'''
UpperCAmelCase : str = ['''past_key_values''']
UpperCAmelCase : Dict = {
'''hidden_size''': '''n_embd''',
'''max_position_embeddings''': '''n_positions''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Tuple , _UpperCAmelCase : Dict=50_257 , _UpperCAmelCase : List[Any]=1_024 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : str="gelu_pytorch_tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[Any]=50_256 , _UpperCAmelCase : Dict=50_256 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Any=True , **_UpperCAmelCase : Any , ):
_A = vocab_size
_A = n_positions
_A = n_embd
_A = n_layer
_A = n_head
_A = n_inner
_A = activation_function
_A = resid_pdrop
_A = embd_pdrop
_A = attn_pdrop
_A = layer_norm_epsilon
_A = initializer_range
_A = scale_attn_weights
_A = use_cache
_A = attention_softmax_in_fpaa
_A = scale_attention_softmax_in_fpaa
_A = multi_query
_A = bos_token_id
_A = eos_token_id
super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
| 7 | 1 |
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Dict ):
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
_A = [[1, 2, 4], [1, 2, 3, 4]]
_A = DisjunctiveConstraint(_UpperCAmelCase )
self.assertTrue(isinstance(dc.token_ids , _UpperCAmelCase ) )
with self.assertRaises(_UpperCAmelCase ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(_UpperCAmelCase ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def lowerCAmelCase_ ( self : Tuple ):
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
_A = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(_UpperCAmelCase ):
DisjunctiveConstraint(_UpperCAmelCase ) # fails here
def lowerCAmelCase_ ( self : str ):
_A = [[1, 2, 3], [1, 2, 4]]
_A = DisjunctiveConstraint(_UpperCAmelCase )
_A , _A , _A = dc.update(1 )
_A = stepped is True and completed is False and reset is False
self.assertTrue(_UpperCAmelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
_A , _A , _A = dc.update(2 )
_A = stepped is True and completed is False and reset is False
self.assertTrue(_UpperCAmelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
_A , _A , _A = dc.update(3 )
_A = stepped is True and completed is True and reset is False
self.assertTrue(_UpperCAmelCase )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
_A = DisjunctiveConstraint(_UpperCAmelCase )
_A , _A , _A = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
_A , _A , _A = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
_A , _A , _A = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
_A , _A , _A = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
_A , _A , _A = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
_A , _A , _A = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
_A , _A , _A = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 7 |
"""simple docstring"""
def _snake_case ( _snake_case : str ) -> str:
'''simple docstring'''
return " ".join(
''.join(word[::-1] ) if len(_snake_case ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words('''Hey wollef sroirraw'''))
| 7 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a = {
'''configuration_squeezebert''': [
'''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''SqueezeBertConfig''',
'''SqueezeBertOnnxConfig''',
],
'''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ['''SqueezeBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
'''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''SqueezeBertForMaskedLM''',
'''SqueezeBertForMultipleChoice''',
'''SqueezeBertForQuestionAnswering''',
'''SqueezeBertForSequenceClassification''',
'''SqueezeBertForTokenClassification''',
'''SqueezeBertModel''',
'''SqueezeBertModule''',
'''SqueezeBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 7 |
"""simple docstring"""
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = (KDPMaDiscreteScheduler,)
UpperCAmelCase : Any = 10
def lowerCAmelCase_ ( self : Dict , **_UpperCAmelCase : Optional[Any] ):
_A = {
'num_train_timesteps': 1_100,
'beta_start': 0.0001,
'beta_end': 0.02,
'beta_schedule': 'linear',
}
config.update(**_UpperCAmelCase )
return config
def lowerCAmelCase_ ( self : Any ):
for timesteps in [10, 50, 100, 1_000]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict ):
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Tuple ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[int] ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config(prediction_type='v_prediction' )
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
_A = self.dummy_model()
_A = self.dummy_sample_deter * scheduler.init_noise_sigma
_A = sample.to(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = output.prev_sample
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.6_9_3_4E-0_7 ) < 1E-2
assert abs(result_mean.item() - 6.1_1_1_2E-1_0 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2E-0_7 ) < 1E-2
assert abs(result_mean.item() - 0.0002 ) < 1E-3
def lowerCAmelCase_ ( self : Optional[Any] ):
if torch_device == "mps":
return
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config()
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
_A = self.dummy_model()
_A = self.dummy_sample_deter * scheduler.init_noise_sigma
_A = sample.to(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = output.prev_sample
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
def lowerCAmelCase_ ( self : Any ):
if torch_device == "mps":
return
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config()
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase )
_A = self.dummy_model()
_A = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
_A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = output.prev_sample
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
if str(_UpperCAmelCase ).startswith('cpu' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
| 7 | 1 |
"""simple docstring"""
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
class lowercase_ ( unittest.TestCase , __lowerCAmelCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = load_tool('text-classification' )
self.tool.setup()
_A = load_tool('text-classification' , remote=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Tuple ):
_A = self.tool('That\'s quite cool' , ['positive', 'negative'] )
self.assertEqual(_UpperCAmelCase , 'positive' )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = self.remote_tool('That\'s quite cool' , ['positive', 'negative'] )
self.assertEqual(_UpperCAmelCase , 'positive' )
def lowerCAmelCase_ ( self : List[str] ):
_A = self.tool(text='That\'s quite cool' , labels=['positive', 'negative'] )
self.assertEqual(_UpperCAmelCase , 'positive' )
def lowerCAmelCase_ ( self : Any ):
_A = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative'] )
self.assertEqual(_UpperCAmelCase , 'positive' )
| 7 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any]=10 ) -> Optional[int]:
'''simple docstring'''
_A = []
for _ in range(_snake_case ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def _snake_case ( _snake_case : Optional[Any] , _snake_case : Union[str, Any]=10 ) -> List[str]:
'''simple docstring'''
_A = []
for step in range(_snake_case ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
_A = os.path.join(_snake_case , 'schedule.bin' )
torch.save(scheduler.state_dict() , _snake_case )
_A = torch.load(_snake_case )
scheduler.load_state_dict(_snake_case )
return lrs
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ):
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Any ):
_A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase )
_A = torch.tensor([0.4, 0.2, -0.5] )
_A = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_A = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
_A = criterion(_UpperCAmelCase , _UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def lowerCAmelCase_ ( self : int ):
_A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase )
_A = torch.tensor([0.4, 0.2, -0.5] )
_A = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_A = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-3_0, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_UpperCAmelCase , weight_decay=0.0 , relative_step=_UpperCAmelCase , scale_parameter=_UpperCAmelCase , warmup_init=_UpperCAmelCase , )
for _ in range(1_000 ):
_A = criterion(_UpperCAmelCase , _UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = nn.Linear(50 , 50 ) if is_torch_available() else None
UpperCAmelCase : Tuple = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None
UpperCAmelCase : Dict = 10
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]=None ):
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase , msg=_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] ):
_A = {'num_warmup_steps': 2, 'num_training_steps': 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
_A = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{'num_warmup_steps': 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, 'num_cycles': 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, 'power': 2.0, 'lr_end': 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{'num_warmup_steps': 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
_A , _A = data
_A = scheduler_func(self.optimizer , **_UpperCAmelCase )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
_A = unwrap_schedule(_UpperCAmelCase , self.num_steps )
self.assertListAlmostEqual(
_UpperCAmelCase , _UpperCAmelCase , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , )
_A = scheduler_func(self.optimizer , **_UpperCAmelCase )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(_UpperCAmelCase ) # wrap to test picklability of the schedule
_A = unwrap_and_save_reload_schedule(_UpperCAmelCase , self.num_steps )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase , msg=F'''failed for {scheduler_func} in save and reload''' )
class lowercase_ :
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int] ):
_A = fn
def __call__( self : Tuple , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : List[str] ):
return self.fn(*_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Any ):
_A = list(map(self , scheduler.lr_lambdas ) )
| 7 | 1 |
"""simple docstring"""
from math import factorial, pi
def _snake_case ( _snake_case : float , _snake_case : int = 30 ) -> float:
'''simple docstring'''
if not isinstance(_snake_case , (int, float) ):
raise ValueError('maclaurin_sin() requires either an int or float for theta' )
if not isinstance(_snake_case , _snake_case ) or accuracy <= 0:
raise ValueError('maclaurin_sin() requires a positive int for accuracy' )
_A = float(_snake_case )
_A = theta // (2 * pi)
theta -= 2 * div * pi
return sum(
(-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(_snake_case ) )
def _snake_case ( _snake_case : float , _snake_case : int = 30 ) -> float:
'''simple docstring'''
if not isinstance(_snake_case , (int, float) ):
raise ValueError('maclaurin_cos() requires either an int or float for theta' )
if not isinstance(_snake_case , _snake_case ) or accuracy <= 0:
raise ValueError('maclaurin_cos() requires a positive int for accuracy' )
_A = float(_snake_case )
_A = theta // (2 * pi)
theta -= 2 * div * pi
return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(_snake_case ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(maclaurin_sin(10))
print(maclaurin_sin(-10))
print(maclaurin_sin(10, 15))
print(maclaurin_sin(-10, 15))
print(maclaurin_cos(5))
print(maclaurin_cos(-5))
print(maclaurin_cos(10, 15))
print(maclaurin_cos(-10, 15))
| 7 |
"""simple docstring"""
import math
def _snake_case ( _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
if (
not isinstance(_snake_case , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('power_factor must be a valid float value between -1 and 1.' )
return apparent_power * power_factor
def _snake_case ( _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
if (
not isinstance(_snake_case , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('power_factor must be a valid float value between -1 and 1.' )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 | 1 |
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''BAAI/AltCLIP''': '''https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json''',
# See all AltCLIP models at https://huggingface.co/models?filter=altclip
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Tuple = '''altclip_text_model'''
def __init__( self : Dict , _UpperCAmelCase : Union[str, Any]=250_002 , _UpperCAmelCase : Optional[int]=1_024 , _UpperCAmelCase : Dict=24 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : Optional[int]=4_096 , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[Any]=514 , _UpperCAmelCase : Optional[Any]=1 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[Any]=1E-0_5 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Union[str, Any]="absolute" , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : int=768 , **_UpperCAmelCase : Union[str, Any] , ):
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
_A = vocab_size
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = hidden_act
_A = intermediate_size
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = type_vocab_size
_A = initializer_range
_A = initializer_factor
_A = layer_norm_eps
_A = position_embedding_type
_A = use_cache
_A = project_dim
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Tuple = '''altclip_vision_model'''
def __init__( self : Any , _UpperCAmelCase : Union[str, Any]=768 , _UpperCAmelCase : str=3_072 , _UpperCAmelCase : str=512 , _UpperCAmelCase : str=12 , _UpperCAmelCase : List[Any]=12 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=224 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Dict="quick_gelu" , _UpperCAmelCase : Optional[Any]=1E-5 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Optional[Any]=1.0 , **_UpperCAmelCase : List[str] , ):
super().__init__(**_UpperCAmelCase )
_A = hidden_size
_A = intermediate_size
_A = projection_dim
_A = num_hidden_layers
_A = num_attention_heads
_A = num_channels
_A = patch_size
_A = image_size
_A = initializer_range
_A = initializer_factor
_A = attention_dropout
_A = layer_norm_eps
_A = hidden_act
@classmethod
def lowerCAmelCase_ ( cls : Optional[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[Any] ):
cls._set_token_in_kwargs(_UpperCAmelCase )
_A , _A = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the vision config dict if we are loading from AltCLIPConfig
if config_dict.get('model_type' ) == "altclip":
_A = config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Dict = '''altclip'''
UpperCAmelCase : Optional[int] = True
def __init__( self : List[Any] , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Any=None , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : List[str]=2.6592 , **_UpperCAmelCase : Optional[Any] ):
# If `_config_dict` exist, we use them for the backward compatibility.
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
# of confusion!).
_A = kwargs.pop('text_config_dict' , _UpperCAmelCase )
_A = kwargs.pop('vision_config_dict' , _UpperCAmelCase )
super().__init__(**_UpperCAmelCase )
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
if text_config_dict is not None:
if text_config is None:
_A = {}
# This is the complete result when using `text_config_dict`.
_A = AltCLIPTextConfig(**_UpperCAmelCase ).to_dict()
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
for key, value in _text_config_dict.items():
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
# If specified in `text_config_dict`
if key in text_config_dict:
_A = (
F'''`{key}` is found in both `text_config_dict` and `text_config` but with different values. '''
F'''The value `text_config_dict["{key}"]` will be used instead.'''
)
# If inferred from default argument values (just to be super careful)
else:
_A = (
F'''`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The '''
F'''value `text_config["{key}"]` will be overriden.'''
)
logger.warning(_UpperCAmelCase )
# Update all values in `text_config` with the ones in `_text_config_dict`.
text_config.update(_text_config_dict )
if vision_config_dict is not None:
if vision_config is None:
_A = {}
# This is the complete result when using `vision_config_dict`.
_A = AltCLIPVisionConfig(**_UpperCAmelCase ).to_dict()
# convert keys to string instead of integer
if "id2label" in _vision_config_dict:
_A = {
str(_UpperCAmelCase ): value for key, value in _vision_config_dict['id2label'].items()
}
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
for key, value in _vision_config_dict.items():
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
# If specified in `vision_config_dict`
if key in vision_config_dict:
_A = (
F'''`{key}` is found in both `vision_config_dict` and `vision_config` but with different '''
F'''values. The value `vision_config_dict["{key}"]` will be used instead.'''
)
# If inferred from default argument values (just to be super careful)
else:
_A = (
F'''`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. '''
F'''The value `vision_config["{key}"]` will be overriden.'''
)
logger.warning(_UpperCAmelCase )
# Update all values in `vision_config` with the ones in `_vision_config_dict`.
vision_config.update(_vision_config_dict )
if text_config is None:
_A = {}
logger.info('`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.' )
if vision_config is None:
_A = {}
logger.info('`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.' )
_A = AltCLIPTextConfig(**_UpperCAmelCase )
_A = AltCLIPVisionConfig(**_UpperCAmelCase )
_A = projection_dim
_A = logit_scale_init_value
_A = 1.0
@classmethod
def lowerCAmelCase_ ( cls : List[Any] , _UpperCAmelCase : AltCLIPTextConfig , _UpperCAmelCase : AltCLIPVisionConfig , **_UpperCAmelCase : Any ):
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict ):
_A = copy.deepcopy(self.__dict__ )
_A = self.text_config.to_dict()
_A = self.vision_config.to_dict()
_A = self.__class__.model_type
return output
| 7 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''',
'''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''',
'''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''',
'''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''',
'''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''',
'''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''',
'''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''',
'''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''',
'''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = '''xmod'''
def __init__( self : str , _UpperCAmelCase : Optional[Any]=30_522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Dict=3_072 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Any=1E-1_2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Tuple=("en_XX",) , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Optional[Any] , ):
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
_A = vocab_size
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = hidden_act
_A = intermediate_size
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = type_vocab_size
_A = initializer_range
_A = layer_norm_eps
_A = position_embedding_type
_A = use_cache
_A = classifier_dropout
_A = pre_norm
_A = adapter_reduction_factor
_A = adapter_layer_norm
_A = adapter_reuse_layer_norm
_A = ln_before_adapter
_A = list(_UpperCAmelCase )
_A = default_language
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
@property
def lowerCAmelCase_ ( self : Dict ):
if self.task == "multiple-choice":
_A = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_A = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 7 | 1 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_xlnet import XLNetTokenizer
else:
a = None
a = logging.get_logger(__name__)
a = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
a = {
'''vocab_file''': {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''',
},
'''tokenizer_file''': {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json''',
},
}
a = {
'''xlnet-base-cased''': None,
'''xlnet-large-cased''': None,
}
a = '''▁'''
# Segments (not really needed)
a = 0
a = 1
a = 2
a = 3
a = 4
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = VOCAB_FILES_NAMES
UpperCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase : Any = '''left'''
UpperCAmelCase : Any = XLNetTokenizer
def __init__( self : List[str] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : Any="<s>" , _UpperCAmelCase : Tuple="</s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : Dict="<sep>" , _UpperCAmelCase : Tuple="<pad>" , _UpperCAmelCase : List[str]="<cls>" , _UpperCAmelCase : List[Any]="<mask>" , _UpperCAmelCase : Union[str, Any]=["<eop>", "<eod>"] , **_UpperCAmelCase : Optional[int] , ):
# Mask token behave like a normal word, i.e. include the space before it
_A = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token
super().__init__(
vocab_file=_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , )
_A = 3
_A = do_lower_case
_A = remove_space
_A = keep_accents
_A = vocab_file
_A = False if not self.vocab_file else True
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
_A = [self.sep_token_id]
_A = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
_A = [self.sep_token_id]
_A = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def lowerCAmelCase_ ( self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(_UpperCAmelCase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
_A = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ):
copyfile(self.vocab_file , _UpperCAmelCase )
return (out_vocab_file,)
| 7 |
"""simple docstring"""
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
a = logging.get_logger(__name__)
a = {
'''tensor(bool)''': np.bool_,
'''tensor(int8)''': np.inta,
'''tensor(uint8)''': np.uinta,
'''tensor(int16)''': np.intaa,
'''tensor(uint16)''': np.uintaa,
'''tensor(int32)''': np.intaa,
'''tensor(uint32)''': np.uintaa,
'''tensor(int64)''': np.intaa,
'''tensor(uint64)''': np.uintaa,
'''tensor(float16)''': np.floataa,
'''tensor(float)''': np.floataa,
'''tensor(double)''': np.floataa,
}
class lowercase_ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : Optional[Any] ):
logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' )
_A = model
_A = kwargs.get('model_save_dir' , _UpperCAmelCase )
_A = kwargs.get('latest_model_name' , _UpperCAmelCase )
def __call__( self : Dict , **_UpperCAmelCase : List[Any] ):
_A = {k: np.array(_UpperCAmelCase ) for k, v in kwargs.items()}
return self.model.run(_UpperCAmelCase , _UpperCAmelCase )
@staticmethod
def lowerCAmelCase_ ( _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=None ):
if provider is None:
logger.info('No onnxruntime provider specified, using CPUExecutionProvider' )
_A = 'CPUExecutionProvider'
return ort.InferenceSession(_UpperCAmelCase , providers=[provider] , sess_options=_UpperCAmelCase )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : List[Any] ):
_A = file_name if file_name is not None else ONNX_WEIGHTS_NAME
_A = self.model_save_dir.joinpath(self.latest_model_name )
_A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase )
try:
shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase )
except shutil.SameFileError:
pass
# copy external weights (for models >2GB)
_A = self.model_save_dir.joinpath(_UpperCAmelCase )
if src_path.exists():
_A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase )
try:
shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase )
except shutil.SameFileError:
pass
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] , ):
if os.path.isfile(_UpperCAmelCase ):
logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' )
return
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase )
# saving model weights/files
self._save_pretrained(_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( cls : Tuple , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[Union[bool, str, None]] = None , _UpperCAmelCase : Optional[Union[str, None]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional["ort.SessionOptions"] = None , **_UpperCAmelCase : Union[str, Any] , ):
_A = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(_UpperCAmelCase ):
_A = OnnxRuntimeModel.load_model(
os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase )
_A = Path(_UpperCAmelCase )
# load model from hub
else:
# download model
_A = hf_hub_download(
repo_id=_UpperCAmelCase , filename=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , )
_A = Path(_UpperCAmelCase ).parent
_A = Path(_UpperCAmelCase ).name
_A = OnnxRuntimeModel.load_model(_UpperCAmelCase , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase )
return cls(model=_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( cls : List[Any] , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : Tuple , ):
_A = None
if len(str(_UpperCAmelCase ).split('@' ) ) == 2:
_A , _A = model_id.split('@' )
return cls._from_pretrained(
model_id=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , **_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
a = '''bart'''
a = True
@st.cache(allow_output_mutation=_snake_case )
def _snake_case ( ) -> str:
'''simple docstring'''
if LOAD_DENSE_INDEX:
_A = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' )
_A = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' )
_A = qar_model.eval()
else:
_A , _A = (None, None)
if MODEL_TYPE == "bart":
_A = AutoTokenizer.from_pretrained('yjernite/bart_eli5' )
_A = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' )
_A = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' )
sas_model.load_state_dict(save_dict['model'] )
_A = sas_model.eval()
else:
_A , _A = make_qa_sas_model(
model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=_snake_case )
def _snake_case ( ) -> List[Any]:
'''simple docstring'''
if LOAD_DENSE_INDEX:
_A = faiss.StandardGpuResources()
_A = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train']
_A = np.memmap(
'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 1_28) , )
_A = faiss.IndexFlatIP(1_28 )
_A = faiss.index_cpu_to_gpu(_snake_case , 1 , _snake_case )
wikiaab_gpu_index_flat.add(_snake_case ) # TODO fix for larger GPU
else:
_A , _A = (None, None)
_A = Elasticsearch([{'host': 'localhost', 'port': '9200'}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=_snake_case )
def _snake_case ( ) -> Optional[int]:
'''simple docstring'''
_A = datasets.load_dataset('eli5' , name='LFQA_reddit' )
_A = elia['train_eli5']
_A = np.memmap(
'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 1_28) )
_A = faiss.IndexFlatIP(1_28 )
eli5_train_q_index.add(_snake_case )
return (elia_train, eli5_train_q_index)
a , a , a = load_indexes()
a , a , a , a = load_models()
a , a = load_train_data()
def _snake_case ( _snake_case : Dict , _snake_case : List[str]=10 ) -> Any:
'''simple docstring'''
_A = embed_questions_for_retrieval([question] , _snake_case , _snake_case )
_A , _A = eli5_train_q_index.search(_snake_case , _snake_case )
_A = [elia_train[int(_snake_case )] for i in I[0]]
return nn_examples
def _snake_case ( _snake_case : List[Any] , _snake_case : Union[str, Any]="wiki40b" , _snake_case : Dict="dense" , _snake_case : Optional[int]=10 ) -> Tuple:
'''simple docstring'''
if source == "none":
_A , _A = (' <P> '.join(['' for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
_A , _A = query_qa_dense_index(
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )
else:
_A , _A = query_es_index(
_snake_case , _snake_case , index_name='english_wiki40b_snippets_100w' , n_results=_snake_case , )
_A = [
(res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst
]
_A = 'question: {} context: {}'.format(_snake_case , _snake_case )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda _snake_case : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _snake_case : None),
} )
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : List[str] , _snake_case : int=64 , _snake_case : Any=2_56 , _snake_case : Tuple=False , _snake_case : List[str]=2 , _snake_case : Optional[Any]=0.95 , _snake_case : Optional[int]=0.8 ) -> Dict:
'''simple docstring'''
with torch.no_grad():
_A = qa_sas_generate(
_snake_case , _snake_case , _snake_case , num_answers=1 , num_beams=_snake_case , min_len=_snake_case , max_len=_snake_case , do_sample=_snake_case , temp=_snake_case , top_p=_snake_case , top_k=_snake_case , max_input_length=10_24 , device='cuda:0' , )[0]
return (answer, support_list)
st.title('''Long Form Question Answering with ELI5''')
# Start sidebar
a = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>'''
a = '''
<html>
<head>
<style>
.img-container {
padding-left: 90px;
padding-right: 90px;
padding-top: 50px;
padding-bottom: 50px;
background-color: #f0f3f9;
}
</style>
</head>
<body>
<span class="img-container"> <!-- Inline parent element -->
%s
</span>
</body>
</html>
''' % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
a = '''
This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).
First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,
a pre-processed fixed snapshot of Wikipedia.
'''
st.sidebar.markdown(description, unsafe_allow_html=True)
a = [
'''Answer the question''',
'''View the retrieved document only''',
'''View the most similar ELI5 question and answer''',
'''Show me everything, please!''',
]
a = st.sidebar.checkbox('''Demo options''')
if demo_options:
a = st.sidebar.selectbox(
'''''',
action_list,
index=3,
)
a = action_list.index(action_st)
a = st.sidebar.selectbox(
'''''',
['''Show full text of passages''', '''Show passage section titles'''],
index=0,
)
a = show_type == '''Show full text of passages'''
else:
a = 3
a = True
a = st.sidebar.checkbox('''Retrieval options''')
if retrieval_options:
a = '''
### Information retriever options
The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding
trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.
The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.
'''
st.sidebar.markdown(retriever_info)
a = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none'''])
a = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed'''])
else:
a = '''wiki40b'''
a = '''dense'''
a = '''beam'''
a = 2
a = 64
a = 256
a = None
a = None
a = st.sidebar.checkbox('''Generation options''')
if generate_options:
a = '''
### Answer generation options
The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)
weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with
**beam** search, or **sample** from the decoder\'s output probabilities.
'''
st.sidebar.markdown(generate_info)
a = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled'''])
a = st.sidebar.slider(
'''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None
)
a = st.sidebar.slider(
'''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None
)
if sampled == "beam":
a = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
a = st.sidebar.slider(
'''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None
)
a = st.sidebar.slider(
'''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None
)
a = None
# start main text
a = [
'''<MY QUESTION>''',
'''How do people make chocolate?''',
'''Why do we get a fever when we are sick?''',
'''How can different animals perceive different colors?''',
'''What is natural language processing?''',
'''What\'s the best way to treat a sunburn?''',
'''What exactly are vitamins ?''',
'''How does nuclear energy provide electricity?''',
'''What\'s the difference between viruses and bacteria?''',
'''Why are flutes classified as woodwinds when most of them are made out of metal ?''',
'''Why do people like drinking coffee even though it tastes so bad?''',
'''What happens when wine ages? How does it make the wine taste better?''',
'''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''',
'''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''',
'''How does New Zealand have so many large bird predators?''',
]
a = st.selectbox(
'''What would you like to ask? ---- select <MY QUESTION> to enter a new query''',
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
a = st.text_input('''Enter your question here:''', '''''')
else:
a = question_s
if st.button('''Show me!'''):
if action in [0, 1, 3]:
if index_type == "mixed":
a , a = make_support(question, source=wiki_source, method='''dense''', n_results=10)
a , a = make_support(question, source=wiki_source, method='''sparse''', n_results=10)
a = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
a = support_list[:10]
a = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list])
else:
a , a = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
a , a = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == '''sampled'''),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown('''### The model generated answer is:''')
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''')
for i, res in enumerate(support_list):
a = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_'''))
a = res[1].strip()
if sec_titles == "":
a = '''[{}]({})'''.format(res[0], wiki_url)
else:
a = sec_titles.split(''' & ''')
a = ''' & '''.join(
['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list]
)
st.markdown(
'''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
'''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True
)
if action in [2, 3]:
a = find_nearest_training(question)
a = nn_train_list[0]
st.markdown(
'''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title'''])
)
a = [
'''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != '''''']))
for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score''']))
if i == 0 or sc > 2
]
st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st)))
a = '''
---
**Disclaimer**
*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.
Evaluating biases of such a model and ensuring factual generations are still very much open research problems.
Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*
'''
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json'''
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : str = '''speech_to_text'''
UpperCAmelCase : List[Any] = ['''past_key_values''']
UpperCAmelCase : Tuple = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self : int , _UpperCAmelCase : Union[str, Any]=10_000 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2_048 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Tuple=2_048 , _UpperCAmelCase : str=4 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]="relu" , _UpperCAmelCase : List[Any]=256 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : List[str]=6_000 , _UpperCAmelCase : Optional[Any]=1_024 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Any=(5, 5) , _UpperCAmelCase : int=1_024 , _UpperCAmelCase : str=80 , _UpperCAmelCase : Any=1 , **_UpperCAmelCase : Tuple , ):
_A = vocab_size
_A = d_model
_A = encoder_ffn_dim
_A = encoder_layers
_A = encoder_attention_heads
_A = decoder_ffn_dim
_A = decoder_layers
_A = decoder_attention_heads
_A = dropout
_A = attention_dropout
_A = activation_dropout
_A = activation_function
_A = init_std
_A = encoder_layerdrop
_A = decoder_layerdrop
_A = use_cache
_A = encoder_layers
_A = scale_embedding # scale factor will be sqrt(d_model) if True
_A = max_source_positions
_A = max_target_positions
_A = num_conv_layers
_A = list(_UpperCAmelCase )
_A = conv_channels
_A = input_feat_per_channel
_A = input_channels
if len(self.conv_kernel_sizes ) != self.num_conv_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` '
F'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, '''
F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a = {
'''configuration_graphormer''': ['''GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GraphormerConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
'''GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GraphormerForGraphClassification''',
'''GraphormerModel''',
'''GraphormerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_graphormer import (
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
GraphormerForGraphClassification,
GraphormerModel,
GraphormerPreTrainedModel,
)
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 7 |
"""simple docstring"""
from manim import *
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = Rectangle(height=0.5 , width=0.5 )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_A = Rectangle(height=0.25 , width=0.25 )
_A = [mem.copy() for i in range(6 )]
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('CPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(4 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('GPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
gpu.move_to([-1, -1, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Model' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
model.move_to([3, -1.0, 0] )
self.add(_UpperCAmelCase )
_A = []
_A = []
for i, rect in enumerate(_UpperCAmelCase ):
_A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 )
target.move_to(_UpperCAmelCase )
model_arr.append(_UpperCAmelCase )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(_UpperCAmelCase )
self.add(*_UpperCAmelCase , *_UpperCAmelCase )
_A = [meta_mem.copy() for i in range(6 )]
_A = [meta_mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Disk' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
disk.move_to([-4, -1.25, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_A = MarkupText(
F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = MarkupText(
F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , )
blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(_UpperCAmelCase )
_A = MarkupText(
F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase ) )
_A = Square(0.3 )
input.set_fill(_UpperCAmelCase , opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 )
self.play(Write(_UpperCAmelCase ) )
input.generate_target()
input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 )
self.play(MoveToTarget(_UpperCAmelCase ) )
self.play(FadeOut(_UpperCAmelCase ) )
_A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 )
a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
_A = MarkupText(
F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) )
_A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02}
self.play(
Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[0] ) )
_A = a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
_A = AnimationGroup(
FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 )
self.play(_UpperCAmelCase )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
_A = 0.7
self.play(
Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , )
else:
self.play(
MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , )
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 )
self.play(
Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[i] ) )
_A = a_c
_A = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 )
self.play(
FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , )
_A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) )
self.wait()
| 7 | 1 |
"""simple docstring"""
from typing import List, Union
import numpy as np
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING
a = logging.get_logger(__name__)
@add_end_docstrings(__lowerCAmelCase )
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Dict , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[str] ):
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
requires_backends(self , 'vision' )
self.check_model_type(_UpperCAmelCase )
def __call__( self : Union[str, Any] , _UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCAmelCase : int ):
return super().__call__(_UpperCAmelCase , **_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[Any] , **_UpperCAmelCase : List[str] ):
return {}, {}, {}
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : List[Any] ):
_A = load_image(_UpperCAmelCase )
_A = image.size
_A = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework )
return model_inputs
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Optional[Any] ):
_A = self.model(**_UpperCAmelCase )
return model_outputs
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Optional[int] ):
_A = model_outputs.predicted_depth
_A = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='bicubic' , align_corners=_UpperCAmelCase )
_A = prediction.squeeze().cpu().numpy()
_A = (output * 255 / np.max(_UpperCAmelCase )).astype('uint8' )
_A = Image.fromarray(_UpperCAmelCase )
_A = {}
_A = predicted_depth
_A = depth
return output_dict
| 7 |
"""simple docstring"""
def _snake_case ( _snake_case : int , _snake_case : int ) -> int:
'''simple docstring'''
return int((input_a, input_a).count(1 ) != 0 )
def _snake_case ( ) -> None:
'''simple docstring'''
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 7 | 1 |
"""simple docstring"""
def _snake_case ( _snake_case : int ) -> int:
'''simple docstring'''
_A = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def _snake_case ( _snake_case : int = 1_00 ) -> int:
'''simple docstring'''
_A = 1
_A = 2
for i in range(2 , max_n + 1 ):
_A = pre_numerator
_A = 2 * i // 3 if i % 3 == 0 else 1
_A = cur_numerator
_A = e_cont * pre_numerator + temp
return sum_digits(_snake_case )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 7 |
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
a = logging.getLogger(__name__)
@dataclass
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[float] = field(
default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} )
UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''Whether to SortishSamler or not.'''} )
UpperCAmelCase : bool = field(
default=__lowerCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} )
UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''whether to use adafactor'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(default=__lowerCAmelCase , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[str] = field(
default='''linear''' , metadata={'''help''': f'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
| 7 | 1 |
"""simple docstring"""
import math
import qiskit
def _snake_case ( _snake_case : int = 1 , _snake_case : int = 1 , _snake_case : int = 1 ) -> qiskit.result.counts.Counts:
'''simple docstring'''
if (
isinstance(_snake_case , _snake_case )
or isinstance(_snake_case , _snake_case )
or isinstance(_snake_case , _snake_case )
):
raise TypeError('inputs must be integers.' )
if (input_a < 0) or (input_a < 0) or (carry_in < 0):
raise ValueError('inputs must be positive.' )
if (
(math.floor(_snake_case ) != input_a)
or (math.floor(_snake_case ) != input_a)
or (math.floor(_snake_case ) != carry_in)
):
raise ValueError('inputs must be exact integers.' )
if (input_a > 2) or (input_a > 2) or (carry_in > 2):
raise ValueError('inputs must be less or equal to 2.' )
# build registers
_A = qiskit.QuantumRegister(4 , 'qr' )
_A = qiskit.ClassicalRegister(2 , 'cr' )
# list the entries
_A = [input_a, input_a, carry_in]
_A = qiskit.QuantumCircuit(_snake_case , _snake_case )
for i in range(0 , 3 ):
if entry[i] == 2:
quantum_circuit.h(_snake_case ) # for hadamard entries
elif entry[i] == 1:
quantum_circuit.x(_snake_case ) # for 1 entries
elif entry[i] == 0:
quantum_circuit.i(_snake_case ) # for 0 entries
# build the circuit
quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate
quantum_circuit.cx(0 , 1 )
quantum_circuit.ccx(1 , 2 , 3 )
quantum_circuit.cx(1 , 2 )
quantum_circuit.cx(0 , 1 )
quantum_circuit.measure([2, 3] , _snake_case ) # measure the last two qbits
_A = qiskit.Aer.get_backend('aer_simulator' )
_A = qiskit.execute(_snake_case , _snake_case , shots=10_00 )
return job.result().get_counts(_snake_case )
if __name__ == "__main__":
print(F'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
| 7 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ..utils import _LazyModule
a = {
'''config''': [
'''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''',
'''OnnxConfig''',
'''OnnxConfigWithPast''',
'''OnnxSeq2SeqConfigWithPast''',
'''PatchingSpec''',
],
'''convert''': ['''export''', '''validate_model_outputs'''],
'''features''': ['''FeaturesManager'''],
'''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 7 | 1 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
a = logging.get_logger(__name__)
def _snake_case ( _snake_case : Optional[int] , _snake_case : str ) -> List[Any]:
'''simple docstring'''
_A = b.T
_A = np.sum(np.square(_snake_case ) , axis=1 )
_A = np.sum(np.square(_snake_case ) , axis=0 )
_A = np.matmul(_snake_case , _snake_case )
_A = aa[:, None] - 2 * ab + ba[None, :]
return d
def _snake_case ( _snake_case : Optional[Any] , _snake_case : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_A = x.reshape(-1 , 3 )
_A = squared_euclidean_distance(_snake_case , _snake_case )
return np.argmin(_snake_case , axis=1 )
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = ['''pixel_values''']
def __init__( self : Any , _UpperCAmelCase : Optional[Union[List[List[int]], np.ndarray]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , **_UpperCAmelCase : int , ):
super().__init__(**_UpperCAmelCase )
_A = size if size is not None else {'height': 256, 'width': 256}
_A = get_size_dict(_UpperCAmelCase )
_A = np.array(_UpperCAmelCase ) if clusters is not None else None
_A = do_resize
_A = size
_A = resample
_A = do_normalize
_A = do_color_quantize
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ):
_A = get_size_dict(_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' )
return resize(
_UpperCAmelCase , size=(size['height'], size['width']) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , ):
_A = rescale(image=_UpperCAmelCase , scale=1 / 127.5 , data_format=_UpperCAmelCase )
_A = image - 1
return image
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[List[List[int]], np.ndarray]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **_UpperCAmelCase : List[Any] , ):
_A = do_resize if do_resize is not None else self.do_resize
_A = size if size is not None else self.size
_A = get_size_dict(_UpperCAmelCase )
_A = resample if resample is not None else self.resample
_A = do_normalize if do_normalize is not None else self.do_normalize
_A = do_color_quantize if do_color_quantize is not None else self.do_color_quantize
_A = clusters if clusters is not None else self.clusters
_A = np.array(_UpperCAmelCase )
_A = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_color_quantize and clusters is None:
raise ValueError('Clusters must be specified if do_color_quantize is True.' )
# All transformations expect numpy arrays.
_A = [to_numpy_array(_UpperCAmelCase ) for image in images]
if do_resize:
_A = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_normalize:
_A = [self.normalize(image=_UpperCAmelCase ) for image in images]
if do_color_quantize:
_A = [to_channel_dimension_format(_UpperCAmelCase , ChannelDimension.LAST ) for image in images]
# color quantize from (batch_size, height, width, 3) to (batch_size, height, width)
_A = np.array(_UpperCAmelCase )
_A = color_quantize(_UpperCAmelCase , _UpperCAmelCase ).reshape(images.shape[:-1] )
# flatten to (batch_size, height*width)
_A = images.shape[0]
_A = images.reshape(_UpperCAmelCase , -1 )
# We need to convert back to a list of images to keep consistent behaviour across processors.
_A = list(_UpperCAmelCase )
else:
_A = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
_A = {'input_ids': images}
return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
| 7 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import KarrasVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : UNetaDModel
UpperCAmelCase : KarrasVeScheduler
def __init__( self : Any , _UpperCAmelCase : UNetaDModel , _UpperCAmelCase : KarrasVeScheduler ):
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase )
@torch.no_grad()
def __call__( self : Optional[int] , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Optional[Any] , ):
_A = self.unet.config.sample_size
_A = (batch_size, 3, img_size, img_size)
_A = self.unet
# sample x_0 ~ N(0, sigma_0^2 * I)
_A = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device ) * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(_UpperCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# here sigma_t == t_i from the paper
_A = self.scheduler.schedule[t]
_A = self.scheduler.schedule[t - 1] if t > 0 else 0
# 1. Select temporarily increased noise level sigma_hat
# 2. Add new noise to move from sample_i to sample_hat
_A , _A = self.scheduler.add_noise_to_input(_UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase )
# 3. Predict the noise residual given the noise magnitude `sigma_hat`
# The model inputs and output are adjusted by following eq. (213) in [1].
_A = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample
# 4. Evaluate dx/dt at sigma_hat
# 5. Take Euler step from sigma to sigma_prev
_A = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if sigma_prev != 0:
# 6. Apply 2nd order correction
# The model inputs and output are adjusted by following eq. (213) in [1].
_A = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample
_A = self.scheduler.step_correct(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , step_output.prev_sample , step_output['derivative'] , )
_A = step_output.prev_sample
_A = (sample / 2 + 0.5).clamp(0 , 1 )
_A = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_A = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_UpperCAmelCase )
| 7 | 1 |
"""simple docstring"""
import unittest
from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow
if is_flax_available():
import jax
from transformers.models.auto.modeling_flax_auto import FlaxAutoModel
from transformers.models.bert.modeling_flax_bert import FlaxBertModel
from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel
@require_flax
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def lowerCAmelCase_ ( self : Union[str, Any] ):
for model_name in ["bert-base-cased", "bert-large-uncased"]:
with self.subTest(_UpperCAmelCase ):
_A = AutoConfig.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
_A = FlaxAutoModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
@slow
def lowerCAmelCase_ ( self : Optional[Any] ):
for model_name in ["roberta-base", "roberta-large"]:
with self.subTest(_UpperCAmelCase ):
_A = AutoConfig.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
_A = FlaxAutoModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
@slow
def lowerCAmelCase_ ( self : Tuple ):
for model_name in ["bert-base-cased", "bert-large-uncased"]:
_A = AutoTokenizer.from_pretrained(_UpperCAmelCase )
_A = FlaxBertModel.from_pretrained(_UpperCAmelCase )
_A = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX )
@jax.jit
def eval(**_UpperCAmelCase : List[str] ):
return model(**_UpperCAmelCase )
eval(**_UpperCAmelCase ).block_until_ready()
@slow
def lowerCAmelCase_ ( self : List[str] ):
for model_name in ["roberta-base", "roberta-large"]:
_A = AutoTokenizer.from_pretrained(_UpperCAmelCase )
_A = FlaxRobertaModel.from_pretrained(_UpperCAmelCase )
_A = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX )
@jax.jit
def eval(**_UpperCAmelCase : Dict ):
return model(**_UpperCAmelCase )
eval(**_UpperCAmelCase ).block_until_ready()
def lowerCAmelCase_ ( self : Dict ):
with self.assertRaisesRegex(
_UpperCAmelCase , 'bert-base is not a local folder and is not a valid model identifier' ):
_A = FlaxAutoModel.from_pretrained('bert-base' )
def lowerCAmelCase_ ( self : Union[str, Any] ):
with self.assertRaisesRegex(
_UpperCAmelCase , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ):
_A = FlaxAutoModel.from_pretrained(_UpperCAmelCase , revision='aaaaaa' )
def lowerCAmelCase_ ( self : List[Any] ):
with self.assertRaisesRegex(
_UpperCAmelCase , 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' , ):
_A = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' )
def lowerCAmelCase_ ( self : Tuple ):
with self.assertRaisesRegex(_UpperCAmelCase , 'Use `from_pt=True` to load this model' ):
_A = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
| 7 |
"""simple docstring"""
class lowercase_ :
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ):
_A = None
_A = None
_A = graph
self._normalize_graph(_UpperCAmelCase , _UpperCAmelCase )
_A = len(_UpperCAmelCase )
_A = None
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ):
if sources is int:
_A = [sources]
if sinks is int:
_A = [sinks]
if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) == 0:
return
_A = sources[0]
_A = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(_UpperCAmelCase ) > 1 or len(_UpperCAmelCase ) > 1:
_A = 0
for i in sources:
max_input_flow += sum(self.graph[i] )
_A = len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
_A = max_input_flow
_A = 0
_A = len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
_A = max_input_flow
_A = size - 1
def lowerCAmelCase_ ( self : Optional[Any] ):
if self.maximum_flow_algorithm is None:
raise Exception('You need to set maximum flow algorithm before.' )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Union[str, Any] ):
_A = algorithm(self )
class lowercase_ :
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : Union[str, Any] ):
_A = flow_network
_A = flow_network.verticesCount
_A = flow_network.sourceIndex
_A = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
_A = flow_network.graph
_A = False
def lowerCAmelCase_ ( self : Optional[Any] ):
if not self.executed:
self._algorithm()
_A = True
def lowerCAmelCase_ ( self : int ):
pass
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : int , _UpperCAmelCase : Any ):
super().__init__(_UpperCAmelCase )
# use this to save your result
_A = -1
def lowerCAmelCase_ ( self : Optional[Any] ):
if not self.executed:
raise Exception('You should execute algorithm before using its result!' )
return self.maximum_flow
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : List[Any] ):
super().__init__(_UpperCAmelCase )
_A = [[0] * self.verticies_count for i in range(self.verticies_count )]
_A = [0] * self.verticies_count
_A = [0] * self.verticies_count
def lowerCAmelCase_ ( self : Dict ):
_A = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
_A = [
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
_A = 0
while i < len(_UpperCAmelCase ):
_A = vertices_list[i]
_A = self.heights[vertex_index]
self.process_vertex(_UpperCAmelCase )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(_UpperCAmelCase ) )
_A = 0
else:
i += 1
_A = sum(self.preflow[self.source_index] )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Any ):
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(_UpperCAmelCase , _UpperCAmelCase )
self.relabel(_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ):
_A = min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : int ):
_A = None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
_A = self.heights[to_index]
if min_height is not None:
_A = min_height + 1
if __name__ == "__main__":
a = [0]
a = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
a = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
a = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
a = flow_network.find_maximum_flow()
print(F'''maximum flow is {maximum_flow}''')
| 7 | 1 |
"""simple docstring"""
a = {
0: '''0''',
1: '''1''',
2: '''2''',
3: '''3''',
4: '''4''',
5: '''5''',
6: '''6''',
7: '''7''',
8: '''8''',
9: '''9''',
10: '''a''',
11: '''b''',
12: '''c''',
13: '''d''',
14: '''e''',
15: '''f''',
}
def _snake_case ( _snake_case : float ) -> str:
'''simple docstring'''
assert type(_snake_case ) in (int, float) and decimal == int(_snake_case )
_A = int(_snake_case )
_A = ''
_A = False
if decimal < 0:
_A = True
decimal *= -1
while decimal > 0:
_A , _A = divmod(_snake_case , 16 )
_A = values[remainder] + hexadecimal
_A = '0x' + hexadecimal
if negative:
_A = '-' + hexadecimal
return hexadecimal
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 |
"""simple docstring"""
import unittest
from transformers import SPIECE_UNDERLINE
from transformers.models.speechta import SpeechTaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.tokenization_utils import AddedToken
from ...test_tokenization_common import TokenizerTesterMixin
a = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''')
@require_sentencepiece
@require_tokenizers
class lowercase_ ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = SpeechTaTokenizer
UpperCAmelCase : Tuple = False
UpperCAmelCase : Optional[int] = True
def lowerCAmelCase_ ( self : Tuple ):
super().setUp()
# We have a SentencePiece fixture for testing
_A = SpeechTaTokenizer(_UpperCAmelCase )
_A = AddedToken('<mask>' , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase )
_A = mask_token
tokenizer.add_special_tokens({'mask_token': mask_token} )
tokenizer.add_tokens(['<ctc_blank>'] )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Tuple ):
_A = 'this is a test'
_A = 'this is a test'
return input_text, output_text
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict=20 , _UpperCAmelCase : str=5 ):
_A , _A = self.get_input_output_texts(_UpperCAmelCase )
_A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
_A = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase )
return text, ids
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = '<pad>'
_A = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-4] , 'œ' )
self.assertEqual(vocab_keys[-2] , '<mask>' )
self.assertEqual(vocab_keys[-1] , '<ctc_blank>' )
self.assertEqual(len(_UpperCAmelCase ) , 81 )
def lowerCAmelCase_ ( self : Optional[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 79 )
def lowerCAmelCase_ ( self : Any ):
_A = self.get_tokenizers(do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
_A = ['aaaaa bbbbbb', 'cccccccccdddddddd']
_A = tokenizer.add_tokens(_UpperCAmelCase )
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) )
self.assertEqual(_UpperCAmelCase , all_size + len(_UpperCAmelCase ) )
_A = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=_UpperCAmelCase )
self.assertGreaterEqual(len(_UpperCAmelCase ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
_A = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'}
_A = tokenizer.add_special_tokens(_UpperCAmelCase )
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) )
self.assertEqual(_UpperCAmelCase , all_size_a + len(_UpperCAmelCase ) )
_A = tokenizer.encode(
'>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=_UpperCAmelCase )
self.assertGreaterEqual(len(_UpperCAmelCase ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
def lowerCAmelCase_ ( self : str ):
pass
def lowerCAmelCase_ ( self : Any ):
pass
def lowerCAmelCase_ ( self : Dict ):
_A = self.get_tokenizer()
_A = tokenizer.tokenize('This is a test' )
# fmt: off
self.assertListEqual(_UpperCAmelCase , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] )
# fmt: on
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , )
_A = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
_A = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
# fmt: off
self.assertListEqual(_UpperCAmelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] )
# fmt: on
_A = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
@slow
def lowerCAmelCase_ ( self : List[Any] ):
# Use custom sequence because this tokenizer does not handle numbers.
_A = [
'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides '
'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural '
'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained '
'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.',
'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly '
'conditioning on both left and right context in all layers.',
'The quick brown fox jumps over the lazy dog.',
]
# fmt: off
_A = {
'input_ids': [
[4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2],
[4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
],
'attention_mask': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
from .configuration_bert_masked import MaskedBertConfig
from .modeling_bert_masked import (
MaskedBertForMultipleChoice,
MaskedBertForQuestionAnswering,
MaskedBertForSequenceClassification,
MaskedBertForTokenClassification,
MaskedBertModel,
)
from .modules import *
| 7 |
"""simple docstring"""
from .configuration_bert_masked import MaskedBertConfig
from .modeling_bert_masked import (
MaskedBertForMultipleChoice,
MaskedBertForQuestionAnswering,
MaskedBertForSequenceClassification,
MaskedBertForTokenClassification,
MaskedBertModel,
)
from .modules import *
| 7 | 1 |
"""simple docstring"""
def _snake_case ( _snake_case : int = 10_00 ) -> int:
'''simple docstring'''
_A = 2**power
_A = str(_snake_case )
_A = list(_snake_case )
_A = 0
for i in list_num:
sum_of_num += int(_snake_case )
return sum_of_num
if __name__ == "__main__":
a = int(input('''Enter the power of 2: ''').strip())
print('''2 ^ ''', power, ''' = ''', 2**power)
a = solution(power)
print('''Sum of the digits is: ''', result)
| 7 |
"""simple docstring"""
import argparse
a = '''docs/source/_static/js/custom.js'''
def _snake_case ( _snake_case : Dict ) -> Any:
'''simple docstring'''
with open(_snake_case , encoding='utf-8' , newline='\n' ) as f:
_A = f.readlines()
_A = 0
# First let's put the right version
while not lines[index].startswith('const stableVersion =' ):
index += 1
_A = F'''const stableVersion = "v{version}"\n'''
# Then update the dictionary
while not lines[index].startswith('const versionMapping = {' ):
index += 1
# We go until the end
while not lines[index].startswith('}' ):
index += 1
# We add the new version at the end
lines[index - 1] += F''' "v{version}": "v{version}",\n'''
with open(_snake_case , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(_snake_case )
if __name__ == "__main__":
a = argparse.ArgumentParser()
parser.add_argument('''--version''', help='''Release version.''')
a = parser.parse_args()
update_custom_js(args.version)
| 7 | 1 |
"""simple docstring"""
from collections.abc import Callable
def _snake_case ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
_A = a
_A = b
if function(_snake_case ) == 0: # one of the a or b is a root for the function
return a
elif function(_snake_case ) == 0:
return b
elif (
function(_snake_case ) * function(_snake_case ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError('could not find root in given interval.' )
else:
_A = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(_snake_case ) == 0:
return mid
elif function(_snake_case ) * function(_snake_case ) < 0:
_A = mid
else:
_A = mid
_A = start + (end - start) / 2.0
return mid
def _snake_case ( _snake_case : float ) -> float:
'''simple docstring'''
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1_000))
import doctest
doctest.testmod()
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''vit_mae'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int]=768 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Optional[int]=3_072 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : Optional[Any]=224 , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=512 , _UpperCAmelCase : int=8 , _UpperCAmelCase : List[Any]=2_048 , _UpperCAmelCase : Optional[Any]=0.75 , _UpperCAmelCase : List[str]=False , **_UpperCAmelCase : Union[str, Any] , ):
super().__init__(**_UpperCAmelCase )
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = intermediate_size
_A = hidden_act
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = initializer_range
_A = layer_norm_eps
_A = image_size
_A = patch_size
_A = num_channels
_A = qkv_bias
_A = decoder_num_attention_heads
_A = decoder_hidden_size
_A = decoder_num_hidden_layers
_A = decoder_intermediate_size
_A = mask_ratio
_A = norm_pix_loss
| 7 | 1 |
"""simple docstring"""
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class lowercase_ :
'''simple docstring'''
def __init__( self : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=32 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : int=10 , _UpperCAmelCase : int=[8, 16, 32, 64] , _UpperCAmelCase : Optional[Any]=[1, 1, 2, 1] , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Union[str, Any]="relu" , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Dict=["stage2", "stage3", "stage4"] , _UpperCAmelCase : Union[str, Any]=[2, 3, 4] , _UpperCAmelCase : Optional[int]=1 , ):
_A = parent
_A = batch_size
_A = image_size
_A = num_channels
_A = embeddings_size
_A = hidden_sizes
_A = depths
_A = is_training
_A = use_labels
_A = hidden_act
_A = num_labels
_A = scope
_A = len(_UpperCAmelCase )
_A = out_features
_A = out_indices
_A = num_groups
def lowerCAmelCase_ ( self : str ):
_A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A = None
if self.use_labels:
_A = ids_tensor([self.batch_size] , self.num_labels )
_A = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase_ ( self : int ):
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] ):
_A = BitModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Tuple ):
_A = self.num_labels
_A = BitForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ):
_A = BitBackbone(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
_A = None
_A = BitBackbone(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = self.prepare_config_and_inputs()
_A , _A , _A = config_and_inputs
_A = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : str = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
UpperCAmelCase : Tuple = (
{'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification}
if is_torch_available()
else {}
)
UpperCAmelCase : Optional[int] = False
UpperCAmelCase : Any = False
UpperCAmelCase : List[str] = False
UpperCAmelCase : List[Any] = False
UpperCAmelCase : str = False
def lowerCAmelCase_ ( self : int ):
_A = BitModelTester(self )
_A = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[Any] ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase_ ( self : Any ):
return
@unittest.skip(reason='Bit does not output attentions' )
def lowerCAmelCase_ ( self : List[str] ):
pass
@unittest.skip(reason='Bit does not use inputs_embeds' )
def lowerCAmelCase_ ( self : List[Any] ):
pass
@unittest.skip(reason='Bit does not support input and output embeddings' )
def lowerCAmelCase_ ( self : str ):
pass
def lowerCAmelCase_ ( self : Optional[int] ):
_A , _A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A = model_class(_UpperCAmelCase )
_A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A = [*signature.parameters.keys()]
_A = ['pixel_values']
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : str ):
_A , _A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A = model_class(config=_UpperCAmelCase )
for name, module in model.named_modules():
if isinstance(_UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
def lowerCAmelCase_ ( self : List[str] ):
def check_hidden_states_output(_UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any ):
_A = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
with torch.no_grad():
_A = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
_A = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_A = self.model_tester.num_stages
self.assertEqual(len(_UpperCAmelCase ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_A , _A = self.model_tester.prepare_config_and_inputs_for_common()
_A = ['preactivation', 'bottleneck']
for model_class in self.all_model_classes:
for layer_type in layers_type:
_A = layer_type
_A = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_A = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
@unittest.skip(reason='Bit does not use feedforward chunking' )
def lowerCAmelCase_ ( self : int ):
pass
def lowerCAmelCase_ ( self : List[str] ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
@slow
def lowerCAmelCase_ ( self : List[str] ):
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A = BitModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def _snake_case ( ) -> str:
'''simple docstring'''
_A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowerCAmelCase_ ( self : List[str] ):
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def lowerCAmelCase_ ( self : Tuple ):
_A = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_UpperCAmelCase )
_A = self.default_image_processor
_A = prepare_img()
_A = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
_A = model(**_UpperCAmelCase )
# verify the logits
_A = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
_A = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
@require_torch
class lowercase_ ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : Tuple = (BitBackbone,) if is_torch_available() else ()
UpperCAmelCase : List[Any] = BitConfig
UpperCAmelCase : Optional[int] = False
def lowerCAmelCase_ ( self : List[Any] ):
_A = BitModelTester(self )
| 7 |
"""simple docstring"""
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
a = logging.get_logger(__name__)
a = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
a = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def _snake_case ( _snake_case : Optional[Any] ) -> str:
'''simple docstring'''
_A = torch.load(_snake_case , map_location='cpu' )
return sd
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : str , _snake_case : Tuple=rename_keys_prefix ) -> List[str]:
'''simple docstring'''
_A = OrderedDict()
_A = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
_A = key
for name_pair in rename_keys_prefix:
_A = new_key.replace(name_pair[0] , name_pair[1] )
_A = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
_A = new_d['cls.predictions.bias']
return new_d
@torch.no_grad()
def _snake_case ( _snake_case : List[str] , _snake_case : Dict ) -> Dict:
'''simple docstring'''
assert (
checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS
), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'''
# Get Config
if "pre" in checkpoint_path:
_A = 'pretraining'
if "vcr" in checkpoint_path:
_A = {'visual_embedding_dim': 5_12}
elif "vqa_advanced" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
elif "vqa" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
elif "nlvr" in checkpoint_path:
_A = {'visual_embedding_dim': 10_24}
else:
raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' )
else:
if "vcr" in checkpoint_path:
_A = {'visual_embedding_dim': 5_12}
_A = 'multichoice'
elif "vqa_advanced" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
_A = 'vqa_advanced'
elif "vqa" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48, 'num_labels': 31_29}
_A = 'vqa'
elif "nlvr" in checkpoint_path:
_A = {
'visual_embedding_dim': 10_24,
'num_labels': 2,
}
_A = 'nlvr'
_A = VisualBertConfig(**_snake_case )
# Load State Dict
_A = load_state_dict(_snake_case )
_A = get_new_dict(_snake_case , _snake_case )
if model_type == "pretraining":
_A = VisualBertForPreTraining(_snake_case )
elif model_type == "vqa":
_A = VisualBertForQuestionAnswering(_snake_case )
elif model_type == "nlvr":
_A = VisualBertForVisualReasoning(_snake_case )
elif model_type == "multichoice":
_A = VisualBertForMultipleChoice(_snake_case )
model.load_state_dict(_snake_case )
# Save Checkpoints
Path(_snake_case ).mkdir(exist_ok=_snake_case )
model.save_pretrained(_snake_case )
if __name__ == "__main__":
a = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
a = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 7 | 1 |
"""simple docstring"""
import doctest
from collections import deque
import numpy as np
class lowercase_ :
'''simple docstring'''
def __init__( self : Dict ):
_A = [2, 1, 2, -1]
_A = [1, 2, 3, 4]
def lowerCAmelCase_ ( self : Dict ):
_A = len(self.first_signal )
_A = len(self.second_signal )
_A = max(_UpperCAmelCase , _UpperCAmelCase )
# create a zero matrix of max_length x max_length
_A = [[0] * max_length for i in range(_UpperCAmelCase )]
# fills the smaller signal with zeros to make both signals of same length
if length_first_signal < length_second_signal:
self.first_signal += [0] * (max_length - length_first_signal)
elif length_first_signal > length_second_signal:
self.second_signal += [0] * (max_length - length_second_signal)
for i in range(_UpperCAmelCase ):
_A = deque(self.second_signal )
rotated_signal.rotate(_UpperCAmelCase )
for j, item in enumerate(_UpperCAmelCase ):
matrix[i][j] += item
# multiply the matrix with the first signal
_A = np.matmul(np.transpose(_UpperCAmelCase ) , np.transpose(self.first_signal ) )
# rounding-off to two decimal places
return [round(_UpperCAmelCase , 2 ) for i in final_signal]
if __name__ == "__main__":
doctest.testmod()
| 7 |
"""simple docstring"""
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def _snake_case ( _snake_case : Dict ) -> Optional[Any]:
'''simple docstring'''
for param in module.parameters():
_A = False
def _snake_case ( ) -> Tuple:
'''simple docstring'''
_A = 'cuda' if torch.cuda.is_available() else 'cpu'
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
_A = 'mps'
if device == "mps":
print(
'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch'
' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues'
' with generations.' )
return device
def _snake_case ( _snake_case : Dict ) -> Optional[Any]:
'''simple docstring'''
_A = plt.imshow(_snake_case )
fig.axes.get_xaxis().set_visible(_snake_case )
fig.axes.get_yaxis().set_visible(_snake_case )
plt.show()
def _snake_case ( ) -> Optional[Any]:
'''simple docstring'''
_A = datetime.now()
_A = current_time.strftime('%H:%M:%S' )
return timestamp
| 7 | 1 |
"""simple docstring"""
import argparse
import os
from pathlib import Path
import torch
from bark.generation import _load_model as _bark_load_model
from huggingface_hub import hf_hub_download
from transformers import EncodecConfig, EncodecModel, set_seed
from transformers.models.bark.configuration_bark import (
BarkCoarseConfig,
BarkConfig,
BarkFineConfig,
BarkSemanticConfig,
)
from transformers.models.bark.generation_configuration_bark import (
BarkCoarseGenerationConfig,
BarkFineGenerationConfig,
BarkGenerationConfig,
BarkSemanticGenerationConfig,
)
from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel
from transformers.utils import logging
logging.set_verbosity_info()
a = logging.get_logger(__name__)
set_seed(770)
a = {
'''c_attn''': '''att_proj''',
'''c_proj''': '''out_proj''',
'''c_fc''': '''in_proj''',
'''transformer.''': '''''',
'''h.''': '''layers.''',
'''ln_1''': '''layernorm_1''',
'''ln_2''': '''layernorm_2''',
'''ln_f''': '''layernorm_final''',
'''wpe''': '''position_embeds_layer''',
'''wte''': '''input_embeds_layer''',
}
a = {
'''text_small''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''text.pt''',
},
'''coarse_small''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''coarse.pt''',
},
'''fine_small''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''fine.pt''',
},
'''text''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''text_2.pt''',
},
'''coarse''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''coarse_2.pt''',
},
'''fine''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''fine_2.pt''',
},
}
a = os.path.dirname(os.path.abspath(__file__))
a = os.path.join(os.path.expanduser('''~'''), '''.cache''')
a = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''')
def _snake_case ( _snake_case : List[str] , _snake_case : str=False ) -> List[str]:
'''simple docstring'''
_A = model_type
if use_small:
key += "_small"
return os.path.join(_snake_case , REMOTE_MODEL_PATHS[key]['file_name'] )
def _snake_case ( _snake_case : Dict , _snake_case : int ) -> str:
'''simple docstring'''
os.makedirs(_snake_case , exist_ok=_snake_case )
hf_hub_download(repo_id=_snake_case , filename=_snake_case , local_dir=_snake_case )
def _snake_case ( _snake_case : int , _snake_case : Dict , _snake_case : Dict=False , _snake_case : str="text" ) -> Optional[int]:
'''simple docstring'''
if model_type == "text":
_A = BarkSemanticModel
_A = BarkSemanticConfig
_A = BarkSemanticGenerationConfig
elif model_type == "coarse":
_A = BarkCoarseModel
_A = BarkCoarseConfig
_A = BarkCoarseGenerationConfig
elif model_type == "fine":
_A = BarkFineModel
_A = BarkFineConfig
_A = BarkFineGenerationConfig
else:
raise NotImplementedError()
_A = F'''{model_type}_small''' if use_small else model_type
_A = REMOTE_MODEL_PATHS[model_key]
if not os.path.exists(_snake_case ):
logger.info(F'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' )
_download(model_info['repo_id'] , model_info['file_name'] )
_A = torch.load(_snake_case , map_location=_snake_case )
# this is a hack
_A = checkpoint['model_args']
if "input_vocab_size" not in model_args:
_A = model_args['vocab_size']
_A = model_args['vocab_size']
del model_args["vocab_size"]
# convert Bark model arguments to HF Bark model arguments
_A = model_args.pop('n_head' )
_A = model_args.pop('n_embd' )
_A = model_args.pop('n_layer' )
_A = ConfigClass(**checkpoint['model_args'] )
_A = ModelClass(config=_snake_case )
_A = GenerationConfigClass()
_A = model_generation_config
_A = checkpoint['model']
# fixup checkpoint
_A = '_orig_mod.'
for k, v in list(state_dict.items() ):
if k.startswith(_snake_case ):
# replace part of the key with corresponding layer name in HF implementation
_A = k[len(_snake_case ) :]
for old_layer_name in new_layer_name_dict:
_A = new_k.replace(_snake_case , new_layer_name_dict[old_layer_name] )
_A = state_dict.pop(_snake_case )
_A = set(state_dict.keys() ) - set(model.state_dict().keys() )
_A = {k for k in extra_keys if not k.endswith('.attn.bias' )}
_A = set(model.state_dict().keys() ) - set(state_dict.keys() )
_A = {k for k in missing_keys if not k.endswith('.attn.bias' )}
if len(_snake_case ) != 0:
raise ValueError(F'''extra keys found: {extra_keys}''' )
if len(_snake_case ) != 0:
raise ValueError(F'''missing keys: {missing_keys}''' )
model.load_state_dict(_snake_case , strict=_snake_case )
_A = model.num_parameters(exclude_embeddings=_snake_case )
_A = checkpoint['best_val_loss'].item()
logger.info(F'''model loaded: {round(n_params/1E6 , 1 )}M params, {round(_snake_case , 3 )} loss''' )
model.eval()
model.to(_snake_case )
del checkpoint, state_dict
return model
def _snake_case ( _snake_case : Optional[Any] , _snake_case : int=False , _snake_case : Optional[int]="text" ) -> List[Any]:
'''simple docstring'''
if model_type not in ("text", "coarse", "fine"):
raise NotImplementedError()
_A = 'cpu' # do conversion on cpu
_A = _get_ckpt_path(_snake_case , use_small=_snake_case )
_A = _load_model(_snake_case , _snake_case , model_type=_snake_case , use_small=_snake_case )
# load bark initial model
_A = _bark_load_model(_snake_case , 'cpu' , model_type=_snake_case , use_small=_snake_case )
if model_type == "text":
_A = bark_model['model']
if model.num_parameters(exclude_embeddings=_snake_case ) != bark_model.get_num_params():
raise ValueError('initial and new models don\'t have the same number of parameters' )
# check if same output as the bark model
_A = 5
_A = 10
if model_type in ["text", "coarse"]:
_A = torch.randint(2_56 , (batch_size, sequence_length) , dtype=torch.int )
_A = bark_model(_snake_case )[0]
_A = model(_snake_case )
# take last logits
_A = output_new_model_total.logits[:, [-1], :]
else:
_A = 3
_A = 8
_A = torch.randint(2_56 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int )
_A = model(_snake_case , _snake_case )
_A = bark_model(_snake_case , _snake_case )
_A = output_new_model_total.logits
# output difference should come from the difference of self-attention implementation design
if output_new_model.shape != output_old_model.shape:
raise ValueError('initial and new outputs don\'t have the same shape' )
if (output_new_model - output_old_model).abs().max().item() > 1E-3:
raise ValueError('initial and new outputs are not equal' )
Path(_snake_case ).mkdir(exist_ok=_snake_case )
model.save_pretrained(_snake_case )
def _snake_case ( _snake_case : int , _snake_case : Union[str, Any] , _snake_case : str , _snake_case : Optional[Any] , _snake_case : Dict , _snake_case : Optional[Any] , ) -> Optional[Any]:
'''simple docstring'''
_A = os.path.join(_snake_case , _snake_case )
_A = BarkSemanticConfig.from_pretrained(os.path.join(_snake_case , 'config.json' ) )
_A = BarkCoarseConfig.from_pretrained(os.path.join(_snake_case , 'config.json' ) )
_A = BarkFineConfig.from_pretrained(os.path.join(_snake_case , 'config.json' ) )
_A = EncodecConfig.from_pretrained('facebook/encodec_24khz' )
_A = BarkSemanticModel.from_pretrained(_snake_case )
_A = BarkCoarseModel.from_pretrained(_snake_case )
_A = BarkFineModel.from_pretrained(_snake_case )
_A = EncodecModel.from_pretrained('facebook/encodec_24khz' )
_A = BarkConfig.from_sub_model_configs(
_snake_case , _snake_case , _snake_case , _snake_case )
_A = BarkGenerationConfig.from_sub_model_configs(
semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config )
_A = BarkModel(_snake_case )
_A = semantic
_A = coarseAcoustic
_A = fineAcoustic
_A = codec
_A = bark_generation_config
Path(_snake_case ).mkdir(exist_ok=_snake_case )
bark.save_pretrained(_snake_case , repo_id=_snake_case , push_to_hub=_snake_case )
if __name__ == "__main__":
a = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''')
parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''')
a = parser.parse_args()
load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
| 7 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Any = ['''image_processor''', '''tokenizer''']
UpperCAmelCase : Optional[int] = '''ViTImageProcessor'''
UpperCAmelCase : int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''')
def __init__( self : Tuple , _UpperCAmelCase : int=None , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : Dict ):
_A = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _UpperCAmelCase , )
_A = kwargs.pop('feature_extractor' )
_A = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __call__( self : Optional[Any] , _UpperCAmelCase : int=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Union[str, Any] ):
if text is None and visual_prompt is None and images is None:
raise ValueError('You have to specify either text, visual prompt or images.' )
if text is not None and visual_prompt is not None:
raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' )
if text is not None:
_A = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if visual_prompt is not None:
_A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if images is not None:
_A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if visual_prompt is not None and images is not None:
_A = {
'pixel_values': image_features.pixel_values,
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
elif text is not None and images is not None:
_A = image_features.pixel_values
return encoding
elif text is not None:
return encoding
elif visual_prompt is not None:
_A = {
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
else:
return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase )
def lowerCAmelCase_ ( self : str , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Union[str, Any] ):
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def lowerCAmelCase_ ( self : Union[str, Any] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ):
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
def lowerCAmelCase_ ( self : Dict ):
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , )
return self.image_processor_class
@property
def lowerCAmelCase_ ( self : Tuple ):
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , )
return self.image_processor
| 7 | 1 |
"""simple docstring"""
from collections.abc import Sequence
def _snake_case ( _snake_case : Sequence[float] , _snake_case : bool = False ) -> float:
'''simple docstring'''
if not arr:
return 0
_A = 0 if allow_empty_subarrays else float('-inf' )
_A = 0.0
for num in arr:
_A = max(0 if allow_empty_subarrays else num , curr_sum + num )
_A = max(_snake_case , _snake_case )
return max_sum
if __name__ == "__main__":
from doctest import testmod
testmod()
a = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print(F'''{max_subarray_sum(nums) = }''')
| 7 |
"""simple docstring"""
import math
from datetime import datetime, timedelta
def _snake_case ( _snake_case : int ) -> datetime:
'''simple docstring'''
_A = year % 19
_A = year % 4
_A = year % 7
_A = math.floor(year / 1_00 )
_A = math.floor((13 + 8 * leap_day_inhibits) / 25 )
_A = leap_day_inhibits / 4
_A = (
15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 30
_A = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
_A = (19 * metonic_cycle + secular_moon_shift) % 30
# PHM -> Paschal Full Moon
_A = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 29 and days_from_phm_to_sunday == 6:
return datetime(_snake_case , 4 , 19 )
elif days_to_add == 28 and days_from_phm_to_sunday == 6:
return datetime(_snake_case , 4 , 18 )
else:
return datetime(_snake_case , 3 , 22 ) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday ) )
if __name__ == "__main__":
for year in (1_994, 2_000, 2_010, 2_021, 2_023):
a = '''will be''' if year > datetime.now().year else '''was'''
print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
| 7 | 1 |
"""simple docstring"""
import math
from datetime import datetime, timedelta
def _snake_case ( _snake_case : int ) -> datetime:
'''simple docstring'''
_A = year % 19
_A = year % 4
_A = year % 7
_A = math.floor(year / 1_00 )
_A = math.floor((13 + 8 * leap_day_inhibits) / 25 )
_A = leap_day_inhibits / 4
_A = (
15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 30
_A = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
_A = (19 * metonic_cycle + secular_moon_shift) % 30
# PHM -> Paschal Full Moon
_A = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 29 and days_from_phm_to_sunday == 6:
return datetime(_snake_case , 4 , 19 )
elif days_to_add == 28 and days_from_phm_to_sunday == 6:
return datetime(_snake_case , 4 , 18 )
else:
return datetime(_snake_case , 3 , 22 ) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday ) )
if __name__ == "__main__":
for year in (1_994, 2_000, 2_010, 2_021, 2_023):
a = '''will be''' if year > datetime.now().year else '''was'''
print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''gpt_bigcode'''
UpperCAmelCase : str = ['''past_key_values''']
UpperCAmelCase : Dict = {
'''hidden_size''': '''n_embd''',
'''max_position_embeddings''': '''n_positions''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Tuple , _UpperCAmelCase : Dict=50_257 , _UpperCAmelCase : List[Any]=1_024 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : str="gelu_pytorch_tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[Any]=50_256 , _UpperCAmelCase : Dict=50_256 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Any=True , **_UpperCAmelCase : Any , ):
_A = vocab_size
_A = n_positions
_A = n_embd
_A = n_layer
_A = n_head
_A = n_inner
_A = activation_function
_A = resid_pdrop
_A = embd_pdrop
_A = attn_pdrop
_A = layer_norm_epsilon
_A = initializer_range
_A = scale_attn_weights
_A = use_cache
_A = attention_softmax_in_fpaa
_A = scale_attention_softmax_in_fpaa
_A = multi_query
_A = bos_token_id
_A = eos_token_id
super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
| 7 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
a = {
'''configuration_mask2former''': [
'''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''Mask2FormerConfig''',
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ['''Mask2FormerImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
'''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Mask2FormerForUniversalSegmentation''',
'''Mask2FormerModel''',
'''Mask2FormerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_maskaformer import MaskaFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskaformer import (
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskaFormerForUniversalSegmentation,
MaskaFormerModel,
MaskaFormerPreTrainedModel,
)
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 7 |
"""simple docstring"""
def _snake_case ( _snake_case : str ) -> str:
'''simple docstring'''
return " ".join(
''.join(word[::-1] ) if len(_snake_case ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words('''Hey wollef sroirraw'''))
| 7 | 1 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class lowercase_ ( metaclass=__lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = ['''transformers''', '''torch''', '''note_seq''']
def __init__( self : str , *_UpperCAmelCase : str , **_UpperCAmelCase : Optional[int] ):
requires_backends(self , ['transformers', 'torch', 'note_seq'] )
@classmethod
def lowerCAmelCase_ ( cls : Union[str, Any] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : int ):
requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
@classmethod
def lowerCAmelCase_ ( cls : Tuple , *_UpperCAmelCase : Any , **_UpperCAmelCase : Union[str, Any] ):
requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
| 7 |
"""simple docstring"""
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = (KDPMaDiscreteScheduler,)
UpperCAmelCase : Any = 10
def lowerCAmelCase_ ( self : Dict , **_UpperCAmelCase : Optional[Any] ):
_A = {
'num_train_timesteps': 1_100,
'beta_start': 0.0001,
'beta_end': 0.02,
'beta_schedule': 'linear',
}
config.update(**_UpperCAmelCase )
return config
def lowerCAmelCase_ ( self : Any ):
for timesteps in [10, 50, 100, 1_000]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict ):
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Tuple ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[int] ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config(prediction_type='v_prediction' )
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
_A = self.dummy_model()
_A = self.dummy_sample_deter * scheduler.init_noise_sigma
_A = sample.to(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = output.prev_sample
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.6_9_3_4E-0_7 ) < 1E-2
assert abs(result_mean.item() - 6.1_1_1_2E-1_0 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2E-0_7 ) < 1E-2
assert abs(result_mean.item() - 0.0002 ) < 1E-3
def lowerCAmelCase_ ( self : Optional[Any] ):
if torch_device == "mps":
return
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config()
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
_A = self.dummy_model()
_A = self.dummy_sample_deter * scheduler.init_noise_sigma
_A = sample.to(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = output.prev_sample
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
def lowerCAmelCase_ ( self : Any ):
if torch_device == "mps":
return
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config()
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase )
_A = self.dummy_model()
_A = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
_A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = output.prev_sample
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
if str(_UpperCAmelCase ).startswith('cpu' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
| 7 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = '''bert-generation'''
def __init__( self : Optional[int] , _UpperCAmelCase : Optional[int]=50_358 , _UpperCAmelCase : Optional[Any]=1_024 , _UpperCAmelCase : Optional[int]=24 , _UpperCAmelCase : int=16 , _UpperCAmelCase : List[Any]=4_096 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Optional[int]=1E-1_2 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : str=1 , _UpperCAmelCase : str="absolute" , _UpperCAmelCase : int=True , **_UpperCAmelCase : Union[str, Any] , ):
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
_A = vocab_size
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = hidden_act
_A = intermediate_size
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = initializer_range
_A = layer_norm_eps
_A = position_embedding_type
_A = use_cache
| 7 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any]=10 ) -> Optional[int]:
'''simple docstring'''
_A = []
for _ in range(_snake_case ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def _snake_case ( _snake_case : Optional[Any] , _snake_case : Union[str, Any]=10 ) -> List[str]:
'''simple docstring'''
_A = []
for step in range(_snake_case ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
_A = os.path.join(_snake_case , 'schedule.bin' )
torch.save(scheduler.state_dict() , _snake_case )
_A = torch.load(_snake_case )
scheduler.load_state_dict(_snake_case )
return lrs
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ):
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Any ):
_A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase )
_A = torch.tensor([0.4, 0.2, -0.5] )
_A = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_A = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
_A = criterion(_UpperCAmelCase , _UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def lowerCAmelCase_ ( self : int ):
_A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase )
_A = torch.tensor([0.4, 0.2, -0.5] )
_A = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_A = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-3_0, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_UpperCAmelCase , weight_decay=0.0 , relative_step=_UpperCAmelCase , scale_parameter=_UpperCAmelCase , warmup_init=_UpperCAmelCase , )
for _ in range(1_000 ):
_A = criterion(_UpperCAmelCase , _UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = nn.Linear(50 , 50 ) if is_torch_available() else None
UpperCAmelCase : Tuple = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None
UpperCAmelCase : Dict = 10
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]=None ):
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase , msg=_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] ):
_A = {'num_warmup_steps': 2, 'num_training_steps': 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
_A = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{'num_warmup_steps': 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, 'num_cycles': 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, 'power': 2.0, 'lr_end': 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{'num_warmup_steps': 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
_A , _A = data
_A = scheduler_func(self.optimizer , **_UpperCAmelCase )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
_A = unwrap_schedule(_UpperCAmelCase , self.num_steps )
self.assertListAlmostEqual(
_UpperCAmelCase , _UpperCAmelCase , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , )
_A = scheduler_func(self.optimizer , **_UpperCAmelCase )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(_UpperCAmelCase ) # wrap to test picklability of the schedule
_A = unwrap_and_save_reload_schedule(_UpperCAmelCase , self.num_steps )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase , msg=F'''failed for {scheduler_func} in save and reload''' )
class lowercase_ :
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int] ):
_A = fn
def __call__( self : Tuple , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : List[str] ):
return self.fn(*_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Any ):
_A = list(map(self , scheduler.lr_lambdas ) )
| 7 | 1 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowercase_ ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : str = ShapEPipeline
UpperCAmelCase : Union[str, Any] = ['''prompt''']
UpperCAmelCase : Union[str, Any] = ['''prompt''']
UpperCAmelCase : List[str] = [
'''num_images_per_prompt''',
'''num_inference_steps''',
'''generator''',
'''latents''',
'''guidance_scale''',
'''frame_size''',
'''output_type''',
'''return_dict''',
]
UpperCAmelCase : Optional[Any] = False
@property
def lowerCAmelCase_ ( self : Optional[int] ):
return 32
@property
def lowerCAmelCase_ ( self : Optional[Any] ):
return 32
@property
def lowerCAmelCase_ ( self : Union[str, Any] ):
return self.time_input_dim * 4
@property
def lowerCAmelCase_ ( self : str ):
return 8
@property
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
return tokenizer
@property
def lowerCAmelCase_ ( self : Union[str, Any] ):
torch.manual_seed(0 )
_A = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(_UpperCAmelCase )
@property
def lowerCAmelCase_ ( self : Optional[int] ):
torch.manual_seed(0 )
_A = {
'num_attention_heads': 2,
'attention_head_dim': 16,
'embedding_dim': self.time_input_dim,
'num_embeddings': 32,
'embedding_proj_dim': self.text_embedder_hidden_size,
'time_embed_dim': self.time_embed_dim,
'num_layers': 1,
'clip_embed_dim': self.time_input_dim * 2,
'additional_embeddings': 0,
'time_embed_act_fn': 'gelu',
'norm_in_type': 'layer',
'encoder_hid_proj_type': None,
'added_emb_type': None,
}
_A = PriorTransformer(**_UpperCAmelCase )
return model
@property
def lowerCAmelCase_ ( self : List[Any] ):
torch.manual_seed(0 )
_A = {
'param_shapes': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'd_latent': self.time_input_dim,
'd_hidden': self.renderer_dim,
'n_output': 12,
'background': (
0.1,
0.1,
0.1,
),
}
_A = ShapERenderer(**_UpperCAmelCase )
return model
def lowerCAmelCase_ ( self : List[Any] ):
_A = self.dummy_prior
_A = self.dummy_text_encoder
_A = self.dummy_tokenizer
_A = self.dummy_renderer
_A = HeunDiscreteScheduler(
beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , )
_A = {
'prior': prior,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'renderer': renderer,
'scheduler': scheduler,
}
return components
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]=0 ):
if str(_UpperCAmelCase ).startswith('mps' ):
_A = torch.manual_seed(_UpperCAmelCase )
else:
_A = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase )
_A = {
'prompt': 'horse',
'generator': generator,
'num_inference_steps': 1,
'frame_size': 32,
'output_type': 'np',
}
return inputs
def lowerCAmelCase_ ( self : int ):
_A = 'cpu'
_A = self.get_dummy_components()
_A = self.pipeline_class(**_UpperCAmelCase )
_A = pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
_A = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) )
_A = output.images[0]
_A = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
_A = np.array(
[
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCAmelCase_ ( self : List[Any] ):
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def lowerCAmelCase_ ( self : Tuple ):
_A = torch_device == 'cpu'
_A = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , )
def lowerCAmelCase_ ( self : str ):
_A = self.get_dummy_components()
_A = self.pipeline_class(**_UpperCAmelCase )
_A = pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
_A = 1
_A = 2
_A = self.get_dummy_inputs(_UpperCAmelCase )
for key in inputs.keys():
if key in self.batch_params:
_A = batch_size * [inputs[key]]
_A = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Tuple ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase_ ( self : Tuple ):
_A = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/shap_e/test_shap_e_np_out.npy' )
_A = ShapEPipeline.from_pretrained('openai/shap-e' )
_A = pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
_A = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 )
_A = pipe(
'a shark' , generator=_UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
| 7 |
"""simple docstring"""
import math
def _snake_case ( _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
if (
not isinstance(_snake_case , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('power_factor must be a valid float value between -1 and 1.' )
return apparent_power * power_factor
def _snake_case ( _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
if (
not isinstance(_snake_case , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('power_factor must be a valid float value between -1 and 1.' )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 | 1 |
"""simple docstring"""
import argparse
a = '''docs/source/_static/js/custom.js'''
def _snake_case ( _snake_case : Dict ) -> Any:
'''simple docstring'''
with open(_snake_case , encoding='utf-8' , newline='\n' ) as f:
_A = f.readlines()
_A = 0
# First let's put the right version
while not lines[index].startswith('const stableVersion =' ):
index += 1
_A = F'''const stableVersion = "v{version}"\n'''
# Then update the dictionary
while not lines[index].startswith('const versionMapping = {' ):
index += 1
# We go until the end
while not lines[index].startswith('}' ):
index += 1
# We add the new version at the end
lines[index - 1] += F''' "v{version}": "v{version}",\n'''
with open(_snake_case , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(_snake_case )
if __name__ == "__main__":
a = argparse.ArgumentParser()
parser.add_argument('''--version''', help='''Release version.''')
a = parser.parse_args()
update_custom_js(args.version)
| 7 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''',
'''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''',
'''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''',
'''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''',
'''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''',
'''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''',
'''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''',
'''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''',
'''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = '''xmod'''
def __init__( self : str , _UpperCAmelCase : Optional[Any]=30_522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Dict=3_072 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Any=1E-1_2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Tuple=("en_XX",) , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Optional[Any] , ):
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
_A = vocab_size
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = hidden_act
_A = intermediate_size
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = type_vocab_size
_A = initializer_range
_A = layer_norm_eps
_A = position_embedding_type
_A = use_cache
_A = classifier_dropout
_A = pre_norm
_A = adapter_reduction_factor
_A = adapter_layer_norm
_A = adapter_reuse_layer_norm
_A = ln_before_adapter
_A = list(_UpperCAmelCase )
_A = default_language
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
@property
def lowerCAmelCase_ ( self : Dict ):
if self.task == "multiple-choice":
_A = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_A = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 7 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
a = {
'''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''',
'''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''',
'''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''',
'''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''',
'''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''',
'''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''',
'''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''',
'''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : List[Any] = '''albert'''
def __init__( self : str , _UpperCAmelCase : Optional[int]=30_000 , _UpperCAmelCase : int=128 , _UpperCAmelCase : Dict=4_096 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Dict=1 , _UpperCAmelCase : Any=64 , _UpperCAmelCase : str=16_384 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Any="gelu_new" , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Optional[Any]=512 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : List[str]=1E-1_2 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : List[Any]="absolute" , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : int=3 , **_UpperCAmelCase : int , ):
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
_A = vocab_size
_A = embedding_size
_A = hidden_size
_A = num_hidden_layers
_A = num_hidden_groups
_A = num_attention_heads
_A = inner_group_num
_A = hidden_act
_A = intermediate_size
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = type_vocab_size
_A = initializer_range
_A = layer_norm_eps
_A = classifier_dropout_prob
_A = position_embedding_type
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
@property
def lowerCAmelCase_ ( self : str ):
if self.task == "multiple-choice":
_A = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_A = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] )
| 7 |
"""simple docstring"""
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
a = logging.get_logger(__name__)
a = {
'''tensor(bool)''': np.bool_,
'''tensor(int8)''': np.inta,
'''tensor(uint8)''': np.uinta,
'''tensor(int16)''': np.intaa,
'''tensor(uint16)''': np.uintaa,
'''tensor(int32)''': np.intaa,
'''tensor(uint32)''': np.uintaa,
'''tensor(int64)''': np.intaa,
'''tensor(uint64)''': np.uintaa,
'''tensor(float16)''': np.floataa,
'''tensor(float)''': np.floataa,
'''tensor(double)''': np.floataa,
}
class lowercase_ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : Optional[Any] ):
logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' )
_A = model
_A = kwargs.get('model_save_dir' , _UpperCAmelCase )
_A = kwargs.get('latest_model_name' , _UpperCAmelCase )
def __call__( self : Dict , **_UpperCAmelCase : List[Any] ):
_A = {k: np.array(_UpperCAmelCase ) for k, v in kwargs.items()}
return self.model.run(_UpperCAmelCase , _UpperCAmelCase )
@staticmethod
def lowerCAmelCase_ ( _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=None ):
if provider is None:
logger.info('No onnxruntime provider specified, using CPUExecutionProvider' )
_A = 'CPUExecutionProvider'
return ort.InferenceSession(_UpperCAmelCase , providers=[provider] , sess_options=_UpperCAmelCase )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : List[Any] ):
_A = file_name if file_name is not None else ONNX_WEIGHTS_NAME
_A = self.model_save_dir.joinpath(self.latest_model_name )
_A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase )
try:
shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase )
except shutil.SameFileError:
pass
# copy external weights (for models >2GB)
_A = self.model_save_dir.joinpath(_UpperCAmelCase )
if src_path.exists():
_A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase )
try:
shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase )
except shutil.SameFileError:
pass
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] , ):
if os.path.isfile(_UpperCAmelCase ):
logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' )
return
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase )
# saving model weights/files
self._save_pretrained(_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( cls : Tuple , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[Union[bool, str, None]] = None , _UpperCAmelCase : Optional[Union[str, None]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional["ort.SessionOptions"] = None , **_UpperCAmelCase : Union[str, Any] , ):
_A = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(_UpperCAmelCase ):
_A = OnnxRuntimeModel.load_model(
os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase )
_A = Path(_UpperCAmelCase )
# load model from hub
else:
# download model
_A = hf_hub_download(
repo_id=_UpperCAmelCase , filename=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , )
_A = Path(_UpperCAmelCase ).parent
_A = Path(_UpperCAmelCase ).name
_A = OnnxRuntimeModel.load_model(_UpperCAmelCase , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase )
return cls(model=_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( cls : List[Any] , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : Tuple , ):
_A = None
if len(str(_UpperCAmelCase ).split('@' ) ) == 2:
_A , _A = model_id.split('@' )
return cls._from_pretrained(
model_id=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , **_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = StableUnCLIPPipeline
UpperCAmelCase : List[Any] = TEXT_TO_IMAGE_PARAMS
UpperCAmelCase : int = TEXT_TO_IMAGE_BATCH_PARAMS
UpperCAmelCase : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
UpperCAmelCase : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
UpperCAmelCase : Dict = False
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = 32
_A = embedder_hidden_size
# prior components
torch.manual_seed(0 )
_A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
torch.manual_seed(0 )
_A = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_UpperCAmelCase , projection_dim=_UpperCAmelCase , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) )
torch.manual_seed(0 )
_A = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_UpperCAmelCase , num_layers=1 , )
torch.manual_seed(0 )
_A = DDPMScheduler(
variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1_000 , clip_sample=_UpperCAmelCase , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , )
# regular denoising components
torch.manual_seed(0 )
_A = StableUnCLIPImageNormalizer(embedding_dim=_UpperCAmelCase )
_A = DDPMScheduler(beta_schedule='squaredcos_cap_v2' )
torch.manual_seed(0 )
_A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
torch.manual_seed(0 )
_A = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_UpperCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) )
torch.manual_seed(0 )
_A = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_UpperCAmelCase , layers_per_block=1 , upcast_attention=_UpperCAmelCase , use_linear_projection=_UpperCAmelCase , )
torch.manual_seed(0 )
_A = DDIMScheduler(
beta_schedule='scaled_linear' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=_UpperCAmelCase , steps_offset=1 , )
torch.manual_seed(0 )
_A = AutoencoderKL()
_A = {
# prior components
'prior_tokenizer': prior_tokenizer,
'prior_text_encoder': prior_text_encoder,
'prior': prior,
'prior_scheduler': prior_scheduler,
# image noising components
'image_normalizer': image_normalizer,
'image_noising_scheduler': image_noising_scheduler,
# regular denoising components
'tokenizer': tokenizer,
'text_encoder': text_encoder,
'unet': unet,
'scheduler': scheduler,
'vae': vae,
}
return components
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any]=0 ):
if str(_UpperCAmelCase ).startswith('mps' ):
_A = torch.manual_seed(_UpperCAmelCase )
else:
_A = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase )
_A = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'prior_num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def lowerCAmelCase_ ( self : str ):
_A = torch_device == 'cpu'
self._test_attention_slicing_forward_pass(test_max_difference=_UpperCAmelCase )
def lowerCAmelCase_ ( self : str ):
_A = torch_device in ['cpu', 'mps']
self._test_inference_batch_single_identical(test_max_difference=_UpperCAmelCase )
@slow
@require_torch_gpu
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Optional[Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase_ ( self : Dict ):
_A = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' )
_A = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa )
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_A = torch.Generator(device='cpu' ).manual_seed(0 )
_A = pipe('anime turle' , generator=_UpperCAmelCase , output_type='np' )
_A = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
def lowerCAmelCase_ ( self : Tuple ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_A = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa )
_A = pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_A = pipe(
'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , )
_A = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json'''
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : str = '''speech_to_text'''
UpperCAmelCase : List[Any] = ['''past_key_values''']
UpperCAmelCase : Tuple = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self : int , _UpperCAmelCase : Union[str, Any]=10_000 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2_048 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Tuple=2_048 , _UpperCAmelCase : str=4 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]="relu" , _UpperCAmelCase : List[Any]=256 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : List[str]=6_000 , _UpperCAmelCase : Optional[Any]=1_024 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Any=(5, 5) , _UpperCAmelCase : int=1_024 , _UpperCAmelCase : str=80 , _UpperCAmelCase : Any=1 , **_UpperCAmelCase : Tuple , ):
_A = vocab_size
_A = d_model
_A = encoder_ffn_dim
_A = encoder_layers
_A = encoder_attention_heads
_A = decoder_ffn_dim
_A = decoder_layers
_A = decoder_attention_heads
_A = dropout
_A = attention_dropout
_A = activation_dropout
_A = activation_function
_A = init_std
_A = encoder_layerdrop
_A = decoder_layerdrop
_A = use_cache
_A = encoder_layers
_A = scale_embedding # scale factor will be sqrt(d_model) if True
_A = max_source_positions
_A = max_target_positions
_A = num_conv_layers
_A = list(_UpperCAmelCase )
_A = conv_channels
_A = input_feat_per_channel
_A = input_channels
if len(self.conv_kernel_sizes ) != self.num_conv_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` '
F'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, '''
F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
# python ./utils/get_modified_files.py utils src tests examples
#
# it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
# since the output of this script is fed into Makefile commands it doesn't print a newline after the results
import re
import subprocess
import sys
a = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''')
a = (
subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode('''utf-8''').split()
)
a = '''|'''.join(sys.argv[1:])
a = re.compile(rF'''^({joined_dirs}).*?\.py$''')
a = [x for x in modified_files if regex.match(x)]
print(''' '''.join(relevant_modified_files), end='''''')
| 7 |
"""simple docstring"""
from manim import *
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = Rectangle(height=0.5 , width=0.5 )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_A = Rectangle(height=0.25 , width=0.25 )
_A = [mem.copy() for i in range(6 )]
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('CPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(4 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('GPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
gpu.move_to([-1, -1, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Model' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
model.move_to([3, -1.0, 0] )
self.add(_UpperCAmelCase )
_A = []
_A = []
for i, rect in enumerate(_UpperCAmelCase ):
_A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 )
target.move_to(_UpperCAmelCase )
model_arr.append(_UpperCAmelCase )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(_UpperCAmelCase )
self.add(*_UpperCAmelCase , *_UpperCAmelCase )
_A = [meta_mem.copy() for i in range(6 )]
_A = [meta_mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Disk' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
disk.move_to([-4, -1.25, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_A = MarkupText(
F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = MarkupText(
F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , )
blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(_UpperCAmelCase )
_A = MarkupText(
F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase ) )
_A = Square(0.3 )
input.set_fill(_UpperCAmelCase , opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 )
self.play(Write(_UpperCAmelCase ) )
input.generate_target()
input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 )
self.play(MoveToTarget(_UpperCAmelCase ) )
self.play(FadeOut(_UpperCAmelCase ) )
_A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 )
a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
_A = MarkupText(
F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) )
_A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02}
self.play(
Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[0] ) )
_A = a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
_A = AnimationGroup(
FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 )
self.play(_UpperCAmelCase )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
_A = 0.7
self.play(
Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , )
else:
self.play(
MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , )
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 )
self.play(
Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[i] ) )
_A = a_c
_A = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 )
self.play(
FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , )
_A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) )
self.wait()
| 7 | 1 |
"""simple docstring"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : str = '''mvp'''
UpperCAmelCase : Union[str, Any] = ['''past_key_values''']
UpperCAmelCase : int = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any]=50_267 , _UpperCAmelCase : Optional[Any]=1_024 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Tuple=4_096 , _UpperCAmelCase : int=16 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : str=4_096 , _UpperCAmelCase : str=16 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : int=1_024 , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=1 , _UpperCAmelCase : Optional[int]=0 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : List[Any]=100 , _UpperCAmelCase : int=800 , **_UpperCAmelCase : Any , ):
_A = vocab_size
_A = max_position_embeddings
_A = d_model
_A = encoder_ffn_dim
_A = encoder_layers
_A = encoder_attention_heads
_A = decoder_ffn_dim
_A = decoder_layers
_A = decoder_attention_heads
_A = dropout
_A = attention_dropout
_A = activation_dropout
_A = activation_function
_A = init_std
_A = encoder_layerdrop
_A = decoder_layerdrop
_A = classifier_dropout
_A = use_cache
_A = encoder_layers
_A = scale_embedding # scale factor will be sqrt(d_model) if True
_A = use_prompt
_A = prompt_length
_A = prompt_mid_dim
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , forced_eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , _UpperCAmelCase ):
_A = self.bos_token_id
warnings.warn(
F'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '''
'The config can simply be saved and uploaded again to be fixed.' )
| 7 |
"""simple docstring"""
def _snake_case ( _snake_case : int , _snake_case : int ) -> int:
'''simple docstring'''
return int((input_a, input_a).count(1 ) != 0 )
def _snake_case ( ) -> None:
'''simple docstring'''
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 7 | 1 |
"""simple docstring"""
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''vocab_file''': '''vocab.json''',
'''merges_file''': '''merges.txt''',
'''tokenizer_config_file''': '''tokenizer_config.json''',
}
a = {
'''vocab_file''': {
'''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json'''
},
'''merges_file''': {
'''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt'''
},
'''tokenizer_config_file''': {
'''facebook/blenderbot_small-90M''': (
'''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json'''
)
},
}
a = {'''facebook/blenderbot_small-90M''': 512}
def _snake_case ( _snake_case : List[str] ) -> Union[str, Any]:
'''simple docstring'''
_A = set()
_A = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_A = char
_A = set(_snake_case )
return pairs
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = VOCAB_FILES_NAMES
UpperCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase : List[Any] = ['''input_ids''', '''attention_mask''']
def __init__( self : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Tuple="__start__" , _UpperCAmelCase : int="__end__" , _UpperCAmelCase : Optional[Any]="__unk__" , _UpperCAmelCase : List[str]="__null__" , **_UpperCAmelCase : str , ):
super().__init__(unk_token=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , **_UpperCAmelCase )
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
_A = json.load(_UpperCAmelCase )
_A = {v: k for k, v in self.encoder.items()}
with open(_UpperCAmelCase , encoding='utf-8' ) as merges_handle:
_A = merges_handle.read().split('\n' )[1:-1]
_A = [tuple(merge.split() ) for merge in merges]
_A = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
_A = {}
@property
def lowerCAmelCase_ ( self : Optional[Any] ):
return len(self.encoder )
def lowerCAmelCase_ ( self : Union[str, Any] ):
return dict(self.encoder , **self.added_tokens_encoder )
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : str ):
if token in self.cache:
return self.cache[token]
_A = re.sub('([.,!?()])' , r' \1' , _UpperCAmelCase )
_A = re.sub('(\')' , r' \1 ' , _UpperCAmelCase )
_A = re.sub(r'\s{2,}' , ' ' , _UpperCAmelCase )
if "\n" in token:
_A = token.replace('\n' , ' __newln__' )
_A = token.split(' ' )
_A = []
for token in tokens:
if not len(_UpperCAmelCase ):
continue
_A = token.lower()
_A = tuple(_UpperCAmelCase )
_A = tuple(list(word[:-1] ) + [word[-1] + '</w>'] )
_A = get_pairs(_UpperCAmelCase )
if not pairs:
words.append(_UpperCAmelCase )
continue
while True:
_A = min(_UpperCAmelCase , key=lambda _UpperCAmelCase : self.bpe_ranks.get(_UpperCAmelCase , float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
_A , _A = bigram
_A = []
_A = 0
while i < len(_UpperCAmelCase ):
try:
_A = word.index(_UpperCAmelCase , _UpperCAmelCase )
new_word.extend(word[i:j] )
_A = j
except ValueError:
new_word.extend(word[i:] )
break
if word[i] == first and i < len(_UpperCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_A = tuple(_UpperCAmelCase )
_A = new_word
if len(_UpperCAmelCase ) == 1:
break
else:
_A = get_pairs(_UpperCAmelCase )
_A = '@@ '.join(_UpperCAmelCase )
_A = word[:-4]
_A = word
words.append(_UpperCAmelCase )
return " ".join(_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : str ):
_A = []
_A = re.findall(r'\S+\n?' , _UpperCAmelCase )
for token in words:
split_tokens.extend(list(self.bpe(_UpperCAmelCase ).split(' ' ) ) )
return split_tokens
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : str ):
_A = token.lower()
return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token ) )
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : int ):
return self.decoder.get(_UpperCAmelCase , self.unk_token )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : List[str] ):
_A = ' '.join(_UpperCAmelCase ).replace('@@ ' , '' ).strip()
return out_string
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ):
if not os.path.isdir(_UpperCAmelCase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
_A = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
_A = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) + '\n' )
_A = 0
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
' Please check that the tokenizer is not corrupted!' )
_A = token_index
writer.write(' '.join(_UpperCAmelCase ) + '\n' )
index += 1
return vocab_file, merge_file
| 7 |
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
a = logging.getLogger(__name__)
@dataclass
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[float] = field(
default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} )
UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''Whether to SortishSamler or not.'''} )
UpperCAmelCase : bool = field(
default=__lowerCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} )
UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''whether to use adafactor'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(default=__lowerCAmelCase , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[str] = field(
default='''linear''' , metadata={'''help''': f'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
| 7 | 1 |
"""simple docstring"""
def _snake_case ( _snake_case : int ) -> bool:
'''simple docstring'''
_A = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(27))
print(perfect_cube(4))
| 7 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ..utils import _LazyModule
a = {
'''config''': [
'''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''',
'''OnnxConfig''',
'''OnnxConfigWithPast''',
'''OnnxSeq2SeqConfigWithPast''',
'''PatchingSpec''',
],
'''convert''': ['''export''', '''validate_model_outputs'''],
'''features''': ['''FeaturesManager'''],
'''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 7 | 1 |
"""simple docstring"""
import math
def _snake_case ( _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
if (
not isinstance(_snake_case , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('power_factor must be a valid float value between -1 and 1.' )
return apparent_power * power_factor
def _snake_case ( _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
if (
not isinstance(_snake_case , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('power_factor must be a valid float value between -1 and 1.' )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import KarrasVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : UNetaDModel
UpperCAmelCase : KarrasVeScheduler
def __init__( self : Any , _UpperCAmelCase : UNetaDModel , _UpperCAmelCase : KarrasVeScheduler ):
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase )
@torch.no_grad()
def __call__( self : Optional[int] , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Optional[Any] , ):
_A = self.unet.config.sample_size
_A = (batch_size, 3, img_size, img_size)
_A = self.unet
# sample x_0 ~ N(0, sigma_0^2 * I)
_A = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device ) * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(_UpperCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# here sigma_t == t_i from the paper
_A = self.scheduler.schedule[t]
_A = self.scheduler.schedule[t - 1] if t > 0 else 0
# 1. Select temporarily increased noise level sigma_hat
# 2. Add new noise to move from sample_i to sample_hat
_A , _A = self.scheduler.add_noise_to_input(_UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase )
# 3. Predict the noise residual given the noise magnitude `sigma_hat`
# The model inputs and output are adjusted by following eq. (213) in [1].
_A = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample
# 4. Evaluate dx/dt at sigma_hat
# 5. Take Euler step from sigma to sigma_prev
_A = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if sigma_prev != 0:
# 6. Apply 2nd order correction
# The model inputs and output are adjusted by following eq. (213) in [1].
_A = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample
_A = self.scheduler.step_correct(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , step_output.prev_sample , step_output['derivative'] , )
_A = step_output.prev_sample
_A = (sample / 2 + 0.5).clamp(0 , 1 )
_A = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_A = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_UpperCAmelCase )
| 7 | 1 |
"""simple docstring"""
import unittest
from transformers import XLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class lowercase_ :
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any]=13 , _UpperCAmelCase : List[Any]=7 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : str=False , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : List[Any]=99 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : List[Any]=5 , _UpperCAmelCase : str=4 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Any=0.02 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[Any]="last" , _UpperCAmelCase : Any=True , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : List[str]=0 , ):
_A = parent
_A = batch_size
_A = seq_length
_A = is_training
_A = use_input_lengths
_A = use_token_type_ids
_A = use_labels
_A = gelu_activation
_A = sinusoidal_embeddings
_A = causal
_A = asm
_A = n_langs
_A = vocab_size
_A = n_special
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = type_sequence_label_size
_A = initializer_range
_A = num_labels
_A = num_choices
_A = summary_type
_A = use_proj
_A = scope
_A = bos_token_id
def lowerCAmelCase_ ( self : str ):
_A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_A = random_attention_mask([self.batch_size, self.seq_length] )
_A = None
if self.use_input_lengths:
_A = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
_A = None
if self.use_token_type_ids:
_A = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
_A = None
_A = None
_A = None
if self.use_labels:
_A = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_A = ids_tensor([self.batch_size] , 2 ).float()
_A = ids_tensor([self.batch_size] , self.num_choices )
_A = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def lowerCAmelCase_ ( self : Tuple ):
return XLMConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , ):
_A = XLMModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase )
_A = model(_UpperCAmelCase , langs=_UpperCAmelCase )
_A = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , ):
_A = XLMWithLMHeadModel(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , ):
_A = XLMForQuestionAnsweringSimple(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase )
_A = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase )
_A = outputs
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , ):
_A = XLMForQuestionAnswering(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase )
_A = model(
_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , )
_A = model(
_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , )
((_A) , ) = result_with_labels.to_tuple()
_A = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase )
((_A) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , ):
_A = XLMForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase )
_A = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCAmelCase_ ( self : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , ):
_A = self.num_labels
_A = XLMForTokenClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , ):
_A = self.num_choices
_A = XLMForMultipleChoice(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_A = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCAmelCase_ ( self : List[Any] ):
_A = self.prepare_config_and_inputs()
(
(
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) ,
) = config_and_inputs
_A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths}
return config, inputs_dict
@require_torch
class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = (
(
XLMModel,
XLMWithLMHeadModel,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMForQuestionAnsweringSimple,
XLMForTokenClassification,
XLMForMultipleChoice,
)
if is_torch_available()
else ()
)
UpperCAmelCase : List[str] = (
(XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
UpperCAmelCase : Optional[int] = (
{
'''feature-extraction''': XLMModel,
'''fill-mask''': XLMWithLMHeadModel,
'''question-answering''': XLMForQuestionAnsweringSimple,
'''text-classification''': XLMForSequenceClassification,
'''text-generation''': XLMWithLMHeadModel,
'''token-classification''': XLMForTokenClassification,
'''zero-shot''': XLMForSequenceClassification,
}
if is_torch_available()
else {}
)
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ):
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith('Fast' )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any]=False ):
_A = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase )
if return_labels:
if model_class.__name__ == "XLMForQuestionAnswering":
_A = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
_A = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
return inputs_dict
def lowerCAmelCase_ ( self : Tuple ):
_A = XLMModelTester(self )
_A = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 )
def lowerCAmelCase_ ( self : List[Any] ):
self.config_tester.run_common_tests()
def lowerCAmelCase_ ( self : List[Any] ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[str] ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : Any ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_simple_qa(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_token_classif(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_for_multiple_choice(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : int=1 ):
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
self.assertListEqual(
[isinstance(_UpperCAmelCase , _UpperCAmelCase ) for iter_attentions in attentions] , [True] * len(_UpperCAmelCase ) )
self.assertEqual(len(_UpperCAmelCase ) , (max_length - min_length) * num_beam_groups )
for idx, iter_attentions in enumerate(_UpperCAmelCase ):
# adds PAD dummy token
_A = min_length + idx + 1
_A = min_length + idx + 1
_A = (
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Optional[int]=1 ):
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
self.assertListEqual(
[isinstance(_UpperCAmelCase , _UpperCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(_UpperCAmelCase ) , )
self.assertEqual(len(_UpperCAmelCase ) , (max_length - min_length) * num_beam_groups )
for idx, iter_hidden_states in enumerate(_UpperCAmelCase ):
# adds PAD dummy token
_A = min_length + idx + 1
_A = (batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_UpperCAmelCase ) , )
pass
@slow
def lowerCAmelCase_ ( self : Dict ):
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A = XLMModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def lowerCAmelCase_ ( self : str ):
_A = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' )
model.to(_UpperCAmelCase )
_A = torch.tensor([[14, 447]] , dtype=torch.long , device=_UpperCAmelCase ) # the president
_A = [
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
] # the president the president the president the president the president the president the president the president the president the president
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
_A = model.generate(_UpperCAmelCase , do_sample=_UpperCAmelCase )
self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _UpperCAmelCase )
| 7 |
"""simple docstring"""
class lowercase_ :
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ):
_A = None
_A = None
_A = graph
self._normalize_graph(_UpperCAmelCase , _UpperCAmelCase )
_A = len(_UpperCAmelCase )
_A = None
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ):
if sources is int:
_A = [sources]
if sinks is int:
_A = [sinks]
if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) == 0:
return
_A = sources[0]
_A = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(_UpperCAmelCase ) > 1 or len(_UpperCAmelCase ) > 1:
_A = 0
for i in sources:
max_input_flow += sum(self.graph[i] )
_A = len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
_A = max_input_flow
_A = 0
_A = len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
_A = max_input_flow
_A = size - 1
def lowerCAmelCase_ ( self : Optional[Any] ):
if self.maximum_flow_algorithm is None:
raise Exception('You need to set maximum flow algorithm before.' )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Union[str, Any] ):
_A = algorithm(self )
class lowercase_ :
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : Union[str, Any] ):
_A = flow_network
_A = flow_network.verticesCount
_A = flow_network.sourceIndex
_A = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
_A = flow_network.graph
_A = False
def lowerCAmelCase_ ( self : Optional[Any] ):
if not self.executed:
self._algorithm()
_A = True
def lowerCAmelCase_ ( self : int ):
pass
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : int , _UpperCAmelCase : Any ):
super().__init__(_UpperCAmelCase )
# use this to save your result
_A = -1
def lowerCAmelCase_ ( self : Optional[Any] ):
if not self.executed:
raise Exception('You should execute algorithm before using its result!' )
return self.maximum_flow
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : List[Any] ):
super().__init__(_UpperCAmelCase )
_A = [[0] * self.verticies_count for i in range(self.verticies_count )]
_A = [0] * self.verticies_count
_A = [0] * self.verticies_count
def lowerCAmelCase_ ( self : Dict ):
_A = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
_A = [
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
_A = 0
while i < len(_UpperCAmelCase ):
_A = vertices_list[i]
_A = self.heights[vertex_index]
self.process_vertex(_UpperCAmelCase )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(_UpperCAmelCase ) )
_A = 0
else:
i += 1
_A = sum(self.preflow[self.source_index] )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Any ):
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(_UpperCAmelCase , _UpperCAmelCase )
self.relabel(_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ):
_A = min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : int ):
_A = None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
_A = self.heights[to_index]
if min_height is not None:
_A = min_height + 1
if __name__ == "__main__":
a = [0]
a = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
a = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
a = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
a = flow_network.find_maximum_flow()
print(F'''maximum flow is {maximum_flow}''')
| 7 | 1 |
"""simple docstring"""
import math
import os
import unittest
from transformers import MegatronBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
)
class lowercase_ :
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any=13 , _UpperCAmelCase : Union[str, Any]=7 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : int=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=99 , _UpperCAmelCase : Any=64 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : int=37 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : List[Any]=512 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : Tuple=None , ):
_A = parent
_A = batch_size
_A = seq_length
_A = is_training
_A = use_input_mask
_A = use_token_type_ids
_A = use_labels
_A = vocab_size
_A = hidden_size
_A = embedding_size
_A = num_hidden_layers
_A = num_attention_heads
_A = intermediate_size
_A = hidden_act
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = type_vocab_size
_A = type_sequence_label_size
_A = initializer_range
_A = num_labels
_A = num_choices
_A = scope
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_A = None
if self.use_input_mask:
_A = random_attention_mask([self.batch_size, self.seq_length] )
_A = None
if self.use_token_type_ids:
_A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_A = None
_A = None
_A = None
if self.use_labels:
_A = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_A = ids_tensor([self.batch_size] , self.num_choices )
_A = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase_ ( self : Dict ):
return MegatronBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , )
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ):
_A = MegatronBertModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
_A = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
_A = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] ):
_A = MegatronBertForMaskedLM(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ):
_A = MegatronBertForCausalLM(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Any ):
_A = MegatronBertForNextSentencePrediction(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict ):
_A = MegatronBertForPreTraining(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , next_sentence_label=_UpperCAmelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : List[str] ):
_A = MegatronBertForQuestionAnswering(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str ):
_A = self.num_labels
_A = MegatronBertForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ):
_A = self.num_labels
_A = MegatronBertForTokenClassification(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any ):
_A = self.num_choices
_A = MegatronBertForMultipleChoice(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_A = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCAmelCase_ ( self : Any ):
_A = self.prepare_config_and_inputs()
(
(
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) ,
) = config_and_inputs
_A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : Tuple = (
(
MegatronBertModel,
MegatronBertForMaskedLM,
MegatronBertForCausalLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
)
if is_torch_available()
else ()
)
UpperCAmelCase : Optional[int] = (
{
'''feature-extraction''': MegatronBertModel,
'''fill-mask''': MegatronBertForMaskedLM,
'''question-answering''': MegatronBertForQuestionAnswering,
'''text-classification''': MegatronBertForSequenceClassification,
'''text-generation''': MegatronBertForCausalLM,
'''token-classification''': MegatronBertForTokenClassification,
'''zero-shot''': MegatronBertForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCAmelCase : int = True
# test_resize_embeddings = False
UpperCAmelCase : str = False
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any]=False ):
_A = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase )
if return_labels:
if model_class in get_values(_UpperCAmelCase ):
_A = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase )
_A = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
return inputs_dict
def lowerCAmelCase_ ( self : Any ):
_A = MegatronBertModelTester(self )
_A = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def lowerCAmelCase_ ( self : Optional[int] ):
self.config_tester.run_common_tests()
def lowerCAmelCase_ ( self : Dict ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_model(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_masked_lm(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : Tuple ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[str] ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_pretraining(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[str] ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_question_answering(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_token_classification(*_UpperCAmelCase )
def _snake_case ( _snake_case : Any ) -> List[Any]:
'''simple docstring'''
return torch.tensor(
_snake_case , dtype=torch.long , device=_snake_case , )
a = 1e-4
@require_torch
@require_sentencepiece
@require_tokenizers
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
@unittest.skip('Model is not available.' )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = 'nvidia/megatron-bert-uncased-345m'
if "MYDIR" in os.environ:
_A = os.path.join(os.environ['MYDIR'] , _UpperCAmelCase )
_A = MegatronBertModel.from_pretrained(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.half()
_A = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] )
with torch.no_grad():
_A = model(_UpperCAmelCase )[0]
_A = torch.Size((1, 9, 1_024) )
self.assertEqual(output.shape , _UpperCAmelCase )
_A = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728]
for ii in range(3 ):
for jj in range(3 ):
_A = output[0, ii, jj]
_A = expected[3 * ii + jj]
_A = 'ii={} jj={} a={} b={}'.format(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
self.assertTrue(math.isclose(_UpperCAmelCase , _UpperCAmelCase , rel_tol=_UpperCAmelCase , abs_tol=_UpperCAmelCase ) , msg=_UpperCAmelCase )
| 7 |
"""simple docstring"""
import unittest
from transformers import SPIECE_UNDERLINE
from transformers.models.speechta import SpeechTaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.tokenization_utils import AddedToken
from ...test_tokenization_common import TokenizerTesterMixin
a = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''')
@require_sentencepiece
@require_tokenizers
class lowercase_ ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = SpeechTaTokenizer
UpperCAmelCase : Tuple = False
UpperCAmelCase : Optional[int] = True
def lowerCAmelCase_ ( self : Tuple ):
super().setUp()
# We have a SentencePiece fixture for testing
_A = SpeechTaTokenizer(_UpperCAmelCase )
_A = AddedToken('<mask>' , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase )
_A = mask_token
tokenizer.add_special_tokens({'mask_token': mask_token} )
tokenizer.add_tokens(['<ctc_blank>'] )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Tuple ):
_A = 'this is a test'
_A = 'this is a test'
return input_text, output_text
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict=20 , _UpperCAmelCase : str=5 ):
_A , _A = self.get_input_output_texts(_UpperCAmelCase )
_A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
_A = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase )
return text, ids
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = '<pad>'
_A = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-4] , 'œ' )
self.assertEqual(vocab_keys[-2] , '<mask>' )
self.assertEqual(vocab_keys[-1] , '<ctc_blank>' )
self.assertEqual(len(_UpperCAmelCase ) , 81 )
def lowerCAmelCase_ ( self : Optional[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 79 )
def lowerCAmelCase_ ( self : Any ):
_A = self.get_tokenizers(do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
_A = ['aaaaa bbbbbb', 'cccccccccdddddddd']
_A = tokenizer.add_tokens(_UpperCAmelCase )
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) )
self.assertEqual(_UpperCAmelCase , all_size + len(_UpperCAmelCase ) )
_A = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=_UpperCAmelCase )
self.assertGreaterEqual(len(_UpperCAmelCase ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
_A = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'}
_A = tokenizer.add_special_tokens(_UpperCAmelCase )
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) )
self.assertEqual(_UpperCAmelCase , all_size_a + len(_UpperCAmelCase ) )
_A = tokenizer.encode(
'>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=_UpperCAmelCase )
self.assertGreaterEqual(len(_UpperCAmelCase ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
def lowerCAmelCase_ ( self : str ):
pass
def lowerCAmelCase_ ( self : Any ):
pass
def lowerCAmelCase_ ( self : Dict ):
_A = self.get_tokenizer()
_A = tokenizer.tokenize('This is a test' )
# fmt: off
self.assertListEqual(_UpperCAmelCase , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] )
# fmt: on
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , )
_A = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
_A = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
# fmt: off
self.assertListEqual(_UpperCAmelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] )
# fmt: on
_A = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
@slow
def lowerCAmelCase_ ( self : List[Any] ):
# Use custom sequence because this tokenizer does not handle numbers.
_A = [
'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides '
'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural '
'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained '
'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.',
'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly '
'conditioning on both left and right context in all layers.',
'The quick brown fox jumps over the lazy dog.',
]
# fmt: off
_A = {
'input_ids': [
[4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2],
[4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
],
'attention_mask': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''',
'''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''',
'''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''',
'''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''',
'''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = '''rwkv'''
UpperCAmelCase : Tuple = {'''max_position_embeddings''': '''context_length'''}
def __init__( self : Dict , _UpperCAmelCase : Union[str, Any]=50_277 , _UpperCAmelCase : Tuple=1_024 , _UpperCAmelCase : Dict=4_096 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : int=None , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : Union[str, Any]=6 , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Any=True , **_UpperCAmelCase : Optional[int] , ):
_A = vocab_size
_A = context_length
_A = hidden_size
_A = num_hidden_layers
_A = attention_hidden_size if attention_hidden_size is not None else hidden_size
_A = intermediate_size if intermediate_size is not None else 4 * hidden_size
_A = layer_norm_epsilon
_A = rescale_every
_A = use_cache
_A = bos_token_id
_A = eos_token_id
super().__init__(
tie_word_embeddings=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
| 7 |
"""simple docstring"""
from .configuration_bert_masked import MaskedBertConfig
from .modeling_bert_masked import (
MaskedBertForMultipleChoice,
MaskedBertForQuestionAnswering,
MaskedBertForSequenceClassification,
MaskedBertForTokenClassification,
MaskedBertModel,
)
from .modules import *
| 7 | 1 |
"""simple docstring"""
from collections import Counter
from pathlib import Path
from typing import Optional, Tuple
import yaml
class lowercase_ ( yaml.SafeLoader ):
'''simple docstring'''
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : List[Any] ):
_A = [self.constructed_objects[key_node] for key_node, _ in node.value]
_A = [tuple(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else key for key in keys]
_A = Counter(_UpperCAmelCase )
_A = [key for key in counter if counter[key] > 1]
if duplicate_keys:
raise TypeError(F'''Got duplicate yaml keys: {duplicate_keys}''' )
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=False ):
_A = super().construct_mapping(_UpperCAmelCase , deep=_UpperCAmelCase )
self._check_no_duplicates_on_constructed_node(_UpperCAmelCase )
return mapping
def _snake_case ( _snake_case : str ) -> Tuple[Optional[str], str]:
'''simple docstring'''
_A = list(readme_content.splitlines() )
if full_content and full_content[0] == "---" and "---" in full_content[1:]:
_A = full_content[1:].index('---' ) + 1
_A = '\n'.join(full_content[1:sep_idx] )
return yamlblock, "\n".join(full_content[sep_idx + 1 :] )
return None, "\n".join(_snake_case )
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
# class attributes
UpperCAmelCase : Union[str, Any] = {'''train_eval_index'''} # train-eval-index in the YAML metadata
@classmethod
def lowerCAmelCase_ ( cls : int , _UpperCAmelCase : Path ):
with open(_UpperCAmelCase , encoding='utf-8' ) as readme_file:
_A , _A = _split_yaml_from_readme(readme_file.read() )
if yaml_string is not None:
return cls.from_yaml_string(_UpperCAmelCase )
else:
return cls()
def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Path ):
if path.exists():
with open(_UpperCAmelCase , encoding='utf-8' ) as readme_file:
_A = readme_file.read()
else:
_A = None
_A = self._to_readme(_UpperCAmelCase )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as readme_file:
readme_file.write(_UpperCAmelCase )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Optional[str] = None ):
if readme_content is not None:
_A , _A = _split_yaml_from_readme(_UpperCAmelCase )
_A = '---\n' + self.to_yaml_string() + '---\n' + content
else:
_A = '---\n' + self.to_yaml_string() + '---\n'
return full_content
@classmethod
def lowerCAmelCase_ ( cls : List[str] , _UpperCAmelCase : str ):
_A = yaml.load(_UpperCAmelCase , Loader=_NoDuplicateSafeLoader ) or {}
# Convert the YAML keys to DatasetMetadata fields
_A = {
(key.replace('-' , '_' ) if key.replace('-' , '_' ) in cls._FIELDS_WITH_DASHES else key): value
for key, value in metadata_dict.items()
}
return cls(**_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict ):
return yaml.safe_dump(
{
(key.replace('_' , '-' ) if key in self._FIELDS_WITH_DASHES else key): value
for key, value in self.items()
} , sort_keys=_UpperCAmelCase , allow_unicode=_UpperCAmelCase , encoding='utf-8' , ).decode('utf-8' )
a = {
'''image-classification''': [],
'''translation''': [],
'''image-segmentation''': [],
'''fill-mask''': [],
'''automatic-speech-recognition''': [],
'''token-classification''': [],
'''sentence-similarity''': [],
'''audio-classification''': [],
'''question-answering''': [],
'''summarization''': [],
'''zero-shot-classification''': [],
'''table-to-text''': [],
'''feature-extraction''': [],
'''other''': [],
'''multiple-choice''': [],
'''text-classification''': [],
'''text-to-image''': [],
'''text2text-generation''': [],
'''zero-shot-image-classification''': [],
'''tabular-classification''': [],
'''tabular-regression''': [],
'''image-to-image''': [],
'''tabular-to-text''': [],
'''unconditional-image-generation''': [],
'''text-retrieval''': [],
'''text-to-speech''': [],
'''object-detection''': [],
'''audio-to-audio''': [],
'''text-generation''': [],
'''conversational''': [],
'''table-question-answering''': [],
'''visual-question-answering''': [],
'''image-to-text''': [],
'''reinforcement-learning''': [],
'''voice-activity-detection''': [],
'''time-series-forecasting''': [],
'''document-question-answering''': [],
}
if __name__ == "__main__":
from argparse import ArgumentParser
a = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''')
ap.add_argument('''readme_filepath''')
a = ap.parse_args()
a = Path(args.readme_filepath)
a = DatasetMetadata.from_readme(readme_filepath)
print(dataset_metadata)
dataset_metadata.to_readme(readme_filepath)
| 7 |
"""simple docstring"""
import argparse
a = '''docs/source/_static/js/custom.js'''
def _snake_case ( _snake_case : Dict ) -> Any:
'''simple docstring'''
with open(_snake_case , encoding='utf-8' , newline='\n' ) as f:
_A = f.readlines()
_A = 0
# First let's put the right version
while not lines[index].startswith('const stableVersion =' ):
index += 1
_A = F'''const stableVersion = "v{version}"\n'''
# Then update the dictionary
while not lines[index].startswith('const versionMapping = {' ):
index += 1
# We go until the end
while not lines[index].startswith('}' ):
index += 1
# We add the new version at the end
lines[index - 1] += F''' "v{version}": "v{version}",\n'''
with open(_snake_case , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(_snake_case )
if __name__ == "__main__":
a = argparse.ArgumentParser()
parser.add_argument('''--version''', help='''Release version.''')
a = parser.parse_args()
update_custom_js(args.version)
| 7 | 1 |
"""simple docstring"""
import itertools
import random
import unittest
import numpy as np
from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor
from transformers.testing_utils import require_torch, slow
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
a = random.Random()
def _snake_case ( _snake_case : Dict , _snake_case : Tuple=1.0 , _snake_case : List[Any]=None , _snake_case : Dict=None ) -> Optional[int]:
'''simple docstring'''
if rng is None:
_A = global_rng
_A = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=400 , _UpperCAmelCase : Optional[Any]=2_000 , _UpperCAmelCase : int=1 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Any=16_000 , _UpperCAmelCase : int=True , _UpperCAmelCase : Any=True , ):
_A = parent
_A = batch_size
_A = min_seq_length
_A = max_seq_length
_A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
_A = feature_size
_A = padding_value
_A = sampling_rate
_A = return_attention_mask
_A = do_normalize
def lowerCAmelCase_ ( self : str ):
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Dict=False ):
def _flatten(_UpperCAmelCase : Optional[int] ):
return list(itertools.chain(*_UpperCAmelCase ) )
if equal_length:
_A = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
_A = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
_A = [np.asarray(_UpperCAmelCase ) for x in speech_inputs]
return speech_inputs
class lowercase_ ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor
def lowerCAmelCase_ ( self : Tuple ):
_A = WavaVecaFeatureExtractionTester(self )
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Union[str, Any] ):
self.assertTrue(np.all(np.mean(_UpperCAmelCase , axis=0 ) < 1E-3 ) )
self.assertTrue(np.all(np.abs(np.var(_UpperCAmelCase , axis=0 ) - 1 ) < 1E-3 ) )
def lowerCAmelCase_ ( self : Optional[int] ):
# Tests that all call wrap to encode_plus and batch_encode_plus
_A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
_A = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
_A = [np.asarray(_UpperCAmelCase ) for speech_input in speech_inputs]
# Test not batched input
_A = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values
_A = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) )
# Test batched
_A = feat_extract(_UpperCAmelCase , return_tensors='np' ).input_values
_A = feat_extract(_UpperCAmelCase , return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
_A = [floats_list((1, x) )[0] for x in (800, 800, 800)]
_A = np.asarray(_UpperCAmelCase )
_A = feat_extract(_UpperCAmelCase , return_tensors='np' ).input_values
_A = feat_extract(_UpperCAmelCase , return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
_A = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
_A = ['longest', 'max_length', 'do_not_pad']
_A = [None, 1_600, None]
for max_length, padding in zip(_UpperCAmelCase , _UpperCAmelCase ):
_A = feat_extract(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors='np' )
_A = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self.assertTrue(input_values[0][800:].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_values[1][:1_000] )
self.assertTrue(input_values[0][1_000:].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_values[2][:1_200] )
def lowerCAmelCase_ ( self : List[str] ):
_A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
_A = range(800 , 1_400 , 200 )
_A = [floats_list((1, x) )[0] for x in lengths]
_A = ['longest', 'max_length', 'do_not_pad']
_A = [None, 1_600, None]
for max_length, padding in zip(_UpperCAmelCase , _UpperCAmelCase ):
_A = feat_extract(_UpperCAmelCase , max_length=_UpperCAmelCase , padding=_UpperCAmelCase )
_A = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self._check_zero_mean_unit_variance(input_values[1][:1_000] )
self._check_zero_mean_unit_variance(input_values[2][:1_200] )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
_A = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
_A = feat_extract(
_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=1_000 , padding='max_length' , return_tensors='np' )
_A = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def lowerCAmelCase_ ( self : int ):
_A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
_A = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
_A = feat_extract(
_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=1_000 , padding='longest' , return_tensors='np' )
_A = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1_000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 1_000) )
_A = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
_A = feat_extract(
_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=2_000 , padding='longest' , return_tensors='np' )
_A = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1_000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 1_200) )
@require_torch
def lowerCAmelCase_ ( self : Union[str, Any] ):
import torch
_A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
_A = np.random.rand(100 ).astype(np.floataa )
_A = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
_A = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
_A = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
@slow
@require_torch
def lowerCAmelCase_ ( self : str ):
# this test makes sure that models that are using
# group norm don't have their feature extractor return the
# attention_mask
for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST:
_A = WavaVecaConfig.from_pretrained(_UpperCAmelCase )
_A = WavaVecaFeatureExtractor.from_pretrained(_UpperCAmelCase )
# only "layer" feature extraction norm should make use of
# attention_mask
self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == 'layer' )
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''vit_mae'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int]=768 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Optional[int]=3_072 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : Optional[Any]=224 , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=512 , _UpperCAmelCase : int=8 , _UpperCAmelCase : List[Any]=2_048 , _UpperCAmelCase : Optional[Any]=0.75 , _UpperCAmelCase : List[str]=False , **_UpperCAmelCase : Union[str, Any] , ):
super().__init__(**_UpperCAmelCase )
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = intermediate_size
_A = hidden_act
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = initializer_range
_A = layer_norm_eps
_A = image_size
_A = patch_size
_A = num_channels
_A = qkv_bias
_A = decoder_num_attention_heads
_A = decoder_hidden_size
_A = decoder_num_hidden_layers
_A = decoder_intermediate_size
_A = mask_ratio
_A = norm_pix_loss
| 7 | 1 |
"""simple docstring"""
import os
from distutils.util import strtobool
def _snake_case ( _snake_case : Tuple , _snake_case : str ) -> Any:
'''simple docstring'''
for e in env_keys:
_A = int(os.environ.get(_snake_case , -1 ) )
if val >= 0:
return val
return default
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Tuple=False ) -> Any:
'''simple docstring'''
_A = os.environ.get(_snake_case , str(_snake_case ) )
return strtobool(_snake_case ) == 1 # As its name indicates `strtobool` actually returns an int...
def _snake_case ( _snake_case : List[Any] , _snake_case : Optional[Any]="no" ) -> Optional[int]:
'''simple docstring'''
_A = os.environ.get(_snake_case , str(_snake_case ) )
return value
| 7 |
"""simple docstring"""
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
a = logging.get_logger(__name__)
a = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
a = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def _snake_case ( _snake_case : Optional[Any] ) -> str:
'''simple docstring'''
_A = torch.load(_snake_case , map_location='cpu' )
return sd
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : str , _snake_case : Tuple=rename_keys_prefix ) -> List[str]:
'''simple docstring'''
_A = OrderedDict()
_A = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
_A = key
for name_pair in rename_keys_prefix:
_A = new_key.replace(name_pair[0] , name_pair[1] )
_A = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
_A = new_d['cls.predictions.bias']
return new_d
@torch.no_grad()
def _snake_case ( _snake_case : List[str] , _snake_case : Dict ) -> Dict:
'''simple docstring'''
assert (
checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS
), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'''
# Get Config
if "pre" in checkpoint_path:
_A = 'pretraining'
if "vcr" in checkpoint_path:
_A = {'visual_embedding_dim': 5_12}
elif "vqa_advanced" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
elif "vqa" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
elif "nlvr" in checkpoint_path:
_A = {'visual_embedding_dim': 10_24}
else:
raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' )
else:
if "vcr" in checkpoint_path:
_A = {'visual_embedding_dim': 5_12}
_A = 'multichoice'
elif "vqa_advanced" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
_A = 'vqa_advanced'
elif "vqa" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48, 'num_labels': 31_29}
_A = 'vqa'
elif "nlvr" in checkpoint_path:
_A = {
'visual_embedding_dim': 10_24,
'num_labels': 2,
}
_A = 'nlvr'
_A = VisualBertConfig(**_snake_case )
# Load State Dict
_A = load_state_dict(_snake_case )
_A = get_new_dict(_snake_case , _snake_case )
if model_type == "pretraining":
_A = VisualBertForPreTraining(_snake_case )
elif model_type == "vqa":
_A = VisualBertForQuestionAnswering(_snake_case )
elif model_type == "nlvr":
_A = VisualBertForVisualReasoning(_snake_case )
elif model_type == "multichoice":
_A = VisualBertForMultipleChoice(_snake_case )
model.load_state_dict(_snake_case )
# Save Checkpoints
Path(_snake_case ).mkdir(exist_ok=_snake_case )
model.save_pretrained(_snake_case )
if __name__ == "__main__":
a = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
a = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 7 | 1 |
"""simple docstring"""
import unittest
from datasets import load_dataset
from transformers import BloomTokenizerFast
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowercase_ ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : Tuple = None
UpperCAmelCase : int = BloomTokenizerFast
UpperCAmelCase : Union[str, Any] = BloomTokenizerFast
UpperCAmelCase : Optional[Any] = True
UpperCAmelCase : Any = False
UpperCAmelCase : str = '''tokenizer_file'''
UpperCAmelCase : Tuple = {'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''}
def lowerCAmelCase_ ( self : Tuple ):
super().setUp()
_A = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCAmelCase_ ( self : Optional[int] , **_UpperCAmelCase : Optional[Any] ):
kwargs.update(self.special_tokens_map )
return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def lowerCAmelCase_ ( self : int ):
_A = self.get_rust_tokenizer()
_A = ['The quick brown fox</s>', 'jumps over the lazy dog</s>']
_A = [[2_175, 23_714, 73_173, 144_252, 2], [77, 132_619, 3_478, 368, 109_586, 35_433, 2]]
_A = tokenizer.batch_encode_plus(_UpperCAmelCase )['input_ids']
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
_A = tokenizer.batch_decode(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Tuple=6 ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
_A = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase )
# tokenizer_r.pad_token = None # Hotfixing padding = None
# Simple input
_A = 'This is a simple input'
_A = ['This is a simple input 1', 'This is a simple input 2']
_A = ('This is a simple input', 'This is a pair')
_A = [
('This is a simple input 1', 'This is a simple input 2'),
('This is a simple pair 1', 'This is a simple pair 2'),
]
# Simple input tests
try:
tokenizer_r.encode(_UpperCAmelCase , max_length=_UpperCAmelCase )
tokenizer_r.encode_plus(_UpperCAmelCase , max_length=_UpperCAmelCase )
tokenizer_r.batch_encode_plus(_UpperCAmelCase , max_length=_UpperCAmelCase )
tokenizer_r.encode(_UpperCAmelCase , max_length=_UpperCAmelCase )
tokenizer_r.batch_encode_plus(_UpperCAmelCase , max_length=_UpperCAmelCase )
except ValueError:
self.fail('Bloom Tokenizer should be able to deal with padding' )
_A = None # Hotfixing padding = None
self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' )
# Simple input
self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' )
# Simple input
self.assertRaises(
_UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , )
# Pair input
self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' )
# Pair input
self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' )
# Pair input
self.assertRaises(
_UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = self.get_rust_tokenizer()
_A = load_dataset('xnli' , 'all_languages' , split='test' , streaming=_UpperCAmelCase )
_A = next(iter(_UpperCAmelCase ) )['premise'] # pick up one data
_A = list(sample_data.values() )
_A = list(map(tokenizer.encode , _UpperCAmelCase ) )
_A = [tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) for x in output_tokens]
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
def lowerCAmelCase_ ( self : int ):
# The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have
# any sequence length constraints. This test of the parent class will fail since it relies on the
# maximum sequence length of the positoonal embeddings.
self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 )
self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
| 7 |
"""simple docstring"""
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def _snake_case ( _snake_case : Dict ) -> Optional[Any]:
'''simple docstring'''
for param in module.parameters():
_A = False
def _snake_case ( ) -> Tuple:
'''simple docstring'''
_A = 'cuda' if torch.cuda.is_available() else 'cpu'
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
_A = 'mps'
if device == "mps":
print(
'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch'
' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues'
' with generations.' )
return device
def _snake_case ( _snake_case : Dict ) -> Optional[Any]:
'''simple docstring'''
_A = plt.imshow(_snake_case )
fig.axes.get_xaxis().set_visible(_snake_case )
fig.axes.get_yaxis().set_visible(_snake_case )
plt.show()
def _snake_case ( ) -> Optional[Any]:
'''simple docstring'''
_A = datetime.now()
_A = current_time.strftime('%H:%M:%S' )
return timestamp
| 7 | 1 |
"""simple docstring"""
import math
from numpy import inf
from scipy.integrate import quad
def _snake_case ( _snake_case : float ) -> float:
'''simple docstring'''
if num <= 0:
raise ValueError('math domain error' )
return quad(_snake_case , 0 , _snake_case , args=(_snake_case) )[0]
def _snake_case ( _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
return math.pow(_snake_case , z - 1 ) * math.exp(-x )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 7 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Any = ['''image_processor''', '''tokenizer''']
UpperCAmelCase : Optional[int] = '''ViTImageProcessor'''
UpperCAmelCase : int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''')
def __init__( self : Tuple , _UpperCAmelCase : int=None , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : Dict ):
_A = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _UpperCAmelCase , )
_A = kwargs.pop('feature_extractor' )
_A = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __call__( self : Optional[Any] , _UpperCAmelCase : int=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Union[str, Any] ):
if text is None and visual_prompt is None and images is None:
raise ValueError('You have to specify either text, visual prompt or images.' )
if text is not None and visual_prompt is not None:
raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' )
if text is not None:
_A = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if visual_prompt is not None:
_A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if images is not None:
_A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if visual_prompt is not None and images is not None:
_A = {
'pixel_values': image_features.pixel_values,
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
elif text is not None and images is not None:
_A = image_features.pixel_values
return encoding
elif text is not None:
return encoding
elif visual_prompt is not None:
_A = {
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
else:
return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase )
def lowerCAmelCase_ ( self : str , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Union[str, Any] ):
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def lowerCAmelCase_ ( self : Union[str, Any] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ):
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
def lowerCAmelCase_ ( self : Dict ):
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , )
return self.image_processor_class
@property
def lowerCAmelCase_ ( self : Tuple ):
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , )
return self.image_processor
| 7 | 1 |
"""simple docstring"""
def _snake_case ( _snake_case : int , _snake_case : int ) -> int:
'''simple docstring'''
while second != 0:
_A = first & second
first ^= second
_A = c << 1
return first
if __name__ == "__main__":
import doctest
doctest.testmod()
a = int(input('''Enter the first number: ''').strip())
a = int(input('''Enter the second number: ''').strip())
print(F'''{add(first, second) = }''')
| 7 |
"""simple docstring"""
import math
from datetime import datetime, timedelta
def _snake_case ( _snake_case : int ) -> datetime:
'''simple docstring'''
_A = year % 19
_A = year % 4
_A = year % 7
_A = math.floor(year / 1_00 )
_A = math.floor((13 + 8 * leap_day_inhibits) / 25 )
_A = leap_day_inhibits / 4
_A = (
15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 30
_A = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
_A = (19 * metonic_cycle + secular_moon_shift) % 30
# PHM -> Paschal Full Moon
_A = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 29 and days_from_phm_to_sunday == 6:
return datetime(_snake_case , 4 , 19 )
elif days_to_add == 28 and days_from_phm_to_sunday == 6:
return datetime(_snake_case , 4 , 18 )
else:
return datetime(_snake_case , 3 , 22 ) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday ) )
if __name__ == "__main__":
for year in (1_994, 2_000, 2_010, 2_021, 2_023):
a = '''will be''' if year > datetime.now().year else '''was'''
print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
| 7 | 1 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
a = logging.get_logger(__name__)
a = {
'''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': (
'''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json'''
),
# See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Tuple = '''trajectory_transformer'''
UpperCAmelCase : Dict = ['''past_key_values''']
UpperCAmelCase : int = {
'''hidden_size''': '''n_embd''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : int , _UpperCAmelCase : Dict=100 , _UpperCAmelCase : Optional[int]=5 , _UpperCAmelCase : Optional[Any]=1 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : List[str]=249 , _UpperCAmelCase : List[Any]=6 , _UpperCAmelCase : Tuple=17 , _UpperCAmelCase : List[Any]=25 , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : int=128 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Optional[Any]=0.0006 , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : Optional[Any]=1 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : int=1 , _UpperCAmelCase : Optional[Any]=50_256 , _UpperCAmelCase : List[str]=50_256 , **_UpperCAmelCase : Optional[Any] , ):
_A = vocab_size
_A = action_weight
_A = reward_weight
_A = value_weight
_A = max_position_embeddings
_A = block_size
_A = action_dim
_A = observation_dim
_A = transition_dim
_A = learning_rate
_A = n_layer
_A = n_head
_A = n_embd
_A = embd_pdrop
_A = attn_pdrop
_A = resid_pdrop
_A = initializer_range
_A = layer_norm_eps
_A = kaiming_initializer_range
_A = use_cache
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''gpt_bigcode'''
UpperCAmelCase : str = ['''past_key_values''']
UpperCAmelCase : Dict = {
'''hidden_size''': '''n_embd''',
'''max_position_embeddings''': '''n_positions''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Tuple , _UpperCAmelCase : Dict=50_257 , _UpperCAmelCase : List[Any]=1_024 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : str="gelu_pytorch_tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[Any]=50_256 , _UpperCAmelCase : Dict=50_256 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Any=True , **_UpperCAmelCase : Any , ):
_A = vocab_size
_A = n_positions
_A = n_embd
_A = n_layer
_A = n_head
_A = n_inner
_A = activation_function
_A = resid_pdrop
_A = embd_pdrop
_A = attn_pdrop
_A = layer_norm_epsilon
_A = initializer_range
_A = scale_attn_weights
_A = use_cache
_A = attention_softmax_in_fpaa
_A = scale_attention_softmax_in_fpaa
_A = multi_query
_A = bos_token_id
_A = eos_token_id
super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
| 7 | 1 |
"""simple docstring"""
a = tuple[float, float, float]
a = tuple[float, float, float]
def _snake_case ( _snake_case : Pointad , _snake_case : Pointad ) -> Vectorad:
'''simple docstring'''
_A = end_pointa[0] - end_pointa[0]
_A = end_pointa[1] - end_pointa[1]
_A = end_pointa[2] - end_pointa[2]
return (x, y, z)
def _snake_case ( _snake_case : Vectorad , _snake_case : Vectorad ) -> Vectorad:
'''simple docstring'''
_A = ab[1] * ac[2] - ab[2] * ac[1] # *i
_A = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j
_A = ab[0] * ac[1] - ab[1] * ac[0] # *k
return (x, y, z)
def _snake_case ( _snake_case : Vectorad , _snake_case : int ) -> bool:
'''simple docstring'''
return tuple(round(_snake_case , _snake_case ) for x in vector ) == (0, 0, 0)
def _snake_case ( _snake_case : Pointad , _snake_case : Pointad , _snake_case : Pointad , _snake_case : int = 10 ) -> bool:
'''simple docstring'''
_A = create_vector(_snake_case , _snake_case )
_A = create_vector(_snake_case , _snake_case )
return is_zero_vector(get_ad_vectors_cross(_snake_case , _snake_case ) , _snake_case )
| 7 |
"""simple docstring"""
def _snake_case ( _snake_case : str ) -> str:
'''simple docstring'''
return " ".join(
''.join(word[::-1] ) if len(_snake_case ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words('''Hey wollef sroirraw'''))
| 7 | 1 |
"""simple docstring"""
from math import cos, sin, sqrt, tau
from audio_filters.iir_filter import IIRFilter
def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : float = 1 / sqrt(2 ) ) -> IIRFilter:
'''simple docstring'''
_A = tau * frequency / samplerate
_A = sin(_snake_case )
_A = cos(_snake_case )
_A = _sin / (2 * q_factor)
_A = (1 - _cos) / 2
_A = 1 - _cos
_A = 1 + alpha
_A = -2 * _cos
_A = 1 - alpha
_A = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : float = 1 / sqrt(2 ) ) -> IIRFilter:
'''simple docstring'''
_A = tau * frequency / samplerate
_A = sin(_snake_case )
_A = cos(_snake_case )
_A = _sin / (2 * q_factor)
_A = (1 + _cos) / 2
_A = -1 - _cos
_A = 1 + alpha
_A = -2 * _cos
_A = 1 - alpha
_A = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : float = 1 / sqrt(2 ) ) -> IIRFilter:
'''simple docstring'''
_A = tau * frequency / samplerate
_A = sin(_snake_case )
_A = cos(_snake_case )
_A = _sin / (2 * q_factor)
_A = _sin / 2
_A = 0
_A = -ba
_A = 1 + alpha
_A = -2 * _cos
_A = 1 - alpha
_A = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : float = 1 / sqrt(2 ) ) -> IIRFilter:
'''simple docstring'''
_A = tau * frequency / samplerate
_A = sin(_snake_case )
_A = cos(_snake_case )
_A = _sin / (2 * q_factor)
_A = 1 - alpha
_A = -2 * _cos
_A = 1 + alpha
_A = IIRFilter(2 )
filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] )
return filt
def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : float , _snake_case : float = 1 / sqrt(2 ) , ) -> IIRFilter:
'''simple docstring'''
_A = tau * frequency / samplerate
_A = sin(_snake_case )
_A = cos(_snake_case )
_A = _sin / (2 * q_factor)
_A = 10 ** (gain_db / 40)
_A = 1 + alpha * big_a
_A = -2 * _cos
_A = 1 - alpha * big_a
_A = 1 + alpha / big_a
_A = -2 * _cos
_A = 1 - alpha / big_a
_A = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : float , _snake_case : float = 1 / sqrt(2 ) , ) -> IIRFilter:
'''simple docstring'''
_A = tau * frequency / samplerate
_A = sin(_snake_case )
_A = cos(_snake_case )
_A = _sin / (2 * q_factor)
_A = 10 ** (gain_db / 40)
_A = (big_a + 1) - (big_a - 1) * _cos
_A = (big_a + 1) + (big_a - 1) * _cos
_A = (big_a - 1) - (big_a + 1) * _cos
_A = (big_a - 1) + (big_a + 1) * _cos
_A = 2 * sqrt(_snake_case ) * alpha
_A = big_a * (pmc + aaa)
_A = 2 * big_a * mpc
_A = big_a * (pmc - aaa)
_A = ppmc + aaa
_A = -2 * pmpc
_A = ppmc - aaa
_A = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : float , _snake_case : float = 1 / sqrt(2 ) , ) -> IIRFilter:
'''simple docstring'''
_A = tau * frequency / samplerate
_A = sin(_snake_case )
_A = cos(_snake_case )
_A = _sin / (2 * q_factor)
_A = 10 ** (gain_db / 40)
_A = (big_a + 1) - (big_a - 1) * _cos
_A = (big_a + 1) + (big_a - 1) * _cos
_A = (big_a - 1) - (big_a + 1) * _cos
_A = (big_a - 1) + (big_a + 1) * _cos
_A = 2 * sqrt(_snake_case ) * alpha
_A = big_a * (ppmc + aaa)
_A = -2 * big_a * pmpc
_A = big_a * (ppmc - aaa)
_A = pmc + aaa
_A = 2 * mpc
_A = pmc - aaa
_A = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
| 7 |
"""simple docstring"""
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = (KDPMaDiscreteScheduler,)
UpperCAmelCase : Any = 10
def lowerCAmelCase_ ( self : Dict , **_UpperCAmelCase : Optional[Any] ):
_A = {
'num_train_timesteps': 1_100,
'beta_start': 0.0001,
'beta_end': 0.02,
'beta_schedule': 'linear',
}
config.update(**_UpperCAmelCase )
return config
def lowerCAmelCase_ ( self : Any ):
for timesteps in [10, 50, 100, 1_000]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict ):
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Tuple ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[int] ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config(prediction_type='v_prediction' )
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
_A = self.dummy_model()
_A = self.dummy_sample_deter * scheduler.init_noise_sigma
_A = sample.to(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = output.prev_sample
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.6_9_3_4E-0_7 ) < 1E-2
assert abs(result_mean.item() - 6.1_1_1_2E-1_0 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2E-0_7 ) < 1E-2
assert abs(result_mean.item() - 0.0002 ) < 1E-3
def lowerCAmelCase_ ( self : Optional[Any] ):
if torch_device == "mps":
return
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config()
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
_A = self.dummy_model()
_A = self.dummy_sample_deter * scheduler.init_noise_sigma
_A = sample.to(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = output.prev_sample
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
def lowerCAmelCase_ ( self : Any ):
if torch_device == "mps":
return
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config()
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase )
_A = self.dummy_model()
_A = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
_A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = output.prev_sample
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
if str(_UpperCAmelCase ).startswith('cpu' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
| 7 | 1 |
"""simple docstring"""
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Dict = ''''''
UpperCAmelCase : List[Any] = '''hf-legacy''' # "hf://"" is reserved for hffs
def __init__( self : Optional[int] , _UpperCAmelCase : Optional[DatasetInfo] = None , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : Union[str, Any] , ):
super().__init__(self , **_UpperCAmelCase )
_A = repo_info
_A = token
_A = None
def lowerCAmelCase_ ( self : Union[str, Any] ):
if self.dir_cache is None:
_A = {}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
_A = {
'name': hf_file.rfilename,
'size': None,
'type': 'file',
}
self.dir_cache.update(
{
str(_UpperCAmelCase ): {'name': str(_UpperCAmelCase ), 'size': None, 'type': 'directory'}
for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1]
} )
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : str = "rb" , **_UpperCAmelCase : int , ):
if not isinstance(self.repo_info , _UpperCAmelCase ):
raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''' )
_A = hf_hub_url(self.repo_info.id , _UpperCAmelCase , revision=self.repo_info.sha )
return fsspec.open(
_UpperCAmelCase , mode=_UpperCAmelCase , headers=get_authentication_headers_for_url(_UpperCAmelCase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open()
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : int , **_UpperCAmelCase : Optional[int] ):
self._get_dirs()
_A = self._strip_protocol(_UpperCAmelCase )
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict=False , **_UpperCAmelCase : Tuple ):
self._get_dirs()
_A = PurePosixPath(path.strip('/' ) )
_A = {}
for p, f in self.dir_cache.items():
_A = PurePosixPath(p.strip('/' ) )
_A = p.parent
if root == path:
_A = f
_A = list(paths.values() )
if detail:
return out
else:
return sorted(f['name'] for f in out )
| 7 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any]=10 ) -> Optional[int]:
'''simple docstring'''
_A = []
for _ in range(_snake_case ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def _snake_case ( _snake_case : Optional[Any] , _snake_case : Union[str, Any]=10 ) -> List[str]:
'''simple docstring'''
_A = []
for step in range(_snake_case ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
_A = os.path.join(_snake_case , 'schedule.bin' )
torch.save(scheduler.state_dict() , _snake_case )
_A = torch.load(_snake_case )
scheduler.load_state_dict(_snake_case )
return lrs
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ):
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Any ):
_A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase )
_A = torch.tensor([0.4, 0.2, -0.5] )
_A = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_A = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
_A = criterion(_UpperCAmelCase , _UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def lowerCAmelCase_ ( self : int ):
_A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase )
_A = torch.tensor([0.4, 0.2, -0.5] )
_A = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_A = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-3_0, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_UpperCAmelCase , weight_decay=0.0 , relative_step=_UpperCAmelCase , scale_parameter=_UpperCAmelCase , warmup_init=_UpperCAmelCase , )
for _ in range(1_000 ):
_A = criterion(_UpperCAmelCase , _UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = nn.Linear(50 , 50 ) if is_torch_available() else None
UpperCAmelCase : Tuple = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None
UpperCAmelCase : Dict = 10
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]=None ):
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase , msg=_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] ):
_A = {'num_warmup_steps': 2, 'num_training_steps': 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
_A = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{'num_warmup_steps': 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, 'num_cycles': 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, 'power': 2.0, 'lr_end': 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{'num_warmup_steps': 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
_A , _A = data
_A = scheduler_func(self.optimizer , **_UpperCAmelCase )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
_A = unwrap_schedule(_UpperCAmelCase , self.num_steps )
self.assertListAlmostEqual(
_UpperCAmelCase , _UpperCAmelCase , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , )
_A = scheduler_func(self.optimizer , **_UpperCAmelCase )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(_UpperCAmelCase ) # wrap to test picklability of the schedule
_A = unwrap_and_save_reload_schedule(_UpperCAmelCase , self.num_steps )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase , msg=F'''failed for {scheduler_func} in save and reload''' )
class lowercase_ :
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int] ):
_A = fn
def __call__( self : Tuple , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : List[str] ):
return self.fn(*_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Any ):
_A = list(map(self , scheduler.lr_lambdas ) )
| 7 | 1 |
"""simple docstring"""
def _snake_case ( _snake_case : str ) -> list:
'''simple docstring'''
_A = [0] * len(_snake_case )
for i in range(1 , len(_snake_case ) ):
# use last results for better performance - dynamic programming
_A = prefix_result[i - 1]
while j > 0 and input_string[i] != input_string[j]:
_A = prefix_result[j - 1]
if input_string[i] == input_string[j]:
j += 1
_A = j
return prefix_result
def _snake_case ( _snake_case : str ) -> int:
'''simple docstring'''
return max(prefix_function(_snake_case ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 |
"""simple docstring"""
import math
def _snake_case ( _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
if (
not isinstance(_snake_case , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('power_factor must be a valid float value between -1 and 1.' )
return apparent_power * power_factor
def _snake_case ( _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
if (
not isinstance(_snake_case , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('power_factor must be a valid float value between -1 and 1.' )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 | 1 |
"""simple docstring"""
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
a = 10
def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : list[int] , _snake_case : int ) -> int:
'''simple docstring'''
for i in range(_snake_case , _snake_case ):
if array[i] == target:
return i
return -1
def _snake_case ( _snake_case : list[int] , _snake_case : int ) -> int:
'''simple docstring'''
_A = 0
_A = len(_snake_case )
while left <= right:
if right - left < precision:
return lin_search(_snake_case , _snake_case , _snake_case , _snake_case )
_A = (left + right) // 3 + 1
_A = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
_A = one_third - 1
elif array[two_third] < target:
_A = two_third + 1
else:
_A = one_third + 1
_A = two_third - 1
else:
return -1
def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : list[int] , _snake_case : int ) -> int:
'''simple docstring'''
if left < right:
if right - left < precision:
return lin_search(_snake_case , _snake_case , _snake_case , _snake_case )
_A = (left + right) // 3 + 1
_A = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(_snake_case , one_third - 1 , _snake_case , _snake_case )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , _snake_case , _snake_case , _snake_case )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , _snake_case , _snake_case )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
a = input('''Enter numbers separated by comma:\n''').strip()
a = [int(item.strip()) for item in user_input.split(''',''')]
assert collection == sorted(collection), F"List must be ordered.\n{collection}."
a = int(input('''Enter the number to be found in the list:\n''').strip())
a = ite_ternary_search(collection, target)
a = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(F'''Iterative search: {target} found at positions: {resulta}''')
print(F'''Recursive search: {target} found at positions: {resulta}''')
else:
print('''Not found''')
| 7 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''',
'''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''',
'''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''',
'''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''',
'''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''',
'''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''',
'''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''',
'''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''',
'''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = '''xmod'''
def __init__( self : str , _UpperCAmelCase : Optional[Any]=30_522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Dict=3_072 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Any=1E-1_2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Tuple=("en_XX",) , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Optional[Any] , ):
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
_A = vocab_size
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = hidden_act
_A = intermediate_size
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = type_vocab_size
_A = initializer_range
_A = layer_norm_eps
_A = position_embedding_type
_A = use_cache
_A = classifier_dropout
_A = pre_norm
_A = adapter_reduction_factor
_A = adapter_layer_norm
_A = adapter_reuse_layer_norm
_A = ln_before_adapter
_A = list(_UpperCAmelCase )
_A = default_language
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
@property
def lowerCAmelCase_ ( self : Dict ):
if self.task == "multiple-choice":
_A = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_A = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 7 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : str = '''nllb-moe'''
UpperCAmelCase : Optional[int] = ['''past_key_values''']
UpperCAmelCase : Union[str, Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self : Optional[int] , _UpperCAmelCase : Union[str, Any]=128_112 , _UpperCAmelCase : Optional[Any]=1_024 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Union[str, Any]=4_096 , _UpperCAmelCase : Tuple=16 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : Dict=4_096 , _UpperCAmelCase : int=16 , _UpperCAmelCase : Any=0.05 , _UpperCAmelCase : List[str]=0.05 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Any="relu" , _UpperCAmelCase : Tuple=1_024 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : int=True , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : Dict="float32" , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Optional[Any]=128 , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : Tuple=0.001 , _UpperCAmelCase : Union[str, Any]=0.001 , _UpperCAmelCase : Dict="all" , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : Optional[Any]=1.0 , _UpperCAmelCase : int=0.2 , _UpperCAmelCase : Optional[Any]=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=False , **_UpperCAmelCase : List[Any] , ):
_A = vocab_size
_A = max_position_embeddings
_A = d_model
_A = encoder_ffn_dim
_A = encoder_layers
_A = encoder_attention_heads
_A = decoder_ffn_dim
_A = decoder_layers
_A = decoder_attention_heads
_A = dropout
_A = attention_dropout
_A = activation_dropout
_A = activation_function
_A = init_std
_A = encoder_layerdrop
_A = decoder_layerdrop
_A = use_cache
_A = encoder_layers
_A = scale_embedding # scale factor will be sqrt(d_model) if True
_A = router_z_loss_coef
_A = router_aux_loss_coef
_A = decoder_sparse_step
_A = encoder_sparse_step
_A = num_experts
_A = expert_capacity
_A = router_bias
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(F'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' )
_A = router_dtype
_A = router_ignore_padding_tokens
_A = batch_prioritized_routing
_A = second_expert_policy
_A = normalize_router_prob_before_dropping
_A = moe_eval_capacity_token_fraction
_A = moe_token_dropout
_A = output_router_logits
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
| 7 |
"""simple docstring"""
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
a = logging.get_logger(__name__)
a = {
'''tensor(bool)''': np.bool_,
'''tensor(int8)''': np.inta,
'''tensor(uint8)''': np.uinta,
'''tensor(int16)''': np.intaa,
'''tensor(uint16)''': np.uintaa,
'''tensor(int32)''': np.intaa,
'''tensor(uint32)''': np.uintaa,
'''tensor(int64)''': np.intaa,
'''tensor(uint64)''': np.uintaa,
'''tensor(float16)''': np.floataa,
'''tensor(float)''': np.floataa,
'''tensor(double)''': np.floataa,
}
class lowercase_ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : Optional[Any] ):
logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' )
_A = model
_A = kwargs.get('model_save_dir' , _UpperCAmelCase )
_A = kwargs.get('latest_model_name' , _UpperCAmelCase )
def __call__( self : Dict , **_UpperCAmelCase : List[Any] ):
_A = {k: np.array(_UpperCAmelCase ) for k, v in kwargs.items()}
return self.model.run(_UpperCAmelCase , _UpperCAmelCase )
@staticmethod
def lowerCAmelCase_ ( _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=None ):
if provider is None:
logger.info('No onnxruntime provider specified, using CPUExecutionProvider' )
_A = 'CPUExecutionProvider'
return ort.InferenceSession(_UpperCAmelCase , providers=[provider] , sess_options=_UpperCAmelCase )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : List[Any] ):
_A = file_name if file_name is not None else ONNX_WEIGHTS_NAME
_A = self.model_save_dir.joinpath(self.latest_model_name )
_A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase )
try:
shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase )
except shutil.SameFileError:
pass
# copy external weights (for models >2GB)
_A = self.model_save_dir.joinpath(_UpperCAmelCase )
if src_path.exists():
_A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase )
try:
shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase )
except shutil.SameFileError:
pass
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] , ):
if os.path.isfile(_UpperCAmelCase ):
logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' )
return
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase )
# saving model weights/files
self._save_pretrained(_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( cls : Tuple , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[Union[bool, str, None]] = None , _UpperCAmelCase : Optional[Union[str, None]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional["ort.SessionOptions"] = None , **_UpperCAmelCase : Union[str, Any] , ):
_A = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(_UpperCAmelCase ):
_A = OnnxRuntimeModel.load_model(
os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase )
_A = Path(_UpperCAmelCase )
# load model from hub
else:
# download model
_A = hf_hub_download(
repo_id=_UpperCAmelCase , filename=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , )
_A = Path(_UpperCAmelCase ).parent
_A = Path(_UpperCAmelCase ).name
_A = OnnxRuntimeModel.load_model(_UpperCAmelCase , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase )
return cls(model=_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( cls : List[Any] , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : Tuple , ):
_A = None
if len(str(_UpperCAmelCase ).split('@' ) ) == 2:
_A , _A = model_id.split('@' )
return cls._from_pretrained(
model_id=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , **_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
import argparse
import os
import sys
from unittest.mock import patch
import pytorch_lightning as pl
import timeout_decorator
import torch
from distillation import SummarizationDistiller, distill_main
from finetune import SummarizationModule, main
from transformers import MarianMTModel
from transformers.file_utils import cached_path
from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow
from utils import load_json
a = '''sshleifer/mar_enro_6_3_student'''
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : int ):
super().setUp()
_A = cached_path(
'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=_UpperCAmelCase , )
_A = F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k'''
@slow
@require_torch_gpu
def lowerCAmelCase_ ( self : Optional[Any] ):
MarianMTModel.from_pretrained(_UpperCAmelCase )
@slow
@require_torch_gpu
def lowerCAmelCase_ ( self : Tuple ):
_A = {
'$MAX_LEN': 64,
'$BS': 64,
'$GAS': 1,
'$ENRO_DIR': self.data_dir,
'facebook/mbart-large-cc25': MARIAN_MODEL,
# "val_check_interval=0.25": "val_check_interval=1.0",
'--learning_rate=3e-5': '--learning_rate 3e-4',
'--num_train_epochs 6': '--num_train_epochs 1',
}
# Clean up bash script
_A = (self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip()
_A = bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' )
for k, v in env_vars_to_replace.items():
_A = bash_script.replace(_UpperCAmelCase , str(_UpperCAmelCase ) )
_A = self.get_auto_remove_tmp_dir()
# bash_script = bash_script.replace("--fp16 ", "")
_A = F'''
--output_dir {output_dir}
--tokenizer_name Helsinki-NLP/opus-mt-en-ro
--sortish_sampler
--do_predict
--gpus 1
--freeze_encoder
--n_train 40000
--n_val 500
--n_test 500
--fp16_opt_level O1
--num_sanity_val_steps 0
--eval_beams 2
'''.split()
# XXX: args.gpus > 1 : handle multi_gpu in the future
_A = ['finetune.py'] + bash_script.split() + args
with patch.object(_UpperCAmelCase , 'argv' , _UpperCAmelCase ):
_A = argparse.ArgumentParser()
_A = pl.Trainer.add_argparse_args(_UpperCAmelCase )
_A = SummarizationModule.add_model_specific_args(_UpperCAmelCase , os.getcwd() )
_A = parser.parse_args()
_A = main(_UpperCAmelCase )
# Check metrics
_A = load_json(model.metrics_save_path )
_A = metrics['val'][0]
_A = metrics['val'][-1]
self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) )
assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , _UpperCAmelCase )
self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 )
# model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?)
self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 )
# test learning requirements:
# 1. BLEU improves over the course of training by more than 2 pts
self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 )
# 2. BLEU finishes above 17
self.assertGreater(last_step_stats['val_avg_bleu'] , 17 )
# 3. test BLEU and val BLEU within ~1.1 pt.
self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 )
# check lightning ckpt can be loaded and has a reasonable statedict
_A = os.listdir(_UpperCAmelCase )
_A = [x for x in contents if x.endswith('.ckpt' )][0]
_A = os.path.join(args.output_dir , _UpperCAmelCase )
_A = torch.load(_UpperCAmelCase , map_location='cpu' )
_A = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight'
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
_A = {os.path.basename(_UpperCAmelCase ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['test'] ) == 1
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
@timeout_decorator.timeout(600 )
@slow
@require_torch_gpu
def lowerCAmelCase_ ( self : Dict ):
_A = F'''{self.test_file_dir_str}/test_data/wmt_en_ro'''
_A = {
'--fp16_opt_level=O1': '',
'$MAX_LEN': 128,
'$BS': 16,
'$GAS': 1,
'$ENRO_DIR': data_dir,
'$m': 'sshleifer/student_marian_en_ro_6_1',
'val_check_interval=0.25': 'val_check_interval=1.0',
}
# Clean up bash script
_A = (
(self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip()
)
_A = bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' )
_A = bash_script.replace('--fp16 ' , ' ' )
for k, v in env_vars_to_replace.items():
_A = bash_script.replace(_UpperCAmelCase , str(_UpperCAmelCase ) )
_A = self.get_auto_remove_tmp_dir()
_A = bash_script.replace('--fp16' , '' )
_A = 6
_A = (
['distillation.py']
+ bash_script.split()
+ [
F'''--output_dir={output_dir}''',
'--gpus=1',
'--learning_rate=1e-3',
F'''--num_train_epochs={epochs}''',
'--warmup_steps=10',
'--val_check_interval=1.0',
'--do_predict',
]
)
with patch.object(_UpperCAmelCase , 'argv' , _UpperCAmelCase ):
_A = argparse.ArgumentParser()
_A = pl.Trainer.add_argparse_args(_UpperCAmelCase )
_A = SummarizationDistiller.add_model_specific_args(_UpperCAmelCase , os.getcwd() )
_A = parser.parse_args()
# assert args.gpus == gpus THIS BREAKS for multi_gpu
_A = distill_main(_UpperCAmelCase )
# Check metrics
_A = load_json(model.metrics_save_path )
_A = metrics['val'][0]
_A = metrics['val'][-1]
assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , _UpperCAmelCase )
# check lightning ckpt can be loaded and has a reasonable statedict
_A = os.listdir(_UpperCAmelCase )
_A = [x for x in contents if x.endswith('.ckpt' )][0]
_A = os.path.join(args.output_dir , _UpperCAmelCase )
_A = torch.load(_UpperCAmelCase , map_location='cpu' )
_A = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight'
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
_A = {os.path.basename(_UpperCAmelCase ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['test'] ) == 1
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json'''
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : str = '''speech_to_text'''
UpperCAmelCase : List[Any] = ['''past_key_values''']
UpperCAmelCase : Tuple = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self : int , _UpperCAmelCase : Union[str, Any]=10_000 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2_048 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Tuple=2_048 , _UpperCAmelCase : str=4 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]="relu" , _UpperCAmelCase : List[Any]=256 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : List[str]=6_000 , _UpperCAmelCase : Optional[Any]=1_024 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Any=(5, 5) , _UpperCAmelCase : int=1_024 , _UpperCAmelCase : str=80 , _UpperCAmelCase : Any=1 , **_UpperCAmelCase : Tuple , ):
_A = vocab_size
_A = d_model
_A = encoder_ffn_dim
_A = encoder_layers
_A = encoder_attention_heads
_A = decoder_ffn_dim
_A = decoder_layers
_A = decoder_attention_heads
_A = dropout
_A = attention_dropout
_A = activation_dropout
_A = activation_function
_A = init_std
_A = encoder_layerdrop
_A = decoder_layerdrop
_A = use_cache
_A = encoder_layers
_A = scale_embedding # scale factor will be sqrt(d_model) if True
_A = max_source_positions
_A = max_target_positions
_A = num_conv_layers
_A = list(_UpperCAmelCase )
_A = conv_channels
_A = input_feat_per_channel
_A = input_channels
if len(self.conv_kernel_sizes ) != self.num_conv_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` '
F'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, '''
F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
a = {
'''configuration_llama''': ['''LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LlamaConfig'''],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ['''LlamaTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ['''LlamaTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
'''LlamaForCausalLM''',
'''LlamaModel''',
'''LlamaPreTrainedModel''',
'''LlamaForSequenceClassification''',
]
if TYPE_CHECKING:
from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama import LlamaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama_fast import LlamaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 7 |
"""simple docstring"""
from manim import *
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = Rectangle(height=0.5 , width=0.5 )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_A = Rectangle(height=0.25 , width=0.25 )
_A = [mem.copy() for i in range(6 )]
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('CPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(4 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('GPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
gpu.move_to([-1, -1, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Model' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
model.move_to([3, -1.0, 0] )
self.add(_UpperCAmelCase )
_A = []
_A = []
for i, rect in enumerate(_UpperCAmelCase ):
_A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 )
target.move_to(_UpperCAmelCase )
model_arr.append(_UpperCAmelCase )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(_UpperCAmelCase )
self.add(*_UpperCAmelCase , *_UpperCAmelCase )
_A = [meta_mem.copy() for i in range(6 )]
_A = [meta_mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Disk' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
disk.move_to([-4, -1.25, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_A = MarkupText(
F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = MarkupText(
F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , )
blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(_UpperCAmelCase )
_A = MarkupText(
F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase ) )
_A = Square(0.3 )
input.set_fill(_UpperCAmelCase , opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 )
self.play(Write(_UpperCAmelCase ) )
input.generate_target()
input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 )
self.play(MoveToTarget(_UpperCAmelCase ) )
self.play(FadeOut(_UpperCAmelCase ) )
_A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 )
a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
_A = MarkupText(
F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) )
_A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02}
self.play(
Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[0] ) )
_A = a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
_A = AnimationGroup(
FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 )
self.play(_UpperCAmelCase )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
_A = 0.7
self.play(
Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , )
else:
self.play(
MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , )
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 )
self.play(
Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[i] ) )
_A = a_c
_A = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 )
self.play(
FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , )
_A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) )
self.wait()
| 7 | 1 |
"""simple docstring"""
import requests
a = '''YOUR API KEY'''
def _snake_case ( _snake_case : str , _snake_case : str = giphy_api_key ) -> list:
'''simple docstring'''
_A = '+'.join(query.split() )
_A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}'''
_A = requests.get(_snake_case ).json()['data']
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print('''\n'''.join(get_gifs('''space ship''')))
| 7 |
"""simple docstring"""
def _snake_case ( _snake_case : int , _snake_case : int ) -> int:
'''simple docstring'''
return int((input_a, input_a).count(1 ) != 0 )
def _snake_case ( ) -> None:
'''simple docstring'''
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 7 | 1 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
TextToVideoSDPipeline,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class lowercase_ ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = TextToVideoSDPipeline
UpperCAmelCase : List[str] = TEXT_TO_IMAGE_PARAMS
UpperCAmelCase : int = TEXT_TO_IMAGE_BATCH_PARAMS
# No `output_type`.
UpperCAmelCase : Any = frozenset(
[
'''num_inference_steps''',
'''generator''',
'''latents''',
'''return_dict''',
'''callback''',
'''callback_steps''',
] )
def lowerCAmelCase_ ( self : Optional[Any] ):
torch.manual_seed(0 )
_A = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , )
_A = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , )
torch.manual_seed(0 )
_A = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
_A = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='gelu' , projection_dim=512 , )
_A = CLIPTextModel(_UpperCAmelCase )
_A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
_A = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
}
return components
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int=0 ):
if str(_UpperCAmelCase ).startswith('mps' ):
_A = torch.manual_seed(_UpperCAmelCase )
else:
_A = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase )
_A = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'pt',
}
return inputs
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = 'cpu' # ensure determinism for the device-dependent torch.Generator
_A = self.get_dummy_components()
_A = TextToVideoSDPipeline(**_UpperCAmelCase )
_A = sd_pipe.to(_UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
_A = self.get_dummy_inputs(_UpperCAmelCase )
_A = 'np'
_A = sd_pipe(**_UpperCAmelCase ).frames
_A = frames[0][-3:, -3:, -1]
assert frames[0].shape == (64, 64, 3)
_A = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCAmelCase_ ( self : Any ):
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_UpperCAmelCase , expected_max_diff=3E-3 )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def lowerCAmelCase_ ( self : int ):
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_UpperCAmelCase , expected_max_diff=1E-2 )
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def lowerCAmelCase_ ( self : Optional[Any] ):
pass
@unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' )
def lowerCAmelCase_ ( self : Optional[int] ):
pass
@unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' )
def lowerCAmelCase_ ( self : Optional[int] ):
pass
def lowerCAmelCase_ ( self : Union[str, Any] ):
return super().test_progress_bar()
@slow
@skip_mps
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Any ):
_A = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy' )
_A = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' )
_A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
_A = pipe.to('cuda' )
_A = 'Spiderman is surfing'
_A = torch.Generator(device='cpu' ).manual_seed(0 )
_A = pipe(_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=25 , output_type='pt' ).frames
_A = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5E-2
def lowerCAmelCase_ ( self : Dict ):
_A = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy' )
_A = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' )
_A = pipe.to('cuda' )
_A = 'Spiderman is surfing'
_A = torch.Generator(device='cpu' ).manual_seed(0 )
_A = pipe(_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type='pt' ).frames
_A = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5E-2
| 7 |
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
a = logging.getLogger(__name__)
@dataclass
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[float] = field(
default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} )
UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''Whether to SortishSamler or not.'''} )
UpperCAmelCase : bool = field(
default=__lowerCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} )
UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''whether to use adafactor'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(default=__lowerCAmelCase , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[str] = field(
default='''linear''' , metadata={'''help''': f'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
| 7 | 1 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ....feature_extraction_sequence_utils import SequenceFeatureExtractor
from ....feature_extraction_utils import BatchFeature
from ....file_utils import PaddingStrategy, TensorType
from ....utils import logging
a = logging.get_logger(__name__)
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Tuple = ['''input_features''', '''attention_mask''']
def __init__( self : Optional[Any] , _UpperCAmelCase : int=80 , _UpperCAmelCase : Any=16_000 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Optional[Any]=10 , _UpperCAmelCase : Optional[int]=25 , _UpperCAmelCase : List[str]="hamming_window" , _UpperCAmelCase : Dict=3_2768.0 , _UpperCAmelCase : int=0.97 , _UpperCAmelCase : List[str]=1.0 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : int=False , **_UpperCAmelCase : List[Any] , ):
super().__init__(feature_size=_UpperCAmelCase , sampling_rate=_UpperCAmelCase , padding_value=_UpperCAmelCase , **_UpperCAmelCase )
_A = feature_size
_A = sampling_rate
_A = padding_value
_A = hop_length
_A = win_length
_A = frame_signal_scale
_A = preemphasis_coeff
_A = mel_floor
_A = normalize_means
_A = normalize_vars
_A = win_function
_A = return_attention_mask
_A = win_length * sampling_rate // 1_000
_A = hop_length * sampling_rate // 1_000
_A = optimal_fft_length(self.sample_size )
_A = (self.n_fft // 2) + 1
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : np.array ):
if self.win_function == "hamming_window":
_A = window_function(window_length=self.sample_size , name=self.win_function , periodic=_UpperCAmelCase )
else:
_A = window_function(window_length=self.sample_size , name=self.win_function )
_A = mel_filter_bank(
num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , )
_A = spectrogram(
one_waveform * self.frame_signal_scale , window=_UpperCAmelCase , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=_UpperCAmelCase , preemphasis=self.preemphasis_coeff , mel_filters=_UpperCAmelCase , mel_floor=self.mel_floor , log_mel='log' , )
return msfc_features.T
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] ):
# make sure we normalize float32 arrays
if self.normalize_means:
_A = x[:input_length].mean(axis=0 )
_A = np.subtract(_UpperCAmelCase , _UpperCAmelCase )
if self.normalize_vars:
_A = x[:input_length].std(axis=0 )
_A = np.divide(_UpperCAmelCase , _UpperCAmelCase )
if input_length < x.shape[0]:
_A = padding_value
# make sure array is in float32
_A = x.astype(np.floataa )
return x
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : Optional[np.ndarray] = None ):
_A = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [self._normalize_one(_UpperCAmelCase , _UpperCAmelCase , self.padding_value ) for x, n in zip(_UpperCAmelCase , _UpperCAmelCase )]
def __call__( self : Dict , _UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ):
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with'''
F''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the ``sampling_rate`` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
_A = isinstance(_UpperCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
_A = is_batched_numpy or (
isinstance(_UpperCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
_A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(_UpperCAmelCase , np.ndarray ):
_A = np.asarray(_UpperCAmelCase , dtype=np.floataa )
elif isinstance(_UpperCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
_A = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
_A = [raw_speech]
# extract fbank features
_A = [self._extract_mfsc_features(_UpperCAmelCase ) for one_waveform in raw_speech]
# convert into correct format for padding
_A = BatchFeature({'input_features': features} )
_A = self.pad(
_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , )
# make sure list is in array format
_A = padded_inputs.get('input_features' )
if isinstance(input_features[0] , _UpperCAmelCase ):
_A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for feature in input_features]
_A = padded_inputs.get('attention_mask' )
if attention_mask is not None:
_A = [np.asarray(_UpperCAmelCase , dtype=np.intaa ) for array in attention_mask]
if self.normalize_means or self.normalize_vars:
_A = (
np.array(_UpperCAmelCase , dtype=np.intaa )
if self._get_padding_strategies(_UpperCAmelCase , max_length=_UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD
and padding
else None
)
_A = self.normalize(
padded_inputs['input_features'] , attention_mask=_UpperCAmelCase )
if return_tensors is not None:
_A = padded_inputs.convert_to_tensors(_UpperCAmelCase )
return padded_inputs
| 7 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ..utils import _LazyModule
a = {
'''config''': [
'''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''',
'''OnnxConfig''',
'''OnnxConfigWithPast''',
'''OnnxSeq2SeqConfigWithPast''',
'''PatchingSpec''',
],
'''convert''': ['''export''', '''validate_model_outputs'''],
'''features''': ['''FeaturesManager'''],
'''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 7 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
a = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ['''GPTSw3Tokenizer''']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt_swa import GPTSwaTokenizer
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 7 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import KarrasVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : UNetaDModel
UpperCAmelCase : KarrasVeScheduler
def __init__( self : Any , _UpperCAmelCase : UNetaDModel , _UpperCAmelCase : KarrasVeScheduler ):
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase )
@torch.no_grad()
def __call__( self : Optional[int] , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Optional[Any] , ):
_A = self.unet.config.sample_size
_A = (batch_size, 3, img_size, img_size)
_A = self.unet
# sample x_0 ~ N(0, sigma_0^2 * I)
_A = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device ) * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(_UpperCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# here sigma_t == t_i from the paper
_A = self.scheduler.schedule[t]
_A = self.scheduler.schedule[t - 1] if t > 0 else 0
# 1. Select temporarily increased noise level sigma_hat
# 2. Add new noise to move from sample_i to sample_hat
_A , _A = self.scheduler.add_noise_to_input(_UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase )
# 3. Predict the noise residual given the noise magnitude `sigma_hat`
# The model inputs and output are adjusted by following eq. (213) in [1].
_A = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample
# 4. Evaluate dx/dt at sigma_hat
# 5. Take Euler step from sigma to sigma_prev
_A = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if sigma_prev != 0:
# 6. Apply 2nd order correction
# The model inputs and output are adjusted by following eq. (213) in [1].
_A = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample
_A = self.scheduler.step_correct(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , step_output.prev_sample , step_output['derivative'] , )
_A = step_output.prev_sample
_A = (sample / 2 + 0.5).clamp(0 , 1 )
_A = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_A = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_UpperCAmelCase )
| 7 | 1 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
a = None
a = logging.get_logger(__name__)
a = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''}
a = {
'''vocab_file''': {
'''facebook/mbart-large-en-ro''': (
'''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model'''
),
'''facebook/mbart-large-cc25''': (
'''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model'''
),
},
'''tokenizer_file''': {
'''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''',
'''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''',
},
}
a = {
'''facebook/mbart-large-en-ro''': 1_024,
'''facebook/mbart-large-cc25''': 1_024,
}
# fmt: off
a = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''']
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = VOCAB_FILES_NAMES
UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase : List[str] = ['''input_ids''', '''attention_mask''']
UpperCAmelCase : Tuple = MBartTokenizer
UpperCAmelCase : List[int] = []
UpperCAmelCase : List[int] = []
def __init__( self : Dict , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[str]="<s>" , _UpperCAmelCase : Union[str, Any]="</s>" , _UpperCAmelCase : Any="</s>" , _UpperCAmelCase : Any="<s>" , _UpperCAmelCase : List[str]="<unk>" , _UpperCAmelCase : Tuple="<pad>" , _UpperCAmelCase : str="<mask>" , _UpperCAmelCase : str=None , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Dict , ):
# Mask token behave like a normal word, i.e. include the space before it
_A = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token
super().__init__(
vocab_file=_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , src_lang=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , )
_A = vocab_file
_A = False if not self.vocab_file else True
_A = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} )
_A = {
lang_code: self.convert_tokens_to_ids(_UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
_A = src_lang if src_lang is not None else 'en_XX'
_A = self.convert_tokens_to_ids(self._src_lang )
_A = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def lowerCAmelCase_ ( self : int ):
return self._src_lang
@src_lang.setter
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : str ):
_A = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
_A = [self.sep_token_id]
_A = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] , _UpperCAmelCase : Optional[str] , **_UpperCAmelCase : Dict ):
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
_A = src_lang
_A = self(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
_A = self.convert_tokens_to_ids(_UpperCAmelCase )
_A = tgt_lang_id
return inputs
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : str = "en_XX" , _UpperCAmelCase : Optional[List[str]] = None , _UpperCAmelCase : str = "ro_RO" , **_UpperCAmelCase : Any , ):
_A = src_lang
_A = tgt_lang
return super().prepare_seqaseq_batch(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] ):
return self.set_src_lang_special_tokens(self.src_lang )
def lowerCAmelCase_ ( self : List[Any] ):
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Union[str, Any] ):
_A = self.convert_tokens_to_ids(_UpperCAmelCase )
_A = []
_A = [self.eos_token_id, self.cur_lang_code]
_A = self.convert_ids_to_tokens(self.prefix_tokens )
_A = self.convert_ids_to_tokens(self.suffix_tokens )
_A = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : str ):
_A = self.convert_tokens_to_ids(_UpperCAmelCase )
_A = []
_A = [self.eos_token_id, self.cur_lang_code]
_A = self.convert_ids_to_tokens(self.prefix_tokens )
_A = self.convert_ids_to_tokens(self.suffix_tokens )
_A = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def lowerCAmelCase_ ( self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(_UpperCAmelCase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' )
return
_A = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ):
copyfile(self.vocab_file , _UpperCAmelCase )
return (out_vocab_file,)
| 7 |
"""simple docstring"""
class lowercase_ :
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ):
_A = None
_A = None
_A = graph
self._normalize_graph(_UpperCAmelCase , _UpperCAmelCase )
_A = len(_UpperCAmelCase )
_A = None
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ):
if sources is int:
_A = [sources]
if sinks is int:
_A = [sinks]
if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) == 0:
return
_A = sources[0]
_A = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(_UpperCAmelCase ) > 1 or len(_UpperCAmelCase ) > 1:
_A = 0
for i in sources:
max_input_flow += sum(self.graph[i] )
_A = len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
_A = max_input_flow
_A = 0
_A = len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
_A = max_input_flow
_A = size - 1
def lowerCAmelCase_ ( self : Optional[Any] ):
if self.maximum_flow_algorithm is None:
raise Exception('You need to set maximum flow algorithm before.' )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Union[str, Any] ):
_A = algorithm(self )
class lowercase_ :
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : Union[str, Any] ):
_A = flow_network
_A = flow_network.verticesCount
_A = flow_network.sourceIndex
_A = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
_A = flow_network.graph
_A = False
def lowerCAmelCase_ ( self : Optional[Any] ):
if not self.executed:
self._algorithm()
_A = True
def lowerCAmelCase_ ( self : int ):
pass
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : int , _UpperCAmelCase : Any ):
super().__init__(_UpperCAmelCase )
# use this to save your result
_A = -1
def lowerCAmelCase_ ( self : Optional[Any] ):
if not self.executed:
raise Exception('You should execute algorithm before using its result!' )
return self.maximum_flow
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : List[Any] ):
super().__init__(_UpperCAmelCase )
_A = [[0] * self.verticies_count for i in range(self.verticies_count )]
_A = [0] * self.verticies_count
_A = [0] * self.verticies_count
def lowerCAmelCase_ ( self : Dict ):
_A = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
_A = [
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
_A = 0
while i < len(_UpperCAmelCase ):
_A = vertices_list[i]
_A = self.heights[vertex_index]
self.process_vertex(_UpperCAmelCase )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(_UpperCAmelCase ) )
_A = 0
else:
i += 1
_A = sum(self.preflow[self.source_index] )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Any ):
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(_UpperCAmelCase , _UpperCAmelCase )
self.relabel(_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ):
_A = min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : int ):
_A = None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
_A = self.heights[to_index]
if min_height is not None:
_A = min_height + 1
if __name__ == "__main__":
a = [0]
a = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
a = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
a = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
a = flow_network.find_maximum_flow()
print(F'''maximum flow is {maximum_flow}''')
| 7 | 1 |
"""simple docstring"""
import random
def _snake_case ( _snake_case : List[str] , _snake_case : int , _snake_case : Dict ) -> Dict:
'''simple docstring'''
_A = a[left_index]
_A = left_index + 1
for j in range(left_index + 1 , _snake_case ):
if a[j] < pivot:
_A , _A = a[i], a[j]
i += 1
_A , _A = a[i - 1], a[left_index]
return i - 1
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
if left < right:
_A = random.randint(_snake_case , right - 1 )
_A , _A = (
a[left],
a[pivot],
) # switches the pivot with the left most bound
_A = partition(_snake_case , _snake_case , _snake_case )
quick_sort_random(
_snake_case , _snake_case , _snake_case ) # recursive quicksort to the left of the pivot point
quick_sort_random(
_snake_case , pivot_index + 1 , _snake_case ) # recursive quicksort to the right of the pivot point
def _snake_case ( ) -> List[str]:
'''simple docstring'''
_A = input('Enter numbers separated by a comma:\n' ).strip()
_A = [int(_snake_case ) for item in user_input.split(',' )]
quick_sort_random(_snake_case , 0 , len(_snake_case ) )
print(_snake_case )
if __name__ == "__main__":
main()
| 7 |
"""simple docstring"""
import unittest
from transformers import SPIECE_UNDERLINE
from transformers.models.speechta import SpeechTaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.tokenization_utils import AddedToken
from ...test_tokenization_common import TokenizerTesterMixin
a = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''')
@require_sentencepiece
@require_tokenizers
class lowercase_ ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = SpeechTaTokenizer
UpperCAmelCase : Tuple = False
UpperCAmelCase : Optional[int] = True
def lowerCAmelCase_ ( self : Tuple ):
super().setUp()
# We have a SentencePiece fixture for testing
_A = SpeechTaTokenizer(_UpperCAmelCase )
_A = AddedToken('<mask>' , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase )
_A = mask_token
tokenizer.add_special_tokens({'mask_token': mask_token} )
tokenizer.add_tokens(['<ctc_blank>'] )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Tuple ):
_A = 'this is a test'
_A = 'this is a test'
return input_text, output_text
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict=20 , _UpperCAmelCase : str=5 ):
_A , _A = self.get_input_output_texts(_UpperCAmelCase )
_A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
_A = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase )
return text, ids
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = '<pad>'
_A = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-4] , 'œ' )
self.assertEqual(vocab_keys[-2] , '<mask>' )
self.assertEqual(vocab_keys[-1] , '<ctc_blank>' )
self.assertEqual(len(_UpperCAmelCase ) , 81 )
def lowerCAmelCase_ ( self : Optional[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 79 )
def lowerCAmelCase_ ( self : Any ):
_A = self.get_tokenizers(do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
_A = ['aaaaa bbbbbb', 'cccccccccdddddddd']
_A = tokenizer.add_tokens(_UpperCAmelCase )
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) )
self.assertEqual(_UpperCAmelCase , all_size + len(_UpperCAmelCase ) )
_A = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=_UpperCAmelCase )
self.assertGreaterEqual(len(_UpperCAmelCase ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
_A = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'}
_A = tokenizer.add_special_tokens(_UpperCAmelCase )
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) )
self.assertEqual(_UpperCAmelCase , all_size_a + len(_UpperCAmelCase ) )
_A = tokenizer.encode(
'>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=_UpperCAmelCase )
self.assertGreaterEqual(len(_UpperCAmelCase ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
def lowerCAmelCase_ ( self : str ):
pass
def lowerCAmelCase_ ( self : Any ):
pass
def lowerCAmelCase_ ( self : Dict ):
_A = self.get_tokenizer()
_A = tokenizer.tokenize('This is a test' )
# fmt: off
self.assertListEqual(_UpperCAmelCase , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] )
# fmt: on
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , )
_A = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
_A = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
# fmt: off
self.assertListEqual(_UpperCAmelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] )
# fmt: on
_A = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
@slow
def lowerCAmelCase_ ( self : List[Any] ):
# Use custom sequence because this tokenizer does not handle numbers.
_A = [
'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides '
'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural '
'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained '
'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.',
'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly '
'conditioning on both left and right context in all layers.',
'The quick brown fox jumps over the lazy dog.',
]
# fmt: off
_A = {
'input_ids': [
[4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2],
[4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
],
'attention_mask': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import List
import timm
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from torch import Tensor
from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification
from transformers.utils import logging
logging.set_verbosity_info()
a = logging.get_logger()
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : nn.Module
UpperCAmelCase : List[nn.Module] = field(default_factory=__lowerCAmelCase )
UpperCAmelCase : list = field(default_factory=__lowerCAmelCase )
def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Tensor , _UpperCAmelCase : Tensor ):
_A = len(list(m.modules() ) ) == 1 or isinstance(_UpperCAmelCase , nn.Convad ) or isinstance(_UpperCAmelCase , nn.BatchNormad )
if has_not_submodules:
self.traced.append(_UpperCAmelCase )
def __call__( self : List[str] , _UpperCAmelCase : Tensor ):
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(_UpperCAmelCase )
[x.remove() for x in self.handles]
return self
@property
def lowerCAmelCase_ ( self : Tuple ):
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda _UpperCAmelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) )
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : nn.Module
UpperCAmelCase : nn.Module
UpperCAmelCase : int = 0
UpperCAmelCase : List = field(default_factory=__lowerCAmelCase )
UpperCAmelCase : List = field(default_factory=__lowerCAmelCase )
def __call__( self : Dict , _UpperCAmelCase : Tensor ):
_A = Tracker(self.dest )(_UpperCAmelCase ).parametrized
_A = Tracker(self.src )(_UpperCAmelCase ).parametrized
_A = list(filter(lambda _UpperCAmelCase : type(_UpperCAmelCase ) not in self.src_skip , _UpperCAmelCase ) )
_A = list(filter(lambda _UpperCAmelCase : type(_UpperCAmelCase ) not in self.dest_skip , _UpperCAmelCase ) )
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise Exception(
F'''Numbers of operations are different. Source module has {len(_UpperCAmelCase )} operations while'''
F''' destination module has {len(_UpperCAmelCase )}.''' )
for dest_m, src_m in zip(_UpperCAmelCase , _UpperCAmelCase ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(F'''Transfered from={src_m} to={dest_m}''' )
def _snake_case ( _snake_case : str , _snake_case : ResNetConfig , _snake_case : Path , _snake_case : bool = True ) -> Union[str, Any]:
'''simple docstring'''
print(F'''Converting {name}...''' )
with torch.no_grad():
_A = timm.create_model(_snake_case , pretrained=_snake_case ).eval()
_A = ResNetForImageClassification(_snake_case ).eval()
_A = ModuleTransfer(src=_snake_case , dest=_snake_case )
_A = torch.randn((1, 3, 2_24, 2_24) )
module_transfer(_snake_case )
assert torch.allclose(from_model(_snake_case ) , our_model(_snake_case ).logits ), "The model logits don't match the original one."
_A = F'''resnet{"-".join(name.split("resnet" ) )}'''
print(_snake_case )
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=_snake_case , )
# we can use the convnext one
_A = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
image_processor.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=_snake_case , )
print(F'''Pushed {checkpoint_name}''' )
def _snake_case ( _snake_case : Path , _snake_case : str = None , _snake_case : bool = True ) -> Tuple:
'''simple docstring'''
_A = 'imagenet-1k-id2label.json'
_A = 10_00
_A = (1, num_labels)
_A = 'huggingface/label-files'
_A = num_labels
_A = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='dataset' ) , 'r' ) )
_A = {int(_snake_case ): v for k, v in idalabel.items()}
_A = idalabel
_A = {v: k for k, v in idalabel.items()}
_A = partial(_snake_case , num_labels=_snake_case , idalabel=_snake_case , labelaid=_snake_case )
_A = {
'resnet18': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='basic' ),
'resnet26': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ),
'resnet34': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='basic' ),
'resnet50': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ),
'resnet101': ImageNetPreTrainedConfig(
depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ),
'resnet152': ImageNetPreTrainedConfig(
depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ),
}
if model_name:
convert_weight_and_push(_snake_case , names_to_config[model_name] , _snake_case , _snake_case )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(_snake_case , _snake_case , _snake_case , _snake_case )
return config, expected_shape
if __name__ == "__main__":
a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default=None,
type=str,
help=(
'''The name of the model you wish to convert, it must be one of the supported resnet* architecture,'''
''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=Path,
required=True,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
default=True,
type=bool,
required=False,
help='''If True, push model and image processor to the hub.''',
)
a = parser.parse_args()
a = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 7 |
"""simple docstring"""
from .configuration_bert_masked import MaskedBertConfig
from .modeling_bert_masked import (
MaskedBertForMultipleChoice,
MaskedBertForQuestionAnswering,
MaskedBertForSequenceClassification,
MaskedBertForTokenClassification,
MaskedBertModel,
)
from .modules import *
| 7 | 1 |
"""simple docstring"""
a = 8.3_1_4_4_6_2 # Unit - J mol-1 K-1
def _snake_case ( _snake_case : float , _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
if moles < 0 or kelvin < 0 or volume < 0:
raise ValueError('Invalid inputs. Enter positive value.' )
return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume
def _snake_case ( _snake_case : float , _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
if moles < 0 or kelvin < 0 or pressure < 0:
raise ValueError('Invalid inputs. Enter positive value.' )
return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure
if __name__ == "__main__":
from doctest import testmod
testmod()
| 7 |
"""simple docstring"""
import argparse
a = '''docs/source/_static/js/custom.js'''
def _snake_case ( _snake_case : Dict ) -> Any:
'''simple docstring'''
with open(_snake_case , encoding='utf-8' , newline='\n' ) as f:
_A = f.readlines()
_A = 0
# First let's put the right version
while not lines[index].startswith('const stableVersion =' ):
index += 1
_A = F'''const stableVersion = "v{version}"\n'''
# Then update the dictionary
while not lines[index].startswith('const versionMapping = {' ):
index += 1
# We go until the end
while not lines[index].startswith('}' ):
index += 1
# We add the new version at the end
lines[index - 1] += F''' "v{version}": "v{version}",\n'''
with open(_snake_case , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(_snake_case )
if __name__ == "__main__":
a = argparse.ArgumentParser()
parser.add_argument('''--version''', help='''Release version.''')
a = parser.parse_args()
update_custom_js(args.version)
| 7 | 1 |
"""simple docstring"""
import math
import os
import sys
def _snake_case ( _snake_case : str ) -> str:
'''simple docstring'''
_A = ''
try:
with open(_snake_case , 'rb' ) as binary_file:
_A = binary_file.read()
for dat in data:
_A = F'''{dat:08b}'''
result += curr_byte
return result
except OSError:
print('File not accessible' )
sys.exit()
def _snake_case ( _snake_case : dict[str, str] , _snake_case : str , _snake_case : int , _snake_case : str ) -> None:
'''simple docstring'''
lexicon.pop(_snake_case )
_A = last_match_id
if math.loga(_snake_case ).is_integer():
for curr_key in lexicon:
_A = '0' + lexicon[curr_key]
_A = bin(_snake_case )[2:]
def _snake_case ( _snake_case : str ) -> str:
'''simple docstring'''
_A = {'0': '0', '1': '1'}
_A , _A = '', ''
_A = len(_snake_case )
for i in range(len(_snake_case ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
_A = lexicon[curr_string]
result += last_match_id
add_key_to_lexicon(_snake_case , _snake_case , _snake_case , _snake_case )
index += 1
_A = ''
while curr_string != "" and curr_string not in lexicon:
curr_string += "0"
if curr_string != "":
_A = lexicon[curr_string]
result += last_match_id
return result
def _snake_case ( _snake_case : str , _snake_case : str ) -> str:
'''simple docstring'''
_A = os.path.getsize(_snake_case )
_A = bin(_snake_case )[2:]
_A = len(_snake_case )
return "0" * (length_length - 1) + file_length_binary + compressed
def _snake_case ( _snake_case : str , _snake_case : str ) -> None:
'''simple docstring'''
_A = 8
try:
with open(_snake_case , 'wb' ) as opened_file:
_A = [
to_write[i : i + byte_length]
for i in range(0 , len(_snake_case ) , _snake_case )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append('10000000' )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array:
opened_file.write(int(_snake_case , 2 ).to_bytes(1 , byteorder='big' ) )
except OSError:
print('File not accessible' )
sys.exit()
def _snake_case ( _snake_case : str , _snake_case : str ) -> None:
'''simple docstring'''
_A = read_file_binary(_snake_case )
_A = compress_data(_snake_case )
_A = add_file_length(_snake_case , _snake_case )
write_file_binary(_snake_case , _snake_case )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''vit_mae'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int]=768 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Optional[int]=3_072 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : Optional[Any]=224 , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=512 , _UpperCAmelCase : int=8 , _UpperCAmelCase : List[Any]=2_048 , _UpperCAmelCase : Optional[Any]=0.75 , _UpperCAmelCase : List[str]=False , **_UpperCAmelCase : Union[str, Any] , ):
super().__init__(**_UpperCAmelCase )
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = intermediate_size
_A = hidden_act
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = initializer_range
_A = layer_norm_eps
_A = image_size
_A = patch_size
_A = num_channels
_A = qkv_bias
_A = decoder_num_attention_heads
_A = decoder_hidden_size
_A = decoder_num_hidden_layers
_A = decoder_intermediate_size
_A = mask_ratio
_A = norm_pix_loss
| 7 | 1 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( _snake_case : int = 4 ) -> list[list[int]]:
'''simple docstring'''
_A = abs(_snake_case ) or 4
return [[1 + x + y * row_size for x in range(_snake_case )] for y in range(_snake_case )]
def _snake_case ( _snake_case : list[list[int]] ) -> list[list[int]]:
'''simple docstring'''
return reverse_row(transpose(_snake_case ) )
# OR.. transpose(reverse_column(matrix))
def _snake_case ( _snake_case : list[list[int]] ) -> list[list[int]]:
'''simple docstring'''
return reverse_row(reverse_column(_snake_case ) )
# OR.. reverse_column(reverse_row(matrix))
def _snake_case ( _snake_case : list[list[int]] ) -> list[list[int]]:
'''simple docstring'''
return reverse_column(transpose(_snake_case ) )
# OR.. transpose(reverse_row(matrix))
def _snake_case ( _snake_case : list[list[int]] ) -> list[list[int]]:
'''simple docstring'''
_A = [list(_snake_case ) for x in zip(*_snake_case )]
return matrix
def _snake_case ( _snake_case : list[list[int]] ) -> list[list[int]]:
'''simple docstring'''
_A = matrix[::-1]
return matrix
def _snake_case ( _snake_case : list[list[int]] ) -> list[list[int]]:
'''simple docstring'''
_A = [x[::-1] for x in matrix]
return matrix
def _snake_case ( _snake_case : list[list[int]] ) -> None:
'''simple docstring'''
for i in matrix:
print(*_snake_case )
if __name__ == "__main__":
a = make_matrix()
print('''\norigin:\n''')
print_matrix(matrix)
print('''\nrotate 90 counterclockwise:\n''')
print_matrix(rotate_aa(matrix))
a = make_matrix()
print('''\norigin:\n''')
print_matrix(matrix)
print('''\nrotate 180:\n''')
print_matrix(rotate_aaa(matrix))
a = make_matrix()
print('''\norigin:\n''')
print_matrix(matrix)
print('''\nrotate 270 counterclockwise:\n''')
print_matrix(rotate_aaa(matrix))
| 7 |
"""simple docstring"""
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
a = logging.get_logger(__name__)
a = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
a = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def _snake_case ( _snake_case : Optional[Any] ) -> str:
'''simple docstring'''
_A = torch.load(_snake_case , map_location='cpu' )
return sd
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : str , _snake_case : Tuple=rename_keys_prefix ) -> List[str]:
'''simple docstring'''
_A = OrderedDict()
_A = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
_A = key
for name_pair in rename_keys_prefix:
_A = new_key.replace(name_pair[0] , name_pair[1] )
_A = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
_A = new_d['cls.predictions.bias']
return new_d
@torch.no_grad()
def _snake_case ( _snake_case : List[str] , _snake_case : Dict ) -> Dict:
'''simple docstring'''
assert (
checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS
), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'''
# Get Config
if "pre" in checkpoint_path:
_A = 'pretraining'
if "vcr" in checkpoint_path:
_A = {'visual_embedding_dim': 5_12}
elif "vqa_advanced" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
elif "vqa" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
elif "nlvr" in checkpoint_path:
_A = {'visual_embedding_dim': 10_24}
else:
raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' )
else:
if "vcr" in checkpoint_path:
_A = {'visual_embedding_dim': 5_12}
_A = 'multichoice'
elif "vqa_advanced" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
_A = 'vqa_advanced'
elif "vqa" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48, 'num_labels': 31_29}
_A = 'vqa'
elif "nlvr" in checkpoint_path:
_A = {
'visual_embedding_dim': 10_24,
'num_labels': 2,
}
_A = 'nlvr'
_A = VisualBertConfig(**_snake_case )
# Load State Dict
_A = load_state_dict(_snake_case )
_A = get_new_dict(_snake_case , _snake_case )
if model_type == "pretraining":
_A = VisualBertForPreTraining(_snake_case )
elif model_type == "vqa":
_A = VisualBertForQuestionAnswering(_snake_case )
elif model_type == "nlvr":
_A = VisualBertForVisualReasoning(_snake_case )
elif model_type == "multichoice":
_A = VisualBertForMultipleChoice(_snake_case )
model.load_state_dict(_snake_case )
# Save Checkpoints
Path(_snake_case ).mkdir(exist_ok=_snake_case )
model.save_pretrained(_snake_case )
if __name__ == "__main__":
a = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
a = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 7 | 1 |
"""simple docstring"""
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
a = {
'''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
'''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
'''bert''': (BertConfig, BertForMaskedLM, BertTokenizer),
'''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def _snake_case ( _snake_case : Dict ) -> Dict:
'''simple docstring'''
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def _snake_case ( _snake_case : Optional[int] , _snake_case : int ) -> List[Any]:
'''simple docstring'''
if args.student_type == "roberta":
_A = False
elif args.student_type == "gpt2":
_A = False
def _snake_case ( _snake_case : Tuple , _snake_case : List[str] ) -> int:
'''simple docstring'''
if args.student_type == "roberta":
_A = False
def _snake_case ( ) -> List[Any]:
'''simple docstring'''
_A = argparse.ArgumentParser(description='Training' )
parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' )
parser.add_argument(
'--dump_path' , type=_snake_case , required=_snake_case , help='The output directory (log, checkpoints, parameters, etc.)' )
parser.add_argument(
'--data_file' , type=_snake_case , required=_snake_case , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , )
parser.add_argument(
'--student_type' , type=_snake_case , choices=['distilbert', 'roberta', 'gpt2'] , required=_snake_case , help='The student type (DistilBERT, RoBERTa).' , )
parser.add_argument('--student_config' , type=_snake_case , required=_snake_case , help='Path to the student configuration.' )
parser.add_argument(
'--student_pretrained_weights' , default=_snake_case , type=_snake_case , help='Load student initialization checkpoint.' )
parser.add_argument(
'--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=_snake_case , help='Teacher type (BERT, RoBERTa).' )
parser.add_argument('--teacher_name' , type=_snake_case , required=_snake_case , help='The teacher model.' )
parser.add_argument('--temperature' , default=2.0 , type=_snake_case , help='Temperature for the softmax temperature.' )
parser.add_argument(
'--alpha_ce' , default=0.5 , type=_snake_case , help='Linear weight for the distillation loss. Must be >=0.' )
parser.add_argument(
'--alpha_mlm' , default=0.0 , type=_snake_case , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , )
parser.add_argument('--alpha_clm' , default=0.5 , type=_snake_case , help='Linear weight for the CLM loss. Must be >=0.' )
parser.add_argument('--alpha_mse' , default=0.0 , type=_snake_case , help='Linear weight of the MSE loss. Must be >=0.' )
parser.add_argument(
'--alpha_cos' , default=0.0 , type=_snake_case , help='Linear weight of the cosine embedding loss. Must be >=0.' )
parser.add_argument(
'--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' )
parser.add_argument(
'--mlm_mask_prop' , default=0.15 , type=_snake_case , help='Proportion of tokens for which we need to make a prediction.' , )
parser.add_argument('--word_mask' , default=0.8 , type=_snake_case , help='Proportion of tokens to mask out.' )
parser.add_argument('--word_keep' , default=0.1 , type=_snake_case , help='Proportion of tokens to keep.' )
parser.add_argument('--word_rand' , default=0.1 , type=_snake_case , help='Proportion of tokens to randomly replace.' )
parser.add_argument(
'--mlm_smoothing' , default=0.7 , type=_snake_case , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , )
parser.add_argument('--token_counts' , type=_snake_case , help='The token counts in the data_file for MLM.' )
parser.add_argument(
'--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , )
parser.add_argument(
'--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , )
parser.add_argument(
'--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , )
parser.add_argument('--n_epoch' , type=_snake_case , default=3 , help='Number of pass on the whole dataset.' )
parser.add_argument('--batch_size' , type=_snake_case , default=5 , help='Batch size (for each process).' )
parser.add_argument(
'--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , )
parser.add_argument(
'--gradient_accumulation_steps' , type=_snake_case , default=50 , help='Gradient accumulation for larger training batches.' , )
parser.add_argument('--warmup_prop' , default=0.05 , type=_snake_case , help='Linear warmup proportion.' )
parser.add_argument('--weight_decay' , default=0.0 , type=_snake_case , help='Weight decay if we apply some.' )
parser.add_argument('--learning_rate' , default=5E-4 , type=_snake_case , help='The initial learning rate for Adam.' )
parser.add_argument('--adam_epsilon' , default=1E-6 , type=_snake_case , help='Epsilon for Adam optimizer.' )
parser.add_argument('--max_grad_norm' , default=5.0 , type=_snake_case , help='Max gradient norm.' )
parser.add_argument('--initializer_range' , default=0.02 , type=_snake_case , help='Random initialization range.' )
parser.add_argument(
'--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , )
parser.add_argument(
'--fp16_opt_level' , type=_snake_case , default='O1' , help=(
'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'
'See details at https://nvidia.github.io/apex/amp.html'
) , )
parser.add_argument('--n_gpu' , type=_snake_case , default=1 , help='Number of GPUs in the node.' )
parser.add_argument('--local_rank' , type=_snake_case , default=-1 , help='Distributed training - Local rank' )
parser.add_argument('--seed' , type=_snake_case , default=56 , help='Random seed' )
parser.add_argument('--log_interval' , type=_snake_case , default=5_00 , help='Tensorboard logging interval.' )
parser.add_argument('--checkpoint_interval' , type=_snake_case , default=40_00 , help='Checkpoint interval.' )
_A = parser.parse_args()
sanity_checks(_snake_case )
# ARGS #
init_gpu_params(_snake_case )
set_seed(_snake_case )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite'''
' itUse `--force` if you want to overwrite it' )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' )
# SAVE PARAMS #
logger.info(F'''Param: {args}''' )
with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f:
json.dump(vars(_snake_case ) , _snake_case , indent=4 )
git_log(args.dump_path )
_A , _A , _A = MODEL_CLASSES[args.student_type]
_A , _A , _A = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
_A = teacher_tokenizer_class.from_pretrained(args.teacher_name )
_A = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
_A = tokenizer.all_special_tokens.index(_snake_case )
_A = tokenizer.all_special_ids[idx]
logger.info(F'''Special tokens {special_tok_ids}''' )
_A = special_tok_ids
_A = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(F'''Loading data from {args.data_file}''' )
with open(args.data_file , 'rb' ) as fp:
_A = pickle.load(_snake_case )
if args.mlm:
logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' )
with open(args.token_counts , 'rb' ) as fp:
_A = pickle.load(_snake_case )
_A = np.maximum(_snake_case , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
_A = 0.0 # do not predict special tokens
_A = torch.from_numpy(_snake_case )
else:
_A = None
_A = LmSeqsDataset(params=_snake_case , data=_snake_case )
logger.info('Data loader created.' )
# STUDENT #
logger.info(F'''Loading student config from {args.student_config}''' )
_A = student_config_class.from_pretrained(args.student_config )
_A = True
if args.student_pretrained_weights is not None:
logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' )
_A = student_model_class.from_pretrained(args.student_pretrained_weights , config=_snake_case )
else:
_A = student_model_class(_snake_case )
if args.n_gpu > 0:
student.to(F'''cuda:{args.local_rank}''' )
logger.info('Student loaded.' )
# TEACHER #
_A = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_snake_case )
if args.n_gpu > 0:
teacher.to(F'''cuda:{args.local_rank}''' )
logger.info(F'''Teacher loaded from {args.teacher_name}.''' )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(_snake_case , _snake_case )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(_snake_case , _snake_case )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
_A = Distiller(
params=_snake_case , dataset=_snake_case , token_probs=_snake_case , student=_snake_case , teacher=_snake_case )
distiller.train()
logger.info('Let\'s go get some drinks.' )
if __name__ == "__main__":
main()
| 7 |
"""simple docstring"""
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def _snake_case ( _snake_case : Dict ) -> Optional[Any]:
'''simple docstring'''
for param in module.parameters():
_A = False
def _snake_case ( ) -> Tuple:
'''simple docstring'''
_A = 'cuda' if torch.cuda.is_available() else 'cpu'
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
_A = 'mps'
if device == "mps":
print(
'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch'
' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues'
' with generations.' )
return device
def _snake_case ( _snake_case : Dict ) -> Optional[Any]:
'''simple docstring'''
_A = plt.imshow(_snake_case )
fig.axes.get_xaxis().set_visible(_snake_case )
fig.axes.get_yaxis().set_visible(_snake_case )
plt.show()
def _snake_case ( ) -> Optional[Any]:
'''simple docstring'''
_A = datetime.now()
_A = current_time.strftime('%H:%M:%S' )
return timestamp
| 7 | 1 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( _snake_case : list , _snake_case : int ) -> Optional[Any]:
'''simple docstring'''
if len(_snake_case ) <= 1 or n <= 1:
return
insert_next(_snake_case , n - 1 )
rec_insertion_sort(_snake_case , n - 1 )
def _snake_case ( _snake_case : list , _snake_case : int ) -> List[Any]:
'''simple docstring'''
if index >= len(_snake_case ) or collection[index - 1] <= collection[index]:
return
# Swaps adjacent elements since they are not in ascending order
_A , _A = (
collection[index],
collection[index - 1],
)
insert_next(_snake_case , index + 1 )
if __name__ == "__main__":
a = input('''Enter integers separated by spaces: ''')
a = [int(num) for num in numbers.split()]
rec_insertion_sort(number_list, len(number_list))
print(number_list)
| 7 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Any = ['''image_processor''', '''tokenizer''']
UpperCAmelCase : Optional[int] = '''ViTImageProcessor'''
UpperCAmelCase : int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''')
def __init__( self : Tuple , _UpperCAmelCase : int=None , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : Dict ):
_A = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _UpperCAmelCase , )
_A = kwargs.pop('feature_extractor' )
_A = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __call__( self : Optional[Any] , _UpperCAmelCase : int=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Union[str, Any] ):
if text is None and visual_prompt is None and images is None:
raise ValueError('You have to specify either text, visual prompt or images.' )
if text is not None and visual_prompt is not None:
raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' )
if text is not None:
_A = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if visual_prompt is not None:
_A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if images is not None:
_A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if visual_prompt is not None and images is not None:
_A = {
'pixel_values': image_features.pixel_values,
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
elif text is not None and images is not None:
_A = image_features.pixel_values
return encoding
elif text is not None:
return encoding
elif visual_prompt is not None:
_A = {
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
else:
return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase )
def lowerCAmelCase_ ( self : str , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Union[str, Any] ):
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def lowerCAmelCase_ ( self : Union[str, Any] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ):
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
def lowerCAmelCase_ ( self : Dict ):
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , )
return self.image_processor_class
@property
def lowerCAmelCase_ ( self : Tuple ):
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , )
return self.image_processor
| 7 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''gpt_bigcode'''
UpperCAmelCase : str = ['''past_key_values''']
UpperCAmelCase : Dict = {
'''hidden_size''': '''n_embd''',
'''max_position_embeddings''': '''n_positions''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Tuple , _UpperCAmelCase : Dict=50_257 , _UpperCAmelCase : List[Any]=1_024 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : str="gelu_pytorch_tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[Any]=50_256 , _UpperCAmelCase : Dict=50_256 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Any=True , **_UpperCAmelCase : Any , ):
_A = vocab_size
_A = n_positions
_A = n_embd
_A = n_layer
_A = n_head
_A = n_inner
_A = activation_function
_A = resid_pdrop
_A = embd_pdrop
_A = attn_pdrop
_A = layer_norm_epsilon
_A = initializer_range
_A = scale_attn_weights
_A = use_cache
_A = attention_softmax_in_fpaa
_A = scale_attention_softmax_in_fpaa
_A = multi_query
_A = bos_token_id
_A = eos_token_id
super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
| 7 |
"""simple docstring"""
import math
from datetime import datetime, timedelta
def _snake_case ( _snake_case : int ) -> datetime:
'''simple docstring'''
_A = year % 19
_A = year % 4
_A = year % 7
_A = math.floor(year / 1_00 )
_A = math.floor((13 + 8 * leap_day_inhibits) / 25 )
_A = leap_day_inhibits / 4
_A = (
15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 30
_A = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
_A = (19 * metonic_cycle + secular_moon_shift) % 30
# PHM -> Paschal Full Moon
_A = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 29 and days_from_phm_to_sunday == 6:
return datetime(_snake_case , 4 , 19 )
elif days_to_add == 28 and days_from_phm_to_sunday == 6:
return datetime(_snake_case , 4 , 18 )
else:
return datetime(_snake_case , 3 , 22 ) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday ) )
if __name__ == "__main__":
for year in (1_994, 2_000, 2_010, 2_021, 2_023):
a = '''will be''' if year > datetime.now().year else '''was'''
print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
| 7 | 1 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
a = logging.get_logger(__name__)
def _snake_case ( _snake_case : str ) -> YolosConfig:
'''simple docstring'''
_A = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
_A = 1_92
_A = 7_68
_A = 12
_A = 3
_A = [8_00, 13_33]
_A = False
elif yolos_name == "yolos_s_dWr":
_A = 3_30
_A = 14
_A = 6
_A = 13_20
elif "yolos_s" in yolos_name:
_A = 3_84
_A = 15_36
_A = 12
_A = 6
elif "yolos_b" in yolos_name:
_A = [8_00, 13_44]
_A = 91
_A = 'huggingface/label-files'
_A = 'coco-detection-id2label.json'
_A = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='dataset' ) , 'r' ) )
_A = {int(_snake_case ): v for k, v in idalabel.items()}
_A = idalabel
_A = {v: k for k, v in idalabel.items()}
return config
def _snake_case ( _snake_case : dict , _snake_case : YolosConfig , _snake_case : bool = False ) -> List[Any]:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_A = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' )
_A = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
_A = in_proj_weight[: config.hidden_size, :]
_A = in_proj_bias[: config.hidden_size]
_A = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_A = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_A = in_proj_weight[-config.hidden_size :, :]
_A = in_proj_bias[-config.hidden_size :]
def _snake_case ( _snake_case : str ) -> str:
'''simple docstring'''
if "backbone" in name:
_A = name.replace('backbone' , 'vit' )
if "cls_token" in name:
_A = name.replace('cls_token' , 'embeddings.cls_token' )
if "det_token" in name:
_A = name.replace('det_token' , 'embeddings.detection_tokens' )
if "mid_pos_embed" in name:
_A = name.replace('mid_pos_embed' , 'encoder.mid_position_embeddings' )
if "pos_embed" in name:
_A = name.replace('pos_embed' , 'embeddings.position_embeddings' )
if "patch_embed.proj" in name:
_A = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "blocks" in name:
_A = name.replace('blocks' , 'encoder.layer' )
if "attn.proj" in name:
_A = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name:
_A = name.replace('attn' , 'attention.self' )
if "norm1" in name:
_A = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
_A = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
_A = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
_A = name.replace('mlp.fc2' , 'output.dense' )
if "class_embed" in name:
_A = name.replace('class_embed' , 'class_labels_classifier' )
if "bbox_embed" in name:
_A = name.replace('bbox_embed' , 'bbox_predictor' )
if "vit.norm" in name:
_A = name.replace('vit.norm' , 'vit.layernorm' )
return name
def _snake_case ( _snake_case : dict , _snake_case : YolosForObjectDetection ) -> dict:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
_A = orig_state_dict.pop(_snake_case )
if "qkv" in key:
_A = key.split('.' )
_A = int(key_split[2] )
_A = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
_A = val[:dim, :]
_A = val[
dim : dim * 2, :
]
_A = val[-dim:, :]
else:
_A = val[:dim]
_A = val[dim : dim * 2]
_A = val[-dim:]
else:
_A = val
return orig_state_dict
def _snake_case ( ) -> torch.Tensor:
'''simple docstring'''
_A = 'http://images.cocodataset.org/val2017/000000039769.jpg'
_A = Image.open(requests.get(_snake_case , stream=_snake_case ).raw )
return im
@torch.no_grad()
def _snake_case ( _snake_case : str , _snake_case : str , _snake_case : str , _snake_case : bool = False ) -> Union[str, Any]:
'''simple docstring'''
_A = get_yolos_config(_snake_case )
# load original state_dict
_A = torch.load(_snake_case , map_location='cpu' )['model']
# load 🤗 model
_A = YolosForObjectDetection(_snake_case )
model.eval()
_A = convert_state_dict(_snake_case , _snake_case )
model.load_state_dict(_snake_case )
# Check outputs on an image, prepared by YolosImageProcessor
_A = 8_00 if yolos_name != 'yolos_ti' else 5_12
_A = YolosImageProcessor(format='coco_detection' , size=_snake_case )
_A = image_processor(images=prepare_img() , return_tensors='pt' )
_A = model(**_snake_case )
_A , _A = outputs.logits, outputs.pred_boxes
_A , _A = None, None
if yolos_name == "yolos_ti":
_A = torch.tensor(
[[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] )
_A = torch.tensor(
[[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] )
elif yolos_name == "yolos_s_200_pre":
_A = torch.tensor(
[[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] )
_A = torch.tensor(
[[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] )
elif yolos_name == "yolos_s_300_pre":
_A = torch.tensor(
[[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] )
_A = torch.tensor(
[[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] )
elif yolos_name == "yolos_s_dWr":
_A = torch.tensor(
[[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] )
_A = torch.tensor(
[[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] )
elif yolos_name == "yolos_base":
_A = torch.tensor(
[[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] )
_A = torch.tensor(
[[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] )
else:
raise ValueError(F'''Unknown yolos_name: {yolos_name}''' )
assert torch.allclose(logits[0, :3, :3] , _snake_case , atol=1E-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , _snake_case , atol=1E-4 )
Path(_snake_case ).mkdir(exist_ok=_snake_case )
print(F'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_snake_case )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(_snake_case )
if push_to_hub:
_A = {
'yolos_ti': 'yolos-tiny',
'yolos_s_200_pre': 'yolos-small',
'yolos_s_300_pre': 'yolos-small-300',
'yolos_s_dWr': 'yolos-small-dwr',
'yolos_base': 'yolos-base',
}
print('Pushing to the hub...' )
_A = model_mapping[yolos_name]
image_processor.push_to_hub(_snake_case , organization='hustvl' )
model.push_to_hub(_snake_case , organization='hustvl' )
if __name__ == "__main__":
a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--yolos_name''',
default='''yolos_s_200_pre''',
type=str,
help=(
'''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\','''
''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.'''
),
)
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
a = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''gpt_bigcode'''
UpperCAmelCase : str = ['''past_key_values''']
UpperCAmelCase : Dict = {
'''hidden_size''': '''n_embd''',
'''max_position_embeddings''': '''n_positions''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Tuple , _UpperCAmelCase : Dict=50_257 , _UpperCAmelCase : List[Any]=1_024 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : str="gelu_pytorch_tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[Any]=50_256 , _UpperCAmelCase : Dict=50_256 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Any=True , **_UpperCAmelCase : Any , ):
_A = vocab_size
_A = n_positions
_A = n_embd
_A = n_layer
_A = n_head
_A = n_inner
_A = activation_function
_A = resid_pdrop
_A = embd_pdrop
_A = attn_pdrop
_A = layer_norm_epsilon
_A = initializer_range
_A = scale_attn_weights
_A = use_cache
_A = attention_softmax_in_fpaa
_A = scale_attention_softmax_in_fpaa
_A = multi_query
_A = bos_token_id
_A = eos_token_id
super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
| 7 | 1 |
"""simple docstring"""
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def _snake_case ( _snake_case : int = 3 ) -> qiskit.result.counts.Counts:
'''simple docstring'''
if isinstance(_snake_case , _snake_case ):
raise TypeError('number of qubits must be a integer.' )
if number_of_qubits <= 0:
raise ValueError('number of qubits must be > 0.' )
if math.floor(_snake_case ) != number_of_qubits:
raise ValueError('number of qubits must be exact integer.' )
if number_of_qubits > 10:
raise ValueError('number of qubits too large to simulate(>10).' )
_A = QuantumRegister(_snake_case , 'qr' )
_A = ClassicalRegister(_snake_case , 'cr' )
_A = QuantumCircuit(_snake_case , _snake_case )
_A = number_of_qubits
for i in range(_snake_case ):
quantum_circuit.h(number_of_qubits - i - 1 )
counter -= 1
for j in range(_snake_case ):
quantum_circuit.cp(np.pi / 2 ** (counter - j) , _snake_case , _snake_case )
for k in range(number_of_qubits // 2 ):
quantum_circuit.swap(_snake_case , number_of_qubits - k - 1 )
# measure all the qubits
quantum_circuit.measure(_snake_case , _snake_case )
# simulate with 10000 shots
_A = Aer.get_backend('qasm_simulator' )
_A = execute(_snake_case , _snake_case , shots=1_00_00 )
return job.result().get_counts(_snake_case )
if __name__ == "__main__":
print(
F'''Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}'''
)
| 7 |
"""simple docstring"""
def _snake_case ( _snake_case : str ) -> str:
'''simple docstring'''
return " ".join(
''.join(word[::-1] ) if len(_snake_case ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words('''Hey wollef sroirraw'''))
| 7 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a = {
'''configuration_upernet''': ['''UperNetConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
'''UperNetForSemanticSegmentation''',
'''UperNetPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_upernet import UperNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 7 |
"""simple docstring"""
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = (KDPMaDiscreteScheduler,)
UpperCAmelCase : Any = 10
def lowerCAmelCase_ ( self : Dict , **_UpperCAmelCase : Optional[Any] ):
_A = {
'num_train_timesteps': 1_100,
'beta_start': 0.0001,
'beta_end': 0.02,
'beta_schedule': 'linear',
}
config.update(**_UpperCAmelCase )
return config
def lowerCAmelCase_ ( self : Any ):
for timesteps in [10, 50, 100, 1_000]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict ):
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Tuple ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[int] ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config(prediction_type='v_prediction' )
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
_A = self.dummy_model()
_A = self.dummy_sample_deter * scheduler.init_noise_sigma
_A = sample.to(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = output.prev_sample
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.6_9_3_4E-0_7 ) < 1E-2
assert abs(result_mean.item() - 6.1_1_1_2E-1_0 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2E-0_7 ) < 1E-2
assert abs(result_mean.item() - 0.0002 ) < 1E-3
def lowerCAmelCase_ ( self : Optional[Any] ):
if torch_device == "mps":
return
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config()
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
_A = self.dummy_model()
_A = self.dummy_sample_deter * scheduler.init_noise_sigma
_A = sample.to(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = output.prev_sample
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
def lowerCAmelCase_ ( self : Any ):
if torch_device == "mps":
return
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config()
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase )
_A = self.dummy_model()
_A = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
_A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = output.prev_sample
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
if str(_UpperCAmelCase ).startswith('cpu' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
| 7 | 1 |
"""simple docstring"""
from ..utils import is_flax_available, is_torch_available
if is_torch_available():
from .autoencoder_kl import AutoencoderKL
from .controlnet import ControlNetModel
from .dual_transformer_ad import DualTransformeraDModel
from .modeling_utils import ModelMixin
from .prior_transformer import PriorTransformer
from .ta_film_transformer import TaFilmDecoder
from .transformer_ad import TransformeraDModel
from .unet_ad import UNetaDModel
from .unet_ad import UNetaDModel
from .unet_ad_condition import UNetaDConditionModel
from .unet_ad_condition import UNetaDConditionModel
from .vq_model import VQModel
if is_flax_available():
from .controlnet_flax import FlaxControlNetModel
from .unet_ad_condition_flax import FlaxUNetaDConditionModel
from .vae_flax import FlaxAutoencoderKL
| 7 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any]=10 ) -> Optional[int]:
'''simple docstring'''
_A = []
for _ in range(_snake_case ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def _snake_case ( _snake_case : Optional[Any] , _snake_case : Union[str, Any]=10 ) -> List[str]:
'''simple docstring'''
_A = []
for step in range(_snake_case ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
_A = os.path.join(_snake_case , 'schedule.bin' )
torch.save(scheduler.state_dict() , _snake_case )
_A = torch.load(_snake_case )
scheduler.load_state_dict(_snake_case )
return lrs
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ):
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Any ):
_A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase )
_A = torch.tensor([0.4, 0.2, -0.5] )
_A = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_A = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
_A = criterion(_UpperCAmelCase , _UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def lowerCAmelCase_ ( self : int ):
_A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase )
_A = torch.tensor([0.4, 0.2, -0.5] )
_A = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_A = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-3_0, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_UpperCAmelCase , weight_decay=0.0 , relative_step=_UpperCAmelCase , scale_parameter=_UpperCAmelCase , warmup_init=_UpperCAmelCase , )
for _ in range(1_000 ):
_A = criterion(_UpperCAmelCase , _UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = nn.Linear(50 , 50 ) if is_torch_available() else None
UpperCAmelCase : Tuple = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None
UpperCAmelCase : Dict = 10
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]=None ):
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase , msg=_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] ):
_A = {'num_warmup_steps': 2, 'num_training_steps': 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
_A = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{'num_warmup_steps': 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, 'num_cycles': 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, 'power': 2.0, 'lr_end': 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{'num_warmup_steps': 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
_A , _A = data
_A = scheduler_func(self.optimizer , **_UpperCAmelCase )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
_A = unwrap_schedule(_UpperCAmelCase , self.num_steps )
self.assertListAlmostEqual(
_UpperCAmelCase , _UpperCAmelCase , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , )
_A = scheduler_func(self.optimizer , **_UpperCAmelCase )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(_UpperCAmelCase ) # wrap to test picklability of the schedule
_A = unwrap_and_save_reload_schedule(_UpperCAmelCase , self.num_steps )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase , msg=F'''failed for {scheduler_func} in save and reload''' )
class lowercase_ :
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int] ):
_A = fn
def __call__( self : Tuple , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : List[str] ):
return self.fn(*_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Any ):
_A = list(map(self , scheduler.lr_lambdas ) )
| 7 | 1 |
"""simple docstring"""
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''',
datefmt='''%m/%d/%Y %H:%M:%S''',
level=logging.INFO,
)
a = logging.getLogger(__name__)
def _snake_case ( _snake_case : str ) -> int:
'''simple docstring'''
_A = git.Repo(search_parent_directories=_snake_case )
_A = {
'repo_id': str(_snake_case ),
'repo_sha': str(repo.head.object.hexsha ),
'repo_branch': str(repo.active_branch ),
}
with open(os.path.join(_snake_case , 'git_log.json' ) , 'w' ) as f:
json.dump(_snake_case , _snake_case , indent=4 )
def _snake_case ( _snake_case : List[str] ) -> str:
'''simple docstring'''
if params.n_gpu <= 0:
_A = 0
_A = -1
_A = True
_A = False
return
assert torch.cuda.is_available()
logger.info('Initializing GPUs' )
if params.n_gpu > 1:
assert params.local_rank != -1
_A = int(os.environ['WORLD_SIZE'] )
_A = int(os.environ['N_GPU_NODE'] )
_A = int(os.environ['RANK'] )
# number of nodes / node ID
_A = params.world_size // params.n_gpu_per_node
_A = params.global_rank // params.n_gpu_per_node
_A = True
assert params.n_nodes == int(os.environ['N_NODES'] )
assert params.node_id == int(os.environ['NODE_RANK'] )
# local job (single GPU)
else:
assert params.local_rank == -1
_A = 1
_A = 0
_A = 0
_A = 0
_A = 1
_A = 1
_A = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
_A = params.node_id == 0 and params.local_rank == 0
_A = params.n_nodes > 1
# summary
_A = F'''--- Global rank: {params.global_rank} - '''
logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes )
logger.info(PREFIX + 'Node ID : %i' % params.node_id )
logger.info(PREFIX + 'Local rank : %i' % params.local_rank )
logger.info(PREFIX + 'World size : %i' % params.world_size )
logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node )
logger.info(PREFIX + 'Master : %s' % str(params.is_master ) )
logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) )
logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) )
logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info('Initializing PyTorch distributed' )
torch.distributed.init_process_group(
init_method='env://' , backend='nccl' , )
def _snake_case ( _snake_case : Any ) -> Union[str, Any]:
'''simple docstring'''
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 7 |
"""simple docstring"""
import math
def _snake_case ( _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
if (
not isinstance(_snake_case , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('power_factor must be a valid float value between -1 and 1.' )
return apparent_power * power_factor
def _snake_case ( _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
if (
not isinstance(_snake_case , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('power_factor must be a valid float value between -1 and 1.' )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import _LazyModule
a = {'''tokenization_wav2vec2_phoneme''': ['''Wav2Vec2PhonemeCTCTokenizer''']}
if TYPE_CHECKING:
from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 7 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''',
'''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''',
'''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''',
'''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''',
'''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''',
'''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''',
'''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''',
'''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''',
'''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = '''xmod'''
def __init__( self : str , _UpperCAmelCase : Optional[Any]=30_522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Dict=3_072 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Any=1E-1_2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Tuple=("en_XX",) , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Optional[Any] , ):
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
_A = vocab_size
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = hidden_act
_A = intermediate_size
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = type_vocab_size
_A = initializer_range
_A = layer_norm_eps
_A = position_embedding_type
_A = use_cache
_A = classifier_dropout
_A = pre_norm
_A = adapter_reduction_factor
_A = adapter_layer_norm
_A = adapter_reuse_layer_norm
_A = ln_before_adapter
_A = list(_UpperCAmelCase )
_A = default_language
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
@property
def lowerCAmelCase_ ( self : Dict ):
if self.task == "multiple-choice":
_A = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_A = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 7 | 1 |
"""simple docstring"""
def _snake_case ( _snake_case : str ) -> str:
'''simple docstring'''
if not all(char in '01' for char in bin_string ):
raise ValueError('Non-binary value was passed to the function' )
if not bin_string:
raise ValueError('Empty string was passed to the function' )
_A = ''
while len(_snake_case ) % 3 != 0:
_A = '0' + bin_string
_A = [
bin_string[index : index + 3]
for index in range(len(_snake_case ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
_A = 0
for index, val in enumerate(_snake_case ):
oct_val += int(2 ** (2 - index) * int(_snake_case ) )
oct_string += str(_snake_case )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod()
| 7 |
"""simple docstring"""
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
a = logging.get_logger(__name__)
a = {
'''tensor(bool)''': np.bool_,
'''tensor(int8)''': np.inta,
'''tensor(uint8)''': np.uinta,
'''tensor(int16)''': np.intaa,
'''tensor(uint16)''': np.uintaa,
'''tensor(int32)''': np.intaa,
'''tensor(uint32)''': np.uintaa,
'''tensor(int64)''': np.intaa,
'''tensor(uint64)''': np.uintaa,
'''tensor(float16)''': np.floataa,
'''tensor(float)''': np.floataa,
'''tensor(double)''': np.floataa,
}
class lowercase_ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : Optional[Any] ):
logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' )
_A = model
_A = kwargs.get('model_save_dir' , _UpperCAmelCase )
_A = kwargs.get('latest_model_name' , _UpperCAmelCase )
def __call__( self : Dict , **_UpperCAmelCase : List[Any] ):
_A = {k: np.array(_UpperCAmelCase ) for k, v in kwargs.items()}
return self.model.run(_UpperCAmelCase , _UpperCAmelCase )
@staticmethod
def lowerCAmelCase_ ( _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=None ):
if provider is None:
logger.info('No onnxruntime provider specified, using CPUExecutionProvider' )
_A = 'CPUExecutionProvider'
return ort.InferenceSession(_UpperCAmelCase , providers=[provider] , sess_options=_UpperCAmelCase )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : List[Any] ):
_A = file_name if file_name is not None else ONNX_WEIGHTS_NAME
_A = self.model_save_dir.joinpath(self.latest_model_name )
_A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase )
try:
shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase )
except shutil.SameFileError:
pass
# copy external weights (for models >2GB)
_A = self.model_save_dir.joinpath(_UpperCAmelCase )
if src_path.exists():
_A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase )
try:
shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase )
except shutil.SameFileError:
pass
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] , ):
if os.path.isfile(_UpperCAmelCase ):
logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' )
return
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase )
# saving model weights/files
self._save_pretrained(_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( cls : Tuple , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[Union[bool, str, None]] = None , _UpperCAmelCase : Optional[Union[str, None]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional["ort.SessionOptions"] = None , **_UpperCAmelCase : Union[str, Any] , ):
_A = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(_UpperCAmelCase ):
_A = OnnxRuntimeModel.load_model(
os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase )
_A = Path(_UpperCAmelCase )
# load model from hub
else:
# download model
_A = hf_hub_download(
repo_id=_UpperCAmelCase , filename=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , )
_A = Path(_UpperCAmelCase ).parent
_A = Path(_UpperCAmelCase ).name
_A = OnnxRuntimeModel.load_model(_UpperCAmelCase , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase )
return cls(model=_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( cls : List[Any] , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : Tuple , ):
_A = None
if len(str(_UpperCAmelCase ).split('@' ) ) == 2:
_A , _A = model_id.split('@' )
return cls._from_pretrained(
model_id=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , **_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
def _snake_case ( _snake_case : int ) -> bool:
'''simple docstring'''
if number < 0:
raise ValueError('number must not be negative' )
return number & (number - 1) == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json'''
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : str = '''speech_to_text'''
UpperCAmelCase : List[Any] = ['''past_key_values''']
UpperCAmelCase : Tuple = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self : int , _UpperCAmelCase : Union[str, Any]=10_000 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2_048 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Tuple=2_048 , _UpperCAmelCase : str=4 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]="relu" , _UpperCAmelCase : List[Any]=256 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : List[str]=6_000 , _UpperCAmelCase : Optional[Any]=1_024 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Any=(5, 5) , _UpperCAmelCase : int=1_024 , _UpperCAmelCase : str=80 , _UpperCAmelCase : Any=1 , **_UpperCAmelCase : Tuple , ):
_A = vocab_size
_A = d_model
_A = encoder_ffn_dim
_A = encoder_layers
_A = encoder_attention_heads
_A = decoder_ffn_dim
_A = decoder_layers
_A = decoder_attention_heads
_A = dropout
_A = attention_dropout
_A = activation_dropout
_A = activation_function
_A = init_std
_A = encoder_layerdrop
_A = decoder_layerdrop
_A = use_cache
_A = encoder_layers
_A = scale_embedding # scale factor will be sqrt(d_model) if True
_A = max_source_positions
_A = max_target_positions
_A = num_conv_layers
_A = list(_UpperCAmelCase )
_A = conv_channels
_A = input_feat_per_channel
_A = input_channels
if len(self.conv_kernel_sizes ) != self.num_conv_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` '
F'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, '''
F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
import unittest
from transformers import SPIECE_UNDERLINE
from transformers.models.speechta import SpeechTaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.tokenization_utils import AddedToken
from ...test_tokenization_common import TokenizerTesterMixin
a = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''')
@require_sentencepiece
@require_tokenizers
class lowercase_ ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = SpeechTaTokenizer
UpperCAmelCase : Tuple = False
UpperCAmelCase : Optional[int] = True
def lowerCAmelCase_ ( self : Tuple ):
super().setUp()
# We have a SentencePiece fixture for testing
_A = SpeechTaTokenizer(_UpperCAmelCase )
_A = AddedToken('<mask>' , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase )
_A = mask_token
tokenizer.add_special_tokens({'mask_token': mask_token} )
tokenizer.add_tokens(['<ctc_blank>'] )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Tuple ):
_A = 'this is a test'
_A = 'this is a test'
return input_text, output_text
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict=20 , _UpperCAmelCase : str=5 ):
_A , _A = self.get_input_output_texts(_UpperCAmelCase )
_A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
_A = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase )
return text, ids
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = '<pad>'
_A = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-4] , 'œ' )
self.assertEqual(vocab_keys[-2] , '<mask>' )
self.assertEqual(vocab_keys[-1] , '<ctc_blank>' )
self.assertEqual(len(_UpperCAmelCase ) , 81 )
def lowerCAmelCase_ ( self : Optional[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 79 )
def lowerCAmelCase_ ( self : Any ):
_A = self.get_tokenizers(do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
_A = ['aaaaa bbbbbb', 'cccccccccdddddddd']
_A = tokenizer.add_tokens(_UpperCAmelCase )
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) )
self.assertEqual(_UpperCAmelCase , all_size + len(_UpperCAmelCase ) )
_A = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=_UpperCAmelCase )
self.assertGreaterEqual(len(_UpperCAmelCase ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
_A = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'}
_A = tokenizer.add_special_tokens(_UpperCAmelCase )
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) )
self.assertEqual(_UpperCAmelCase , all_size_a + len(_UpperCAmelCase ) )
_A = tokenizer.encode(
'>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=_UpperCAmelCase )
self.assertGreaterEqual(len(_UpperCAmelCase ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
def lowerCAmelCase_ ( self : str ):
pass
def lowerCAmelCase_ ( self : Any ):
pass
def lowerCAmelCase_ ( self : Dict ):
_A = self.get_tokenizer()
_A = tokenizer.tokenize('This is a test' )
# fmt: off
self.assertListEqual(_UpperCAmelCase , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] )
# fmt: on
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , )
_A = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
_A = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
# fmt: off
self.assertListEqual(_UpperCAmelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] )
# fmt: on
_A = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
@slow
def lowerCAmelCase_ ( self : List[Any] ):
# Use custom sequence because this tokenizer does not handle numbers.
_A = [
'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides '
'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural '
'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained '
'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.',
'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly '
'conditioning on both left and right context in all layers.',
'The quick brown fox jumps over the lazy dog.',
]
# fmt: off
_A = {
'input_ids': [
[4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2],
[4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
],
'attention_mask': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=_UpperCAmelCase , )
| 7 |
"""simple docstring"""
from manim import *
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = Rectangle(height=0.5 , width=0.5 )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_A = Rectangle(height=0.25 , width=0.25 )
_A = [mem.copy() for i in range(6 )]
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('CPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(4 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('GPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
gpu.move_to([-1, -1, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Model' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
model.move_to([3, -1.0, 0] )
self.add(_UpperCAmelCase )
_A = []
_A = []
for i, rect in enumerate(_UpperCAmelCase ):
_A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 )
target.move_to(_UpperCAmelCase )
model_arr.append(_UpperCAmelCase )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(_UpperCAmelCase )
self.add(*_UpperCAmelCase , *_UpperCAmelCase )
_A = [meta_mem.copy() for i in range(6 )]
_A = [meta_mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Disk' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
disk.move_to([-4, -1.25, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_A = MarkupText(
F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = MarkupText(
F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , )
blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(_UpperCAmelCase )
_A = MarkupText(
F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase ) )
_A = Square(0.3 )
input.set_fill(_UpperCAmelCase , opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 )
self.play(Write(_UpperCAmelCase ) )
input.generate_target()
input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 )
self.play(MoveToTarget(_UpperCAmelCase ) )
self.play(FadeOut(_UpperCAmelCase ) )
_A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 )
a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
_A = MarkupText(
F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) )
_A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02}
self.play(
Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[0] ) )
_A = a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
_A = AnimationGroup(
FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 )
self.play(_UpperCAmelCase )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
_A = 0.7
self.play(
Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , )
else:
self.play(
MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , )
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 )
self.play(
Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[i] ) )
_A = a_c
_A = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 )
self.play(
FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , )
_A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) )
self.wait()
| 7 | 1 |
"""simple docstring"""
import argparse
import logging
import os
import re
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
DataCollatorForLanguageModeling,
PushToHubCallback,
TFAutoModelForMaskedLM,
create_optimizer,
)
a = logging.getLogger(__name__)
a = tf.data.AUTOTUNE
def _snake_case ( ) -> Tuple:
'''simple docstring'''
_A = argparse.ArgumentParser(description='Train a masked language model on TPU.' )
parser.add_argument(
'--pretrained_model_config' , type=_snake_case , default='roberta-base' , help='The model config to use. Note that we don\'t copy the model\'s weights, only the config!' , )
parser.add_argument(
'--tokenizer' , type=_snake_case , default='unigram-tokenizer-wikitext' , help='The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.' , )
parser.add_argument(
'--per_replica_batch_size' , type=_snake_case , default=8 , help='Batch size per TPU core.' , )
parser.add_argument(
'--no_tpu' , action='store_true' , help='If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.' , )
parser.add_argument(
'--tpu_name' , type=_snake_case , help='Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.' , default='local' , )
parser.add_argument(
'--tpu_zone' , type=_snake_case , help='Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.' , )
parser.add_argument(
'--gcp_project' , type=_snake_case , help='Google cloud project name. Only used for non-Colab TPU nodes.' )
parser.add_argument(
'--bfloat16' , action='store_true' , help='Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.' , )
parser.add_argument(
'--train_dataset' , type=_snake_case , help='Path to training dataset to load. If the path begins with `gs://`'
' then the dataset will be loaded from a Google Cloud Storage bucket.' , )
parser.add_argument(
'--shuffle_buffer_size' , type=_snake_case , default=2**18 , help='Size of the shuffle buffer (in samples)' , )
parser.add_argument(
'--eval_dataset' , type=_snake_case , help='Path to evaluation dataset to load. If the path begins with `gs://`'
' then the dataset will be loaded from a Google Cloud Storage bucket.' , )
parser.add_argument(
'--num_epochs' , type=_snake_case , default=1 , help='Number of epochs to train for.' , )
parser.add_argument(
'--learning_rate' , type=_snake_case , default=1E-4 , help='Learning rate to use for training.' , )
parser.add_argument(
'--weight_decay_rate' , type=_snake_case , default=1E-3 , help='Weight decay rate to use for training.' , )
parser.add_argument(
'--max_length' , type=_snake_case , default=5_12 , help='Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py' , )
parser.add_argument(
'--mlm_probability' , type=_snake_case , default=0.15 , help='Fraction of tokens to mask during training.' , )
parser.add_argument('--output_dir' , type=_snake_case , required=_snake_case , help='Path to save model checkpoints to.' )
parser.add_argument('--hub_model_id' , type=_snake_case , help='Model ID to upload to on the Hugging Face Hub.' )
_A = parser.parse_args()
return args
def _snake_case ( _snake_case : int ) -> List[Any]:
'''simple docstring'''
try:
if args.tpu_name:
_A = tf.distribute.cluster_resolver.TPUClusterResolver(
args.tpu_name , zone=args.tpu_zone , project=args.gcp_project )
else:
_A = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
raise RuntimeError(
'Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or '
'--gcp_project. When running on a TPU VM, use --tpu_name local.' )
tf.config.experimental_connect_to_cluster(_snake_case )
tf.tpu.experimental.initialize_tpu_system(_snake_case )
return tpu
def _snake_case ( _snake_case : int ) -> Optional[int]:
'''simple docstring'''
_A = 0
for file in file_list:
_A = file.split('/' )[-1]
_A = re.search(R'-\d+-(\d+)\.tfrecord' , _snake_case ).group(1 )
_A = int(_snake_case )
num_samples += sample_count
return num_samples
def _snake_case ( _snake_case : int , _snake_case : str , _snake_case : List[Any] , _snake_case : Optional[Any] , _snake_case : str , _snake_case : Union[str, Any]=None ) -> str:
'''simple docstring'''
_A = count_samples(_snake_case )
_A = tf.data.Dataset.from_tensor_slices(_snake_case )
if shuffle:
_A = dataset.shuffle(len(_snake_case ) )
_A = tf.data.TFRecordDataset(_snake_case , num_parallel_reads=_snake_case )
# TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here
_A = dataset.apply(tf.data.experimental.assert_cardinality(_snake_case ) )
_A = dataset.map(_snake_case , num_parallel_calls=_snake_case )
if shuffle:
assert shuffle_buffer_size is not None
_A = dataset.shuffle(args.shuffle_buffer_size )
_A = dataset.batch(_snake_case , drop_remainder=_snake_case )
_A = dataset.map(_snake_case , num_parallel_calls=_snake_case )
_A = dataset.prefetch(_snake_case )
return dataset
def _snake_case ( _snake_case : List[str] ) -> str:
'''simple docstring'''
if not args.no_tpu:
_A = initialize_tpu(_snake_case )
_A = tf.distribute.TPUStrategy(_snake_case )
else:
_A = tf.distribute.OneDeviceStrategy(device='/gpu:0' )
if args.bfloataa:
tf.keras.mixed_precision.set_global_policy('mixed_bfloat16' )
_A = AutoTokenizer.from_pretrained(args.tokenizer )
_A = AutoConfig.from_pretrained(args.pretrained_model_config )
_A = tokenizer.vocab_size
_A = tf.io.gfile.glob(os.path.join(args.train_dataset , '*.tfrecord' ) )
if not training_records:
raise ValueError(F'''No .tfrecord files found in {args.train_dataset}.''' )
_A = tf.io.gfile.glob(os.path.join(args.eval_dataset , '*.tfrecord' ) )
if not eval_records:
raise ValueError(F'''No .tfrecord files found in {args.eval_dataset}.''' )
_A = count_samples(_snake_case )
_A = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync)
_A = steps_per_epoch * args.num_epochs
with strategy.scope():
_A = TFAutoModelForMaskedLM.from_config(_snake_case )
model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built
_A , _A = create_optimizer(
num_train_steps=_snake_case , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , )
# Transformers models compute the right loss for their task by default when labels are passed, and will
# use this for training unless you specify your own loss function in compile().
model.compile(optimizer=_snake_case , metrics=['accuracy'] )
def decode_fn(_snake_case : Dict ):
_A = {
'input_ids': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
'attention_mask': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
}
return tf.io.parse_single_example(_snake_case , _snake_case )
# Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can
# use their methods in our data pipeline.
_A = DataCollatorForLanguageModeling(
tokenizer=_snake_case , mlm_probability=args.mlm_probability , mlm=_snake_case , return_tensors='tf' )
def mask_with_collator(_snake_case : Tuple ):
# TF really needs an isin() function
_A = (
~tf.cast(batch['attention_mask'] , tf.bool )
| (batch['input_ids'] == tokenizer.cls_token_id)
| (batch['input_ids'] == tokenizer.sep_token_id)
)
_A , _A = data_collator.tf_mask_tokens(
batch['input_ids'] , vocab_size=len(_snake_case ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=_snake_case , )
return batch
_A = args.per_replica_batch_size * strategy.num_replicas_in_sync
_A = prepare_dataset(
_snake_case , decode_fn=_snake_case , mask_fn=_snake_case , batch_size=_snake_case , shuffle=_snake_case , shuffle_buffer_size=args.shuffle_buffer_size , )
_A = prepare_dataset(
_snake_case , decode_fn=_snake_case , mask_fn=_snake_case , batch_size=_snake_case , shuffle=_snake_case , )
_A = []
if args.hub_model_id:
callbacks.append(
PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=_snake_case ) )
model.fit(
_snake_case , validation_data=_snake_case , epochs=args.num_epochs , callbacks=_snake_case , )
model.save_pretrained(args.output_dir )
if __name__ == "__main__":
a = parse_args()
main(args)
| 7 |
"""simple docstring"""
def _snake_case ( _snake_case : int , _snake_case : int ) -> int:
'''simple docstring'''
return int((input_a, input_a).count(1 ) != 0 )
def _snake_case ( ) -> None:
'''simple docstring'''
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 7 | 1 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import KarrasVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : UNetaDModel
UpperCAmelCase : KarrasVeScheduler
def __init__( self : Any , _UpperCAmelCase : UNetaDModel , _UpperCAmelCase : KarrasVeScheduler ):
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase )
@torch.no_grad()
def __call__( self : Optional[int] , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Optional[Any] , ):
_A = self.unet.config.sample_size
_A = (batch_size, 3, img_size, img_size)
_A = self.unet
# sample x_0 ~ N(0, sigma_0^2 * I)
_A = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device ) * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(_UpperCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# here sigma_t == t_i from the paper
_A = self.scheduler.schedule[t]
_A = self.scheduler.schedule[t - 1] if t > 0 else 0
# 1. Select temporarily increased noise level sigma_hat
# 2. Add new noise to move from sample_i to sample_hat
_A , _A = self.scheduler.add_noise_to_input(_UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase )
# 3. Predict the noise residual given the noise magnitude `sigma_hat`
# The model inputs and output are adjusted by following eq. (213) in [1].
_A = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample
# 4. Evaluate dx/dt at sigma_hat
# 5. Take Euler step from sigma to sigma_prev
_A = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if sigma_prev != 0:
# 6. Apply 2nd order correction
# The model inputs and output are adjusted by following eq. (213) in [1].
_A = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample
_A = self.scheduler.step_correct(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , step_output.prev_sample , step_output['derivative'] , )
_A = step_output.prev_sample
_A = (sample / 2 + 0.5).clamp(0 , 1 )
_A = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_A = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_UpperCAmelCase )
| 7 |
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
a = logging.getLogger(__name__)
@dataclass
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[float] = field(
default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} )
UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''Whether to SortishSamler or not.'''} )
UpperCAmelCase : bool = field(
default=__lowerCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} )
UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''whether to use adafactor'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(default=__lowerCAmelCase , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[str] = field(
default='''linear''' , metadata={'''help''': f'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
| 7 | 1 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( _snake_case : list[float] , _snake_case : list[float] ) -> float:
'''simple docstring'''
_A = sorted(numsa + numsa )
_A , _A = divmod(len(_snake_case ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
a = [float(x) for x in input('''Enter the elements of first array: ''').split()]
a = [float(x) for x in input('''Enter the elements of second array: ''').split()]
print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
| 7 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ..utils import _LazyModule
a = {
'''config''': [
'''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''',
'''OnnxConfig''',
'''OnnxConfigWithPast''',
'''OnnxSeq2SeqConfigWithPast''',
'''PatchingSpec''',
],
'''convert''': ['''export''', '''validate_model_outputs'''],
'''features''': ['''FeaturesManager'''],
'''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 7 | 1 |
"""simple docstring"""
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
a = 200
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
a = 50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
a = 0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 1_000))
def _snake_case ( _snake_case : str , _snake_case : str ) -> tuple[str, float]:
'''simple docstring'''
_A = len([g for position, g in enumerate(_snake_case ) if g == main_target[position]] )
return (item, float(_snake_case ))
def _snake_case ( _snake_case : str , _snake_case : str ) -> tuple[str, str]:
'''simple docstring'''
_A = random.randint(0 , len(_snake_case ) - 1 )
_A = parent_a[:random_slice] + parent_a[random_slice:]
_A = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def _snake_case ( _snake_case : str , _snake_case : list[str] ) -> str:
'''simple docstring'''
_A = list(_snake_case )
if random.uniform(0 , 1 ) < MUTATION_PROBABILITY:
_A = random.choice(_snake_case )
return "".join(_snake_case )
def _snake_case ( _snake_case : tuple[str, float] , _snake_case : list[tuple[str, float]] , _snake_case : list[str] , ) -> list[str]:
'''simple docstring'''
_A = []
# Generate more children proportionally to the fitness score.
_A = int(parent_a[1] * 1_00 ) + 1
_A = 10 if child_n >= 10 else child_n
for _ in range(_snake_case ):
_A = population_score[random.randint(0 , _snake_case )][0]
_A , _A = crossover(parent_a[0] , _snake_case )
# Append new string to the population list.
pop.append(mutate(_snake_case , _snake_case ) )
pop.append(mutate(_snake_case , _snake_case ) )
return pop
def _snake_case ( _snake_case : str , _snake_case : list[str] , _snake_case : bool = True ) -> tuple[int, int, str]:
'''simple docstring'''
if N_POPULATION < N_SELECTED:
_A = F'''{N_POPULATION} must be bigger than {N_SELECTED}'''
raise ValueError(_snake_case )
# Verify that the target contains no genes besides the ones inside genes variable.
_A = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
_A = F'''{not_in_genes_list} is not in genes list, evolution cannot converge'''
raise ValueError(_snake_case )
# Generate random starting population.
_A = []
for _ in range(_snake_case ):
population.append(''.join([random.choice(_snake_case ) for i in range(len(_snake_case ) )] ) )
# Just some logs to know what the algorithms is doing.
_A , _A = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(_snake_case )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
_A = [evaluate(_snake_case , _snake_case ) for item in population]
# Check if there is a matching evolution.
_A = sorted(_snake_case , key=lambda _snake_case : x[1] , reverse=_snake_case )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
F'''\nGeneration: {generation}'''
F'''\nTotal Population:{total_population}'''
F'''\nBest score: {population_score[0][1]}'''
F'''\nBest string: {population_score[0][0]}''' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
_A = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(_snake_case )
# Normalize population score to be between 0 and 1.
_A = [
(item, score / len(_snake_case )) for item, score in population_score
]
# This is selection
for i in range(_snake_case ):
population.extend(select(population_score[int(_snake_case )] , _snake_case , _snake_case ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(_snake_case ) > N_POPULATION:
break
if __name__ == "__main__":
a = (
'''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!'''
)
a = list(
''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm'''
'''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\'''
)
a , a , a = basic(target_str, genes_list)
print(
F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}'''
)
| 7 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import KarrasVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : UNetaDModel
UpperCAmelCase : KarrasVeScheduler
def __init__( self : Any , _UpperCAmelCase : UNetaDModel , _UpperCAmelCase : KarrasVeScheduler ):
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase )
@torch.no_grad()
def __call__( self : Optional[int] , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Optional[Any] , ):
_A = self.unet.config.sample_size
_A = (batch_size, 3, img_size, img_size)
_A = self.unet
# sample x_0 ~ N(0, sigma_0^2 * I)
_A = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device ) * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(_UpperCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# here sigma_t == t_i from the paper
_A = self.scheduler.schedule[t]
_A = self.scheduler.schedule[t - 1] if t > 0 else 0
# 1. Select temporarily increased noise level sigma_hat
# 2. Add new noise to move from sample_i to sample_hat
_A , _A = self.scheduler.add_noise_to_input(_UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase )
# 3. Predict the noise residual given the noise magnitude `sigma_hat`
# The model inputs and output are adjusted by following eq. (213) in [1].
_A = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample
# 4. Evaluate dx/dt at sigma_hat
# 5. Take Euler step from sigma to sigma_prev
_A = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if sigma_prev != 0:
# 6. Apply 2nd order correction
# The model inputs and output are adjusted by following eq. (213) in [1].
_A = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample
_A = self.scheduler.step_correct(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , step_output.prev_sample , step_output['derivative'] , )
_A = step_output.prev_sample
_A = (sample / 2 + 0.5).clamp(0 , 1 )
_A = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_A = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_UpperCAmelCase )
| 7 | 1 |
"""simple docstring"""
import warnings
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
a = logging.get_logger(__name__)
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Dict = ['''input_ids''', '''attention_mask''']
def __init__( self : List[Any] , _UpperCAmelCase : Optional[int]="</s>" , _UpperCAmelCase : Union[str, Any]="<unk>" , _UpperCAmelCase : Optional[Any]="<pad>" , _UpperCAmelCase : Any=125 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Union[str, Any] , ):
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
_A = [F'''<extra_id_{i}>''' for i in range(_UpperCAmelCase )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
_A = len(set(filter(lambda _UpperCAmelCase : bool('extra_id' in str(_UpperCAmelCase ) ) , _UpperCAmelCase ) ) )
if extra_tokens != extra_ids:
raise ValueError(
F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'''
' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the'
' extra_ids tokens' )
_A = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else pad_token
_A = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else eos_token
_A = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token
super().__init__(
eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , extra_ids=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , )
_A = extra_ids
_A = 2**8 # utf is 8 bits
# define special tokens dict
_A = {
self.pad_token: 0,
self.eos_token: 1,
self.unk_token: 2,
}
_A = len(self.special_tokens_encoder )
_A = len(_UpperCAmelCase )
for i, token in enumerate(_UpperCAmelCase ):
_A = self.vocab_size + i - n
_A = {v: k for k, v in self.special_tokens_encoder.items()}
@property
def lowerCAmelCase_ ( self : int ):
return self._utf_vocab_size + self._num_special_tokens + self._extra_ids
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(_UpperCAmelCase )) + [1]
return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1]
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : List[int] ):
if len(_UpperCAmelCase ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated'''
' eos tokens being added.' )
return token_ids
else:
return token_ids + [self.eos_token_id]
def lowerCAmelCase_ ( self : str , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
_A = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
_A = self._add_eos_if_not_present(_UpperCAmelCase )
if token_ids_a is None:
return token_ids_a
else:
_A = self._add_eos_if_not_present(_UpperCAmelCase )
return token_ids_a + token_ids_a
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : str ):
_A = [chr(_UpperCAmelCase ) for i in text.encode('utf-8' )]
return tokens
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : List[Any] ):
if token in self.special_tokens_encoder:
_A = self.special_tokens_encoder[token]
elif token in self.added_tokens_encoder:
_A = self.added_tokens_encoder[token]
elif len(_UpperCAmelCase ) != 1:
_A = self.unk_token_id
else:
_A = ord(_UpperCAmelCase ) + self._num_special_tokens
return token_id
def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Optional[Any] ):
if index in self.special_tokens_decoder:
_A = self.special_tokens_decoder[index]
else:
_A = chr(index - self._num_special_tokens )
return token
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : List[Any] ):
_A = b''
for token in tokens:
if token in self.special_tokens_decoder:
_A = self.special_tokens_decoder[token].encode('utf-8' )
elif token in self.added_tokens_decoder:
_A = self.special_tokens_decoder[token].encode('utf-8' )
elif token in self.special_tokens_encoder:
_A = token.encode('utf-8' )
elif token in self.added_tokens_encoder:
_A = token.encode('utf-8' )
else:
_A = bytes([ord(_UpperCAmelCase )] )
bstring += tok_string
_A = bstring.decode('utf-8' , errors='ignore' )
return string
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ):
return ()
| 7 |
"""simple docstring"""
class lowercase_ :
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ):
_A = None
_A = None
_A = graph
self._normalize_graph(_UpperCAmelCase , _UpperCAmelCase )
_A = len(_UpperCAmelCase )
_A = None
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ):
if sources is int:
_A = [sources]
if sinks is int:
_A = [sinks]
if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) == 0:
return
_A = sources[0]
_A = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(_UpperCAmelCase ) > 1 or len(_UpperCAmelCase ) > 1:
_A = 0
for i in sources:
max_input_flow += sum(self.graph[i] )
_A = len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
_A = max_input_flow
_A = 0
_A = len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
_A = max_input_flow
_A = size - 1
def lowerCAmelCase_ ( self : Optional[Any] ):
if self.maximum_flow_algorithm is None:
raise Exception('You need to set maximum flow algorithm before.' )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Union[str, Any] ):
_A = algorithm(self )
class lowercase_ :
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : Union[str, Any] ):
_A = flow_network
_A = flow_network.verticesCount
_A = flow_network.sourceIndex
_A = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
_A = flow_network.graph
_A = False
def lowerCAmelCase_ ( self : Optional[Any] ):
if not self.executed:
self._algorithm()
_A = True
def lowerCAmelCase_ ( self : int ):
pass
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : int , _UpperCAmelCase : Any ):
super().__init__(_UpperCAmelCase )
# use this to save your result
_A = -1
def lowerCAmelCase_ ( self : Optional[Any] ):
if not self.executed:
raise Exception('You should execute algorithm before using its result!' )
return self.maximum_flow
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : List[Any] ):
super().__init__(_UpperCAmelCase )
_A = [[0] * self.verticies_count for i in range(self.verticies_count )]
_A = [0] * self.verticies_count
_A = [0] * self.verticies_count
def lowerCAmelCase_ ( self : Dict ):
_A = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
_A = [
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
_A = 0
while i < len(_UpperCAmelCase ):
_A = vertices_list[i]
_A = self.heights[vertex_index]
self.process_vertex(_UpperCAmelCase )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(_UpperCAmelCase ) )
_A = 0
else:
i += 1
_A = sum(self.preflow[self.source_index] )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Any ):
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(_UpperCAmelCase , _UpperCAmelCase )
self.relabel(_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ):
_A = min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : int ):
_A = None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
_A = self.heights[to_index]
if min_height is not None:
_A = min_height + 1
if __name__ == "__main__":
a = [0]
a = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
a = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
a = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
a = flow_network.find_maximum_flow()
print(F'''maximum flow is {maximum_flow}''')
| 7 | 1 |
"""simple docstring"""
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
'split_dict' , [
SplitDict(),
SplitDict({'train': SplitInfo(name='train' , num_bytes=13_37 , num_examples=42 , dataset_name='my_dataset' )} ),
SplitDict({'train': SplitInfo(name='train' , num_bytes=13_37 , num_examples=42 )} ),
SplitDict({'train': SplitInfo()} ),
] , )
def _snake_case ( _snake_case : SplitDict ) -> Optional[Any]:
'''simple docstring'''
_A = split_dict._to_yaml_list()
assert len(_snake_case ) == len(_snake_case )
_A = SplitDict._from_yaml_list(_snake_case )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
_A = None
# the split name of split_dict takes over the name of the split info object
_A = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
'split_info' , [SplitInfo(), SplitInfo(dataset_name=_snake_case ), SplitInfo(dataset_name='my_dataset' )] )
def _snake_case ( _snake_case : Any ) -> Dict:
'''simple docstring'''
_A = asdict(SplitDict({'train': split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 7 |
"""simple docstring"""
import unittest
from transformers import SPIECE_UNDERLINE
from transformers.models.speechta import SpeechTaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.tokenization_utils import AddedToken
from ...test_tokenization_common import TokenizerTesterMixin
a = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''')
@require_sentencepiece
@require_tokenizers
class lowercase_ ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = SpeechTaTokenizer
UpperCAmelCase : Tuple = False
UpperCAmelCase : Optional[int] = True
def lowerCAmelCase_ ( self : Tuple ):
super().setUp()
# We have a SentencePiece fixture for testing
_A = SpeechTaTokenizer(_UpperCAmelCase )
_A = AddedToken('<mask>' , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase )
_A = mask_token
tokenizer.add_special_tokens({'mask_token': mask_token} )
tokenizer.add_tokens(['<ctc_blank>'] )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Tuple ):
_A = 'this is a test'
_A = 'this is a test'
return input_text, output_text
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict=20 , _UpperCAmelCase : str=5 ):
_A , _A = self.get_input_output_texts(_UpperCAmelCase )
_A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
_A = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase )
return text, ids
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = '<pad>'
_A = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-4] , 'œ' )
self.assertEqual(vocab_keys[-2] , '<mask>' )
self.assertEqual(vocab_keys[-1] , '<ctc_blank>' )
self.assertEqual(len(_UpperCAmelCase ) , 81 )
def lowerCAmelCase_ ( self : Optional[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 79 )
def lowerCAmelCase_ ( self : Any ):
_A = self.get_tokenizers(do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
_A = ['aaaaa bbbbbb', 'cccccccccdddddddd']
_A = tokenizer.add_tokens(_UpperCAmelCase )
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) )
self.assertEqual(_UpperCAmelCase , all_size + len(_UpperCAmelCase ) )
_A = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=_UpperCAmelCase )
self.assertGreaterEqual(len(_UpperCAmelCase ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
_A = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'}
_A = tokenizer.add_special_tokens(_UpperCAmelCase )
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) )
self.assertEqual(_UpperCAmelCase , all_size_a + len(_UpperCAmelCase ) )
_A = tokenizer.encode(
'>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=_UpperCAmelCase )
self.assertGreaterEqual(len(_UpperCAmelCase ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
def lowerCAmelCase_ ( self : str ):
pass
def lowerCAmelCase_ ( self : Any ):
pass
def lowerCAmelCase_ ( self : Dict ):
_A = self.get_tokenizer()
_A = tokenizer.tokenize('This is a test' )
# fmt: off
self.assertListEqual(_UpperCAmelCase , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] )
# fmt: on
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , )
_A = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
_A = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
# fmt: off
self.assertListEqual(_UpperCAmelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] )
# fmt: on
_A = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
@slow
def lowerCAmelCase_ ( self : List[Any] ):
# Use custom sequence because this tokenizer does not handle numbers.
_A = [
'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides '
'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural '
'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained '
'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.',
'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly '
'conditioning on both left and right context in all layers.',
'The quick brown fox jumps over the lazy dog.',
]
# fmt: off
_A = {
'input_ids': [
[4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2],
[4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
],
'attention_mask': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = '''transfo-xl'''
UpperCAmelCase : Union[str, Any] = ['''mems''']
UpperCAmelCase : Dict = {
'''n_token''': '''vocab_size''',
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Dict , _UpperCAmelCase : int=267_735 , _UpperCAmelCase : Union[str, Any]=[20_000, 40_000, 200_000] , _UpperCAmelCase : Union[str, Any]=1_024 , _UpperCAmelCase : Any=1_024 , _UpperCAmelCase : int=16 , _UpperCAmelCase : Optional[Any]=64 , _UpperCAmelCase : Optional[Any]=4_096 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Tuple=18 , _UpperCAmelCase : Dict=1_600 , _UpperCAmelCase : int=1_000 , _UpperCAmelCase : Any=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : int=0 , _UpperCAmelCase : Union[str, Any]=-1 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Dict="normal" , _UpperCAmelCase : List[str]=0.01 , _UpperCAmelCase : Dict=0.01 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : str=1E-5 , _UpperCAmelCase : Dict=0 , **_UpperCAmelCase : Any , ):
_A = vocab_size
_A = []
self.cutoffs.extend(_UpperCAmelCase )
if proj_share_all_but_first:
_A = [False] + [True] * len(self.cutoffs )
else:
_A = [False] + [False] * len(self.cutoffs )
_A = d_model
_A = d_embed
_A = d_head
_A = d_inner
_A = div_val
_A = pre_lnorm
_A = n_layer
_A = n_head
_A = mem_len
_A = same_length
_A = attn_type
_A = clamp_len
_A = sample_softmax
_A = adaptive
_A = dropout
_A = dropatt
_A = untie_r
_A = init
_A = init_range
_A = proj_init_std
_A = init_std
_A = layer_norm_epsilon
super().__init__(eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
@property
def lowerCAmelCase_ ( self : Optional[int] ):
# Message copied from Transformer-XL documentation
logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
return -1
@max_position_embeddings.setter
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Dict ):
# Message copied from Transformer-XL documentation
raise NotImplementedError(
F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
| 7 |
"""simple docstring"""
from .configuration_bert_masked import MaskedBertConfig
from .modeling_bert_masked import (
MaskedBertForMultipleChoice,
MaskedBertForQuestionAnswering,
MaskedBertForSequenceClassification,
MaskedBertForTokenClassification,
MaskedBertModel,
)
from .modules import *
| 7 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
a = {
'''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig''']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ['''VisionEncoderDecoderModel''']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ['''TFVisionEncoderDecoderModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ['''FlaxVisionEncoderDecoderModel''']
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 7 |
"""simple docstring"""
import argparse
a = '''docs/source/_static/js/custom.js'''
def _snake_case ( _snake_case : Dict ) -> Any:
'''simple docstring'''
with open(_snake_case , encoding='utf-8' , newline='\n' ) as f:
_A = f.readlines()
_A = 0
# First let's put the right version
while not lines[index].startswith('const stableVersion =' ):
index += 1
_A = F'''const stableVersion = "v{version}"\n'''
# Then update the dictionary
while not lines[index].startswith('const versionMapping = {' ):
index += 1
# We go until the end
while not lines[index].startswith('}' ):
index += 1
# We add the new version at the end
lines[index - 1] += F''' "v{version}": "v{version}",\n'''
with open(_snake_case , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(_snake_case )
if __name__ == "__main__":
a = argparse.ArgumentParser()
parser.add_argument('''--version''', help='''Release version.''')
a = parser.parse_args()
update_custom_js(args.version)
| 7 | 1 |
"""simple docstring"""
import unittest
import numpy as np
def _snake_case ( _snake_case : np.ndarray , _snake_case : np.ndarray , _snake_case : np.ndarray , _snake_case : np.ndarray | None = None , ) -> np.ndarray:
'''simple docstring'''
_A = np.shape(_snake_case )
_A = np.shape(_snake_case )
_A = np.shape(_snake_case )
if shape_a[0] != shape_b[0]:
_A = (
'Expected the same number of rows for A and B. '
F'''Instead found A of size {shape_a} and B of size {shape_b}'''
)
raise ValueError(_snake_case )
if shape_b[1] != shape_c[1]:
_A = (
'Expected the same number of columns for B and C. '
F'''Instead found B of size {shape_b} and C of size {shape_c}'''
)
raise ValueError(_snake_case )
_A = pseudo_inv
if a_inv is None:
try:
_A = np.linalg.inv(_snake_case )
except np.linalg.LinAlgError:
raise ValueError(
'Input matrix A is not invertible. Cannot compute Schur complement.' )
return mat_c - mat_b.T @ a_inv @ mat_b
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Optional[int] ):
_A = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
_A = np.array([[0, 3], [3, 0], [2, 3]] )
_A = np.array([[2, 1], [6, 3]] )
_A = schur_complement(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = np.block([[a, b], [b.T, c]] )
_A = np.linalg.det(_UpperCAmelCase )
_A = np.linalg.det(_UpperCAmelCase )
_A = np.linalg.det(_UpperCAmelCase )
self.assertAlmostEqual(_UpperCAmelCase , det_a * det_s )
def lowerCAmelCase_ ( self : str ):
_A = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
_A = np.array([[0, 3], [3, 0], [2, 3]] )
_A = np.array([[2, 1], [6, 3]] )
with self.assertRaises(_UpperCAmelCase ):
schur_complement(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] ):
_A = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
_A = np.array([[0, 3], [3, 0], [2, 3]] )
_A = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(_UpperCAmelCase ):
schur_complement(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''vit_mae'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int]=768 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Optional[int]=3_072 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : Optional[Any]=224 , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=512 , _UpperCAmelCase : int=8 , _UpperCAmelCase : List[Any]=2_048 , _UpperCAmelCase : Optional[Any]=0.75 , _UpperCAmelCase : List[str]=False , **_UpperCAmelCase : Union[str, Any] , ):
super().__init__(**_UpperCAmelCase )
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = intermediate_size
_A = hidden_act
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = initializer_range
_A = layer_norm_eps
_A = image_size
_A = patch_size
_A = num_channels
_A = qkv_bias
_A = decoder_num_attention_heads
_A = decoder_hidden_size
_A = decoder_num_hidden_layers
_A = decoder_intermediate_size
_A = mask_ratio
_A = norm_pix_loss
| 7 | 1 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_flava import FlavaImageProcessor
a = logging.get_logger(__name__)
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : Optional[Any] ):
warnings.warn(
'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use FlavaImageProcessor instead.' , _UpperCAmelCase , )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
| 7 |
"""simple docstring"""
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
a = logging.get_logger(__name__)
a = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
a = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def _snake_case ( _snake_case : Optional[Any] ) -> str:
'''simple docstring'''
_A = torch.load(_snake_case , map_location='cpu' )
return sd
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : str , _snake_case : Tuple=rename_keys_prefix ) -> List[str]:
'''simple docstring'''
_A = OrderedDict()
_A = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
_A = key
for name_pair in rename_keys_prefix:
_A = new_key.replace(name_pair[0] , name_pair[1] )
_A = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
_A = new_d['cls.predictions.bias']
return new_d
@torch.no_grad()
def _snake_case ( _snake_case : List[str] , _snake_case : Dict ) -> Dict:
'''simple docstring'''
assert (
checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS
), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'''
# Get Config
if "pre" in checkpoint_path:
_A = 'pretraining'
if "vcr" in checkpoint_path:
_A = {'visual_embedding_dim': 5_12}
elif "vqa_advanced" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
elif "vqa" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
elif "nlvr" in checkpoint_path:
_A = {'visual_embedding_dim': 10_24}
else:
raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' )
else:
if "vcr" in checkpoint_path:
_A = {'visual_embedding_dim': 5_12}
_A = 'multichoice'
elif "vqa_advanced" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
_A = 'vqa_advanced'
elif "vqa" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48, 'num_labels': 31_29}
_A = 'vqa'
elif "nlvr" in checkpoint_path:
_A = {
'visual_embedding_dim': 10_24,
'num_labels': 2,
}
_A = 'nlvr'
_A = VisualBertConfig(**_snake_case )
# Load State Dict
_A = load_state_dict(_snake_case )
_A = get_new_dict(_snake_case , _snake_case )
if model_type == "pretraining":
_A = VisualBertForPreTraining(_snake_case )
elif model_type == "vqa":
_A = VisualBertForQuestionAnswering(_snake_case )
elif model_type == "nlvr":
_A = VisualBertForVisualReasoning(_snake_case )
elif model_type == "multichoice":
_A = VisualBertForMultipleChoice(_snake_case )
model.load_state_dict(_snake_case )
# Save Checkpoints
Path(_snake_case ).mkdir(exist_ok=_snake_case )
model.save_pretrained(_snake_case )
if __name__ == "__main__":
a = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
a = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 7 | 1 |
"""simple docstring"""
def _snake_case ( _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
return price * (1 + tax_rate)
if __name__ == "__main__":
print(F'''{price_plus_tax(100, 0.2_5) = }''')
print(F'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
| 7 |
"""simple docstring"""
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def _snake_case ( _snake_case : Dict ) -> Optional[Any]:
'''simple docstring'''
for param in module.parameters():
_A = False
def _snake_case ( ) -> Tuple:
'''simple docstring'''
_A = 'cuda' if torch.cuda.is_available() else 'cpu'
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
_A = 'mps'
if device == "mps":
print(
'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch'
' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues'
' with generations.' )
return device
def _snake_case ( _snake_case : Dict ) -> Optional[Any]:
'''simple docstring'''
_A = plt.imshow(_snake_case )
fig.axes.get_xaxis().set_visible(_snake_case )
fig.axes.get_yaxis().set_visible(_snake_case )
plt.show()
def _snake_case ( ) -> Optional[Any]:
'''simple docstring'''
_A = datetime.now()
_A = current_time.strftime('%H:%M:%S' )
return timestamp
| 7 | 1 |
"""simple docstring"""
a = 256
# Modulus to hash a string
a = 1_000_003
def _snake_case ( _snake_case : str , _snake_case : str ) -> bool:
'''simple docstring'''
_A = len(_snake_case )
_A = len(_snake_case )
if p_len > t_len:
return False
_A = 0
_A = 0
_A = 1
# Calculating the hash of pattern and substring of text
for i in range(_snake_case ):
_A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
_A = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
_A = (modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
_A = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def _snake_case ( ) -> None:
'''simple docstring'''
_A = 'abc1abc12'
_A = 'alskfjaldsabc1abc1abc12k23adsfabcabc'
_A = 'alskfjaldsk23adsfabcabc'
assert rabin_karp(_snake_case , _snake_case ) and not rabin_karp(_snake_case , _snake_case )
# Test 2)
_A = 'ABABX'
_A = 'ABABZABABYABABX'
assert rabin_karp(_snake_case , _snake_case )
# Test 3)
_A = 'AAAB'
_A = 'ABAAAAAB'
assert rabin_karp(_snake_case , _snake_case )
# Test 4)
_A = 'abcdabcy'
_A = 'abcxabcdabxabcdabcdabcy'
assert rabin_karp(_snake_case , _snake_case )
# Test 5)
_A = 'Lü'
_A = 'Lüsai'
assert rabin_karp(_snake_case , _snake_case )
_A = 'Lue'
assert not rabin_karp(_snake_case , _snake_case )
print('Success.' )
if __name__ == "__main__":
test_rabin_karp()
| 7 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Any = ['''image_processor''', '''tokenizer''']
UpperCAmelCase : Optional[int] = '''ViTImageProcessor'''
UpperCAmelCase : int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''')
def __init__( self : Tuple , _UpperCAmelCase : int=None , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : Dict ):
_A = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _UpperCAmelCase , )
_A = kwargs.pop('feature_extractor' )
_A = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __call__( self : Optional[Any] , _UpperCAmelCase : int=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Union[str, Any] ):
if text is None and visual_prompt is None and images is None:
raise ValueError('You have to specify either text, visual prompt or images.' )
if text is not None and visual_prompt is not None:
raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' )
if text is not None:
_A = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if visual_prompt is not None:
_A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if images is not None:
_A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if visual_prompt is not None and images is not None:
_A = {
'pixel_values': image_features.pixel_values,
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
elif text is not None and images is not None:
_A = image_features.pixel_values
return encoding
elif text is not None:
return encoding
elif visual_prompt is not None:
_A = {
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
else:
return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase )
def lowerCAmelCase_ ( self : str , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Union[str, Any] ):
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def lowerCAmelCase_ ( self : Union[str, Any] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ):
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
def lowerCAmelCase_ ( self : Dict ):
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , )
return self.image_processor_class
@property
def lowerCAmelCase_ ( self : Tuple ):
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , )
return self.image_processor
| 7 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''',
# See all ViT models at https://huggingface.co/models?filter=vit
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : str = '''vit'''
def __init__( self : Dict , _UpperCAmelCase : Dict=768 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=3_072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : Any=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : Union[str, Any]=224 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=16 , **_UpperCAmelCase : List[Any] , ):
super().__init__(**_UpperCAmelCase )
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = intermediate_size
_A = hidden_act
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = initializer_range
_A = layer_norm_eps
_A = image_size
_A = patch_size
_A = num_channels
_A = qkv_bias
_A = encoder_stride
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Dict = version.parse('''1.11''' )
@property
def lowerCAmelCase_ ( self : int ):
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def lowerCAmelCase_ ( self : int ):
return 1E-4
| 7 |
"""simple docstring"""
import math
from datetime import datetime, timedelta
def _snake_case ( _snake_case : int ) -> datetime:
'''simple docstring'''
_A = year % 19
_A = year % 4
_A = year % 7
_A = math.floor(year / 1_00 )
_A = math.floor((13 + 8 * leap_day_inhibits) / 25 )
_A = leap_day_inhibits / 4
_A = (
15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 30
_A = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
_A = (19 * metonic_cycle + secular_moon_shift) % 30
# PHM -> Paschal Full Moon
_A = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 29 and days_from_phm_to_sunday == 6:
return datetime(_snake_case , 4 , 19 )
elif days_to_add == 28 and days_from_phm_to_sunday == 6:
return datetime(_snake_case , 4 , 18 )
else:
return datetime(_snake_case , 3 , 22 ) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday ) )
if __name__ == "__main__":
for year in (1_994, 2_000, 2_010, 2_021, 2_023):
a = '''will be''' if year > datetime.now().year else '''was'''
print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
| 7 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''',
'''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''',
'''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''',
'''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''',
'''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''',
'''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''',
'''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''',
'''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''',
'''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = '''xmod'''
def __init__( self : str , _UpperCAmelCase : Optional[Any]=30_522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Dict=3_072 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Any=1E-1_2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Tuple=("en_XX",) , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Optional[Any] , ):
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
_A = vocab_size
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = hidden_act
_A = intermediate_size
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = type_vocab_size
_A = initializer_range
_A = layer_norm_eps
_A = position_embedding_type
_A = use_cache
_A = classifier_dropout
_A = pre_norm
_A = adapter_reduction_factor
_A = adapter_layer_norm
_A = adapter_reuse_layer_norm
_A = ln_before_adapter
_A = list(_UpperCAmelCase )
_A = default_language
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
@property
def lowerCAmelCase_ ( self : Dict ):
if self.task == "multiple-choice":
_A = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_A = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''gpt_bigcode'''
UpperCAmelCase : str = ['''past_key_values''']
UpperCAmelCase : Dict = {
'''hidden_size''': '''n_embd''',
'''max_position_embeddings''': '''n_positions''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Tuple , _UpperCAmelCase : Dict=50_257 , _UpperCAmelCase : List[Any]=1_024 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : str="gelu_pytorch_tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[Any]=50_256 , _UpperCAmelCase : Dict=50_256 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Any=True , **_UpperCAmelCase : Any , ):
_A = vocab_size
_A = n_positions
_A = n_embd
_A = n_layer
_A = n_head
_A = n_inner
_A = activation_function
_A = resid_pdrop
_A = embd_pdrop
_A = attn_pdrop
_A = layer_norm_epsilon
_A = initializer_range
_A = scale_attn_weights
_A = use_cache
_A = attention_softmax_in_fpaa
_A = scale_attention_softmax_in_fpaa
_A = multi_query
_A = bos_token_id
_A = eos_token_id
super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
| 7 | 1 |
"""simple docstring"""
def _snake_case ( _snake_case : list[list[int]] , _snake_case : int , _snake_case : int , _snake_case : set ) -> int:
'''simple docstring'''
_A , _A = len(_snake_case ), len(grid[0] )
if (
min(_snake_case , _snake_case ) < 0
or row == row_length
or col == col_length
or (row, col) in visit
or grid[row][col] == 1
):
return 0
if row == row_length - 1 and col == col_length - 1:
return 1
visit.add((row, col) )
_A = 0
count += depth_first_search(_snake_case , row + 1 , _snake_case , _snake_case )
count += depth_first_search(_snake_case , row - 1 , _snake_case , _snake_case )
count += depth_first_search(_snake_case , _snake_case , col + 1 , _snake_case )
count += depth_first_search(_snake_case , _snake_case , col - 1 , _snake_case )
visit.remove((row, col) )
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 |
"""simple docstring"""
def _snake_case ( _snake_case : str ) -> str:
'''simple docstring'''
return " ".join(
''.join(word[::-1] ) if len(_snake_case ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words('''Hey wollef sroirraw'''))
| 7 | 1 |
"""simple docstring"""
a = '''0.18.2'''
from .configuration_utils import ConfigMixin
from .utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_inflect_available,
is_invisible_watermark_available,
is_k_diffusion_available,
is_k_diffusion_version,
is_librosa_available,
is_note_seq_available,
is_onnx_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
is_transformers_available,
is_transformers_version,
is_unidecode_available,
logging,
)
try:
if not is_onnx_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_onnx_objects import * # noqa F403
else:
from .pipelines import OnnxRuntimeModel
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_pt_objects import * # noqa F403
else:
from .models import (
AutoencoderKL,
ControlNetModel,
ModelMixin,
PriorTransformer,
TaFilmDecoder,
TransformeraDModel,
UNetaDModel,
UNetaDConditionModel,
UNetaDModel,
UNetaDConditionModel,
VQModel,
)
from .optimization import (
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
get_scheduler,
)
from .pipelines import (
AudioPipelineOutput,
ConsistencyModelPipeline,
DanceDiffusionPipeline,
DDIMPipeline,
DDPMPipeline,
DiffusionPipeline,
DiTPipeline,
ImagePipelineOutput,
KarrasVePipeline,
LDMPipeline,
LDMSuperResolutionPipeline,
PNDMPipeline,
RePaintPipeline,
ScoreSdeVePipeline,
)
from .schedulers import (
CMStochasticIterativeScheduler,
DDIMInverseScheduler,
DDIMParallelScheduler,
DDIMScheduler,
DDPMParallelScheduler,
DDPMScheduler,
DEISMultistepScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
IPNDMScheduler,
KarrasVeScheduler,
KDPMaAncestralDiscreteScheduler,
KDPMaDiscreteScheduler,
PNDMScheduler,
RePaintScheduler,
SchedulerMixin,
ScoreSdeVeScheduler,
UnCLIPScheduler,
UniPCMultistepScheduler,
VQDiffusionScheduler,
)
from .training_utils import EMAModel
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .schedulers import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .schedulers import DPMSolverSDEScheduler
try:
if not (is_torch_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
AltDiffusionImgaImgPipeline,
AltDiffusionPipeline,
AudioLDMPipeline,
CycleDiffusionPipeline,
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
ImageTextPipelineOutput,
KandinskyImgaImgPipeline,
KandinskyInpaintPipeline,
KandinskyPipeline,
KandinskyPriorPipeline,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaControlnetPipeline,
KandinskyVaaImgaImgPipeline,
KandinskyVaaInpaintPipeline,
KandinskyVaaPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
KandinskyVaaPriorPipeline,
LDMTextToImagePipeline,
PaintByExamplePipeline,
SemanticStableDiffusionPipeline,
ShapEImgaImgPipeline,
ShapEPipeline,
StableDiffusionAttendAndExcitePipeline,
StableDiffusionControlNetImgaImgPipeline,
StableDiffusionControlNetInpaintPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionDepthaImgPipeline,
StableDiffusionDiffEditPipeline,
StableDiffusionImageVariationPipeline,
StableDiffusionImgaImgPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionInpaintPipelineLegacy,
StableDiffusionInstructPixaPixPipeline,
StableDiffusionLatentUpscalePipeline,
StableDiffusionLDMaDPipeline,
StableDiffusionModelEditingPipeline,
StableDiffusionPanoramaPipeline,
StableDiffusionParadigmsPipeline,
StableDiffusionPipeline,
StableDiffusionPipelineSafe,
StableDiffusionPixaPixZeroPipeline,
StableDiffusionSAGPipeline,
StableDiffusionUpscalePipeline,
StableUnCLIPImgaImgPipeline,
StableUnCLIPPipeline,
TextToVideoSDPipeline,
TextToVideoZeroPipeline,
UnCLIPImageVariationPipeline,
UnCLIPPipeline,
UniDiffuserModel,
UniDiffuserPipeline,
UniDiffuserTextDecoder,
VersatileDiffusionDualGuidedPipeline,
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
VideoToVideoSDPipeline,
VQDiffusionPipeline,
)
try:
if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403
else:
from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline
try:
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403
else:
from .pipelines import StableDiffusionKDiffusionPipeline
try:
if not (is_torch_available() and is_transformers_available() and is_onnx_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403
else:
from .pipelines import (
OnnxStableDiffusionImgaImgPipeline,
OnnxStableDiffusionInpaintPipeline,
OnnxStableDiffusionInpaintPipelineLegacy,
OnnxStableDiffusionPipeline,
OnnxStableDiffusionUpscalePipeline,
StableDiffusionOnnxPipeline,
)
try:
if not (is_torch_available() and is_librosa_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_librosa_objects import * # noqa F403
else:
from .pipelines import AudioDiffusionPipeline, Mel
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .pipelines import SpectrogramDiffusionPipeline
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_objects import * # noqa F403
else:
from .models.controlnet_flax import FlaxControlNetModel
from .models.modeling_flax_utils import FlaxModelMixin
from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel
from .models.vae_flax import FlaxAutoencoderKL
from .pipelines import FlaxDiffusionPipeline
from .schedulers import (
FlaxDDIMScheduler,
FlaxDDPMScheduler,
FlaxDPMSolverMultistepScheduler,
FlaxKarrasVeScheduler,
FlaxLMSDiscreteScheduler,
FlaxPNDMScheduler,
FlaxSchedulerMixin,
FlaxScoreSdeVeScheduler,
)
try:
if not (is_flax_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
FlaxStableDiffusionControlNetPipeline,
FlaxStableDiffusionImgaImgPipeline,
FlaxStableDiffusionInpaintPipeline,
FlaxStableDiffusionPipeline,
)
try:
if not (is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_note_seq_objects import * # noqa F403
else:
from .pipelines import MidiProcessor
| 7 |
"""simple docstring"""
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = (KDPMaDiscreteScheduler,)
UpperCAmelCase : Any = 10
def lowerCAmelCase_ ( self : Dict , **_UpperCAmelCase : Optional[Any] ):
_A = {
'num_train_timesteps': 1_100,
'beta_start': 0.0001,
'beta_end': 0.02,
'beta_schedule': 'linear',
}
config.update(**_UpperCAmelCase )
return config
def lowerCAmelCase_ ( self : Any ):
for timesteps in [10, 50, 100, 1_000]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict ):
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Tuple ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[int] ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config(prediction_type='v_prediction' )
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
_A = self.dummy_model()
_A = self.dummy_sample_deter * scheduler.init_noise_sigma
_A = sample.to(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = output.prev_sample
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.6_9_3_4E-0_7 ) < 1E-2
assert abs(result_mean.item() - 6.1_1_1_2E-1_0 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2E-0_7 ) < 1E-2
assert abs(result_mean.item() - 0.0002 ) < 1E-3
def lowerCAmelCase_ ( self : Optional[Any] ):
if torch_device == "mps":
return
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config()
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
_A = self.dummy_model()
_A = self.dummy_sample_deter * scheduler.init_noise_sigma
_A = sample.to(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = output.prev_sample
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
def lowerCAmelCase_ ( self : Any ):
if torch_device == "mps":
return
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config()
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase )
_A = self.dummy_model()
_A = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
_A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = output.prev_sample
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
if str(_UpperCAmelCase ).startswith('cpu' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
| 7 | 1 |
"""simple docstring"""
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Dict = (DPMSolverSinglestepScheduler,)
UpperCAmelCase : str = (('''num_inference_steps''', 25),)
def lowerCAmelCase_ ( self : str , **_UpperCAmelCase : Any ):
_A = {
'num_train_timesteps': 1_000,
'beta_start': 0.0001,
'beta_end': 0.02,
'beta_schedule': 'linear',
'solver_order': 2,
'prediction_type': 'epsilon',
'thresholding': False,
'sample_max_value': 1.0,
'algorithm_type': 'dpmsolver++',
'solver_type': 'midpoint',
'lambda_min_clipped': -float('inf' ),
'variance_type': None,
}
config.update(**_UpperCAmelCase )
return config
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[Any]=0 , **_UpperCAmelCase : Optional[Any] ):
_A = dict(self.forward_default_kwargs )
_A = kwargs.pop('num_inference_steps' , _UpperCAmelCase )
_A = self.dummy_sample
_A = 0.1 * sample
_A = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
_A = self.get_scheduler_config(**_UpperCAmelCase )
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
_A = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
_A = scheduler_class.from_pretrained(_UpperCAmelCase )
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
_A = dummy_past_residuals[: new_scheduler.config.solver_order]
_A , _A = sample, sample
for t in range(_UpperCAmelCase , time_step + scheduler.config.solver_order + 1 ):
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
_A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCAmelCase_ ( self : Dict ):
pass
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : List[Any]=0 , **_UpperCAmelCase : Union[str, Any] ):
_A = dict(self.forward_default_kwargs )
_A = kwargs.pop('num_inference_steps' , _UpperCAmelCase )
_A = self.dummy_sample
_A = 0.1 * sample
_A = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
_A = self.get_scheduler_config()
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
_A = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
_A = scheduler_class.from_pretrained(_UpperCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
_A = dummy_past_residuals[: new_scheduler.config.solver_order]
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
_A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Any=None , **_UpperCAmelCase : str ):
if scheduler is None:
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config(**_UpperCAmelCase )
_A = scheduler_class(**_UpperCAmelCase )
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config(**_UpperCAmelCase )
_A = scheduler_class(**_UpperCAmelCase )
_A = 10
_A = self.dummy_model()
_A = self.dummy_sample_deter
scheduler.set_timesteps(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
return sample
def lowerCAmelCase_ ( self : List[str] ):
_A = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
_A = 50
_A = self.dummy_model()
_A = self.dummy_sample_deter
scheduler.set_timesteps(_UpperCAmelCase )
# make sure that the first t is uneven
for i, t in enumerate(scheduler.timesteps[3:] ):
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_mean.item() - 0.2574 ) < 1E-3
def lowerCAmelCase_ ( self : int ):
for timesteps in [25, 50, 100, 999, 1_000]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase )
def lowerCAmelCase_ ( self : int ):
# make sure that iterating over schedulers with same config names gives same results
# for defaults
_A = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
_A = self.full_loop(scheduler=_UpperCAmelCase )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_mean.item() - 0.2791 ) < 1E-3
_A = DEISMultistepScheduler.from_config(scheduler.config )
_A = DPMSolverMultistepScheduler.from_config(scheduler.config )
_A = UniPCMultistepScheduler.from_config(scheduler.config )
_A = DPMSolverSinglestepScheduler.from_config(scheduler.config )
_A = self.full_loop(scheduler=_UpperCAmelCase )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_mean.item() - 0.2791 ) < 1E-3
def lowerCAmelCase_ ( self : str ):
self.check_over_configs(thresholding=_UpperCAmelCase )
for order in [1, 2, 3]:
for solver_type in ["midpoint", "heun"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=_UpperCAmelCase , prediction_type=_UpperCAmelCase , sample_max_value=_UpperCAmelCase , algorithm_type='dpmsolver++' , solver_order=_UpperCAmelCase , solver_type=_UpperCAmelCase , )
def lowerCAmelCase_ ( self : Union[str, Any] ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Any ):
for algorithm_type in ["dpmsolver", "dpmsolver++"]:
for solver_type in ["midpoint", "heun"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=_UpperCAmelCase , solver_type=_UpperCAmelCase , prediction_type=_UpperCAmelCase , algorithm_type=_UpperCAmelCase , )
_A = self.full_loop(
solver_order=_UpperCAmelCase , solver_type=_UpperCAmelCase , prediction_type=_UpperCAmelCase , algorithm_type=_UpperCAmelCase , )
assert not torch.isnan(_UpperCAmelCase ).any(), "Samples have nan numbers"
def lowerCAmelCase_ ( self : Optional[Any] ):
self.check_over_configs(lower_order_final=_UpperCAmelCase )
self.check_over_configs(lower_order_final=_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] ):
self.check_over_configs(lambda_min_clipped=-float('inf' ) )
self.check_over_configs(lambda_min_clipped=-5.1 )
def lowerCAmelCase_ ( self : Optional[Any] ):
self.check_over_configs(variance_type=_UpperCAmelCase )
self.check_over_configs(variance_type='learned_range' )
def lowerCAmelCase_ ( self : List[str] ):
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]:
self.check_over_forward(num_inference_steps=_UpperCAmelCase , time_step=0 )
def lowerCAmelCase_ ( self : str ):
_A = self.full_loop()
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_mean.item() - 0.2791 ) < 1E-3
def lowerCAmelCase_ ( self : int ):
_A = self.full_loop(use_karras_sigmas=_UpperCAmelCase )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_mean.item() - 0.2248 ) < 1E-3
def lowerCAmelCase_ ( self : str ):
_A = self.full_loop(prediction_type='v_prediction' )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_mean.item() - 0.1453 ) < 1E-3
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = self.full_loop(prediction_type='v_prediction' , use_karras_sigmas=_UpperCAmelCase )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_mean.item() - 0.0649 ) < 1E-3
def lowerCAmelCase_ ( self : List[Any] ):
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config(thresholding=_UpperCAmelCase , dynamic_thresholding_ratio=0 )
_A = scheduler_class(**_UpperCAmelCase )
_A = 10
_A = self.dummy_model()
_A = self.dummy_sample_deter.half()
scheduler.set_timesteps(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
assert sample.dtype == torch.floataa
| 7 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any]=10 ) -> Optional[int]:
'''simple docstring'''
_A = []
for _ in range(_snake_case ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def _snake_case ( _snake_case : Optional[Any] , _snake_case : Union[str, Any]=10 ) -> List[str]:
'''simple docstring'''
_A = []
for step in range(_snake_case ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
_A = os.path.join(_snake_case , 'schedule.bin' )
torch.save(scheduler.state_dict() , _snake_case )
_A = torch.load(_snake_case )
scheduler.load_state_dict(_snake_case )
return lrs
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ):
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Any ):
_A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase )
_A = torch.tensor([0.4, 0.2, -0.5] )
_A = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_A = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
_A = criterion(_UpperCAmelCase , _UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def lowerCAmelCase_ ( self : int ):
_A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase )
_A = torch.tensor([0.4, 0.2, -0.5] )
_A = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_A = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-3_0, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_UpperCAmelCase , weight_decay=0.0 , relative_step=_UpperCAmelCase , scale_parameter=_UpperCAmelCase , warmup_init=_UpperCAmelCase , )
for _ in range(1_000 ):
_A = criterion(_UpperCAmelCase , _UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = nn.Linear(50 , 50 ) if is_torch_available() else None
UpperCAmelCase : Tuple = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None
UpperCAmelCase : Dict = 10
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]=None ):
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase , msg=_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] ):
_A = {'num_warmup_steps': 2, 'num_training_steps': 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
_A = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{'num_warmup_steps': 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, 'num_cycles': 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, 'power': 2.0, 'lr_end': 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{'num_warmup_steps': 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
_A , _A = data
_A = scheduler_func(self.optimizer , **_UpperCAmelCase )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
_A = unwrap_schedule(_UpperCAmelCase , self.num_steps )
self.assertListAlmostEqual(
_UpperCAmelCase , _UpperCAmelCase , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , )
_A = scheduler_func(self.optimizer , **_UpperCAmelCase )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(_UpperCAmelCase ) # wrap to test picklability of the schedule
_A = unwrap_and_save_reload_schedule(_UpperCAmelCase , self.num_steps )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase , msg=F'''failed for {scheduler_func} in save and reload''' )
class lowercase_ :
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int] ):
_A = fn
def __call__( self : Tuple , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : List[str] ):
return self.fn(*_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Any ):
_A = list(map(self , scheduler.lr_lambdas ) )
| 7 | 1 |
"""simple docstring"""
def _snake_case ( _snake_case : int ) -> bool:
'''simple docstring'''
return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number
if __name__ == "__main__":
print('''Program to check whether a number is a Perfect number or not...''')
a = int(input('''Enter number: ''').strip())
print(F'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
| 7 |
"""simple docstring"""
import math
def _snake_case ( _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
if (
not isinstance(_snake_case , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('power_factor must be a valid float value between -1 and 1.' )
return apparent_power * power_factor
def _snake_case ( _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
if (
not isinstance(_snake_case , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('power_factor must be a valid float value between -1 and 1.' )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 | 1 |
"""simple docstring"""
import requests
from bsa import BeautifulSoup
def _snake_case ( _snake_case : str = "AAPL" ) -> str:
'''simple docstring'''
_A = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}'''
_A = BeautifulSoup(requests.get(_snake_case ).text , 'html.parser' )
_A = 'My(6px) Pos(r) smartphone_Mt(6px)'
return soup.find('div' , class_=class_ ).find('span' ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
| 7 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''',
'''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''',
'''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''',
'''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''',
'''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''',
'''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''',
'''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''',
'''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''',
'''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = '''xmod'''
def __init__( self : str , _UpperCAmelCase : Optional[Any]=30_522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Dict=3_072 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Any=1E-1_2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Tuple=("en_XX",) , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Optional[Any] , ):
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
_A = vocab_size
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = hidden_act
_A = intermediate_size
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = type_vocab_size
_A = initializer_range
_A = layer_norm_eps
_A = position_embedding_type
_A = use_cache
_A = classifier_dropout
_A = pre_norm
_A = adapter_reduction_factor
_A = adapter_layer_norm
_A = adapter_reuse_layer_norm
_A = ln_before_adapter
_A = list(_UpperCAmelCase )
_A = default_language
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
@property
def lowerCAmelCase_ ( self : Dict ):
if self.task == "multiple-choice":
_A = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_A = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 7 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json'''
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : str = '''speech_to_text'''
UpperCAmelCase : List[Any] = ['''past_key_values''']
UpperCAmelCase : Tuple = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self : int , _UpperCAmelCase : Union[str, Any]=10_000 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2_048 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Tuple=2_048 , _UpperCAmelCase : str=4 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]="relu" , _UpperCAmelCase : List[Any]=256 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : List[str]=6_000 , _UpperCAmelCase : Optional[Any]=1_024 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Any=(5, 5) , _UpperCAmelCase : int=1_024 , _UpperCAmelCase : str=80 , _UpperCAmelCase : Any=1 , **_UpperCAmelCase : Tuple , ):
_A = vocab_size
_A = d_model
_A = encoder_ffn_dim
_A = encoder_layers
_A = encoder_attention_heads
_A = decoder_ffn_dim
_A = decoder_layers
_A = decoder_attention_heads
_A = dropout
_A = attention_dropout
_A = activation_dropout
_A = activation_function
_A = init_std
_A = encoder_layerdrop
_A = decoder_layerdrop
_A = use_cache
_A = encoder_layers
_A = scale_embedding # scale factor will be sqrt(d_model) if True
_A = max_source_positions
_A = max_target_positions
_A = num_conv_layers
_A = list(_UpperCAmelCase )
_A = conv_channels
_A = input_feat_per_channel
_A = input_channels
if len(self.conv_kernel_sizes ) != self.num_conv_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` '
F'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, '''
F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
| 7 |
"""simple docstring"""
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
a = logging.get_logger(__name__)
a = {
'''tensor(bool)''': np.bool_,
'''tensor(int8)''': np.inta,
'''tensor(uint8)''': np.uinta,
'''tensor(int16)''': np.intaa,
'''tensor(uint16)''': np.uintaa,
'''tensor(int32)''': np.intaa,
'''tensor(uint32)''': np.uintaa,
'''tensor(int64)''': np.intaa,
'''tensor(uint64)''': np.uintaa,
'''tensor(float16)''': np.floataa,
'''tensor(float)''': np.floataa,
'''tensor(double)''': np.floataa,
}
class lowercase_ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : Optional[Any] ):
logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' )
_A = model
_A = kwargs.get('model_save_dir' , _UpperCAmelCase )
_A = kwargs.get('latest_model_name' , _UpperCAmelCase )
def __call__( self : Dict , **_UpperCAmelCase : List[Any] ):
_A = {k: np.array(_UpperCAmelCase ) for k, v in kwargs.items()}
return self.model.run(_UpperCAmelCase , _UpperCAmelCase )
@staticmethod
def lowerCAmelCase_ ( _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=None ):
if provider is None:
logger.info('No onnxruntime provider specified, using CPUExecutionProvider' )
_A = 'CPUExecutionProvider'
return ort.InferenceSession(_UpperCAmelCase , providers=[provider] , sess_options=_UpperCAmelCase )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : List[Any] ):
_A = file_name if file_name is not None else ONNX_WEIGHTS_NAME
_A = self.model_save_dir.joinpath(self.latest_model_name )
_A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase )
try:
shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase )
except shutil.SameFileError:
pass
# copy external weights (for models >2GB)
_A = self.model_save_dir.joinpath(_UpperCAmelCase )
if src_path.exists():
_A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase )
try:
shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase )
except shutil.SameFileError:
pass
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] , ):
if os.path.isfile(_UpperCAmelCase ):
logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' )
return
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase )
# saving model weights/files
self._save_pretrained(_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( cls : Tuple , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[Union[bool, str, None]] = None , _UpperCAmelCase : Optional[Union[str, None]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional["ort.SessionOptions"] = None , **_UpperCAmelCase : Union[str, Any] , ):
_A = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(_UpperCAmelCase ):
_A = OnnxRuntimeModel.load_model(
os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase )
_A = Path(_UpperCAmelCase )
# load model from hub
else:
# download model
_A = hf_hub_download(
repo_id=_UpperCAmelCase , filename=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , )
_A = Path(_UpperCAmelCase ).parent
_A = Path(_UpperCAmelCase ).name
_A = OnnxRuntimeModel.load_model(_UpperCAmelCase , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase )
return cls(model=_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( cls : List[Any] , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : Tuple , ):
_A = None
if len(str(_UpperCAmelCase ).split('@' ) ) == 2:
_A , _A = model_id.split('@' )
return cls._from_pretrained(
model_id=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , **_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any]=10 ) -> Optional[int]:
'''simple docstring'''
_A = []
for _ in range(_snake_case ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def _snake_case ( _snake_case : Optional[Any] , _snake_case : Union[str, Any]=10 ) -> List[str]:
'''simple docstring'''
_A = []
for step in range(_snake_case ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
_A = os.path.join(_snake_case , 'schedule.bin' )
torch.save(scheduler.state_dict() , _snake_case )
_A = torch.load(_snake_case )
scheduler.load_state_dict(_snake_case )
return lrs
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ):
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Any ):
_A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase )
_A = torch.tensor([0.4, 0.2, -0.5] )
_A = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_A = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
_A = criterion(_UpperCAmelCase , _UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def lowerCAmelCase_ ( self : int ):
_A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase )
_A = torch.tensor([0.4, 0.2, -0.5] )
_A = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_A = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-3_0, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_UpperCAmelCase , weight_decay=0.0 , relative_step=_UpperCAmelCase , scale_parameter=_UpperCAmelCase , warmup_init=_UpperCAmelCase , )
for _ in range(1_000 ):
_A = criterion(_UpperCAmelCase , _UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = nn.Linear(50 , 50 ) if is_torch_available() else None
UpperCAmelCase : Tuple = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None
UpperCAmelCase : Dict = 10
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]=None ):
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase , msg=_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] ):
_A = {'num_warmup_steps': 2, 'num_training_steps': 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
_A = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{'num_warmup_steps': 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, 'num_cycles': 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, 'power': 2.0, 'lr_end': 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{'num_warmup_steps': 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
_A , _A = data
_A = scheduler_func(self.optimizer , **_UpperCAmelCase )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
_A = unwrap_schedule(_UpperCAmelCase , self.num_steps )
self.assertListAlmostEqual(
_UpperCAmelCase , _UpperCAmelCase , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , )
_A = scheduler_func(self.optimizer , **_UpperCAmelCase )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(_UpperCAmelCase ) # wrap to test picklability of the schedule
_A = unwrap_and_save_reload_schedule(_UpperCAmelCase , self.num_steps )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase , msg=F'''failed for {scheduler_func} in save and reload''' )
class lowercase_ :
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int] ):
_A = fn
def __call__( self : Tuple , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : List[str] ):
return self.fn(*_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Any ):
_A = list(map(self , scheduler.lr_lambdas ) )
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json'''
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : str = '''speech_to_text'''
UpperCAmelCase : List[Any] = ['''past_key_values''']
UpperCAmelCase : Tuple = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self : int , _UpperCAmelCase : Union[str, Any]=10_000 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2_048 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Tuple=2_048 , _UpperCAmelCase : str=4 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]="relu" , _UpperCAmelCase : List[Any]=256 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : List[str]=6_000 , _UpperCAmelCase : Optional[Any]=1_024 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Any=(5, 5) , _UpperCAmelCase : int=1_024 , _UpperCAmelCase : str=80 , _UpperCAmelCase : Any=1 , **_UpperCAmelCase : Tuple , ):
_A = vocab_size
_A = d_model
_A = encoder_ffn_dim
_A = encoder_layers
_A = encoder_attention_heads
_A = decoder_ffn_dim
_A = decoder_layers
_A = decoder_attention_heads
_A = dropout
_A = attention_dropout
_A = activation_dropout
_A = activation_function
_A = init_std
_A = encoder_layerdrop
_A = decoder_layerdrop
_A = use_cache
_A = encoder_layers
_A = scale_embedding # scale factor will be sqrt(d_model) if True
_A = max_source_positions
_A = max_target_positions
_A = num_conv_layers
_A = list(_UpperCAmelCase )
_A = conv_channels
_A = input_feat_per_channel
_A = input_channels
if len(self.conv_kernel_sizes ) != self.num_conv_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` '
F'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, '''
F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
import itertools
import string
from collections.abc import Generator, Iterable
def _snake_case ( _snake_case : Iterable[str] , _snake_case : int ) -> Generator[tuple[str, ...], None, None]:
'''simple docstring'''
_A = iter(_snake_case )
while True:
_A = tuple(itertools.islice(_snake_case , _snake_case ) )
if not chunk:
return
yield chunk
def _snake_case ( _snake_case : str ) -> str:
'''simple docstring'''
_A = ''.join([c.upper() for c in dirty if c in string.ascii_letters] )
_A = ''
if len(_snake_case ) < 2:
return dirty
for i in range(len(_snake_case ) - 1 ):
clean += dirty[i]
if dirty[i] == dirty[i + 1]:
clean += "X"
clean += dirty[-1]
if len(_snake_case ) & 1:
clean += "X"
return clean
def _snake_case ( _snake_case : str ) -> list[str]:
'''simple docstring'''
_A = 'ABCDEFGHIKLMNOPQRSTUVWXYZ'
# we're using a list instead of a '2d' array because it makes the math
# for setting up the table and doing the actual encoding/decoding simpler
_A = []
# copy key chars into the table if they are in `alphabet` ignoring duplicates
for char in key.upper():
if char not in table and char in alphabet:
table.append(_snake_case )
# fill the rest of the table in with the remaining alphabet chars
for char in alphabet:
if char not in table:
table.append(_snake_case )
return table
def _snake_case ( _snake_case : str , _snake_case : str ) -> str:
'''simple docstring'''
_A = generate_table(_snake_case )
_A = prepare_input(_snake_case )
_A = ''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(_snake_case , 2 ):
_A , _A = divmod(table.index(_snake_case ) , 5 )
_A , _A = divmod(table.index(_snake_case ) , 5 )
if rowa == rowa:
ciphertext += table[rowa * 5 + (cola + 1) % 5]
ciphertext += table[rowa * 5 + (cola + 1) % 5]
elif cola == cola:
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
else: # rectangle
ciphertext += table[rowa * 5 + cola]
ciphertext += table[rowa * 5 + cola]
return ciphertext
def _snake_case ( _snake_case : str , _snake_case : str ) -> str:
'''simple docstring'''
_A = generate_table(_snake_case )
_A = ''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(_snake_case , 2 ):
_A , _A = divmod(table.index(_snake_case ) , 5 )
_A , _A = divmod(table.index(_snake_case ) , 5 )
if rowa == rowa:
plaintext += table[rowa * 5 + (cola - 1) % 5]
plaintext += table[rowa * 5 + (cola - 1) % 5]
elif cola == cola:
plaintext += table[((rowa - 1) % 5) * 5 + cola]
plaintext += table[((rowa - 1) % 5) * 5 + cola]
else: # rectangle
plaintext += table[rowa * 5 + cola]
plaintext += table[rowa * 5 + cola]
return plaintext
| 7 |
"""simple docstring"""
from manim import *
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = Rectangle(height=0.5 , width=0.5 )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_A = Rectangle(height=0.25 , width=0.25 )
_A = [mem.copy() for i in range(6 )]
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('CPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(4 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('GPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
gpu.move_to([-1, -1, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Model' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
model.move_to([3, -1.0, 0] )
self.add(_UpperCAmelCase )
_A = []
_A = []
for i, rect in enumerate(_UpperCAmelCase ):
_A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 )
target.move_to(_UpperCAmelCase )
model_arr.append(_UpperCAmelCase )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(_UpperCAmelCase )
self.add(*_UpperCAmelCase , *_UpperCAmelCase )
_A = [meta_mem.copy() for i in range(6 )]
_A = [meta_mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Disk' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
disk.move_to([-4, -1.25, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_A = MarkupText(
F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = MarkupText(
F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , )
blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(_UpperCAmelCase )
_A = MarkupText(
F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase ) )
_A = Square(0.3 )
input.set_fill(_UpperCAmelCase , opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 )
self.play(Write(_UpperCAmelCase ) )
input.generate_target()
input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 )
self.play(MoveToTarget(_UpperCAmelCase ) )
self.play(FadeOut(_UpperCAmelCase ) )
_A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 )
a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
_A = MarkupText(
F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) )
_A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02}
self.play(
Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[0] ) )
_A = a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
_A = AnimationGroup(
FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 )
self.play(_UpperCAmelCase )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
_A = 0.7
self.play(
Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , )
else:
self.play(
MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , )
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 )
self.play(
Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[i] ) )
_A = a_c
_A = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 )
self.play(
FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , )
_A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) )
self.wait()
| 7 | 1 |
"""simple docstring"""
import json
import os
import unittest
from transformers import DebertaTokenizer, DebertaTokenizerFast
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowercase_ ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = DebertaTokenizer
UpperCAmelCase : Union[str, Any] = True
UpperCAmelCase : str = DebertaTokenizerFast
def lowerCAmelCase_ ( self : int ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
_A = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'[UNK]',
]
_A = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
_A = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
_A = {'unk_token': '[UNK]'}
_A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
_A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(_UpperCAmelCase ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Optional[int] , **_UpperCAmelCase : Union[str, Any] ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Dict ):
_A = 'lower newer'
_A = 'lower newer'
return input_text, output_text
def lowerCAmelCase_ ( self : Any ):
_A = self.get_tokenizer()
_A = 'lower newer'
_A = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er']
_A = tokenizer.tokenize(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
_A = tokens + [tokenizer.unk_token]
_A = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = self.get_tokenizer()
_A = tokenizer('Hello' , 'World' )
_A = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
self.assertListEqual(tokd['token_type_ids'] , _UpperCAmelCase )
@slow
def lowerCAmelCase_ ( self : int ):
_A = self.tokenizer_class.from_pretrained('microsoft/deberta-base' )
_A = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase )
_A = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase )
_A = tokenizer.encode(
'sequence builders' , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase )
_A = tokenizer.encode(
'sequence builders' , 'multi-sequence build' , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase )
_A = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase )
_A = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
@slow
def lowerCAmelCase_ ( self : List[Any] ):
_A = [self.tokenizer_class]
if self.test_rust_tokenizer:
tokenizer_classes.append(self.rust_tokenizer_class )
for tokenizer_class in tokenizer_classes:
_A = tokenizer_class.from_pretrained('microsoft/deberta-base' )
_A = [
'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations',
'ALBERT incorporates two parameter reduction techniques',
'The first one is a factorized embedding parameterization. By decomposing the large vocabulary'
' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'
' vocabulary embedding.',
]
_A = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase )
_A = [tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) for seq in encoding['input_ids']]
# fmt: off
_A = {
'input_ids': [
[1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2]
],
'token_type_ids': [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
'attention_mask': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
}
# fmt: on
_A = [
'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations',
'ALBERT incorporates two parameter reduction techniques',
'The first one is a factorized embedding parameterization. By decomposing the large vocabulary'
' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'
' vocabulary embedding.',
]
self.assertDictEqual(encoding.data , _UpperCAmelCase )
for expected, decoded in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
| 7 |
"""simple docstring"""
def _snake_case ( _snake_case : int , _snake_case : int ) -> int:
'''simple docstring'''
return int((input_a, input_a).count(1 ) != 0 )
def _snake_case ( ) -> None:
'''simple docstring'''
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 7 | 1 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.