code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ ( lowerCamelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase=1_3 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=2 , __lowerCAmelCase=9_9 , __lowerCAmelCase=0 , __lowerCAmelCase=3_2 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=1_2 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase="last" , __lowerCAmelCase=None , __lowerCAmelCase=None , ): """simple docstring""" __magic_name__ :Dict = parent __magic_name__ :List[str] = batch_size __magic_name__ :Optional[Any] = seq_length __magic_name__ :Union[str, Any] = is_training __magic_name__ :Dict = use_input_lengths __magic_name__ :Tuple = use_token_type_ids __magic_name__ :Dict = use_labels __magic_name__ :List[str] = gelu_activation __magic_name__ :Dict = sinusoidal_embeddings __magic_name__ :List[Any] = causal __magic_name__ :Dict = asm __magic_name__ :Union[str, Any] = n_langs __magic_name__ :List[Any] = vocab_size __magic_name__ :int = n_special __magic_name__ :Tuple = hidden_size __magic_name__ :Optional[int] = num_hidden_layers __magic_name__ :Optional[Any] = num_attention_heads __magic_name__ :Any = hidden_dropout_prob __magic_name__ :List[str] = attention_probs_dropout_prob __magic_name__ :Any = max_position_embeddings __magic_name__ :Tuple = type_vocab_size __magic_name__ :Optional[int] = type_sequence_label_size __magic_name__ :Tuple = initializer_range __magic_name__ :Dict = num_labels __magic_name__ :Any = num_choices __magic_name__ :Optional[Any] = summary_type __magic_name__ :Dict = use_proj __magic_name__ :Tuple = scope def A ( self ): """simple docstring""" __magic_name__ :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ :Dict = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ :int = None if self.use_input_lengths: __magic_name__ :List[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __magic_name__ :Dict = None if self.use_token_type_ids: __magic_name__ :Dict = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __magic_name__ :str = None __magic_name__ :Union[str, Any] = None __magic_name__ :int = None if self.use_labels: __magic_name__ :Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ :Optional[int] = ids_tensor([self.batch_size] , 2 ).float() __magic_name__ :Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ :int = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def A ( self ): """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" __magic_name__ :Union[str, Any] = FlaubertModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :str = model(__lowerCAmelCase , lengths=__lowerCAmelCase , langs=__lowerCAmelCase ) __magic_name__ :Union[str, Any] = model(__lowerCAmelCase , langs=__lowerCAmelCase ) __magic_name__ :List[Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" __magic_name__ :str = FlaubertWithLMHeadModel(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :List[str] = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" __magic_name__ :Union[str, Any] = FlaubertForQuestionAnsweringSimple(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :int = model(__lowerCAmelCase ) __magic_name__ :Optional[int] = model(__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" __magic_name__ :Tuple = FlaubertForQuestionAnswering(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :Optional[Any] = model(__lowerCAmelCase ) __magic_name__ :int = model( __lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , cls_index=__lowerCAmelCase , is_impossible=__lowerCAmelCase , p_mask=__lowerCAmelCase , ) __magic_name__ :Optional[Any] = model( __lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , cls_index=__lowerCAmelCase , is_impossible=__lowerCAmelCase , ) ((__magic_name__) , ) :Any = result_with_labels.to_tuple() __magic_name__ :str = model(__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase ) ((__magic_name__) , ) :List[str] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" __magic_name__ :Union[str, Any] = FlaubertForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :int = model(__lowerCAmelCase ) __magic_name__ :List[str] = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" __magic_name__ :List[str] = self.num_labels __magic_name__ :Any = FlaubertForTokenClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :List[Any] = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" __magic_name__ :Dict = self.num_choices __magic_name__ :Any = FlaubertForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ :Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ :List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ :Any = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self ): """simple docstring""" __magic_name__ :Dict = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) :int = config_and_inputs __magic_name__ :str = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCamelCase_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): a__ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) a__ = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ): """simple docstring""" __magic_name__ :int = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": __magic_name__ :Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) __magic_name__ :Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) return inputs_dict def A ( self ): """simple docstring""" __magic_name__ :Optional[Any] = FlaubertModelTester(self ) __magic_name__ :List[str] = ConfigTester(self , config_class=__lowerCAmelCase , emb_dim=3_7 ) def A ( self ): """simple docstring""" self.config_tester.run_common_tests() def A ( self ): """simple docstring""" __magic_name__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__lowerCAmelCase ) @slow def A ( self ): """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ :List[str] = FlaubertModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @slow @require_torch_gpu def A ( self ): """simple docstring""" __magic_name__ , __magic_name__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return __magic_name__ :List[str] = True __magic_name__ :Union[str, Any] = model_class(config=__lowerCAmelCase ) __magic_name__ :Union[str, Any] = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :Union[str, Any] = torch.jit.trace( __lowerCAmelCase , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , '''traced_model.pt''' ) ) __magic_name__ :Any = torch.jit.load(os.path.join(__lowerCAmelCase , '''traced_model.pt''' ) , map_location=__lowerCAmelCase ) loaded(inputs_dict['''input_ids'''].to(__lowerCAmelCase ) , inputs_dict['''attention_mask'''].to(__lowerCAmelCase ) ) @require_torch class lowerCamelCase_ ( unittest.TestCase ): @slow def A ( self ): """simple docstring""" __magic_name__ :int = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) __magic_name__ :int = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) with torch.no_grad(): __magic_name__ :List[str] = model(__lowerCAmelCase )[0] __magic_name__ :List[Any] = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , __lowerCAmelCase ) __magic_name__ :Optional[Any] = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCAmelCase , atol=1E-4 ) )
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''gpt_bigcode''' UpperCAmelCase : str = ['''past_key_values'''] UpperCAmelCase : Dict = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Tuple , _UpperCAmelCase : Dict=50_257 , _UpperCAmelCase : List[Any]=1_024 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : str="gelu_pytorch_tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[Any]=50_256 , _UpperCAmelCase : Dict=50_256 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Any=True , **_UpperCAmelCase : Any , ): _A = vocab_size _A = n_positions _A = n_embd _A = n_layer _A = n_head _A = n_inner _A = activation_function _A = resid_pdrop _A = embd_pdrop _A = attn_pdrop _A = layer_norm_epsilon _A = initializer_range _A = scale_attn_weights _A = use_cache _A = attention_softmax_in_fpaa _A = scale_attention_softmax_in_fpaa _A = multi_query _A = bos_token_id _A = eos_token_id super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
7
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowerCamelCase (_a ): @slow @require_torch def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny','prajjwal1/bert-tiny' ) __UpperCamelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) __UpperCamelCase = bertabert.config.encoder.vocab_size __UpperCamelCase = tokenizer.sep_token_id __UpperCamelCase = tokenizer.cls_token_id __UpperCamelCase = 128 __UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='train[:1%]' ) __UpperCamelCase = datasets.load_dataset('cnn_dailymail','3.0.0',split='validation[:1%]' ) __UpperCamelCase = train_dataset.select(range(32 ) ) __UpperCamelCase = val_dataset.select(range(16 ) ) __UpperCamelCase = 4 def _map_to_encoder_decoder_inputs(A_: Dict ): # Tokenizer will automatically set [BOS] <text> [EOS] __UpperCamelCase = tokenizer(batch['article'],padding='max_length',truncation=A_,max_length=512 ) __UpperCamelCase = tokenizer(batch['highlights'],padding='max_length',truncation=A_,max_length=128 ) __UpperCamelCase = inputs.input_ids __UpperCamelCase = inputs.attention_mask __UpperCamelCase = outputs.input_ids __UpperCamelCase = outputs.input_ids.copy() __UpperCamelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] __UpperCamelCase = outputs.attention_mask assert all(len(A_ ) == 512 for x in inputs.input_ids ) assert all(len(A_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(A_: str ): __UpperCamelCase = pred.label_ids __UpperCamelCase = pred.predictions # all unnecessary tokens are removed __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = tokenizer.batch_decode(A_,skip_special_tokens=A_ ) __UpperCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(A_ ) )] ) / len(A_ ) return {"accuracy": accuracy} # map train dataset __UpperCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],) train_dataset.set_format( type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],) # same for validation dataset __UpperCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs,batched=A_,batch_size=A_,remove_columns=['article', 'highlights'],) val_dataset.set_format( type='torch',columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'],) __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = SeqaSeqTrainingArguments( output_dir=A_,per_device_train_batch_size=A_,per_device_eval_batch_size=A_,predict_with_generate=A_,evaluation_strategy='steps',do_train=A_,do_eval=A_,warmup_steps=0,eval_steps=2,logging_steps=2,) # instantiate trainer __UpperCamelCase = SeqaSeqTrainer( model=A_,args=A_,compute_metrics=_compute_metrics,train_dataset=A_,eval_dataset=A_,tokenizer=A_,) # start training trainer.train()
1
"""simple docstring""" def _snake_case ( _snake_case : str ) -> str: '''simple docstring''' return " ".join( ''.join(word[::-1] ) if len(_snake_case ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
7
0
from heapq import heappop, heappush import numpy as np def SCREAMING_SNAKE_CASE_ ( _snake_case :np.ndarray , _snake_case :tuple[int, int] , _snake_case :tuple[int, int] , _snake_case :bool , ) -> tuple[float | int, list[tuple[int, int]]]: _A , _A = grid.shape _A = [-1, 1, 0, 0] _A = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] _A , _A = [(0, source)], set() _A = np.full((rows, cols) , np.inf ) _A = 0 _A = np.empty((rows, cols) , dtype=_snake_case ) _A = None while queue: ((_A) , (_A)) = heappop(_snake_case ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: _A = [] while (x, y) != source: path.append((x, y) ) _A , _A = predecessors[x, y] path.append(_snake_case ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_snake_case ) ): _A , _A = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: _A = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_snake_case , (dist + 1, (nx, ny)) ) _A = dist + 1 _A = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
2
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[int] = (KDPMaDiscreteScheduler,) UpperCAmelCase : Any = 10 def lowerCAmelCase_ ( self : Dict , **_UpperCAmelCase : Optional[Any] ): _A = { 'num_train_timesteps': 1_100, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**_UpperCAmelCase ) return config def lowerCAmelCase_ ( self : Any ): for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _A = self.scheduler_classes[0] _A = self.get_scheduler_config(prediction_type='v_prediction' ) _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) _A = self.dummy_model() _A = self.dummy_sample_deter * scheduler.init_noise_sigma _A = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4E-0_7 ) < 1E-2 assert abs(result_mean.item() - 6.1_1_1_2E-1_0 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2E-0_7 ) < 1E-2 assert abs(result_mean.item() - 0.0002 ) < 1E-3 def lowerCAmelCase_ ( self : Optional[Any] ): if torch_device == "mps": return _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) _A = self.dummy_model() _A = self.dummy_sample_deter * scheduler.init_noise_sigma _A = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 def lowerCAmelCase_ ( self : Any ): if torch_device == "mps": return _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase ) _A = self.dummy_model() _A = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) if str(_UpperCAmelCase ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3
7
0
'''simple docstring''' import qiskit def A_( A : int = 2): UpperCamelCase = qubits # Using Aer's simulator UpperCamelCase = qiskit.Aer.get_backend('aer_simulator') # Creating a Quantum Circuit acting on the q register UpperCamelCase = qiskit.QuantumCircuit(A , A) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0) for i in range(1 , A): # Adding CX (CNOT) gate circuit.cx(i - 1 , A) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(A)) , list(range(A))) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator UpperCamelCase = qiskit.execute(A , A , shots=1000) return job.result().get_counts(A) if __name__ == "__main__": print(f"""Total count for various states are: {quantum_entanglement(3)}""")
3
"""simple docstring""" import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any]=10 ) -> Optional[int]: '''simple docstring''' _A = [] for _ in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def _snake_case ( _snake_case : Optional[Any] , _snake_case : Union[str, Any]=10 ) -> List[str]: '''simple docstring''' _A = [] for step in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(_snake_case , 'schedule.bin' ) torch.save(scheduler.state_dict() , _snake_case ) _A = torch.load(_snake_case ) scheduler.load_state_dict(_snake_case ) return lrs @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ): self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any ): _A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase ) _A = torch.tensor([0.4, 0.2, -0.5] ) _A = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _A = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): _A = criterion(_UpperCAmelCase , _UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def lowerCAmelCase_ ( self : int ): _A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase ) _A = torch.tensor([0.4, 0.2, -0.5] ) _A = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _A = Adafactor( params=[w] , lr=1E-2 , eps=(1E-3_0, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_UpperCAmelCase , weight_decay=0.0 , relative_step=_UpperCAmelCase , scale_parameter=_UpperCAmelCase , warmup_init=_UpperCAmelCase , ) for _ in range(1_000 ): _A = criterion(_UpperCAmelCase , _UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : List[str] = nn.Linear(50 , 50 ) if is_torch_available() else None UpperCAmelCase : Tuple = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None UpperCAmelCase : Dict = 10 def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]=None ): self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase , msg=_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _A = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) _A = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): _A , _A = data _A = scheduler_func(self.optimizer , **_UpperCAmelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) _A = unwrap_schedule(_UpperCAmelCase , self.num_steps ) self.assertListAlmostEqual( _UpperCAmelCase , _UpperCAmelCase , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , ) _A = scheduler_func(self.optimizer , **_UpperCAmelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(_UpperCAmelCase ) # wrap to test picklability of the schedule _A = unwrap_and_save_reload_schedule(_UpperCAmelCase , self.num_steps ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase , msg=F'''failed for {scheduler_func} in save and reload''' ) class lowercase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int] ): _A = fn def __call__( self : Tuple , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : List[str] ): return self.fn(*_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Any ): _A = list(map(self , scheduler.lr_lambdas ) )
7
0
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _SCREAMING_SNAKE_CASE (): import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join lowerCAmelCase = '__test_patch_submodule_mock__' with patch_submodule(_test_patching , 'os.path.join' , _UpperCAmelCase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _SCREAMING_SNAKE_CASE (): assert _test_patching.open is open lowerCAmelCase = '__test_patch_submodule_builtin_mock__' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , 'open' , _UpperCAmelCase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _SCREAMING_SNAKE_CASE (): # pandas.read_csv is not present in _test_patching lowerCAmelCase = '__test_patch_submodule_missing_mock__' with patch_submodule(_test_patching , 'pandas.read_csv' , _UpperCAmelCase ): pass def _SCREAMING_SNAKE_CASE (): # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point lowerCAmelCase = '__test_patch_submodule_missing_builtin_mock__' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , 'len' , _UpperCAmelCase ) is None with patch_submodule(_test_patching , 'len' , _UpperCAmelCase ): assert _test_patching.len is mock assert _test_patching.len is len def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = '__test_patch_submodule_start_and_stop_mock__' lowerCAmelCase = patch_submodule(_test_patching , 'open' , _UpperCAmelCase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _SCREAMING_SNAKE_CASE (): from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join lowerCAmelCase = '__test_patch_submodule_successive_join__' lowerCAmelCase = '__test_patch_submodule_successive_dirname__' lowerCAmelCase = '__test_patch_submodule_successive_rename__' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , 'os.path.join' , _UpperCAmelCase ): with patch_submodule(_test_patching , 'os.rename' , _UpperCAmelCase ): with patch_submodule(_test_patching , 'os.path.dirname' , _UpperCAmelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , 'os.rename' , _UpperCAmelCase ): with patch_submodule(_test_patching , 'os.path.join' , _UpperCAmelCase ): with patch_submodule(_test_patching , 'os.path.dirname' , _UpperCAmelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = '__test_patch_submodule_doesnt_exist_mock__' with patch_submodule(_test_patching , '__module_that_doesn_exist__.__attribute_that_doesn_exist__' , _UpperCAmelCase ): pass with patch_submodule(_test_patching , 'os.__attribute_that_doesn_exist__' , _UpperCAmelCase ): pass
4
"""simple docstring""" import math def _snake_case ( _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' if ( not isinstance(_snake_case , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * power_factor def _snake_case ( _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' if ( not isinstance(_snake_case , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
7
0
'''simple docstring''' import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self , _lowercase , _lowercase , _lowercase ): """simple docstring""" self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for a, b in zip(_lowercase , _lowercase ): self.assertAlmostEqual(_lowercase , _lowercase , delta=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_lowercase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = None ops.enable_eager_execution_internal() _lowerCAmelCase = tf.config.list_physical_devices("""CPU""" ) if len(_lowercase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) _lowerCAmelCase = tf.config.list_logical_devices(device_type="""CPU""" ) _lowerCAmelCase = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): _lowerCAmelCase = GradientAccumulator() _lowerCAmelCase = tf.Variable([4.0, 3.0] ) _lowerCAmelCase , _lowerCAmelCase = create_optimizer(5e-5 , 10 , 5 ) _lowerCAmelCase = tf.Variable([0.0, 0.0] , trainable=_lowercase ) def accumulate_on_replica(_lowercase ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(_lowercase , _lowercase ): with strategy.scope(): _lowerCAmelCase = strategy.experimental_local_results(_lowercase ) local_variables[0].assign(_lowercase ) local_variables[1].assign(_lowercase ) strategy.run(_lowercase , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_lowercase ) def _check_local_values(_lowercase , _lowercase ): _lowerCAmelCase = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _lowercase , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , _lowercase , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
5
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[Any] = '''xmod''' def __init__( self : str , _UpperCAmelCase : Optional[Any]=30_522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Dict=3_072 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Any=1E-1_2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Tuple=("en_XX",) , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Optional[Any] , ): super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = position_embedding_type _A = use_cache _A = classifier_dropout _A = pre_norm _A = adapter_reduction_factor _A = adapter_layer_norm _A = adapter_reuse_layer_norm _A = ln_before_adapter _A = list(_UpperCAmelCase ) _A = default_language class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' @property def lowerCAmelCase_ ( self : Dict ): if self.task == "multiple-choice": _A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
7
0
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore _lowerCamelCase = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" _lowerCamelCase = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print('\n'.join(upper_files) + '\n') _lowerCamelCase = [file for file in filepaths if ' ' in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print('\n'.join(space_files) + '\n') _lowerCamelCase = [file for file in filepaths if '-' in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print('\n'.join(hyphen_files) + '\n') _lowerCamelCase = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print('\n'.join(nodir_files) + '\n') _lowerCamelCase = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
6
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort a = logging.get_logger(__name__) a = { '''tensor(bool)''': np.bool_, '''tensor(int8)''': np.inta, '''tensor(uint8)''': np.uinta, '''tensor(int16)''': np.intaa, '''tensor(uint16)''': np.uintaa, '''tensor(int32)''': np.intaa, '''tensor(uint32)''': np.uintaa, '''tensor(int64)''': np.intaa, '''tensor(uint64)''': np.uintaa, '''tensor(float16)''': np.floataa, '''tensor(float)''': np.floataa, '''tensor(double)''': np.floataa, } class lowercase_ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : Optional[Any] ): logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) _A = model _A = kwargs.get('model_save_dir' , _UpperCAmelCase ) _A = kwargs.get('latest_model_name' , _UpperCAmelCase ) def __call__( self : Dict , **_UpperCAmelCase : List[Any] ): _A = {k: np.array(_UpperCAmelCase ) for k, v in kwargs.items()} return self.model.run(_UpperCAmelCase , _UpperCAmelCase ) @staticmethod def lowerCAmelCase_ ( _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=None ): if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) _A = 'CPUExecutionProvider' return ort.InferenceSession(_UpperCAmelCase , providers=[provider] , sess_options=_UpperCAmelCase ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : List[Any] ): _A = file_name if file_name is not None else ONNX_WEIGHTS_NAME _A = self.model_save_dir.joinpath(self.latest_model_name ) _A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase ) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) _A = self.model_save_dir.joinpath(_UpperCAmelCase ) if src_path.exists(): _A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase ) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase ) except shutil.SameFileError: pass def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] , ): if os.path.isfile(_UpperCAmelCase ): logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) # saving model weights/files self._save_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( cls : Tuple , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[Union[bool, str, None]] = None , _UpperCAmelCase : Optional[Union[str, None]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional["ort.SessionOptions"] = None , **_UpperCAmelCase : Union[str, Any] , ): _A = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_UpperCAmelCase ): _A = OnnxRuntimeModel.load_model( os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase ) _A = Path(_UpperCAmelCase ) # load model from hub else: # download model _A = hf_hub_download( repo_id=_UpperCAmelCase , filename=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , ) _A = Path(_UpperCAmelCase ).parent _A = Path(_UpperCAmelCase ).name _A = OnnxRuntimeModel.load_model(_UpperCAmelCase , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase ) return cls(model=_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( cls : List[Any] , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : Tuple , ): _A = None if len(str(_UpperCAmelCase ).split('@' ) ) == 2: _A , _A = model_id.split('@' ) return cls._from_pretrained( model_id=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , **_UpperCAmelCase , )
7
0
'''simple docstring''' lowercase__ : str = tuple[float, float, float] lowercase__ : Dict = tuple[float, float, float] def _lowerCAmelCase ( __snake_case : Pointad , __snake_case : Pointad ) -> Vectorad: __A : List[Any] = end_pointa[0] - end_pointa[0] __A : Union[str, Any] = end_pointa[1] - end_pointa[1] __A : Union[str, Any] = end_pointa[2] - end_pointa[2] return (x, y, z) def _lowerCAmelCase ( __snake_case : Vectorad , __snake_case : Vectorad ) -> Vectorad: __A : Tuple = ab[1] * ac[2] - ab[2] * ac[1] # *i __A : Union[str, Any] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j __A : int = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _lowerCAmelCase ( __snake_case : Vectorad , __snake_case : int ) -> bool: return tuple(round(__snake_case , __snake_case ) for x in vector ) == (0, 0, 0) def _lowerCAmelCase ( __snake_case : Pointad , __snake_case : Pointad , __snake_case : Pointad , __snake_case : int = 10 ) -> bool: __A : int = create_vector(__snake_case , __snake_case ) __A : Union[str, Any] = create_vector(__snake_case , __snake_case ) return is_zero_vector(get_ad_vectors_cross(__snake_case , __snake_case ) , __snake_case )
8
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : str = '''speech_to_text''' UpperCAmelCase : List[Any] = ['''past_key_values'''] UpperCAmelCase : Tuple = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : int , _UpperCAmelCase : Union[str, Any]=10_000 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2_048 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Tuple=2_048 , _UpperCAmelCase : str=4 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]="relu" , _UpperCAmelCase : List[Any]=256 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : List[str]=6_000 , _UpperCAmelCase : Optional[Any]=1_024 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Any=(5, 5) , _UpperCAmelCase : int=1_024 , _UpperCAmelCase : str=80 , _UpperCAmelCase : Any=1 , **_UpperCAmelCase : Tuple , ): _A = vocab_size _A = d_model _A = encoder_ffn_dim _A = encoder_layers _A = encoder_attention_heads _A = decoder_ffn_dim _A = decoder_layers _A = decoder_attention_heads _A = dropout _A = attention_dropout _A = activation_dropout _A = activation_function _A = init_std _A = encoder_layerdrop _A = decoder_layerdrop _A = use_cache _A = encoder_layers _A = scale_embedding # scale factor will be sqrt(d_model) if True _A = max_source_positions _A = max_target_positions _A = num_conv_layers _A = list(_UpperCAmelCase ) _A = conv_channels _A = input_feat_per_channel _A = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' F'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' ) super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
7
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''adapter_layer''': '''encoder.layers.*.adapter_layer''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', '''pooling_layer.linear''': '''projector''', '''pooling_layer.projection''': '''classifier''', } SCREAMING_SNAKE_CASE__ = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''projector''', '''classifier''', ] def A ( __UpperCamelCase ) -> Optional[int]: A__ = {} with open(__UpperCamelCase , 'r' ) as file: for line_number, line in enumerate(__UpperCamelCase ): A__ = line.strip() if line: A__ = line.split() A__ = line_number A__ = words[0] A__ = value return result def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Tuple: for attribute in key.split('.' ): A__ = getattr(__UpperCamelCase , __UpperCamelCase ) A__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__UpperCamelCase ): A__ = PARAM_MAPPING[full_name.split('.' )[-1]] A__ = 'param' if weight_type is not None and weight_type != "param": A__ = getattr(__UpperCamelCase , __UpperCamelCase ).shape elif weight_type is not None and weight_type == "param": A__ = hf_pointer for attribute in hf_param_name.split('.' ): A__ = getattr(__UpperCamelCase , __UpperCamelCase ) A__ = shape_pointer.shape # let's reduce dimension A__ = value[0] else: A__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": A__ = value elif weight_type == "weight_g": A__ = value elif weight_type == "weight_v": A__ = value elif weight_type == "bias": A__ = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): A__ = getattr(__UpperCamelCase , __UpperCamelCase ) A__ = value else: A__ = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Tuple: A__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__UpperCamelCase ): A__ = PARAM_MAPPING[full_name.split('.' )[-1]] A__ = 'param' if weight_type is not None and weight_type != "param": A__ = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": A__ = '.'.join([key, hf_param_name] ) else: A__ = key A__ = value if 'lm_head' in full_key else value[0] SCREAMING_SNAKE_CASE__ = { '''W_a''': '''linear_1.weight''', '''W_b''': '''linear_2.weight''', '''b_a''': '''linear_1.bias''', '''b_b''': '''linear_2.bias''', '''ln_W''': '''norm.weight''', '''ln_b''': '''norm.bias''', } def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None ) -> Union[str, Any]: A__ = False for key, mapped_key in MAPPING.items(): A__ = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: A__ = True if "*" in mapped_key: A__ = name.split(__UpperCamelCase )[0].split('.' )[-2] A__ = mapped_key.replace('*' , __UpperCamelCase ) if "weight_g" in name: A__ = 'weight_g' elif "weight_v" in name: A__ = 'weight_v' elif "bias" in name: A__ = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj A__ = 'weight' else: A__ = None if hf_dict is not None: rename_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: set_recursively(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return is_used return is_used def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]: A__ = [] A__ = fairseq_model.state_dict() A__ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): A__ = False if "conv_layers" in name: load_conv_layer( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , hf_model.config.feat_extract_norm == 'group' , ) A__ = True else: A__ = load_wavaveca_layer(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if not is_used: unused_weights.append(__UpperCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: A__ = full_name.split('conv_layers.' )[-1] A__ = name.split('.' ) A__ = int(items[0] ) A__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) A__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) A__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__UpperCamelCase ) @torch.no_grad() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=False ) -> int: if config_path is not None: A__ = WavaVecaConfig.from_pretrained(__UpperCamelCase ) else: A__ = WavaVecaConfig() if is_seq_class: A__ = read_txt_into_dict(__UpperCamelCase ) A__ = idalabel A__ = WavaVecaForSequenceClassification(__UpperCamelCase ) A__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=__UpperCamelCase , return_attention_mask=__UpperCamelCase , ) feature_extractor.save_pretrained(__UpperCamelCase ) elif is_finetuned: if dict_path: A__ = Dictionary.load(__UpperCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A__ = target_dict.pad_index A__ = target_dict.bos_index A__ = target_dict.eos_index A__ = len(target_dict.symbols ) A__ = os.path.join(__UpperCamelCase , 'vocab.json' ) if not os.path.isdir(__UpperCamelCase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(__UpperCamelCase ) ) return os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) A__ = target_dict.indices # fairseq has the <pad> and <s> switched A__ = 0 A__ = 1 with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(__UpperCamelCase , __UpperCamelCase ) A__ = WavaVecaCTCTokenizer( __UpperCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=__UpperCamelCase , ) A__ = True if config.feat_extract_norm == 'layer' else False A__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=__UpperCamelCase , return_attention_mask=__UpperCamelCase , ) A__ = WavaVecaProcessor(feature_extractor=__UpperCamelCase , tokenizer=__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) A__ = WavaVecaForCTC(__UpperCamelCase ) else: A__ = WavaVecaForPreTraining(__UpperCamelCase ) if is_finetuned or is_seq_class: A__ , A__ , A__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: A__ = argparse.Namespace(task='audio_pretraining' ) A__ = fairseq.tasks.setup_task(__UpperCamelCase ) A__ , A__ , A__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__UpperCamelCase ) A__ = model[0].eval() recursively_load_weights(__UpperCamelCase , __UpperCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) parser.add_argument( '''--is_seq_class''', action='''store_true''', help='''Whether the model to convert is a fine-tuned sequence classification model or not''', ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
9
"""simple docstring""" from manim import * class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Rectangle(height=0.5 , width=0.5 ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _A = Rectangle(height=0.25 , width=0.25 ) _A = [mem.copy() for i in range(6 )] _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('CPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(4 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('GPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Model' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_UpperCAmelCase ) _A = [] _A = [] for i, rect in enumerate(_UpperCAmelCase ): _A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 ) target.move_to(_UpperCAmelCase ) model_arr.append(_UpperCAmelCase ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_UpperCAmelCase ) self.add(*_UpperCAmelCase , *_UpperCAmelCase ) _A = [meta_mem.copy() for i in range(6 )] _A = [meta_mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Disk' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _A = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_UpperCAmelCase ) _A = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase ) ) _A = Square(0.3 ) input.set_fill(_UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 ) self.play(Write(_UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 ) self.play(MoveToTarget(_UpperCAmelCase ) ) self.play(FadeOut(_UpperCAmelCase ) ) _A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _A = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) ) _A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _A = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _A = AnimationGroup( FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _A = 0.7 self.play( Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _A = a_c _A = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , ) _A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) ) self.wait()
7
0
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): _UpperCamelCase = multiprocessing.Manager() _UpperCamelCase = manager.list() _UpperCamelCase = multiprocessing.Process(target=__snake_case , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def _snake_case ( __snake_case , __snake_case , __snake_case ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil _UpperCamelCase = shutil.rmtree _UpperCamelCase = os.rmdir _UpperCamelCase = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: _UpperCamelCase = {} with swallow_io(): with time_limit(__snake_case ): exec(__snake_case , __snake_case ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(f"""failed: {e}""" ) # Needed for cleaning up. _UpperCamelCase = rmtree _UpperCamelCase = rmdir _UpperCamelCase = chdir @contextlib.contextmanager def _snake_case ( __snake_case ): def signal_handler(__snake_case , __snake_case ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __snake_case ) signal.signal(signal.SIGALRM , __snake_case ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def _snake_case ( ): _UpperCamelCase = WriteOnlyStringIO() with contextlib.redirect_stdout(__snake_case ): with contextlib.redirect_stderr(__snake_case ): with redirect_stdin(__snake_case ): yield @contextlib.contextmanager def _snake_case ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__snake_case ): yield dirname class lowerCAmelCase_ ( __lowercase ): pass class lowerCAmelCase_ ( io.StringIO ): def UpperCamelCase_ ( self : str , *_A : Tuple , **_A : int ): raise OSError def UpperCamelCase_ ( self : int , *_A : List[Any] , **_A : Optional[Any] ): raise OSError def UpperCamelCase_ ( self : Optional[int] , *_A : Any , **_A : Dict ): raise OSError def UpperCamelCase_ ( self : int , *_A : Tuple , **_A : str ): return False class lowerCAmelCase_ ( contextlib._RedirectStream ): # type: ignore UpperCAmelCase = "stdin" @contextlib.contextmanager def _snake_case ( __snake_case ): if root == ".": yield return _UpperCamelCase = os.getcwd() os.chdir(__snake_case ) try: yield except BaseException as exc: raise exc finally: os.chdir(__snake_case ) def _snake_case ( __snake_case=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins _UpperCamelCase = None _UpperCamelCase = None import os _UpperCamelCase = '''1''' _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None import shutil _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None import subprocess _UpperCamelCase = None # type: ignore _UpperCamelCase = None import sys _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None
10
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int ) -> int: '''simple docstring''' return int((input_a, input_a).count(1 ) != 0 ) def _snake_case ( ) -> None: '''simple docstring''' assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
7
0
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Any = KandinskyVaaPriorPipeline __lowerCamelCase : Optional[Any] = ['prompt'] __lowerCamelCase : Tuple = ['prompt', 'negative_prompt'] __lowerCamelCase : Union[str, Any] = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] __lowerCamelCase : int = False @property def a__ (self ) -> Union[str, Any]: """simple docstring""" return 32 @property def a__ (self ) -> Optional[Any]: """simple docstring""" return 32 @property def a__ (self ) -> Optional[int]: """simple docstring""" return self.time_input_dim @property def a__ (self ) -> Tuple: """simple docstring""" return self.time_input_dim * 4 @property def a__ (self ) -> Any: """simple docstring""" return 100 @property def a__ (self ) -> str: """simple docstring""" _a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def a__ (self ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(A ) @property def a__ (self ) -> str: """simple docstring""" torch.manual_seed(0 ) _a = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } _a = PriorTransformer(**A ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 _a = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def a__ (self ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) _a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) _a = CLIPVisionModelWithProjection(A ) return model @property def a__ (self ) -> Optional[Any]: """simple docstring""" _a = CLIPImageProcessor( crop_size=224 , do_center_crop=A , do_normalize=A , do_resize=A , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.dummy_prior _a = self.dummy_image_encoder _a = self.dummy_text_encoder _a = self.dummy_tokenizer _a = self.dummy_image_processor _a = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=A , clip_sample_range=10.0 , ) _a = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def a__ (self , A , A=0 ) -> Union[str, Any]: """simple docstring""" if str(A ).startswith('''mps''' ): _a = torch.manual_seed(A ) else: _a = torch.Generator(device=A ).manual_seed(A ) _a = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def a__ (self ) -> int: """simple docstring""" _a = '''cpu''' _a = self.get_dummy_components() _a = self.pipeline_class(**A ) _a = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) _a = pipe(**self.get_dummy_inputs(A ) ) _a = output.image_embeds _a = pipe( **self.get_dummy_inputs(A ) , return_dict=A , )[0] _a = image[0, -10:] _a = image_from_tuple[0, -10:] assert image.shape == (1, 32) _a = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def a__ (self ) -> List[str]: """simple docstring""" _a = torch_device == '''cpu''' _a = True _a = False self._test_inference_batch_single_identical( test_max_difference=A , relax_max_difference=A , test_mean_pixel_difference=A , ) @skip_mps def a__ (self ) -> Optional[int]: """simple docstring""" _a = torch_device == '''cpu''' _a = False self._test_attention_slicing_forward_pass( test_max_difference=A , test_mean_pixel_difference=A , )
11
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments a = logging.getLogger(__name__) @dataclass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[float] = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''whether to use adafactor'''} ) UpperCAmelCase : Optional[float] = field( default=__lowerCAmelCase , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) UpperCAmelCase : Optional[float] = field( default=__lowerCAmelCase , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) UpperCAmelCase : Optional[float] = field(default=__lowerCAmelCase , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) UpperCAmelCase : Optional[float] = field( default=__lowerCAmelCase , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) UpperCAmelCase : Optional[str] = field( default='''linear''' , metadata={'''help''': f'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
7
0
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=None , ): '''simple docstring''' lowercase__ : int = parent lowercase__ : Tuple = batch_size lowercase__ : List[str] = image_size lowercase__ : Optional[int] = patch_size lowercase__ : List[str] = num_channels lowercase__ : Dict = is_training lowercase__ : Dict = use_labels lowercase__ : List[Any] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : Optional[Any] = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : int = type_sequence_label_size lowercase__ : Any = initializer_range lowercase__ : List[str] = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ : Union[str, Any] = (image_size // patch_size) ** 2 lowercase__ : Union[str, Any] = num_patches + 1 def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowercase__ : List[str] = None if self.use_labels: lowercase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase__ : Optional[int] = self.get_config() return config, pixel_values, labels def lowercase__ ( self): '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Any = TFViTModel(config=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = model(SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) # Test with an image with different size than the one specified in config. lowercase__ : Optional[Any] = self.image_size // 2 lowercase__ : Tuple = pixel_values[:, :, :image_size, :image_size] lowercase__ : str = model(SCREAMING_SNAKE_CASE_ , interpolate_pos_encoding=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_) lowercase__ : str = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size)) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = self.type_sequence_label_size lowercase__ : Any = TFViTForImageClassification(SCREAMING_SNAKE_CASE_) lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # Test with an image with different size than the one specified in config. lowercase__ : str = self.image_size // 2 lowercase__ : Dict = pixel_values[:, :, :image_size, :image_size] lowercase__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , interpolate_pos_encoding=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images lowercase__ : Any = 1 lowercase__ : Any = TFViTForImageClassification(SCREAMING_SNAKE_CASE_) lowercase__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) lowercase__ : Optional[int] = model(SCREAMING_SNAKE_CASE_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : int = config_and_inputs lowercase__ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Dict = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () __lowerCAmelCase : Dict = ( {'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification} if is_tf_available() else {} ) __lowerCAmelCase : Tuple = False __lowerCAmelCase : List[str] = False __lowerCAmelCase : Union[str, Any] = False def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = TFViTModelTester(self) lowercase__ : Dict = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37) def lowercase__ ( self): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""") def lowercase__ ( self): '''simple docstring''' pass @unittest.skip(reason="""ViT does not use inputs_embeds""") def lowercase__ ( self): '''simple docstring''' pass def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Tuple = model_class(SCREAMING_SNAKE_CASE_) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer)) lowercase__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , tf.keras.layers.Layer)) def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(SCREAMING_SNAKE_CASE_) lowercase__ : int = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : str = [*signature.parameters.keys()] lowercase__ : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_) @slow def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = TFViTModel.from_pretrained("""google/vit-base-patch16-224""") self.assertIsNotNone(SCREAMING_SNAKE_CASE_) def UpperCamelCase ( ) -> Union[str, Any]: '''simple docstring''' lowercase__ : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _snake_case ( unittest.TestCase ): @cached_property def lowercase__ ( self): '''simple docstring''' return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""") if is_vision_available() else None @slow def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = TFViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""") lowercase__ : Optional[int] = self.default_image_processor lowercase__ : List[str] = prepare_img() lowercase__ : Any = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""tf""") # forward pass lowercase__ : Any = model(**SCREAMING_SNAKE_CASE_) # verify the logits lowercase__ : Dict = tf.TensorShape((1, 10_00)) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_) lowercase__ : Dict = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6]) tf.debugging.assert_near(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4)
12
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule a = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
7
0
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A__ : Tuple = logging.get_logger(__name__) A__ : int = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } A__ : List[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } A__ : Tuple = {"""facebook/blenderbot_small-90M""": 512} def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> List[Any]: __lowerCamelCase : Dict = set() __lowerCamelCase : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase : Optional[Any] = char __lowerCamelCase : str = set(UpperCAmelCase_ ) return pairs class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : List[Any] = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[Any] = ['input_ids', 'attention_mask'] def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="__start__" , SCREAMING_SNAKE_CASE_="__end__" , SCREAMING_SNAKE_CASE_="__unk__" , SCREAMING_SNAKE_CASE_="__null__" , **SCREAMING_SNAKE_CASE_ , ) -> int: super().__init__(unk_token=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , encoding='utf-8' ) as vocab_handle: __lowerCamelCase : Tuple = json.load(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()} with open(SCREAMING_SNAKE_CASE_ , encoding='utf-8' ) as merges_handle: __lowerCamelCase : Dict = merges_handle.read().split('\n' )[1:-1] __lowerCamelCase : int = [tuple(merge.split() ) for merge in merges] __lowerCamelCase : Optional[int] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __lowerCamelCase : Any = {} @property def lowercase_ ( self ) -> int: return len(self.encoder ) def lowercase_ ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> str: if token in self.cache: return self.cache[token] __lowerCamelCase : Dict = re.sub('([.,!?()])' , r' \1' , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = re.sub('(\')' , r' \1 ' , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = re.sub(r'\s{2,}' , ' ' , SCREAMING_SNAKE_CASE_ ) if "\n" in token: __lowerCamelCase : List[str] = token.replace('\n' , ' __newln__' ) __lowerCamelCase : Dict = token.split(' ' ) __lowerCamelCase : List[str] = [] for token in tokens: if not len(SCREAMING_SNAKE_CASE_ ): continue __lowerCamelCase : Optional[int] = token.lower() __lowerCamelCase : List[str] = tuple(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) __lowerCamelCase : List[Any] = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: words.append(SCREAMING_SNAKE_CASE_ ) continue while True: __lowerCamelCase : List[Any] = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break __lowerCamelCase , __lowerCamelCase : Optional[int] = bigram __lowerCamelCase : Tuple = [] __lowerCamelCase : Dict = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: __lowerCamelCase : Any = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) new_word.extend(word[i:j] ) __lowerCamelCase : Optional[Any] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCamelCase : str = tuple(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: __lowerCamelCase : List[str] = get_pairs(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = '@@ '.join(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = word[:-4] __lowerCamelCase : Union[str, Any] = word words.append(SCREAMING_SNAKE_CASE_ ) return " ".join(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : List[str] = re.findall(r'\S+\n?' , SCREAMING_SNAKE_CASE_ ) for token in words: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE_ ).split(' ' ) ) ) return split_tokens def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> int: __lowerCamelCase : List[str] = token.lower() return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> str: return self.decoder.get(SCREAMING_SNAKE_CASE_ , self.unk_token ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> str: __lowerCamelCase : Tuple = ' '.join(SCREAMING_SNAKE_CASE_ ).replace('@@ ' , '' ).strip() return out_string def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCamelCase : Dict = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __lowerCamelCase : Dict = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '\n' ) __lowerCamelCase : int = 0 with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) __lowerCamelCase : int = token_index writer.write(' '.join(SCREAMING_SNAKE_CASE_ ) + '\n' ) index += 1 return vocab_file, merge_file
13
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : UNetaDModel UpperCAmelCase : KarrasVeScheduler def __init__( self : Any , _UpperCAmelCase : UNetaDModel , _UpperCAmelCase : KarrasVeScheduler ): super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self : Optional[int] , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Optional[Any] , ): _A = self.unet.config.sample_size _A = (batch_size, 3, img_size, img_size) _A = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) _A = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper _A = self.scheduler.schedule[t] _A = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat _A , _A = self.scheduler.add_noise_to_input(_UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. _A = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev _A = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. _A = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample _A = self.scheduler.step_correct( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , step_output.prev_sample , step_output['derivative'] , ) _A = step_output.prev_sample _A = (sample / 2 + 0.5).clamp(0 , 1 ) _A = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _A = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
7
0
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = "owlvit_text_model" def __init__( self , _a=4_9_4_0_8 , _a=5_1_2 , _a=2_0_4_8 , _a=1_2 , _a=8 , _a=1_6 , _a="quick_gelu" , _a=1e-5 , _a=0.0 , _a=0.02 , _a=1.0 , _a=0 , _a=4_9_4_0_6 , _a=4_9_4_0_7 , **_a , ) -> int: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _a : Tuple = vocab_size _a : Tuple = hidden_size _a : Optional[int] = intermediate_size _a : Any = num_hidden_layers _a : int = num_attention_heads _a : Tuple = max_position_embeddings _a : List[Any] = hidden_act _a : str = layer_norm_eps _a : Dict = attention_dropout _a : Any = initializer_range _a : Union[str, Any] = initializer_factor @classmethod def __lowercase ( cls , _a , **_a ) -> "PretrainedConfig": cls._set_token_in_kwargs(_a ) _a , _a : Optional[int] = cls.get_config_dict(_a , **_a ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": _a : int = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_a , **_a ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : int = "owlvit_vision_model" def __init__( self , _a=7_6_8 , _a=3_0_7_2 , _a=1_2 , _a=1_2 , _a=3 , _a=7_6_8 , _a=3_2 , _a="quick_gelu" , _a=1e-5 , _a=0.0 , _a=0.02 , _a=1.0 , **_a , ) -> Dict: super().__init__(**_a ) _a : Dict = hidden_size _a : Optional[Any] = intermediate_size _a : Optional[Any] = num_hidden_layers _a : int = num_attention_heads _a : int = num_channels _a : int = image_size _a : Dict = patch_size _a : List[str] = hidden_act _a : Tuple = layer_norm_eps _a : int = attention_dropout _a : Any = initializer_range _a : Dict = initializer_factor @classmethod def __lowercase ( cls , _a , **_a ) -> "PretrainedConfig": cls._set_token_in_kwargs(_a ) _a , _a : Tuple = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": _a : str = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_a , **_a ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "owlvit" UpperCAmelCase__ : str = True def __init__( self , _a=None , _a=None , _a=5_1_2 , _a=2.6592 , _a=True , **_a , ) -> Any: super().__init__(**_a ) if text_config is None: _a : Union[str, Any] = {} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: _a : List[str] = {} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) _a : str = OwlViTTextConfig(**_a ) _a : Dict = OwlViTVisionConfig(**_a ) _a : int = projection_dim _a : Optional[int] = logit_scale_init_value _a : List[Any] = return_dict _a : Optional[Any] = 1.0 @classmethod def __lowercase ( cls , _a , **_a ) -> "PretrainedConfig": cls._set_token_in_kwargs(_a ) _a , _a : Dict = cls.get_config_dict(_a , **_a ) if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_a , **_a ) @classmethod def __lowercase ( cls , _a , _a , **_a ) -> Dict: _a : int = {} _a : Optional[int] = text_config _a : Optional[Any] = vision_config return cls.from_dict(_a , **_a ) def __lowercase ( self ) -> Union[str, Any]: _a : Any = copy.deepcopy(self.__dict__ ) _a : Optional[int] = self.text_config.to_dict() _a : Optional[Any] = self.vision_config.to_dict() _a : Union[str, Any] = self.__class__.model_type return output class UpperCAmelCase_ ( __lowercase ): """simple docstring""" @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def __lowercase ( self ) -> float: return 1e-4 def __lowercase ( self , _a , _a = -1 , _a = -1 , _a = None , ) -> Mapping[str, Any]: _a : Dict = super().generate_dummy_inputs( processor.tokenizer , batch_size=_a , seq_length=_a , framework=_a ) _a : Optional[Any] = super().generate_dummy_inputs( processor.image_processor , batch_size=_a , framework=_a ) return {**text_input_dict, **image_input_dict} @property def __lowercase ( self ) -> int: return 1_4
14
"""simple docstring""" class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ): _A = None _A = None _A = graph self._normalize_graph(_UpperCAmelCase , _UpperCAmelCase ) _A = len(_UpperCAmelCase ) _A = None def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ): if sources is int: _A = [sources] if sinks is int: _A = [sinks] if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) == 0: return _A = sources[0] _A = sinks[0] # make fake vertex if there are more # than one source or sink if len(_UpperCAmelCase ) > 1 or len(_UpperCAmelCase ) > 1: _A = 0 for i in sources: max_input_flow += sum(self.graph[i] ) _A = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: _A = max_input_flow _A = 0 _A = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: _A = max_input_flow _A = size - 1 def lowerCAmelCase_ ( self : Optional[Any] ): if self.maximum_flow_algorithm is None: raise Exception('You need to set maximum flow algorithm before.' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Union[str, Any] ): _A = algorithm(self ) class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Union[str, Any] ): _A = flow_network _A = flow_network.verticesCount _A = flow_network.sourceIndex _A = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that _A = flow_network.graph _A = False def lowerCAmelCase_ ( self : Optional[Any] ): if not self.executed: self._algorithm() _A = True def lowerCAmelCase_ ( self : int ): pass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : int , _UpperCAmelCase : Any ): super().__init__(_UpperCAmelCase ) # use this to save your result _A = -1 def lowerCAmelCase_ ( self : Optional[Any] ): if not self.executed: raise Exception('You should execute algorithm before using its result!' ) return self.maximum_flow class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : List[Any] ): super().__init__(_UpperCAmelCase ) _A = [[0] * self.verticies_count for i in range(self.verticies_count )] _A = [0] * self.verticies_count _A = [0] * self.verticies_count def lowerCAmelCase_ ( self : Dict ): _A = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule _A = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list _A = 0 while i < len(_UpperCAmelCase ): _A = vertices_list[i] _A = self.heights[vertex_index] self.process_vertex(_UpperCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_UpperCAmelCase ) ) _A = 0 else: i += 1 _A = sum(self.preflow[self.source_index] ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Any ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_UpperCAmelCase , _UpperCAmelCase ) self.relabel(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ): _A = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : int ): _A = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): _A = self.heights[to_index] if min_height is not None: _A = min_height + 1 if __name__ == "__main__": a = [0] a = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] a = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network a = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate a = flow_network.find_maximum_flow() print(F'''maximum flow is {maximum_flow}''')
7
0
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
15
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class lowercase_ ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : List[str] = SpeechTaTokenizer UpperCAmelCase : Tuple = False UpperCAmelCase : Optional[int] = True def lowerCAmelCase_ ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing _A = SpeechTaTokenizer(_UpperCAmelCase ) _A = AddedToken('<mask>' , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) _A = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Tuple ): _A = 'this is a test' _A = 'this is a test' return input_text, output_text def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict=20 , _UpperCAmelCase : str=5 ): _A , _A = self.get_input_output_texts(_UpperCAmelCase ) _A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) _A = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) return text, ids def lowerCAmelCase_ ( self : Optional[Any] ): _A = '<pad>' _A = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-4] , 'œ' ) self.assertEqual(vocab_keys[-2] , '<mask>' ) self.assertEqual(vocab_keys[-1] , '<ctc_blank>' ) self.assertEqual(len(_UpperCAmelCase ) , 81 ) def lowerCAmelCase_ ( self : Optional[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def lowerCAmelCase_ ( self : Any ): _A = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A = tokenizer.vocab_size _A = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _A = ['aaaaa bbbbbb', 'cccccccccdddddddd'] _A = tokenizer.add_tokens(_UpperCAmelCase ) _A = tokenizer.vocab_size _A = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , all_size + len(_UpperCAmelCase ) ) _A = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=_UpperCAmelCase ) self.assertGreaterEqual(len(_UpperCAmelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) _A = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} _A = tokenizer.add_special_tokens(_UpperCAmelCase ) _A = tokenizer.vocab_size _A = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , all_size_a + len(_UpperCAmelCase ) ) _A = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=_UpperCAmelCase ) self.assertGreaterEqual(len(_UpperCAmelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def lowerCAmelCase_ ( self : str ): pass def lowerCAmelCase_ ( self : Any ): pass def lowerCAmelCase_ ( self : Dict ): _A = self.get_tokenizer() _A = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(_UpperCAmelCase , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) _A = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) _A = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) # fmt: off self.assertListEqual(_UpperCAmelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _A = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def lowerCAmelCase_ ( self : List[Any] ): # Use custom sequence because this tokenizer does not handle numbers. _A = [ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off _A = { 'input_ids': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=_UpperCAmelCase , )
7
0
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A : Any = logging.get_logger(__name__) __A : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __A : Optional[Any] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } __A : Union[str, Any] = {'facebook/blenderbot-3B': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __a ( ): SCREAMING_SNAKE_CASE = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE = bs[:] SCREAMING_SNAKE_CASE = 0 for b in range(2**8 ): if b not in bs: bs.append(A__ ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE = [chr(A__ ) for n in cs] return dict(zip(A__ , A__ ) ) def __a ( A__ : List[Any] ): SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE = char return pairs class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any="replace" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : Optional[Any]="</s>" , __lowerCamelCase : Any="</s>" , __lowerCamelCase : Union[str, Any]="<s>" , __lowerCamelCase : List[str]="<unk>" , __lowerCamelCase : Optional[Any]="<pad>" , __lowerCamelCase : Dict="<mask>" , __lowerCamelCase : Any=False , **__lowerCamelCase : Optional[Any] , ): SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE = bytes_to_unicode() SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _snake_case ( self : str ): return len(self.encoder ) def _snake_case ( self : Union[str, Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : Dict , __lowerCamelCase : List[Any] ): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = word return word def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = [] for token in re.findall(self.pat , __lowerCamelCase ): SCREAMING_SNAKE_CASE = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : Tuple , __lowerCamelCase : Dict ): return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Any , __lowerCamelCase : Optional[int] ): return self.decoder.get(__lowerCamelCase ) def _snake_case ( self : Optional[int] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) SCREAMING_SNAKE_CASE = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Any=False , **__lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE = " " + text return (text, kwargs) def _snake_case ( self : Any , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def _snake_case ( self : int , __lowerCamelCase : "Conversation" ): SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
16
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
7
0
import torch from diffusers import DiffusionPipeline class lowerCamelCase_ ( _lowercase ): def __init__( self : Optional[int] , __A : Optional[Any] , __A : Dict ): super().__init__() self.register_modules(unet=__A , scheduler=__A ) def __call__( self : List[Any] ): __A : Optional[Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) __A : List[str] = 1 __A : Union[str, Any] = self.unet(__A , __A ).sample __A : Union[str, Any] = self.scheduler.step(__A , __A , __A ).prev_sample __A : int = scheduler_output - scheduler_output + torch.ones_like(__A ) return result
17
"""simple docstring""" import argparse a = '''docs/source/_static/js/custom.js''' def _snake_case ( _snake_case : Dict ) -> Any: '''simple docstring''' with open(_snake_case , encoding='utf-8' , newline='\n' ) as f: _A = f.readlines() _A = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 _A = F'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F''' "v{version}": "v{version}",\n''' with open(_snake_case , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_snake_case ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') a = parser.parse_args() update_custom_js(args.version)
7
0
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any]=0.999 , SCREAMING_SNAKE_CASE_ : List[str]="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ : List[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ : str ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _lowerCAmelCase = [] for i in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = i / num_diffusion_timesteps _lowerCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) return torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ): __lowerCamelCase : Optional[Any] = [e.name for e in KarrasDiffusionSchedulers] __lowerCamelCase : Any = 2 @register_to_config def __init__( self , _lowerCAmelCase = 1000 , _lowerCAmelCase = 0.00085 , _lowerCAmelCase = 0.012 , _lowerCAmelCase = "linear" , _lowerCAmelCase = None , _lowerCAmelCase = "epsilon" , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = 1.0 , _lowerCAmelCase = "linspace" , _lowerCAmelCase = 0 , ) -> Union[str, Any]: if trained_betas is not None: _lowerCAmelCase = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _lowerCAmelCase = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCAmelCase = betas_for_alpha_bar(_lowerCAmelCase , alpha_transform_type="cosine" ) elif beta_schedule == "exp": _lowerCAmelCase = betas_for_alpha_bar(_lowerCAmelCase , alpha_transform_type="exp" ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) _lowerCAmelCase = 1.0 - self.betas _lowerCAmelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = use_karras_sigmas def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[str]: if schedule_timesteps is None: _lowerCAmelCase = self.timesteps _lowerCAmelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _lowerCAmelCase = 1 if len(_lowerCAmelCase ) > 1 else 0 else: _lowerCAmelCase = timestep.cpu().item() if torch.is_tensor(_lowerCAmelCase ) else timestep _lowerCAmelCase = self._index_counter[timestep_int] return indices[pos].item() @property def _snake_case ( self ) -> Union[str, Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , ) -> torch.FloatTensor: _lowerCAmelCase = self.index_for_timestep(_lowerCAmelCase ) _lowerCAmelCase = self.sigmas[step_index] _lowerCAmelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , ) -> Any: _lowerCAmelCase = num_inference_steps _lowerCAmelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _lowerCAmelCase = np.linspace(0 , num_train_timesteps - 1 , _lowerCAmelCase , dtype=_lowerCAmelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": _lowerCAmelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(_lowerCAmelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _lowerCAmelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase = (np.arange(_lowerCAmelCase , 0 , -step_ratio )).round().copy().astype(_lowerCAmelCase ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) _lowerCAmelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _lowerCAmelCase = np.log(_lowerCAmelCase ) _lowerCAmelCase = np.interp(_lowerCAmelCase , np.arange(0 , len(_lowerCAmelCase ) ) , _lowerCAmelCase ) if self.config.use_karras_sigmas: _lowerCAmelCase = self._convert_to_karras(in_sigmas=_lowerCAmelCase , num_inference_steps=self.num_inference_steps ) _lowerCAmelCase = np.array([self._sigma_to_t(_lowerCAmelCase , _lowerCAmelCase ) for sigma in sigmas] ) _lowerCAmelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ).to(device=_lowerCAmelCase ) _lowerCAmelCase = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ) _lowerCAmelCase = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(_lowerCAmelCase ).startswith("mps" ): # mps does not support float64 _lowerCAmelCase = timesteps.to(_lowerCAmelCase , dtype=torch.floataa ) else: _lowerCAmelCase = timesteps.to(device=_lowerCAmelCase ) # empty dt and derivative _lowerCAmelCase = None _lowerCAmelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _lowerCAmelCase = defaultdict(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: # get log sigma _lowerCAmelCase = np.log(_lowerCAmelCase ) # get distribution _lowerCAmelCase = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _lowerCAmelCase = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _lowerCAmelCase = low_idx + 1 _lowerCAmelCase = log_sigmas[low_idx] _lowerCAmelCase = log_sigmas[high_idx] # interpolate sigmas _lowerCAmelCase = (low - log_sigma) / (low - high) _lowerCAmelCase = np.clip(_lowerCAmelCase , 0 , 1 ) # transform interpolation to time range _lowerCAmelCase = (1 - w) * low_idx + w * high_idx _lowerCAmelCase = t.reshape(sigma.shape ) return t def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> torch.FloatTensor: _lowerCAmelCase = in_sigmas[-1].item() _lowerCAmelCase = in_sigmas[0].item() _lowerCAmelCase = 7.0 # 7.0 is the value used in the paper _lowerCAmelCase = np.linspace(0 , 1 , _lowerCAmelCase ) _lowerCAmelCase = sigma_min ** (1 / rho) _lowerCAmelCase = sigma_max ** (1 / rho) _lowerCAmelCase = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _snake_case ( self ) -> Tuple: return self.dt is None def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]: _lowerCAmelCase = self.index_for_timestep(_lowerCAmelCase ) # advance index counter by 1 _lowerCAmelCase = timestep.cpu().item() if torch.is_tensor(_lowerCAmelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _lowerCAmelCase = self.sigmas[step_index] _lowerCAmelCase = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _lowerCAmelCase = self.sigmas[step_index - 1] _lowerCAmelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _lowerCAmelCase = 0 _lowerCAmelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _lowerCAmelCase = sigma_hat if self.state_in_first_order else sigma_next _lowerCAmelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _lowerCAmelCase = sigma_hat if self.state_in_first_order else sigma_next _lowerCAmelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _lowerCAmelCase = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: _lowerCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _lowerCAmelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _lowerCAmelCase = sigma_next - sigma_hat # store for 2nd order step _lowerCAmelCase = derivative _lowerCAmelCase = dt _lowerCAmelCase = sample else: # 2. 2nd order / Heun's method _lowerCAmelCase = (sample - pred_original_sample) / sigma_next _lowerCAmelCase = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _lowerCAmelCase = self.dt _lowerCAmelCase = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _lowerCAmelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_lowerCAmelCase ): # mps does not support float64 _lowerCAmelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _lowerCAmelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _lowerCAmelCase = self.timesteps.to(original_samples.device ) _lowerCAmelCase = timesteps.to(original_samples.device ) _lowerCAmelCase = [self.index_for_timestep(_lowerCAmelCase , _lowerCAmelCase ) for t in timesteps] _lowerCAmelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _lowerCAmelCase = sigma.unsqueeze(-1 ) _lowerCAmelCase = original_samples + noise * sigma return noisy_samples def __len__( self ) -> List[str]: return self.config.num_train_timesteps
18
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''vit_mae''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int]=768 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Optional[int]=3_072 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : Optional[Any]=224 , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=512 , _UpperCAmelCase : int=8 , _UpperCAmelCase : List[Any]=2_048 , _UpperCAmelCase : Optional[Any]=0.75 , _UpperCAmelCase : List[str]=False , **_UpperCAmelCase : Union[str, Any] , ): super().__init__(**_UpperCAmelCase ) _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = initializer_range _A = layer_norm_eps _A = image_size _A = patch_size _A = num_channels _A = qkv_bias _A = decoder_num_attention_heads _A = decoder_hidden_size _A = decoder_num_hidden_layers _A = decoder_intermediate_size _A = mask_ratio _A = norm_pix_loss
7
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer _a = logging.get_logger(__name__) _a = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _a = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } _a = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } _a = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = RealmTokenizer def __init__( self , __a=None , __a=None , __a=True , __a="[UNK]" , __a="[SEP]" , __a="[PAD]" , __a="[CLS]" , __a="[MASK]" , __a=True , __a=None , **__a , ) -> str: '''simple docstring''' super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , tokenize_chinese_chars=__a , strip_accents=__a , **__a , ) _UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('''lowercase''' , __a) != do_lower_case or normalizer_state.get('''strip_accents''' , __a) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __a) != tokenize_chinese_chars ): _UpperCamelCase = getattr(__a , normalizer_state.pop('''type''')) _UpperCamelCase = do_lower_case _UpperCamelCase = strip_accents _UpperCamelCase = tokenize_chinese_chars _UpperCamelCase = normalizer_class(**__a) _UpperCamelCase = do_lower_case def UpperCAmelCase ( self , __a , **__a) -> List[str]: '''simple docstring''' _UpperCamelCase = PaddingStrategy.MAX_LENGTH _UpperCamelCase = text _UpperCamelCase = kwargs.pop('''text_pair''' , __a) _UpperCamelCase = kwargs.pop('''return_tensors''' , __a) _UpperCamelCase = { '''input_ids''': [], '''attention_mask''': [], '''token_type_ids''': [], } for idx, candidate_text in enumerate(__a): if batch_text_pair is not None: _UpperCamelCase = batch_text_pair[idx] else: _UpperCamelCase = None _UpperCamelCase = super().__call__(__a , __a , return_tensors=__a , **__a) _UpperCamelCase = encoded_candidates.get('''input_ids''') _UpperCamelCase = encoded_candidates.get('''attention_mask''') _UpperCamelCase = encoded_candidates.get('''token_type_ids''') if encoded_input_ids is not None: output_data["input_ids"].append(__a) if encoded_attention_mask is not None: output_data["attention_mask"].append(__a) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(__a) _UpperCamelCase = {key: item for key, item in output_data.items() if len(__a) != 0} return BatchEncoding(__a , tensor_type=__a) def UpperCAmelCase ( self , __a , __a=None) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , __a , __a = None) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCAmelCase ( self , __a , __a = None) -> Tuple[str]: '''simple docstring''' _UpperCamelCase = self._tokenizer.model.save(__a , name=__a) return tuple(__a)
19
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) a = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] a = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def _snake_case ( _snake_case : Optional[Any] ) -> str: '''simple docstring''' _A = torch.load(_snake_case , map_location='cpu' ) return sd def _snake_case ( _snake_case : Union[str, Any] , _snake_case : str , _snake_case : Tuple=rename_keys_prefix ) -> List[str]: '''simple docstring''' _A = OrderedDict() _A = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _A = key for name_pair in rename_keys_prefix: _A = new_key.replace(name_pair[0] , name_pair[1] ) _A = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _A = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def _snake_case ( _snake_case : List[str] , _snake_case : Dict ) -> Dict: '''simple docstring''' assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: _A = 'pretraining' if "vcr" in checkpoint_path: _A = {'visual_embedding_dim': 5_12} elif "vqa_advanced" in checkpoint_path: _A = {'visual_embedding_dim': 20_48} elif "vqa" in checkpoint_path: _A = {'visual_embedding_dim': 20_48} elif "nlvr" in checkpoint_path: _A = {'visual_embedding_dim': 10_24} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: _A = {'visual_embedding_dim': 5_12} _A = 'multichoice' elif "vqa_advanced" in checkpoint_path: _A = {'visual_embedding_dim': 20_48} _A = 'vqa_advanced' elif "vqa" in checkpoint_path: _A = {'visual_embedding_dim': 20_48, 'num_labels': 31_29} _A = 'vqa' elif "nlvr" in checkpoint_path: _A = { 'visual_embedding_dim': 10_24, 'num_labels': 2, } _A = 'nlvr' _A = VisualBertConfig(**_snake_case ) # Load State Dict _A = load_state_dict(_snake_case ) _A = get_new_dict(_snake_case , _snake_case ) if model_type == "pretraining": _A = VisualBertForPreTraining(_snake_case ) elif model_type == "vqa": _A = VisualBertForQuestionAnswering(_snake_case ) elif model_type == "nlvr": _A = VisualBertForVisualReasoning(_snake_case ) elif model_type == "multichoice": _A = VisualBertForMultipleChoice(_snake_case ) model.load_state_dict(_snake_case ) # Save Checkpoints Path(_snake_case ).mkdir(exist_ok=_snake_case ) model.save_pretrained(_snake_case ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') a = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
7
0
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class lowercase_ (lowercase__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_) -> Union[str, Any]: a__ =dataset a__ =process a__ =params def __len__( self) -> List[str]: return len(self.dataset) def __getitem__( self , lowercase_) -> str: a__ =self.dataset[i] a__ =self.process(lowercase_ , **self.params) return processed class lowercase_ (lowercase__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None) -> Optional[int]: a__ =loader a__ =infer a__ =params if loader_batch_size == 1: # Let's spare some time by deactivating altogether a__ =None a__ =loader_batch_size # Internal bookkeeping a__ =None a__ =None def __len__( self) -> List[Any]: return len(self.loader) def __iter__( self) -> Dict: a__ =iter(self.loader) return self def __UpperCamelCase ( self) -> Any: if isinstance(self._loader_batch_data , torch.Tensor): # Batch data is simple tensor, just fetch the slice a__ =self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) a__ ={} for k, element in self._loader_batch_data.items(): if isinstance(lowercase_ , lowercase_): # Convert ModelOutput to tuple first a__ =element.to_tuple() if isinstance(element[0] , torch.Tensor): a__ =tuple(el[self._loader_batch_index].unsqueeze(0) for el in element) elif isinstance(element[0] , np.ndarray): a__ =tuple(np.expand_dims(el[self._loader_batch_index] , 0) for el in element) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(lowercase_ , lowercase_): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor): a__ =tuple(el[self._loader_batch_index].unsqueeze(0) for el in element) elif isinstance(element[0] , np.ndarray): a__ =tuple(np.expand_dims(el[self._loader_batch_index] , 0) for el in element) continue if element is None: # This can happen for optional data that get passed around a__ =None elif isinstance(element[self._loader_batch_index] , torch.Tensor): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers a__ =element[self._loader_batch_index].unsqueeze(0) elif isinstance(element[self._loader_batch_index] , np.ndarray): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers a__ =np.expand_dims(element[self._loader_batch_index] , 0) else: # This is typically a list, so no need to `unsqueeze`. a__ =element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 a__ =self._loader_batch_data.__class__(lowercase_) self._loader_batch_index += 1 return result def __UpperCamelCase ( self) -> List[Any]: if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch a__ =next(self.iterator) a__ =self.infer(lowercase_ , **self.params) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(lowercase_ , torch.Tensor): a__ =processed else: a__ =list(processed.keys())[0] a__ =processed[key] if isinstance(lowercase_ , lowercase_): a__ =len(lowercase_) else: a__ =first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. a__ =observed_batch_size # Setting internal index to unwrap the batch a__ =processed a__ =0 return self.loader_batch_item() else: # We're not unrolling batches return processed class lowercase_ (lowercase__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None) -> Optional[Any]: super().__init__(lowercase_ , lowercase_ , lowercase_) def __iter__( self) -> str: a__ =iter(self.loader) a__ =None return self def __UpperCamelCase ( self) -> Tuple: if self.subiterator is None: a__ =self.infer(next(self.iterator) , **self.params) try: # Try to return next item a__ =next(self.subiterator) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators a__ =self.infer(next(self.iterator) , **self.params) a__ =next(self.subiterator) return processed class lowercase_ (lowercase__ ): def __iter__( self) -> Dict: a__ =iter(self.loader) return self def __UpperCamelCase ( self) -> str: # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. a__ =False a__ =[] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: a__ =self.loader_batch_item() a__ =item.pop('is_last') accumulator.append(lowercase_) if is_last: return accumulator while not is_last: a__ =self.infer(next(self.iterator) , **self.params) if self.loader_batch_size is not None: if isinstance(lowercase_ , torch.Tensor): a__ =processed else: a__ =list(processed.keys())[0] a__ =processed[key] if isinstance(lowercase_ , lowercase_): a__ =len(lowercase_) else: a__ =first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. a__ =observed_batch_size a__ =processed a__ =0 while self._loader_batch_index < self.loader_batch_size: a__ =self.loader_batch_item() a__ =item.pop('is_last') accumulator.append(lowercase_) if is_last: return accumulator else: a__ =processed a__ =item.pop('is_last') accumulator.append(lowercase_) return accumulator class lowercase_ (lowercase__ ): def __init__( self , lowercase_ , lowercase_) -> Union[str, Any]: a__ =dataset a__ =key def __len__( self) -> Optional[Any]: return len(self.dataset) def __getitem__( self , lowercase_) -> Any: return self.dataset[i][self.key] class lowercase_ (lowercase__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_) -> str: a__ =dataset a__ =keya a__ =keya def __len__( self) -> Any: return len(self.dataset) def __getitem__( self , lowercase_) -> List[str]: return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
20
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def _snake_case ( _snake_case : Dict ) -> Optional[Any]: '''simple docstring''' for param in module.parameters(): _A = False def _snake_case ( ) -> Tuple: '''simple docstring''' _A = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _A = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def _snake_case ( _snake_case : Dict ) -> Optional[Any]: '''simple docstring''' _A = plt.imshow(_snake_case ) fig.axes.get_xaxis().set_visible(_snake_case ) fig.axes.get_yaxis().set_visible(_snake_case ) plt.show() def _snake_case ( ) -> Optional[Any]: '''simple docstring''' _A = datetime.now() _A = current_time.strftime('%H:%M:%S' ) return timestamp
7
0
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCAmelCase_ : Union[str, Any] = logging.getLogger(__name__) UpperCAmelCase_ : Optional[Any] = 50 # max width of layer names UpperCAmelCase_ : Optional[int] = 70 # max width of quantizer names def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Dict =parser.add_argument_group("""quant_trainer arguments""" ) group.add_argument("""--wprec""" , type=lowerCamelCase , default=8 , help="""weight precision""" ) group.add_argument("""--aprec""" , type=lowerCamelCase , default=8 , help="""activation precision""" ) group.add_argument("""--quant-per-tensor""" , action="""store_true""" , help="""per tensor weight scaling""" ) group.add_argument("""--quant-disable""" , action="""store_true""" , help="""disable all quantizers""" ) group.add_argument("""--quant-disable-embeddings""" , action="""store_true""" , help="""disable all embeddings quantizers""" ) group.add_argument("""--quant-disable-keyword""" , type=lowerCamelCase , nargs="""+""" , help="""disable quantizers by keyword""" ) group.add_argument("""--quant-disable-layer-module""" , type=lowerCamelCase , help="""disable quantizers by keyword under layer.""" ) group.add_argument("""--quant-enable-layer-module""" , type=lowerCamelCase , help="""enable quantizers by keyword under layer""" ) group.add_argument("""--calibrator""" , default="""max""" , help="""which quantization range calibrator to use""" ) group.add_argument("""--percentile""" , default=lowerCamelCase , type=lowerCamelCase , help="""percentile for PercentileCalibrator""" ) group.add_argument("""--fuse-qkv""" , action="""store_true""" , help="""use the same scale factor for qkv""" ) group.add_argument("""--clip-gelu""" , metavar="""N""" , type=lowerCamelCase , help="""clip gelu output maximum value to N""" ) group.add_argument( """--recalibrate-weights""" , action="""store_true""" , help=( """recalibrate weight amaxes by taking the max of the weights.""" """ amaxes will be computed with the current quantization granularity (axis).""" ) , ) def lowerCAmelCase_ ( lowerCamelCase ): if args.calibrator == "max": __magic_name__ : str ="""max""" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("""Specify --percentile when using percentile calibrator""" ) __magic_name__ : str ="""histogram""" elif args.calibrator == "mse": __magic_name__ : Dict ="""histogram""" else: raise ValueError(F"Invalid calibrator {args.calibrator}" ) __magic_name__ : Optional[Any] =QuantDescriptor(num_bits=args.aprec , calib_method=lowerCamelCase ) __magic_name__ : int =QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(lowerCamelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=False , lowerCamelCase=False ): logger.info("""Configuring Model for Quantization""" ) logger.info(F"using quantization package {pytorch_quantization.__file__}" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(lowerCamelCase , ["""embeddings"""] , which="""weight""" , _disabled=lowerCamelCase ) if args.quant_disable: set_quantizer_by_name(lowerCamelCase , [""""""] , _disabled=lowerCamelCase ) if args.quant_disable_keyword: set_quantizer_by_name(lowerCamelCase , args.quant_disable_keyword , _disabled=lowerCamelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(lowerCamelCase , [R"""layer.\d+.""" + args.quant_disable_layer_module] , _disabled=lowerCamelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(lowerCamelCase , [R"""layer.\d+.""" + args.quant_enable_layer_module] , _disabled=lowerCamelCase ) if args.recalibrate_weights: recalibrate_weights(lowerCamelCase ) if args.fuse_qkv: fuse_qkv(lowerCamelCase , lowerCamelCase ) if args.clip_gelu: clip_gelu(lowerCamelCase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase ): logger.info("""Enabling Calibration""" ) for name, module in model.named_modules(): if name.endswith("""_quantizer""" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"{name:80}: {module}" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): logger.info("""Loading calibrated amax""" ) for name, module in model.named_modules(): if name.endswith("""_quantizer""" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("""percentile""" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): def fusea(lowerCamelCase , lowerCamelCase , lowerCamelCase ): for mod in [qq, qk, qv]: if not hasattr(lowerCamelCase , """_amax""" ): print(""" WARNING: NO AMAX BUFFER""" ) return __magic_name__ : Optional[int] =qq._amax.detach().item() __magic_name__ : List[str] =qk._amax.detach().item() __magic_name__ : List[Any] =qv._amax.detach().item() __magic_name__ : Optional[int] =max(lowerCamelCase , lowerCamelCase , lowerCamelCase ) qq._amax.fill_(lowerCamelCase ) qk._amax.fill_(lowerCamelCase ) qv._amax.fill_(lowerCamelCase ) logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" ) for name, mod in model.named_modules(): if name.endswith(""".attention.self""" ): logger.info(F"FUSE_QKV: {name:{name_width}}" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): for name, mod in model.named_modules(): if name.endswith(""".output.dense""" ) and not name.endswith("""attention.output.dense""" ): __magic_name__ : int =mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=lowerCamelCase ) __magic_name__ : Optional[Any] =mod._input_quantizer._amax.data.detach().item() logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" ) def lowerCAmelCase_ ( lowerCamelCase ): for name, mod in model.named_modules(): if hasattr(lowerCamelCase , """_weight_quantizer""" ) and mod._weight_quantizer.axis is not None: __magic_name__ : int =mod.weight.shape[0] __magic_name__ : int =mod._weight_quantizer._amax.detach() __magic_name__ : Tuple =torch.ones(lowerCamelCase , dtype=amax.dtype , device=amax.device ) * amax print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" ) def lowerCAmelCase_ ( lowerCamelCase ): for name, mod in model.named_modules(): if hasattr(lowerCamelCase , """_weight_quantizer""" ): if not hasattr(mod.weight_quantizer , """_amax""" ): print("""RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER""" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) __magic_name__ : List[str] =set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) __magic_name__ : List[str] =set(range(len(mod.weight.size() ) ) ) - axis_set __magic_name__ : List[str] =pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCamelCase , keepdims=lowerCamelCase ).detach() logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" ) __magic_name__ : Union[str, Any] =amax def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=25 , lowerCamelCase=180 , lowerCamelCase=None ): if ignore is None: __magic_name__ : int =[] elif not isinstance(lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =[ignore] __magic_name__ : Tuple =0 for name, mod in model.named_modules(): if not hasattr(lowerCamelCase , """weight""" ): continue __magic_name__ : Union[str, Any] =max(lowerCamelCase , len(lowerCamelCase ) ) for name, mod in model.named_modules(): __magic_name__ : int =getattr(lowerCamelCase , """_input_quantizer""" , lowerCamelCase ) __magic_name__ : Tuple =getattr(lowerCamelCase , """_weight_quantizer""" , lowerCamelCase ) if not hasattr(lowerCamelCase , """weight""" ): continue if type(lowerCamelCase ) in ignore: continue if [True for s in ignore if type(lowerCamelCase ) is str and s in name]: continue __magic_name__ : List[str] =F"Act:{input_q.extra_repr()}" __magic_name__ : Dict =F"Wgt:{weight_q.extra_repr()}" __magic_name__ : Optional[Any] =F"{name:{name_width}} {act_str} {wgt_str}" if len(lowerCamelCase ) <= line_width: logger.info(lowerCamelCase ) else: logger.info(F"{name:{name_width}} {act_str}" ) logger.info(F"{' ':{name_width}} {wgt_str}" ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Union[str, Any] =0 for name, mod in model.named_modules(): if isinstance(lowerCamelCase , pytorch_quantization.nn.TensorQuantizer ): print(F"{name:80} {mod}" ) count += 1 print(F"{count} TensorQuantizers found in model" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : List[str] =getattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) if quantizer_mod is not None: assert hasattr(lowerCamelCase , lowerCamelCase ) setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: logger.warning(F"{name} has no {quantizer}" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase="both" , **lowerCamelCase ): __magic_name__ : str =F"Warning: changing {which} quantizers of {name:{qname_width}}" for k, v in kwargs.items(): s += F" {k}={v}" if which in ["input", "both"]: set_quantizer(lowerCamelCase , lowerCamelCase , """_input_quantizer""" , lowerCamelCase , lowerCamelCase ) if which in ["weight", "both"]: set_quantizer(lowerCamelCase , lowerCamelCase , """_weight_quantizer""" , lowerCamelCase , lowerCamelCase ) logger.info(lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , **lowerCamelCase ): for name, mod in model.named_modules(): if hasattr(lowerCamelCase , """_input_quantizer""" ) or hasattr(lowerCamelCase , """_weight_quantizer""" ): for n in names: if re.search(lowerCamelCase , lowerCamelCase ): set_quantizers(lowerCamelCase , lowerCamelCase , **lowerCamelCase ) elif name.endswith("""_quantizer""" ): for n in names: if re.search(lowerCamelCase , lowerCamelCase ): __magic_name__ : Tuple =F"Warning: changing {name:{name_width}}" for k, v in kwargs.items(): s += F" {k}={v}" setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) logger.info(lowerCamelCase )
21
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Any = ['''image_processor''', '''tokenizer'''] UpperCAmelCase : Optional[int] = '''ViTImageProcessor''' UpperCAmelCase : int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Tuple , _UpperCAmelCase : int=None , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : Dict ): _A = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) _A = kwargs.pop('feature_extractor' ) _A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : Optional[Any] , _UpperCAmelCase : int=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Union[str, Any] ): if text is None and visual_prompt is None and images is None: raise ValueError('You have to specify either text, visual prompt or images.' ) if text is not None and visual_prompt is not None: raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' ) if text is not None: _A = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if visual_prompt is not None: _A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if images is not None: _A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if visual_prompt is not None and images is not None: _A = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: _A = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: _A = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def lowerCAmelCase_ ( self : str , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Union[str, Any] ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCAmelCase_ ( self : Dict ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def lowerCAmelCase_ ( self : Tuple ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
7
0
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black _snake_case : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _snake_case : List[str] = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n' class A ( unittest.TestCase ): def __lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" _a = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) _a = self.diffusers_dir shutil.copy( os.path.join(lowerCAmelCase_ , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def __lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _a = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def __lowerCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str=None ) -> Union[str, Any]: """simple docstring""" _a = comment + F'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: _a = comment + F'\nclass {class_name}(nn.Module):\n' + overwrite_result _a = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) _a = black.format_str(lowerCAmelCase_ , mode=lowerCAmelCase_ ) _a = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(lowerCAmelCase_ , '''w''' , newline='''\n''' ) as f: f.write(lowerCAmelCase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCAmelCase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCAmelCase_ ) with open(lowerCAmelCase_ , '''r''' ) as f: self.assertTrue(f.read() , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _a = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , lowerCAmelCase_ , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , lowerCAmelCase_ ) , ) # Copy consistency with a really long name _a = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}' , F'{long_class_name}SchedulerOutput' , re.sub('''Bert''' , lowerCAmelCase_ , lowerCAmelCase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , lowerCAmelCase_ , overwrite_result=re.sub('''DDPM''' , '''Test''' , lowerCAmelCase_ ) , )
22
"""simple docstring""" import math from datetime import datetime, timedelta def _snake_case ( _snake_case : int ) -> datetime: '''simple docstring''' _A = year % 19 _A = year % 4 _A = year % 7 _A = math.floor(year / 1_00 ) _A = math.floor((13 + 8 * leap_day_inhibits) / 25 ) _A = leap_day_inhibits / 4 _A = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 _A = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 _A = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon _A = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(_snake_case , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(_snake_case , 4 , 18 ) else: return datetime(_snake_case , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_994, 2_000, 2_010, 2_021, 2_023): a = '''will be''' if year > datetime.now().year else '''was''' print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
7
0
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING snake_case__ : str = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class _a ( UpperCAmelCase__ ): """simple docstring""" def __init__( self , **_UpperCAmelCase ) -> Optional[Any]: super().__init__(**_UpperCAmelCase ) requires_backends(self , 'vision' ) requires_backends(self , 'torch' ) if self.framework != "pt": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) self.check_model_type(_UpperCAmelCase ) def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> Any: UpperCamelCase_ = {} UpperCamelCase_ = {} UpperCamelCase_ = {} # preprocess args if "points_per_batch" in kwargs: UpperCamelCase_ = kwargs['points_per_batch'] if "points_per_crop" in kwargs: UpperCamelCase_ = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: UpperCamelCase_ = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: UpperCamelCase_ = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: UpperCamelCase_ = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: UpperCamelCase_ = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: UpperCamelCase_ = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: UpperCamelCase_ = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: UpperCamelCase_ = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: UpperCamelCase_ = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: UpperCamelCase_ = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: UpperCamelCase_ = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , _UpperCAmelCase , *_UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ) -> List[str]: return super().__call__(_UpperCAmelCase , *_UpperCAmelCase , num_workers=_UpperCAmelCase , batch_size=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=64 , _UpperCAmelCase = 0 , _UpperCAmelCase = 512 / 1500 , _UpperCAmelCase = 32 , _UpperCAmelCase = 1 , ) -> Optional[Any]: UpperCamelCase_ = load_image(_UpperCAmelCase ) UpperCamelCase_ = self.image_processor.size['longest_edge'] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.image_processor.generate_crop_boxes( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = self.image_processor(images=_UpperCAmelCase , return_tensors='pt' ) with self.device_placement(): if self.framework == "pt": UpperCamelCase_ = self.get_inference_context() with inference_context(): UpperCamelCase_ = self._ensure_tensor_on_device(_UpperCAmelCase , device=self.device ) UpperCamelCase_ = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) ) UpperCamelCase_ = image_embeddings UpperCamelCase_ = grid_points.shape[1] UpperCamelCase_ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None' ) for i in range(0 , _UpperCAmelCase , _UpperCAmelCase ): UpperCamelCase_ = grid_points[:, i : i + points_per_batch, :, :] UpperCamelCase_ = input_labels[:, i : i + points_per_batch] UpperCamelCase_ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0.8_8 , _UpperCAmelCase=0.9_5 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , ) -> List[Any]: UpperCamelCase_ = model_inputs.pop('input_boxes' ) UpperCamelCase_ = model_inputs.pop('is_last' ) UpperCamelCase_ = model_inputs.pop('original_sizes' ).tolist() UpperCamelCase_ = model_inputs.pop('reshaped_input_sizes' ).tolist() UpperCamelCase_ = self.model(**_UpperCAmelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCamelCase_ = model_outputs['pred_masks'] UpperCamelCase_ = self.image_processor.post_process_masks( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , binarize=_UpperCAmelCase ) UpperCamelCase_ = model_outputs['iou_scores'] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.7 , ) -> Any: UpperCamelCase_ = [] UpperCamelCase_ = [] UpperCamelCase_ = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores' ) ) all_masks.extend(model_output.pop('masks' ) ) all_boxes.append(model_output.pop('boxes' ) ) UpperCamelCase_ = torch.cat(_UpperCAmelCase ) UpperCamelCase_ = torch.cat(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.image_processor.post_process_for_mask_generation( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase_ = defaultdict(_UpperCAmelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(_UpperCAmelCase ) UpperCamelCase_ = {} if output_rle_mask: UpperCamelCase_ = rle_mask if output_bboxes_mask: UpperCamelCase_ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
23
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''gpt_bigcode''' UpperCAmelCase : str = ['''past_key_values'''] UpperCAmelCase : Dict = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Tuple , _UpperCAmelCase : Dict=50_257 , _UpperCAmelCase : List[Any]=1_024 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : str="gelu_pytorch_tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[Any]=50_256 , _UpperCAmelCase : Dict=50_256 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Any=True , **_UpperCAmelCase : Any , ): _A = vocab_size _A = n_positions _A = n_embd _A = n_layer _A = n_head _A = n_inner _A = activation_function _A = resid_pdrop _A = embd_pdrop _A = attn_pdrop _A = layer_norm_epsilon _A = initializer_range _A = scale_attn_weights _A = use_cache _A = attention_softmax_in_fpaa _A = scale_attention_softmax_in_fpaa _A = multi_query _A = bos_token_id _A = eos_token_id super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
7
0
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _UpperCamelCase (_lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : str=None , _lowerCamelCase : Any=None )-> List[Any]: '''simple docstring''' if attention_mask is None: __snake_case = tf.cast(tf.math.not_equal(_lowerCamelCase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCAmelCase : __lowercase : List[Any] = OPTConfig __lowercase : List[str] = {} __lowercase : Tuple = '''gelu''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=20 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=16 , ) -> Tuple: '''simple docstring''' __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = eos_token_id __snake_case = pad_token_id __snake_case = bos_token_id __snake_case = embed_dim __snake_case = word_embed_proj_dim __snake_case = False def lowerCAmelCase ( self ) -> str: '''simple docstring''' __snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __snake_case = tf.concat([input_ids, eos_tensor] , axis=1 ) __snake_case = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=__SCREAMING_SNAKE_CASE , **self.config_updates , ) __snake_case = prepare_opt_inputs_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return config, inputs_dict def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' __snake_case = TFOPTModel(config=__SCREAMING_SNAKE_CASE ) __snake_case = inputs_dict['''input_ids'''] __snake_case = input_ids[:1, :] __snake_case = inputs_dict['''attention_mask'''][:1, :] __snake_case = 1 # first forward pass __snake_case = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE ) __snake_case , __snake_case = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) __snake_case = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __snake_case = tf.concat([input_ids, next_tokens] , axis=-1 ) __snake_case = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __snake_case = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )[0] __snake_case = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __snake_case = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __snake_case = output_from_no_past[:, -3:, random_slice_idx] __snake_case = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , rtol=1E-3 ) @require_tf class lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase): __lowercase : Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __lowercase : Tuple = (TFOPTForCausalLM,) if is_tf_available() else () __lowercase : int = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) __lowercase : Tuple = False __lowercase : int = False __lowercase : Any = False __lowercase : Optional[Any] = 10 def lowerCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case = TFOPTModelTester(self ) __snake_case = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if hasattr(__SCREAMING_SNAKE_CASE , '''weight''' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(__SCREAMING_SNAKE_CASE , '''weight''' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings __snake_case = model_class(config=__SCREAMING_SNAKE_CASE ) __snake_case = _get_word_embedding_weight(__SCREAMING_SNAKE_CASE , model.get_input_embeddings() ) __snake_case = _get_word_embedding_weight(__SCREAMING_SNAKE_CASE , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(__SCREAMING_SNAKE_CASE ) __snake_case = _get_word_embedding_weight(__SCREAMING_SNAKE_CASE , model.get_input_embeddings() ) __snake_case = _get_word_embedding_weight(__SCREAMING_SNAKE_CASE , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. __snake_case = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , __SCREAMING_SNAKE_CASE ) # check that weights remain the same after resizing __snake_case = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __snake_case = False self.assertTrue(__SCREAMING_SNAKE_CASE ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , __SCREAMING_SNAKE_CASE ) __snake_case = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __snake_case = False self.assertTrue(__SCREAMING_SNAKE_CASE ) def _UpperCamelCase (_lowerCamelCase : List[str] )-> List[str]: '''simple docstring''' return tf.constant(_lowerCamelCase , dtype=tf.intaa ) @require_tf class lowerCAmelCase ( unittest.TestCase): __lowercase : Dict = 99 def lowerCAmelCase ( self ) -> str: '''simple docstring''' __snake_case = tf.ones((4, 1) , dtype=tf.intaa ) * 2 __snake_case = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) __snake_case = input_ids.shape[0] __snake_case = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCAmelCase ( unittest.TestCase): @slow def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case = TFOPTModel.from_pretrained('''facebook/opt-350m''' ) __snake_case = _long_tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) __snake_case = tf.not_equal(__SCREAMING_SNAKE_CASE , model.config.pad_token_id ) with tf.GradientTape(): __snake_case = model(input_ids=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).last_hidden_state __snake_case = (1, 11, 512) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) __snake_case = tf.constant( [[-0.2_873, -1.9_218, -0.3_033], [-1.2_710, -0.1_338, -0.1_902], [0.4_095, 0.1_214, -1.3_121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=4E-3 ) ) __snake_case = tf.function(__SCREAMING_SNAKE_CASE , jit_compile=__SCREAMING_SNAKE_CASE ) __snake_case = xla_generate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )[0] self.assertTrue(np.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=4E-2 ) ) @require_tf @slow class lowerCAmelCase ( unittest.TestCase): def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' super().setUp() __snake_case = '''facebook/opt-350m''' def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case = TFOPTForCausalLM.from_pretrained(self.path_model ) __snake_case = GPTaTokenizer.from_pretrained(self.path_model ) __snake_case = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False __snake_case = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''tf''' , padding=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) __snake_case = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) __snake_case = tf.constant( [ [1.3_851, -13.8_923, -10.5_229, -10.7_533, -0.2_309, -10.2_384, -0.5_365, -9.0_947, -5.1_670], [-4.7_073, -10.6_276, -3.9_415, -21.5_242, -0.2_822, -0.2_822, -0.2_822, -0.2_822, -0.2_822], [0.6_247, -3.4_229, -8.9_179, -1.4_297, -14.1_650, 1.4_146, -9.0_218, -0.2_703, -0.2_703], [6.4_783, -1.9_913, -10.7_926, -2.3_336, 1.5_092, -0.9_974, -6.8_213, 1.3_477, 1.3_477], ] ) self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-4 ) ) __snake_case = tf.function(__SCREAMING_SNAKE_CASE , jit_compile=__SCREAMING_SNAKE_CASE ) __snake_case = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @require_tf @slow class lowerCAmelCase ( unittest.TestCase): @property def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case = '''facebook/opt-125m''' __snake_case = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] __snake_case = [] __snake_case = GPTaTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) __snake_case = TFOPTForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) for prompt in self.prompts: __snake_case = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''tf''' ).input_ids __snake_case = model.generate(__SCREAMING_SNAKE_CASE , max_length=10 ) __snake_case = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) predicted_outputs += generated_string self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case = '''facebook/opt-350m''' __snake_case = GPTaTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) __snake_case = TFOPTForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) __snake_case = '''left''' # use different length sentences to test batching __snake_case = [ '''Hello, my dog is a little''', '''Today, I''', ] __snake_case = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''tf''' , padding=__SCREAMING_SNAKE_CASE ) __snake_case = inputs['''input_ids'''] __snake_case = model.generate(input_ids=__SCREAMING_SNAKE_CASE , attention_mask=inputs['''attention_mask'''] ) __snake_case = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids __snake_case = model.generate(input_ids=__SCREAMING_SNAKE_CASE ) __snake_case = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] , tf.intaa ) ) __snake_case = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids __snake_case = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_length=model.config.max_length - num_paddings ) __snake_case = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.decode(output_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) __snake_case = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [non_padded_sentence, padded_sentence] ) def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case = '''facebook/opt-350m''' __snake_case = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] __snake_case = [] __snake_case = GPTaTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) __snake_case = TFOPTForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) for prompt in self.prompts: __snake_case = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''tf''' ).input_ids __snake_case = model.generate(__SCREAMING_SNAKE_CASE , max_length=10 ) __snake_case = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) predicted_outputs += generated_string self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
24
"""simple docstring""" def _snake_case ( _snake_case : str ) -> str: '''simple docstring''' return " ".join( ''.join(word[::-1] ) if len(_snake_case ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
7
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a_ = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[int] = (KDPMaDiscreteScheduler,) UpperCAmelCase : Any = 10 def lowerCAmelCase_ ( self : Dict , **_UpperCAmelCase : Optional[Any] ): _A = { 'num_train_timesteps': 1_100, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**_UpperCAmelCase ) return config def lowerCAmelCase_ ( self : Any ): for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _A = self.scheduler_classes[0] _A = self.get_scheduler_config(prediction_type='v_prediction' ) _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) _A = self.dummy_model() _A = self.dummy_sample_deter * scheduler.init_noise_sigma _A = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4E-0_7 ) < 1E-2 assert abs(result_mean.item() - 6.1_1_1_2E-1_0 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2E-0_7 ) < 1E-2 assert abs(result_mean.item() - 0.0002 ) < 1E-3 def lowerCAmelCase_ ( self : Optional[Any] ): if torch_device == "mps": return _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) _A = self.dummy_model() _A = self.dummy_sample_deter * scheduler.init_noise_sigma _A = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 def lowerCAmelCase_ ( self : Any ): if torch_device == "mps": return _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase ) _A = self.dummy_model() _A = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) if str(_UpperCAmelCase ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3
7
0
'''simple docstring''' import torch def _a ( ) -> Optional[int]: """simple docstring""" if torch.cuda.is_available(): __snake_case : Optional[int] = torch.cuda.device_count() else: __snake_case : Dict = 0 print(F'''Successfully ran on {num_gpus} GPUs''' ) if __name__ == "__main__": main()
26
"""simple docstring""" import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any]=10 ) -> Optional[int]: '''simple docstring''' _A = [] for _ in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def _snake_case ( _snake_case : Optional[Any] , _snake_case : Union[str, Any]=10 ) -> List[str]: '''simple docstring''' _A = [] for step in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(_snake_case , 'schedule.bin' ) torch.save(scheduler.state_dict() , _snake_case ) _A = torch.load(_snake_case ) scheduler.load_state_dict(_snake_case ) return lrs @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ): self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any ): _A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase ) _A = torch.tensor([0.4, 0.2, -0.5] ) _A = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _A = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): _A = criterion(_UpperCAmelCase , _UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def lowerCAmelCase_ ( self : int ): _A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase ) _A = torch.tensor([0.4, 0.2, -0.5] ) _A = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _A = Adafactor( params=[w] , lr=1E-2 , eps=(1E-3_0, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_UpperCAmelCase , weight_decay=0.0 , relative_step=_UpperCAmelCase , scale_parameter=_UpperCAmelCase , warmup_init=_UpperCAmelCase , ) for _ in range(1_000 ): _A = criterion(_UpperCAmelCase , _UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : List[str] = nn.Linear(50 , 50 ) if is_torch_available() else None UpperCAmelCase : Tuple = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None UpperCAmelCase : Dict = 10 def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]=None ): self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase , msg=_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _A = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) _A = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): _A , _A = data _A = scheduler_func(self.optimizer , **_UpperCAmelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) _A = unwrap_schedule(_UpperCAmelCase , self.num_steps ) self.assertListAlmostEqual( _UpperCAmelCase , _UpperCAmelCase , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , ) _A = scheduler_func(self.optimizer , **_UpperCAmelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(_UpperCAmelCase ) # wrap to test picklability of the schedule _A = unwrap_and_save_reload_schedule(_UpperCAmelCase , self.num_steps ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase , msg=F'''failed for {scheduler_func} in save and reload''' ) class lowercase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int] ): _A = fn def __call__( self : Tuple , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : List[str] ): return self.fn(*_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Any ): _A = list(map(self , scheduler.lr_lambdas ) )
7
0
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __A : Union[str, Any] = { "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1_000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __A : Tuple = { "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1_000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __A : Tuple = { "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } __A : int = { "num_train_timesteps": 40, "sigma_min": 0.0_0_2, "sigma_max": 8_0.0, } __A : Dict = { "num_train_timesteps": 201, "sigma_min": 0.0_0_2, "sigma_max": 8_0.0, } __A : Dict = { "num_train_timesteps": 151, "sigma_min": 0.0_0_2, "sigma_max": 8_0.0, } def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Optional[Any]: """simple docstring""" _A = checkpoint[F"{old_prefix}.in_layers.0.weight"] _A = checkpoint[F"{old_prefix}.in_layers.0.bias"] _A = checkpoint[F"{old_prefix}.in_layers.2.weight"] _A = checkpoint[F"{old_prefix}.in_layers.2.bias"] _A = checkpoint[F"{old_prefix}.emb_layers.1.weight"] _A = checkpoint[F"{old_prefix}.emb_layers.1.bias"] _A = checkpoint[F"{old_prefix}.out_layers.0.weight"] _A = checkpoint[F"{old_prefix}.out_layers.0.bias"] _A = checkpoint[F"{old_prefix}.out_layers.3.weight"] _A = checkpoint[F"{old_prefix}.out_layers.3.bias"] if has_skip: _A = checkpoint[F"{old_prefix}.skip_connection.weight"] _A = checkpoint[F"{old_prefix}.skip_connection.bias"] return new_checkpoint def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Any: """simple docstring""" _A, _A, _A = checkpoint[F"{old_prefix}.qkv.weight"].chunk(3 , dim=0 ) _A, _A, _A = checkpoint[F"{old_prefix}.qkv.bias"].chunk(3 , dim=0 ) _A = checkpoint[F"{old_prefix}.norm.weight"] _A = checkpoint[F"{old_prefix}.norm.bias"] _A = weight_q.squeeze(-1 ).squeeze(-1 ) _A = bias_q.squeeze(-1 ).squeeze(-1 ) _A = weight_k.squeeze(-1 ).squeeze(-1 ) _A = bias_k.squeeze(-1 ).squeeze(-1 ) _A = weight_v.squeeze(-1 ).squeeze(-1 ) _A = bias_v.squeeze(-1 ).squeeze(-1 ) _A = ( checkpoint[F"{old_prefix}.proj_out.weight"].squeeze(-1 ).squeeze(-1 ) ) _A = checkpoint[F"{old_prefix}.proj_out.bias"].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' ) _A = {} _A = checkpoint['time_embed.0.weight'] _A = checkpoint['time_embed.0.bias'] _A = checkpoint['time_embed.2.weight'] _A = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _A = checkpoint['label_emb.weight'] _A = checkpoint['input_blocks.0.0.weight'] _A = checkpoint['input_blocks.0.0.bias'] _A = unet_config['down_block_types'] _A = unet_config['layers_per_block'] _A = unet_config['attention_head_dim'] _A = unet_config['block_out_channels'] _A = 1 _A = channels_list[0] for i, layer_type in enumerate(_SCREAMING_SNAKE_CASE ): _A = channels_list[i] _A = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(_SCREAMING_SNAKE_CASE ): _A = F"down_blocks.{i}.resnets.{j}" _A = F"input_blocks.{current_layer}.0" _A = True if j == 0 and downsample_block_has_skip else False _A = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , has_skip=_SCREAMING_SNAKE_CASE ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(_SCREAMING_SNAKE_CASE ): _A = F"down_blocks.{i}.resnets.{j}" _A = F"input_blocks.{current_layer}.0" _A = True if j == 0 and downsample_block_has_skip else False _A = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , has_skip=_SCREAMING_SNAKE_CASE ) _A = F"down_blocks.{i}.attentions.{j}" _A = F"input_blocks.{current_layer}.1" _A = convert_attention( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) current_layer += 1 if i != len(_SCREAMING_SNAKE_CASE ) - 1: _A = F"down_blocks.{i}.downsamplers.0" _A = F"input_blocks.{current_layer}.0" _A = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) current_layer += 1 _A = current_channels # hardcoded the mid-block for now _A = 'mid_block.resnets.0' _A = 'middle_block.0' _A = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = 'mid_block.attentions.0' _A = 'middle_block.1' _A = convert_attention(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = 'mid_block.resnets.1' _A = 'middle_block.2' _A = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = 0 _A = unet_config['up_block_types'] for i, layer_type in enumerate(_SCREAMING_SNAKE_CASE ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _A = F"up_blocks.{i}.resnets.{j}" _A = F"output_blocks.{current_layer}.0" _A = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , has_skip=_SCREAMING_SNAKE_CASE ) current_layer += 1 if i != len(_SCREAMING_SNAKE_CASE ) - 1: _A = F"up_blocks.{i}.upsamplers.0" _A = F"output_blocks.{current_layer-1}.1" _A = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _A = F"up_blocks.{i}.resnets.{j}" _A = F"output_blocks.{current_layer}.0" _A = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , has_skip=_SCREAMING_SNAKE_CASE ) _A = F"up_blocks.{i}.attentions.{j}" _A = F"output_blocks.{current_layer}.1" _A = convert_attention( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) current_layer += 1 if i != len(_SCREAMING_SNAKE_CASE ) - 1: _A = F"up_blocks.{i}.upsamplers.0" _A = F"output_blocks.{current_layer-1}.2" _A = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = checkpoint['out.0.weight'] _A = checkpoint['out.0.bias'] _A = checkpoint['out.2.weight'] _A = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": __A : Optional[int] = argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") __A : Optional[Any] = parser.parse_args() __A : List[str] = strabool(args.class_cond) __A : List[str] = os.path.basename(args.unet_path) print(f"Checkpoint: {ckpt_name}") # Get U-Net config if "imagenet64" in ckpt_name: __A : str = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __A : Any = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __A : List[Any] = TEST_UNET_CONFIG else: raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.") if not args.class_cond: __A : Optional[int] = None __A : str = con_pt_to_diffuser(args.unet_path, unet_config) __A : Tuple = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __A : Union[str, Any] = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __A : Any = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __A : Optional[int] = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.") __A : Dict = CMStochasticIterativeScheduler(**scheduler_config) __A : List[Any] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
27
"""simple docstring""" import math def _snake_case ( _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' if ( not isinstance(_snake_case , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * power_factor def _snake_case ( _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' if ( not isinstance(_snake_case , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
7
0
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal UpperCamelCase_ = datasets.utils.logging.get_logger(__name__) UpperCamelCase_ = ["names", "prefix"] UpperCamelCase_ = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] UpperCamelCase_ = ["encoding_errors", "on_bad_lines"] UpperCamelCase_ = ["date_format"] @dataclass class _a ( datasets.BuilderConfig ): '''simple docstring''' A : str = "," A : Optional[str] = None A : Optional[Union[int, List[int], str]] = "infer" A : Optional[List[str]] = None A : Optional[List[str]] = None A : Optional[Union[int, str, List[int], List[str]]] = None A : Optional[Union[List[int], List[str]]] = None A : Optional[str] = None A : bool = True A : Optional[Literal["c", "python", "pyarrow"]] = None A : Dict[Union[int, str], Callable[[Any], Any]] = None A : Optional[list] = None A : Optional[list] = None A : bool = False A : Optional[Union[int, List[int]]] = None A : Optional[int] = None A : Optional[Union[str, List[str]]] = None A : bool = True A : bool = True A : bool = False A : bool = True A : Optional[str] = None A : str = "." A : Optional[str] = None A : str = '"' A : int = 0 A : Optional[str] = None A : Optional[str] = None A : Optional[str] = None A : Optional[str] = None A : bool = True A : bool = True A : int = 0 A : bool = True A : bool = False A : Optional[str] = None A : int = 10_000 A : Optional[datasets.Features] = None A : Optional[str] = "strict" A : Literal["error", "warn", "skip"] = "error" A : Optional[str] = None def UpperCamelCase_ ( self ): '''simple docstring''' if self.delimiter is not None: SCREAMING_SNAKE_CASE : List[str] = self.delimiter if self.column_names is not None: SCREAMING_SNAKE_CASE : Tuple = self.column_names @property def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = { 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), A ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _a ( datasets.ArrowBasedBuilder ): '''simple docstring''' A : Tuple = CsvConfig def UpperCamelCase_ ( self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase_ ( self, A ): '''simple docstring''' if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(A, (str, list, tuple) ): SCREAMING_SNAKE_CASE : List[Any] = data_files if isinstance(A, A ): SCREAMING_SNAKE_CASE : Dict = [files] SCREAMING_SNAKE_CASE : int = [dl_manager.iter_files(A ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'files': files} )] SCREAMING_SNAKE_CASE : Optional[int] = [] for split_name, files in data_files.items(): if isinstance(A, A ): SCREAMING_SNAKE_CASE : List[Any] = [files] SCREAMING_SNAKE_CASE : List[str] = [dl_manager.iter_files(A ) for file in files] splits.append(datasets.SplitGenerator(name=A, gen_kwargs={'files': files} ) ) return splits def UpperCamelCase_ ( self, A ): '''simple docstring''' if self.config.features is not None: SCREAMING_SNAKE_CASE : Optional[Any] = self.config.features.arrow_schema if all(not require_storage_cast(A ) for feature in self.config.features.values() ): # cheaper cast SCREAMING_SNAKE_CASE : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=A ) else: # more expensive cast; allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE : Union[str, Any] = table_cast(A, A ) return pa_table def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str SCREAMING_SNAKE_CASE : List[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(A ) else object for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(A ) ): SCREAMING_SNAKE_CASE : Any = pd.read_csv(A, iterator=A, dtype=A, **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(A ): SCREAMING_SNAKE_CASE : Dict = pa.Table.from_pandas(A ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(A ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(A )}: {e}" ) raise
28
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[Any] = '''xmod''' def __init__( self : str , _UpperCAmelCase : Optional[Any]=30_522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Dict=3_072 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Any=1E-1_2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Tuple=("en_XX",) , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Optional[Any] , ): super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = position_embedding_type _A = use_cache _A = classifier_dropout _A = pre_norm _A = adapter_reduction_factor _A = adapter_layer_norm _A = adapter_reuse_layer_norm _A = ln_before_adapter _A = list(_UpperCAmelCase ) _A = default_language class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' @property def lowerCAmelCase_ ( self : Dict ): if self.task == "multiple-choice": _A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
7
0
"""simple docstring""" import os from datetime import datetime as dt from github import Github A_ = [ """good first issue""", """feature request""", """wip""", ] def lowercase ( ): lowerCamelCase_ = Github(os.environ['''GITHUB_TOKEN'''] ) lowerCamelCase_ = g.get_repo('''huggingface/accelerate''' ) lowerCamelCase_ = repo.get_issues(state='''open''' ) for issue in open_issues: lowerCamelCase_ = sorted([comment for comment in issue.get_comments()] ,key=lambda lowerCAmelCase__ : i.created_at ,reverse=lowerCAmelCase__ ) lowerCamelCase_ = comments[0] if len(lowerCAmelCase__ ) > 0 else None lowerCamelCase_ = dt.utcnow() lowerCamelCase_ = (current_time - issue.updated_at).days lowerCamelCase_ = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
29
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort a = logging.get_logger(__name__) a = { '''tensor(bool)''': np.bool_, '''tensor(int8)''': np.inta, '''tensor(uint8)''': np.uinta, '''tensor(int16)''': np.intaa, '''tensor(uint16)''': np.uintaa, '''tensor(int32)''': np.intaa, '''tensor(uint32)''': np.uintaa, '''tensor(int64)''': np.intaa, '''tensor(uint64)''': np.uintaa, '''tensor(float16)''': np.floataa, '''tensor(float)''': np.floataa, '''tensor(double)''': np.floataa, } class lowercase_ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : Optional[Any] ): logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) _A = model _A = kwargs.get('model_save_dir' , _UpperCAmelCase ) _A = kwargs.get('latest_model_name' , _UpperCAmelCase ) def __call__( self : Dict , **_UpperCAmelCase : List[Any] ): _A = {k: np.array(_UpperCAmelCase ) for k, v in kwargs.items()} return self.model.run(_UpperCAmelCase , _UpperCAmelCase ) @staticmethod def lowerCAmelCase_ ( _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=None ): if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) _A = 'CPUExecutionProvider' return ort.InferenceSession(_UpperCAmelCase , providers=[provider] , sess_options=_UpperCAmelCase ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : List[Any] ): _A = file_name if file_name is not None else ONNX_WEIGHTS_NAME _A = self.model_save_dir.joinpath(self.latest_model_name ) _A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase ) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) _A = self.model_save_dir.joinpath(_UpperCAmelCase ) if src_path.exists(): _A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase ) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase ) except shutil.SameFileError: pass def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] , ): if os.path.isfile(_UpperCAmelCase ): logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) # saving model weights/files self._save_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( cls : Tuple , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[Union[bool, str, None]] = None , _UpperCAmelCase : Optional[Union[str, None]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional["ort.SessionOptions"] = None , **_UpperCAmelCase : Union[str, Any] , ): _A = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_UpperCAmelCase ): _A = OnnxRuntimeModel.load_model( os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase ) _A = Path(_UpperCAmelCase ) # load model from hub else: # download model _A = hf_hub_download( repo_id=_UpperCAmelCase , filename=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , ) _A = Path(_UpperCAmelCase ).parent _A = Path(_UpperCAmelCase ).name _A = OnnxRuntimeModel.load_model(_UpperCAmelCase , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase ) return cls(model=_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( cls : List[Any] , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : Tuple , ): _A = None if len(str(_UpperCAmelCase ).split('@' ) ) == 2: _A , _A = model_id.split('@' ) return cls._from_pretrained( model_id=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , **_UpperCAmelCase , )
7
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __a( _a ): """simple docstring""" lowerCAmelCase = (DDIMParallelScheduler,) lowerCAmelCase = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Any: UpperCAmelCase_ : Dict = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**_SCREAMING_SNAKE_CASE ) return config def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = self.scheduler_classes[0] UpperCAmelCase_ : List[Any] = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_, UpperCAmelCase_ : Tuple = 10, 0.0 UpperCAmelCase_ : List[str] = self.dummy_model() UpperCAmelCase_ : List[str] = self.dummy_sample_deter scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) for t in scheduler.timesteps: UpperCAmelCase_ : Tuple = model(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).prev_sample return sample def a__ ( self ) -> Optional[int]: for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> str: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = self.scheduler_classes[0] UpperCAmelCase_ : Dict = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase_ : str = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps ,torch.LongTensor([801, 601, 401, 201, 1] ) ) def a__ ( self ) -> Optional[int]: for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] ,[0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_SCREAMING_SNAKE_CASE ,beta_end=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> List[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Union[str, Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Any: for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> int: for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Dict: self.check_over_configs(thresholding=_SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_SCREAMING_SNAKE_CASE ,prediction_type=_SCREAMING_SNAKE_CASE ,sample_max_value=_SCREAMING_SNAKE_CASE ,) def a__ ( self ) -> str: for t in [1, 10, 49]: self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> int: for t, num_inference_steps in zip([1, 10, 50] ,[10, 50, 500] ): self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE ,num_inference_steps=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[Any]: for t, eta in zip([1, 10, 49] ,[0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE ,eta=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Tuple: UpperCAmelCase_ : Union[str, Any] = self.scheduler_classes[0] UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : int = scheduler_class(**_SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 ,400 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 ,960 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ,486 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ,998 ) - 0.02 ) ) < 1e-5 def a__ ( self ) -> Any: UpperCAmelCase_ : Optional[Any] = self.scheduler_classes[0] UpperCAmelCase_ : Optional[Any] = self.get_scheduler_config() UpperCAmelCase_ : Union[str, Any] = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_, UpperCAmelCase_ : Any = 10, 0.0 scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = self.dummy_model() UpperCAmelCase_ : Optional[Any] = self.dummy_sample_deter UpperCAmelCase_ : Dict = self.dummy_sample_deter + 0.1 UpperCAmelCase_ : Union[str, Any] = self.dummy_sample_deter - 0.1 UpperCAmelCase_ : Optional[Any] = samplea.shape[0] UpperCAmelCase_ : Any = torch.stack([samplea, samplea, samplea] ,dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.arange(_SCREAMING_SNAKE_CASE )[0:3, None].repeat(1 ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) ) UpperCAmelCase_ : Optional[Any] = scheduler.batch_step_no_noise(_SCREAMING_SNAKE_CASE ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : List[str] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def a__ ( self ) -> List[str]: UpperCAmelCase_ : str = self.full_loop() UpperCAmelCase_ : Optional[Any] = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def a__ ( self ) -> Tuple: UpperCAmelCase_ : List[Any] = self.full_loop(prediction_type='''v_prediction''' ) UpperCAmelCase_ : Union[str, Any] = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : Any = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def a__ ( self ) -> Union[str, Any]: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : List[Any] = self.full_loop(set_alpha_to_one=_SCREAMING_SNAKE_CASE ,beta_start=0.01 ) UpperCAmelCase_ : Optional[Any] = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : int = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def a__ ( self ) -> str: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : List[Any] = self.full_loop(set_alpha_to_one=_SCREAMING_SNAKE_CASE ,beta_start=0.01 ) UpperCAmelCase_ : Union[str, Any] = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : Any = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
30
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : str = '''speech_to_text''' UpperCAmelCase : List[Any] = ['''past_key_values'''] UpperCAmelCase : Tuple = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : int , _UpperCAmelCase : Union[str, Any]=10_000 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2_048 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Tuple=2_048 , _UpperCAmelCase : str=4 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]="relu" , _UpperCAmelCase : List[Any]=256 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : List[str]=6_000 , _UpperCAmelCase : Optional[Any]=1_024 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Any=(5, 5) , _UpperCAmelCase : int=1_024 , _UpperCAmelCase : str=80 , _UpperCAmelCase : Any=1 , **_UpperCAmelCase : Tuple , ): _A = vocab_size _A = d_model _A = encoder_ffn_dim _A = encoder_layers _A = encoder_attention_heads _A = decoder_ffn_dim _A = decoder_layers _A = decoder_attention_heads _A = dropout _A = attention_dropout _A = activation_dropout _A = activation_function _A = init_std _A = encoder_layerdrop _A = decoder_layerdrop _A = use_cache _A = encoder_layers _A = scale_embedding # scale factor will be sqrt(d_model) if True _A = max_source_positions _A = max_target_positions _A = num_conv_layers _A = list(_UpperCAmelCase ) _A = conv_channels _A = input_feat_per_channel _A = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' F'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' ) super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
7
0
from __future__ import annotations from collections.abc import Generator def UpperCAmelCase_ ( ) -> Generator[int, None, None]: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 2 while True: SCREAMING_SNAKE_CASE_ = factor_map.pop(__UpperCAmelCase , __UpperCAmelCase ) if factor: SCREAMING_SNAKE_CASE_ = factor + prime while x in factor_map: x += factor SCREAMING_SNAKE_CASE_ = factor else: SCREAMING_SNAKE_CASE_ = prime yield prime prime += 1 def UpperCAmelCase_ ( __UpperCAmelCase : float = 1E10 ) -> int: SCREAMING_SNAKE_CASE_ = sieve() SCREAMING_SNAKE_CASE_ = 1 while True: SCREAMING_SNAKE_CASE_ = next(__UpperCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__UpperCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
31
"""simple docstring""" from manim import * class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Rectangle(height=0.5 , width=0.5 ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _A = Rectangle(height=0.25 , width=0.25 ) _A = [mem.copy() for i in range(6 )] _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('CPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(4 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('GPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Model' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_UpperCAmelCase ) _A = [] _A = [] for i, rect in enumerate(_UpperCAmelCase ): _A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 ) target.move_to(_UpperCAmelCase ) model_arr.append(_UpperCAmelCase ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_UpperCAmelCase ) self.add(*_UpperCAmelCase , *_UpperCAmelCase ) _A = [meta_mem.copy() for i in range(6 )] _A = [meta_mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Disk' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _A = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_UpperCAmelCase ) _A = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase ) ) _A = Square(0.3 ) input.set_fill(_UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 ) self.play(Write(_UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 ) self.play(MoveToTarget(_UpperCAmelCase ) ) self.play(FadeOut(_UpperCAmelCase ) ) _A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _A = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) ) _A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _A = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _A = AnimationGroup( FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _A = 0.7 self.play( Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _A = a_c _A = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , ) _A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) ) self.wait()
7
0
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=64 , _UpperCamelCase=32 , _UpperCamelCase=5 , _UpperCamelCase=4 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=4 , _UpperCamelCase=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = embedding_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def UpperCamelCase( self ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = MobileBertModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = MobileBertForMaskedLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = MobileBertForNextSentencePrediction(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = MobileBertForPreTraining(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase , next_sentence_label=_UpperCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = MobileBertForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = MobileBertForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = MobileBertForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = self.num_choices _UpperCAmelCase = MobileBertForMultipleChoice(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , unittest.TestCase ): __A : int = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) __A : Union[str, Any] = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) __A : Optional[Any] = True def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=False ): _UpperCAmelCase = super()._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) if return_labels: if model_class in get_values(_UpperCamelCase ): _UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCamelCase ) _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCamelCase ) return inputs_dict def UpperCamelCase( self ): _UpperCAmelCase = MobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase( self ): self.config_tester.run_common_tests() def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_UpperCamelCase ) def A__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" return torch.tensor( SCREAMING_SNAKE_CASE_ , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ , ) UpperCAmelCase_ = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class __UpperCamelCase ( unittest.TestCase ): @slow def UpperCamelCase( self ): _UpperCAmelCase = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(_UpperCamelCase ) _UpperCAmelCase = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): _UpperCAmelCase = model(_UpperCamelCase )[0] _UpperCAmelCase = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , _UpperCamelCase ) _UpperCAmelCase = torch.tensor( [ [ [-2.4736526e07, 8.2691656e04, 1.6521838e05], [-5.7541704e-01, 3.9056022e00, 4.4011507e00], [2.6047359e00, 1.5677652e00, -1.7324188e-01], ] ] , device=_UpperCamelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE _UpperCAmelCase = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) _UpperCAmelCase = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
32
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int ) -> int: '''simple docstring''' return int((input_a, input_a).count(1 ) != 0 ) def _snake_case ( ) -> None: '''simple docstring''' assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
7
0
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> None: snake_case__ , snake_case__ = analyze_text(__lowerCAmelCase ) snake_case__ = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. snake_case__ = sum(single_char_strings.values() ) # one length string snake_case__ = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: snake_case__ = single_char_strings[ch] snake_case__ = my_str / all_sum my_fir_sum += prob * math.loga(__lowerCAmelCase ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string snake_case__ = sum(two_char_strings.values() ) snake_case__ = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: snake_case__ = cha + cha if sequence in two_char_strings: snake_case__ = two_char_strings[sequence] snake_case__ = int(__lowerCAmelCase ) / all_sum my_sec_sum += prob * math.loga(__lowerCAmelCase ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> tuple[dict, dict]: snake_case__ = Counter() # type: ignore snake_case__ = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(__lowerCAmelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def SCREAMING_SNAKE_CASE ( ) -> int: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
33
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments a = logging.getLogger(__name__) @dataclass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[float] = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''whether to use adafactor'''} ) UpperCAmelCase : Optional[float] = field( default=__lowerCAmelCase , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) UpperCAmelCase : Optional[float] = field( default=__lowerCAmelCase , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) UpperCAmelCase : Optional[float] = field(default=__lowerCAmelCase , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) UpperCAmelCase : Optional[float] = field( default=__lowerCAmelCase , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) UpperCAmelCase : Optional[str] = field( default='''linear''' , metadata={'''help''': f'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
7
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" A_ = '''swin''' A_ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowerCamelCase_=2_2_4 , lowerCamelCase_=4 , lowerCamelCase_=3 , lowerCamelCase_=9_6 , lowerCamelCase_=[2, 2, 6, 2] , lowerCamelCase_=[3, 6, 1_2, 2_4] , lowerCamelCase_=7 , lowerCamelCase_=4.0 , lowerCamelCase_=True , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=0.1 , lowerCamelCase_="gelu" , lowerCamelCase_=False , lowerCamelCase_=0.02 , lowerCamelCase_=1e-5 , lowerCamelCase_=3_2 , lowerCamelCase_=None , lowerCamelCase_=None , **lowerCamelCase_ , ) -> Any: super().__init__(**lowerCamelCase_) UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = depths UpperCamelCase = len(lowerCamelCase_) UpperCamelCase = num_heads UpperCamelCase = window_size UpperCamelCase = mlp_ratio UpperCamelCase = qkv_bias UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = drop_path_rate UpperCamelCase = hidden_act UpperCamelCase = use_absolute_embeddings UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase = int(embed_dim * 2 ** (len(lowerCamelCase_) - 1)) UpperCamelCase = ['''stem'''] + [F'stage{idx}' for idx in range(1 , len(lowerCamelCase_) + 1)] UpperCamelCase , UpperCamelCase = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def UpperCAmelCase__ ( self) -> float: return 1e-4
34
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule a = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
7
0
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets a_ :List[Any] = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' a_ :Union[str, Any] = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n' a_ :Optional[int] = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n' def a ( A__ ) -> Any: '''simple docstring''' def remove_articles(A__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(A__ , ''' ''' , A__ ) def white_space_fix(A__ ): return " ".join(text.split() ) def remove_punc(A__ ): SCREAMING_SNAKE_CASE__ : Dict = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(A__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(A__ ) ) ) ) def a ( A__ , A__ ) -> Tuple: '''simple docstring''' return int(normalize_answer(A__ ) == normalize_answer(A__ ) ) def a ( A__ , A__ ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = [any(compute_exact(A__ , A__ ) for ref in refs ) for pred, refs in zip(A__ , A__ )] return (sum(A__ ) / len(A__ )) * 1_0_0 def a ( A__ , A__ , A__ , A__ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = [rgram for rgrams in rgramslist for rgram in rgrams] SCREAMING_SNAKE_CASE__ : Optional[int] = Counter(A__ ) SCREAMING_SNAKE_CASE__ : str = Counter(A__ ) SCREAMING_SNAKE_CASE__ : Any = Counter() for sgram, scount in sgramcounter.items(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = scount * numref SCREAMING_SNAKE_CASE__ : Tuple = Counter(A__ ) SCREAMING_SNAKE_CASE__ : List[str] = Counter() for cgram, ccount in cgramcounter.items(): SCREAMING_SNAKE_CASE__ : Tuple = ccount * numref # KEEP SCREAMING_SNAKE_CASE__ : int = sgramcounter_rep & cgramcounter_rep SCREAMING_SNAKE_CASE__ : Any = keepgramcounter_rep & rgramcounter SCREAMING_SNAKE_CASE__ : Tuple = sgramcounter_rep & rgramcounter SCREAMING_SNAKE_CASE__ : List[str] = 0 SCREAMING_SNAKE_CASE__ : int = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. SCREAMING_SNAKE_CASE__ : Any = 1 SCREAMING_SNAKE_CASE__ : Dict = 1 if len(A__ ) > 0: SCREAMING_SNAKE_CASE__ : Optional[int] = keeptmpscorea / len(A__ ) if len(A__ ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) SCREAMING_SNAKE_CASE__ : Dict = keeptmpscorea / sum(keepgramcounterall_rep.values() ) SCREAMING_SNAKE_CASE__ : Dict = 0 if keepscore_precision > 0 or keepscore_recall > 0: SCREAMING_SNAKE_CASE__ : str = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION SCREAMING_SNAKE_CASE__ : int = sgramcounter_rep - cgramcounter_rep SCREAMING_SNAKE_CASE__ : Any = delgramcounter_rep - rgramcounter SCREAMING_SNAKE_CASE__ : Optional[int] = sgramcounter_rep - rgramcounter SCREAMING_SNAKE_CASE__ : List[str] = 0 SCREAMING_SNAKE_CASE__ : Tuple = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. SCREAMING_SNAKE_CASE__ : List[Any] = 1 if len(A__ ) > 0: SCREAMING_SNAKE_CASE__ : List[str] = deltmpscorea / len(A__ ) # ADDITION SCREAMING_SNAKE_CASE__ : List[Any] = set(A__ ) - set(A__ ) SCREAMING_SNAKE_CASE__ : str = set(A__ ) & set(A__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = set(A__ ) - set(A__ ) SCREAMING_SNAKE_CASE__ : str = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. SCREAMING_SNAKE_CASE__ : Optional[int] = 1 SCREAMING_SNAKE_CASE__ : List[Any] = 1 if len(A__ ) > 0: SCREAMING_SNAKE_CASE__ : str = addtmpscore / len(A__ ) if len(A__ ) > 0: SCREAMING_SNAKE_CASE__ : int = addtmpscore / len(A__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 if addscore_precision > 0 or addscore_recall > 0: SCREAMING_SNAKE_CASE__ : List[str] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def a ( A__ , A__ , A__ ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = len(A__ ) SCREAMING_SNAKE_CASE__ : Dict = ssent.split(''' ''' ) SCREAMING_SNAKE_CASE__ : Dict = csent.split(''' ''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [] SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] SCREAMING_SNAKE_CASE__ : Any = [] SCREAMING_SNAKE_CASE__ : int = [] SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ : Dict = [] SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : str = [] for rsent in rsents: SCREAMING_SNAKE_CASE__ : Dict = rsent.split(''' ''' ) SCREAMING_SNAKE_CASE__ : List[Any] = [] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] ragramslist.append(A__ ) for i in range(0 , len(A__ ) - 1 ): if i < len(A__ ) - 1: SCREAMING_SNAKE_CASE__ : Tuple = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(A__ ) if i < len(A__ ) - 2: SCREAMING_SNAKE_CASE__ : Optional[Any] = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(A__ ) if i < len(A__ ) - 3: SCREAMING_SNAKE_CASE__ : List[Any] = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(A__ ) ragramslist.append(A__ ) ragramslist.append(A__ ) ragramslist.append(A__ ) for i in range(0 , len(A__ ) - 1 ): if i < len(A__ ) - 1: SCREAMING_SNAKE_CASE__ : Optional[Any] = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(A__ ) if i < len(A__ ) - 2: SCREAMING_SNAKE_CASE__ : Union[str, Any] = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(A__ ) if i < len(A__ ) - 3: SCREAMING_SNAKE_CASE__ : List[Any] = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(A__ ) for i in range(0 , len(A__ ) - 1 ): if i < len(A__ ) - 1: SCREAMING_SNAKE_CASE__ : List[str] = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(A__ ) if i < len(A__ ) - 2: SCREAMING_SNAKE_CASE__ : List[Any] = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(A__ ) if i < len(A__ ) - 3: SCREAMING_SNAKE_CASE__ : Dict = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(A__ ) ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : Tuple = SARIngram(A__ , A__ , A__ , A__ ) ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : Union[str, Any] = SARIngram(A__ , A__ , A__ , A__ ) ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : str = SARIngram(A__ , A__ , A__ , A__ ) ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : Optional[int] = SARIngram(A__ , A__ , A__ , A__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 SCREAMING_SNAKE_CASE__ : Optional[int] = sum([delascore, delascore, delascore, delascore] ) / 4 SCREAMING_SNAKE_CASE__ : List[str] = sum([addascore, addascore, addascore, addascore] ) / 4 SCREAMING_SNAKE_CASE__ : int = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def a ( A__ , A__ = True , A__ = "13a" , A__ = True ) -> Optional[int]: '''simple docstring''' if lowercase: SCREAMING_SNAKE_CASE__ : List[str] = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: SCREAMING_SNAKE_CASE__ : str = sacrebleu.metrics.bleu._get_tokenizer(A__ )()(A__ ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = sacrebleu.TOKENIZERS[tokenizer]()(A__ ) elif tokenizer == "moses": SCREAMING_SNAKE_CASE__ : str = sacremoses.MosesTokenizer().tokenize(A__ , return_str=A__ , escape=A__ ) elif tokenizer == "penn": SCREAMING_SNAKE_CASE__ : int = sacremoses.MosesTokenizer().penn_tokenize(A__ , return_str=A__ ) else: SCREAMING_SNAKE_CASE__ : Tuple = sentence if not return_str: SCREAMING_SNAKE_CASE__ : List[str] = normalized_sent.split() return normalized_sent def a ( A__ , A__ , A__ ) -> int: '''simple docstring''' if not (len(A__ ) == len(A__ ) == len(A__ )): raise ValueError('''Sources length must match predictions and references lengths.''' ) SCREAMING_SNAKE_CASE__ : str = 0 for src, pred, refs in zip(A__ , A__ , A__ ): sari_score += SARIsent(normalize(A__ ) , normalize(A__ ) , [normalize(A__ ) for sent in refs] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = sari_score / len(A__ ) return 1_0_0 * sari_score def a ( A__ , A__ , A__="exp" , A__=None , A__=False , A__=False , A__=False , ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = len(references[0] ) if any(len(A__ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) SCREAMING_SNAKE_CASE__ : Tuple = [[refs[i] for refs in references] for i in range(A__ )] SCREAMING_SNAKE_CASE__ : Optional[int] = sacrebleu.corpus_bleu( A__ , A__ , smooth_method=A__ , smooth_value=A__ , force=A__ , lowercase=A__ , use_effective_order=A__ , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def lowercase__ ( self : List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def lowercase__ ( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Dict , _lowercase : str ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = {} result.update({'''sari''': compute_sari(sources=_lowercase , predictions=_lowercase , references=_lowercase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=_lowercase , references=_lowercase )} ) result.update({'''exact''': compute_em(predictions=_lowercase , references=_lowercase )} ) return result
35
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : UNetaDModel UpperCAmelCase : KarrasVeScheduler def __init__( self : Any , _UpperCAmelCase : UNetaDModel , _UpperCAmelCase : KarrasVeScheduler ): super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self : Optional[int] , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Optional[Any] , ): _A = self.unet.config.sample_size _A = (batch_size, 3, img_size, img_size) _A = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) _A = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper _A = self.scheduler.schedule[t] _A = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat _A , _A = self.scheduler.add_noise_to_input(_UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. _A = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev _A = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. _A = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample _A = self.scheduler.step_correct( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , step_output.prev_sample , step_output['derivative'] , ) _A = step_output.prev_sample _A = (sample / 2 + 0.5).clamp(0 , 1 ) _A = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _A = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
7
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : torch.FloatTensor __lowerCamelCase : torch.FloatTensor class _A ( snake_case , snake_case ): '''simple docstring''' __lowerCamelCase : List[str] = 1 @register_to_config def __init__( self ,SCREAMING_SNAKE_CASE_ = 2000 ,SCREAMING_SNAKE_CASE_ = 0.15 ,SCREAMING_SNAKE_CASE_ = 0.01 ,SCREAMING_SNAKE_CASE_ = 13_48.0 ,SCREAMING_SNAKE_CASE_ = 1E-5 ,SCREAMING_SNAKE_CASE_ = 1 ,): '''simple docstring''' # standard deviation of the initial noise distribution snake_case : Union[str, Any] = sigma_max # setable values snake_case : Any = None self.set_sigmas(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ): '''simple docstring''' return sample def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ): '''simple docstring''' snake_case : Any = sampling_eps if sampling_eps is not None else self.config.sampling_eps snake_case : str = torch.linspace(1 ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,device=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ): '''simple docstring''' snake_case : List[Any] = sigma_min if sigma_min is not None else self.config.sigma_min snake_case : str = sigma_max if sigma_max is not None else self.config.sigma_max snake_case : Any = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) snake_case : str = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) snake_case : List[Any] = torch.exp(torch.linspace(math.log(SCREAMING_SNAKE_CASE_ ) ,math.log(SCREAMING_SNAKE_CASE_ ) ,SCREAMING_SNAKE_CASE_ ) ) snake_case : Optional[Any] = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return torch.where( timesteps == 0 ,torch.zeros_like(t.to(timesteps.device ) ) ,self.discrete_sigmas[timesteps - 1].to(timesteps.device ) ,) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = True ,): '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) snake_case : Optional[Any] = timestep * torch.ones( sample.shape[0] ,device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) snake_case : List[str] = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda snake_case : Dict = timesteps.to(self.discrete_sigmas.device ) snake_case : Any = self.discrete_sigmas[timesteps].to(sample.device ) snake_case : str = self.get_adjacent_sigma(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ).to(sample.device ) snake_case : Tuple = torch.zeros_like(SCREAMING_SNAKE_CASE_ ) snake_case : Optional[Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods snake_case : Tuple = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): snake_case : Dict = diffusion.unsqueeze(-1 ) snake_case : List[Any] = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of snake_case : Tuple = randn_tensor( sample.shape ,layout=sample.layout ,generator=SCREAMING_SNAKE_CASE_ ,device=sample.device ,dtype=sample.dtype ) snake_case : Tuple = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? snake_case : List[str] = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=SCREAMING_SNAKE_CASE_ ,prev_sample_mean=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = True ,): '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction snake_case : Dict = randn_tensor(sample.shape ,layout=sample.layout ,generator=SCREAMING_SNAKE_CASE_ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr snake_case : List[str] = torch.norm(model_output.reshape(model_output.shape[0] ,-1 ) ,dim=-1 ).mean() snake_case : List[Any] = torch.norm(noise.reshape(noise.shape[0] ,-1 ) ,dim=-1 ).mean() snake_case : str = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 snake_case : int = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term snake_case : Optional[int] = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): snake_case : Union[str, Any] = step_size.unsqueeze(-1 ) snake_case : Optional[Any] = sample + step_size * model_output snake_case : Any = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' # Make sure sigmas and timesteps have the same device and dtype as original_samples snake_case : Optional[Any] = timesteps.to(original_samples.device ) snake_case : Any = self.discrete_sigmas.to(original_samples.device )[timesteps] snake_case : Tuple = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(SCREAMING_SNAKE_CASE_ ) * sigmas[:, None, None, None] ) snake_case : Optional[Any] = noise + original_samples return noisy_samples def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
36
"""simple docstring""" class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ): _A = None _A = None _A = graph self._normalize_graph(_UpperCAmelCase , _UpperCAmelCase ) _A = len(_UpperCAmelCase ) _A = None def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ): if sources is int: _A = [sources] if sinks is int: _A = [sinks] if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) == 0: return _A = sources[0] _A = sinks[0] # make fake vertex if there are more # than one source or sink if len(_UpperCAmelCase ) > 1 or len(_UpperCAmelCase ) > 1: _A = 0 for i in sources: max_input_flow += sum(self.graph[i] ) _A = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: _A = max_input_flow _A = 0 _A = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: _A = max_input_flow _A = size - 1 def lowerCAmelCase_ ( self : Optional[Any] ): if self.maximum_flow_algorithm is None: raise Exception('You need to set maximum flow algorithm before.' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Union[str, Any] ): _A = algorithm(self ) class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Union[str, Any] ): _A = flow_network _A = flow_network.verticesCount _A = flow_network.sourceIndex _A = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that _A = flow_network.graph _A = False def lowerCAmelCase_ ( self : Optional[Any] ): if not self.executed: self._algorithm() _A = True def lowerCAmelCase_ ( self : int ): pass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : int , _UpperCAmelCase : Any ): super().__init__(_UpperCAmelCase ) # use this to save your result _A = -1 def lowerCAmelCase_ ( self : Optional[Any] ): if not self.executed: raise Exception('You should execute algorithm before using its result!' ) return self.maximum_flow class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : List[Any] ): super().__init__(_UpperCAmelCase ) _A = [[0] * self.verticies_count for i in range(self.verticies_count )] _A = [0] * self.verticies_count _A = [0] * self.verticies_count def lowerCAmelCase_ ( self : Dict ): _A = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule _A = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list _A = 0 while i < len(_UpperCAmelCase ): _A = vertices_list[i] _A = self.heights[vertex_index] self.process_vertex(_UpperCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_UpperCAmelCase ) ) _A = 0 else: i += 1 _A = sum(self.preflow[self.source_index] ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Any ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_UpperCAmelCase , _UpperCAmelCase ) self.relabel(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ): _A = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : int ): _A = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): _A = self.heights[to_index] if min_height is not None: _A = min_height + 1 if __name__ == "__main__": a = [0] a = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] a = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network a = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate a = flow_network.find_maximum_flow() print(F'''maximum flow is {maximum_flow}''')
7
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : str = logging.get_logger(__name__) def UpperCamelCase_ ( __a ) -> Any: # initialize config if "resnet-50" in model_name: a__ : int = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: a__ : Optional[int] = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) a__ : Tuple = DetrConfig(use_timm_backbone=__a , backbone_config=__a ) # set label attributes a__ : Any = "panoptic" in model_name if is_panoptic: a__ : Dict = 250 else: a__ : Union[str, Any] = 91 a__ : str = "huggingface/label-files" a__ : Tuple = "coco-detection-id2label.json" a__ : List[str] = json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) ) a__ : str = {int(__a ): v for k, v in idalabel.items()} a__ : Union[str, Any] = idalabel a__ : Optional[Any] = {v: k for k, v in idalabel.items()} return config, is_panoptic def UpperCamelCase_ ( __a ) -> Dict: # here we list all keys to be renamed (original name on the left, our name on the right) a__ : List[Any] = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def UpperCamelCase_ ( __a , __a , __a ) -> int: a__ : Tuple = state_dict.pop(__a ) a__ : Any = val def UpperCamelCase_ ( __a , __a=False ) -> int: a__ : Optional[int] = "" if is_panoptic: a__ : Optional[Any] = "detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) a__ : List[Any] = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) a__ : Optional[int] = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a__ : Tuple = in_proj_weight[:256, :] a__ : List[Any] = in_proj_bias[:256] a__ : Any = in_proj_weight[256:512, :] a__ : Dict = in_proj_bias[256:512] a__ : int = in_proj_weight[-256:, :] a__ : Dict = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention a__ : Optional[Any] = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) a__ : List[Any] = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a__ : str = in_proj_weight[:256, :] a__ : List[str] = in_proj_bias[:256] a__ : Any = in_proj_weight[256:512, :] a__ : List[Any] = in_proj_bias[256:512] a__ : Dict = in_proj_weight[-256:, :] a__ : List[str] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention a__ : List[str] = state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) a__ : Optional[Any] = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict a__ : str = in_proj_weight_cross_attn[:256, :] a__ : str = in_proj_bias_cross_attn[:256] a__ : Dict = in_proj_weight_cross_attn[256:512, :] a__ : Dict = in_proj_bias_cross_attn[256:512] a__ : Dict = in_proj_weight_cross_attn[-256:, :] a__ : Tuple = in_proj_bias_cross_attn[-256:] def UpperCamelCase_ ( ) -> int: a__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" a__ : Optional[Any] = Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def UpperCamelCase_ ( __a , __a=None , __a=False ) -> Optional[int]: a__, a__ : List[str] = get_detr_config(__a ) # load original model from torch hub a__ : str = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(f'''Converting model {model_name}...''' ) a__ : int = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=__a ).eval() a__ : Dict = detr.state_dict() # rename keys for src, dest in create_rename_keys(__a ): if is_panoptic: a__ : Dict = "detr." + src rename_key(__a , __a , __a ) # query, key and value matrices need special treatment read_in_q_k_v(__a , is_panoptic=__a ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them a__ : Optional[int] = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): a__ : Any = state_dict.pop(__a ) a__ : List[str] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: a__ : Optional[Any] = state_dict.pop(__a ) a__ : int = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: a__ : Dict = state_dict.pop(__a ) a__ : Optional[int] = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): a__ : Tuple = state_dict.pop(__a ) a__ : Union[str, Any] = val # finally, create HuggingFace model and load state dict a__ : Optional[Any] = DetrForSegmentation(__a ) if is_panoptic else DetrForObjectDetection(__a ) model.load_state_dict(__a ) model.eval() # verify our conversion on an image a__ : Optional[int] = "coco_panoptic" if is_panoptic else "coco_detection" a__ : Optional[int] = DetrImageProcessor(format=__a ) a__ : Union[str, Any] = processor(images=prepare_img() , return_tensors="pt" ) a__ : List[str] = encoding["pixel_values"] a__ : Tuple = detr(__a ) a__ : List[str] = model(__a ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) processor.save_pretrained(__a ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(f'''nielsr/{model_name}''' ) processor.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""detr-resnet-50""", type=str, choices=["""detr-resnet-50""", """detr-resnet-101"""], help="""Name of the DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub or not.""") UpperCamelCase : List[Any] = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
37
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class lowercase_ ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : List[str] = SpeechTaTokenizer UpperCAmelCase : Tuple = False UpperCAmelCase : Optional[int] = True def lowerCAmelCase_ ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing _A = SpeechTaTokenizer(_UpperCAmelCase ) _A = AddedToken('<mask>' , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) _A = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Tuple ): _A = 'this is a test' _A = 'this is a test' return input_text, output_text def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict=20 , _UpperCAmelCase : str=5 ): _A , _A = self.get_input_output_texts(_UpperCAmelCase ) _A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) _A = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) return text, ids def lowerCAmelCase_ ( self : Optional[Any] ): _A = '<pad>' _A = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-4] , 'œ' ) self.assertEqual(vocab_keys[-2] , '<mask>' ) self.assertEqual(vocab_keys[-1] , '<ctc_blank>' ) self.assertEqual(len(_UpperCAmelCase ) , 81 ) def lowerCAmelCase_ ( self : Optional[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def lowerCAmelCase_ ( self : Any ): _A = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A = tokenizer.vocab_size _A = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _A = ['aaaaa bbbbbb', 'cccccccccdddddddd'] _A = tokenizer.add_tokens(_UpperCAmelCase ) _A = tokenizer.vocab_size _A = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , all_size + len(_UpperCAmelCase ) ) _A = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=_UpperCAmelCase ) self.assertGreaterEqual(len(_UpperCAmelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) _A = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} _A = tokenizer.add_special_tokens(_UpperCAmelCase ) _A = tokenizer.vocab_size _A = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , all_size_a + len(_UpperCAmelCase ) ) _A = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=_UpperCAmelCase ) self.assertGreaterEqual(len(_UpperCAmelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def lowerCAmelCase_ ( self : str ): pass def lowerCAmelCase_ ( self : Any ): pass def lowerCAmelCase_ ( self : Dict ): _A = self.get_tokenizer() _A = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(_UpperCAmelCase , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) _A = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) _A = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) # fmt: off self.assertListEqual(_UpperCAmelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _A = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def lowerCAmelCase_ ( self : List[Any] ): # Use custom sequence because this tokenizer does not handle numbers. _A = [ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off _A = { 'input_ids': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=_UpperCAmelCase , )
7
0
'''simple docstring''' import requests def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : str ) -> None: '''simple docstring''' snake_case__ : str = {"""Content-Type""": """application/json"""} snake_case__ : List[str] = requests.post(__magic_name__ , json={"""text""": message_body} , headers=__magic_name__ ) if response.status_code != 2_00: snake_case__ : List[str] = ( """Request to slack returned an error """ f"{response.status_code}, the response is:\n{response.text}" ) raise ValueError(__magic_name__ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
38
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
7
0
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class snake_case_ : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : List[str]=1_3 , _UpperCamelCase : Optional[Any]=3_0 , _UpperCamelCase : Tuple=2 , _UpperCamelCase : Union[str, Any]=3 , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : int=3_2 , _UpperCamelCase : Optional[int]=5 , _UpperCamelCase : Union[str, Any]=4 , _UpperCamelCase : int=3_7 , _UpperCamelCase : List[Any]="gelu" , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : Dict=1_0 , _UpperCamelCase : Any=0.02 , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Union[str, Any]=2 , ) ->str: snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = scope snake_case_ = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case_ = (image_size // patch_size) ** 2 snake_case_ = num_patches + 1 def snake_case__( self : List[Any] ) ->Optional[int]: snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = self.get_config() return config, pixel_values, labels def snake_case__( self : List[str] ) ->Optional[int]: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def snake_case__( self : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Any ) ->Dict: snake_case_ = ViTModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] ) ->List[Any]: snake_case_ = ViTForMaskedImageModeling(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case_ = 1 snake_case_ = ViTForMaskedImageModeling(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : Any ) ->int: snake_case_ = self.type_sequence_label_size snake_case_ = ViTForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case_ = 1 snake_case_ = ViTForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case__( self : List[Any] ) ->Tuple: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) = config_and_inputs snake_case_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case_ ( __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Any = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : str = False def snake_case__( self : Tuple ) ->int: snake_case_ = ViTModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=3_7 ) def snake_case__( self : Dict ) ->Any: self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def snake_case__( self : str ) ->int: pass def snake_case__( self : int ) ->Tuple: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) ) def snake_case__( self : Any ) ->Any: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(_UpperCamelCase ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def snake_case__( self : Union[str, Any] ) ->str: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Union[str, Any] ) ->Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCamelCase ) def snake_case__( self : Union[str, Any] ) ->str: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) @slow def snake_case__( self : List[str] ) ->int: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = ViTModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE (): snake_case_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case_ ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case__( self : Union[str, Any] ) ->Tuple: return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def snake_case__( self : str ) ->Any: snake_case_ = ViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ).to(_UpperCamelCase ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=_UpperCamelCase , return_tensors='''pt''' ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): snake_case_ = model(**_UpperCamelCase ) # verify the logits snake_case_ = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) snake_case_ = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def snake_case__( self : List[str] ) ->str: # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. snake_case_ = ViTModel.from_pretrained('''facebook/dino-vits8''' ).to(_UpperCamelCase ) snake_case_ = ViTImageProcessor.from_pretrained('''facebook/dino-vits8''' , size=4_8_0 ) snake_case_ = prepare_img() snake_case_ = image_processor(images=_UpperCamelCase , return_tensors='''pt''' ) snake_case_ = inputs.pixel_values.to(_UpperCamelCase ) # forward pass with torch.no_grad(): snake_case_ = model(_UpperCamelCase , interpolate_pos_encoding=_UpperCamelCase ) # verify the logits snake_case_ = torch.Size((1, 3_6_0_1, 3_8_4) ) self.assertEqual(outputs.last_hidden_state.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def snake_case__( self : List[Any] ) ->Tuple: snake_case_ = ViTModel.from_pretrained('''facebook/dino-vits8''' , torch_dtype=torch.floataa , device_map='''auto''' ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=_UpperCamelCase , return_tensors='''pt''' ) snake_case_ = inputs.pixel_values.to(_UpperCamelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): snake_case_ = model(_UpperCamelCase )
39
"""simple docstring""" import argparse a = '''docs/source/_static/js/custom.js''' def _snake_case ( _snake_case : Dict ) -> Any: '''simple docstring''' with open(_snake_case , encoding='utf-8' , newline='\n' ) as f: _A = f.readlines() _A = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 _A = F'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F''' "v{version}": "v{version}",\n''' with open(_snake_case , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_snake_case ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') a = parser.parse_args() update_custom_js(args.version)
7
0
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCAmelCase_ ( a__ ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> List[str]: super().__init__() UpperCamelCase : str = value_function UpperCamelCase : Tuple = unet UpperCamelCase : Dict = scheduler UpperCamelCase : Dict = env UpperCamelCase : List[str] = env.get_dataset() UpperCamelCase : Optional[int] = {} for key in self.data.keys(): try: UpperCamelCase : Dict = self.data[key].mean() except: # noqa: E722 pass UpperCamelCase : Optional[Any] = {} for key in self.data.keys(): try: UpperCamelCase : Tuple = self.data[key].std() except: # noqa: E722 pass UpperCamelCase : Optional[int] = env.observation_space.shape[0] UpperCamelCase : List[str] = env.action_space.shape[0] def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> str: return (x_in - self.means[key]) / self.stds[key] def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> int: return x_in * self.stds[key] + self.means[key] def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Dict: if type(SCREAMING_SNAKE_CASE_ ) is dict: return {k: self.to_torch(SCREAMING_SNAKE_CASE_ ) for k, v in x_in.items()} elif torch.is_tensor(SCREAMING_SNAKE_CASE_ ): return x_in.to(self.unet.device ) return torch.tensor(SCREAMING_SNAKE_CASE_, device=self.unet.device ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: for key, val in cond.items(): UpperCamelCase : List[Any] = val.clone() return x_in def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase : str = x.shape[0] UpperCamelCase : str = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCamelCase : Optional[Any] = torch.full((batch_size,), SCREAMING_SNAKE_CASE_, device=self.unet.device, dtype=torch.long ) for _ in range(SCREAMING_SNAKE_CASE_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCamelCase : List[str] = self.value_function(x.permute(0, 2, 1 ), SCREAMING_SNAKE_CASE_ ).sample UpperCamelCase : Optional[int] = torch.autograd.grad([y.sum()], [x] )[0] UpperCamelCase : Optional[int] = self.scheduler._get_variance(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = torch.exp(0.5 * posterior_variance ) UpperCamelCase : Optional[Any] = model_std * grad UpperCamelCase : List[Any] = 0 UpperCamelCase : str = x.detach() UpperCamelCase : Dict = x + scale * grad UpperCamelCase : Optional[int] = self.reset_xa(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, self.action_dim ) UpperCamelCase : Dict = self.unet(x.permute(0, 2, 1 ), SCREAMING_SNAKE_CASE_ ).sample.permute(0, 2, 1 ) # TODO: verify deprecation of this kwarg UpperCamelCase : List[Any] = self.scheduler.step(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, predict_epsilon=SCREAMING_SNAKE_CASE_ )['prev_sample'] # apply conditions to the trajectory (set the initial state) UpperCamelCase : str = self.reset_xa(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, self.action_dim ) UpperCamelCase : int = self.to_torch(SCREAMING_SNAKE_CASE_ ) return x, y def __call__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.1 ) -> Dict: # normalize the observations and create batch dimension UpperCamelCase : Union[str, Any] = self.normalize(SCREAMING_SNAKE_CASE_, 'observations' ) UpperCamelCase : int = obs[None].repeat(SCREAMING_SNAKE_CASE_, axis=0 ) UpperCamelCase : List[str] = {0: self.to_torch(SCREAMING_SNAKE_CASE_ )} UpperCamelCase : str = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCamelCase : Union[str, Any] = randn_tensor(SCREAMING_SNAKE_CASE_, device=self.unet.device ) UpperCamelCase : Dict = self.reset_xa(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, self.action_dim ) UpperCamelCase : List[Any] = self.to_torch(SCREAMING_SNAKE_CASE_ ) # run the diffusion process UpperCamelCase , UpperCamelCase : Optional[Any] = self.run_diffusion(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # sort output trajectories by value UpperCamelCase : Union[str, Any] = y.argsort(0, descending=SCREAMING_SNAKE_CASE_ ).squeeze() UpperCamelCase : Union[str, Any] = x[sorted_idx] UpperCamelCase : List[Any] = sorted_values[:, :, : self.action_dim] UpperCamelCase : Optional[Any] = actions.detach().cpu().numpy() UpperCamelCase : Union[str, Any] = self.de_normalize(SCREAMING_SNAKE_CASE_, key='actions' ) # select the action with the highest value if y is not None: UpperCamelCase : List[str] = 0 else: # if we didn't run value guiding, select a random action UpperCamelCase : List[Any] = np.random.randint(0, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = denorm_actions[selected_index, 0] return denorm_actions
40
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''vit_mae''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int]=768 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Optional[int]=3_072 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : Optional[Any]=224 , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=512 , _UpperCAmelCase : int=8 , _UpperCAmelCase : List[Any]=2_048 , _UpperCAmelCase : Optional[Any]=0.75 , _UpperCAmelCase : List[str]=False , **_UpperCAmelCase : Union[str, Any] , ): super().__init__(**_UpperCAmelCase ) _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = initializer_range _A = layer_norm_eps _A = image_size _A = patch_size _A = num_channels _A = qkv_bias _A = decoder_num_attention_heads _A = decoder_hidden_size _A = decoder_num_hidden_layers _A = decoder_intermediate_size _A = mask_ratio _A = norm_pix_loss
7
0
'''simple docstring''' from itertools import permutations def _A ( A__ ): """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __lowercase = [7, 11, 13, 17] for i, test in enumerate(A__ ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def _A ( A__ = 10 ): """simple docstring""" return sum( int(''''''.join(map(A__ , A__ ) ) ) for num in permutations(range(A__ ) ) if is_substring_divisible(A__ ) ) if __name__ == "__main__": print(f'{solution() = }')
41
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) a = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] a = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def _snake_case ( _snake_case : Optional[Any] ) -> str: '''simple docstring''' _A = torch.load(_snake_case , map_location='cpu' ) return sd def _snake_case ( _snake_case : Union[str, Any] , _snake_case : str , _snake_case : Tuple=rename_keys_prefix ) -> List[str]: '''simple docstring''' _A = OrderedDict() _A = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _A = key for name_pair in rename_keys_prefix: _A = new_key.replace(name_pair[0] , name_pair[1] ) _A = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _A = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def _snake_case ( _snake_case : List[str] , _snake_case : Dict ) -> Dict: '''simple docstring''' assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: _A = 'pretraining' if "vcr" in checkpoint_path: _A = {'visual_embedding_dim': 5_12} elif "vqa_advanced" in checkpoint_path: _A = {'visual_embedding_dim': 20_48} elif "vqa" in checkpoint_path: _A = {'visual_embedding_dim': 20_48} elif "nlvr" in checkpoint_path: _A = {'visual_embedding_dim': 10_24} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: _A = {'visual_embedding_dim': 5_12} _A = 'multichoice' elif "vqa_advanced" in checkpoint_path: _A = {'visual_embedding_dim': 20_48} _A = 'vqa_advanced' elif "vqa" in checkpoint_path: _A = {'visual_embedding_dim': 20_48, 'num_labels': 31_29} _A = 'vqa' elif "nlvr" in checkpoint_path: _A = { 'visual_embedding_dim': 10_24, 'num_labels': 2, } _A = 'nlvr' _A = VisualBertConfig(**_snake_case ) # Load State Dict _A = load_state_dict(_snake_case ) _A = get_new_dict(_snake_case , _snake_case ) if model_type == "pretraining": _A = VisualBertForPreTraining(_snake_case ) elif model_type == "vqa": _A = VisualBertForQuestionAnswering(_snake_case ) elif model_type == "nlvr": _A = VisualBertForVisualReasoning(_snake_case ) elif model_type == "multichoice": _A = VisualBertForMultipleChoice(_snake_case ) model.load_state_dict(_snake_case ) # Save Checkpoints Path(_snake_case ).mkdir(exist_ok=_snake_case ) model.save_pretrained(_snake_case ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') a = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
7
0
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> int: assert isinstance(__UpperCamelCase ,__UpperCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' ,[False, True] ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[str]: lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase_ = JsonDatasetReader(__UpperCamelCase ,cache_dir=__UpperCamelCase ,keep_in_memory=__UpperCamelCase ).read() _check_json_dataset(__UpperCamelCase ,__UpperCamelCase ) @pytest.mark.parametrize( 'features' ,[ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] ,) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase_ = features.copy() if features else default_expected_features lowerCamelCase_ = ( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase_ = JsonDatasetReader(__UpperCamelCase ,features=__UpperCamelCase ,cache_dir=__UpperCamelCase ).read() _check_json_dataset(__UpperCamelCase ,__UpperCamelCase ) @pytest.mark.parametrize( 'features' ,[ None, {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}, ] ,) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'} lowerCamelCase_ = features.copy() if features else default_expected_features lowerCamelCase_ = ( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase_ = JsonDatasetReader(__UpperCamelCase ,features=__UpperCamelCase ,cache_dir=__UpperCamelCase ).read() assert isinstance(__UpperCamelCase ,__UpperCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} lowerCamelCase_ = {'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'} lowerCamelCase_ = features.copy() lowerCamelCase_ = ( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = JsonDatasetReader(__UpperCamelCase ,features=__UpperCamelCase ,cache_dir=__UpperCamelCase ).read() assert isinstance(__UpperCamelCase ,__UpperCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('split' ,[None, NamedSplit('train' ), 'train', 'test'] ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]: lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase_ = JsonDatasetReader(__UpperCamelCase ,cache_dir=__UpperCamelCase ,split=__UpperCamelCase ).read() _check_json_dataset(__UpperCamelCase ,__UpperCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' ,[str, list] ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[Any]: if issubclass(__UpperCamelCase ,__UpperCamelCase ): lowerCamelCase_ = jsonl_path elif issubclass(__UpperCamelCase ,__UpperCamelCase ): lowerCamelCase_ = [jsonl_path] lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase_ = JsonDatasetReader(__UpperCamelCase ,cache_dir=__UpperCamelCase ).read() _check_json_dataset(__UpperCamelCase ,__UpperCamelCase ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=("train",) ) -> Optional[int]: assert isinstance(__UpperCamelCase ,__UpperCamelCase ) for split in splits: lowerCamelCase_ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' ,[False, True] ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase_ = JsonDatasetReader({'train': jsonl_path} ,cache_dir=__UpperCamelCase ,keep_in_memory=__UpperCamelCase ).read() _check_json_datasetdict(__UpperCamelCase ,__UpperCamelCase ) @pytest.mark.parametrize( 'features' ,[ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] ,) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Any: lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase_ = features.copy() if features else default_expected_features lowerCamelCase_ = ( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase_ = JsonDatasetReader({'train': jsonl_path} ,features=__UpperCamelCase ,cache_dir=__UpperCamelCase ).read() _check_json_datasetdict(__UpperCamelCase ,__UpperCamelCase ) @pytest.mark.parametrize('split' ,[None, NamedSplit('train' ), 'train', 'test'] ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Any: if split: lowerCamelCase_ = {split: jsonl_path} else: lowerCamelCase_ = 'train' lowerCamelCase_ = {'train': jsonl_path, 'test': jsonl_path} lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase_ = JsonDatasetReader(__UpperCamelCase ,cache_dir=__UpperCamelCase ).read() _check_json_datasetdict(__UpperCamelCase ,__UpperCamelCase ,splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _UpperCamelCase ( __UpperCamelCase ) -> Union[str, Any]: return json.load(__UpperCamelCase ) def _UpperCamelCase ( __UpperCamelCase ) -> List[str]: return [json.loads(__UpperCamelCase ) for line in buffer] class UpperCAmelCase : '''simple docstring''' @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , lines=SCREAMING_SNAKE_CASE_ ).write() buffer.seek(0 ) lowerCamelCase_ = load_json_function(SCREAMING_SNAKE_CASE_ ) assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE_ ) assert len(SCREAMING_SNAKE_CASE_ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , lines=SCREAMING_SNAKE_CASE_ , orient=SCREAMING_SNAKE_CASE_ ).write() buffer.seek(0 ) lowerCamelCase_ = load_json(SCREAMING_SNAKE_CASE_ ) assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(SCREAMING_SNAKE_CASE_ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(SCREAMING_SNAKE_CASE_ ) == 10 @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , lines=SCREAMING_SNAKE_CASE_ , num_proc=2 ).write() buffer.seek(0 ) lowerCamelCase_ = load_json_function(SCREAMING_SNAKE_CASE_ ) assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE_ ) assert len(SCREAMING_SNAKE_CASE_ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , lines=SCREAMING_SNAKE_CASE_ , orient=SCREAMING_SNAKE_CASE_ , num_proc=2 ).write() buffer.seek(0 ) lowerCamelCase_ = load_json(SCREAMING_SNAKE_CASE_ ) assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(SCREAMING_SNAKE_CASE_ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(SCREAMING_SNAKE_CASE_ ) == 10 def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: '''simple docstring''' with pytest.raises(SCREAMING_SNAKE_CASE_ ): with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , num_proc=0 ) @pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / f'''test.json.{extension}''' lowerCamelCase_ = str(shared_datadir / f'''test_file.json.{extension}''' ) JsonDatasetWriter(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , compression=SCREAMING_SNAKE_CASE_ ).write() with fsspec.open(SCREAMING_SNAKE_CASE_ , 'rb' , compression='infer' ) as f: lowerCamelCase_ = f.read() with fsspec.open(SCREAMING_SNAKE_CASE_ , 'rb' , compression='infer' ) as f: lowerCamelCase_ = f.read() assert exported_content == original_content
42
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def _snake_case ( _snake_case : Dict ) -> Optional[Any]: '''simple docstring''' for param in module.parameters(): _A = False def _snake_case ( ) -> Tuple: '''simple docstring''' _A = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _A = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def _snake_case ( _snake_case : Dict ) -> Optional[Any]: '''simple docstring''' _A = plt.imshow(_snake_case ) fig.axes.get_xaxis().set_visible(_snake_case ) fig.axes.get_yaxis().set_visible(_snake_case ) plt.show() def _snake_case ( ) -> Optional[Any]: '''simple docstring''' _A = datetime.now() _A = current_time.strftime('%H:%M:%S' ) return timestamp
7
0
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _a ( unittest.TestCase ): def __init__( self: List[str] , UpperCamelCase_: Tuple , UpperCamelCase_: bool = True , UpperCamelCase_: Dict[str, int] = None , UpperCamelCase_: int = 32 , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 255 , UpperCamelCase_: bool = True , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Union[float, List[float]]] = [0.48145466, 0.4578275, 0.40821073] , UpperCamelCase_: Optional[Union[float, List[float]]] = [0.26862954, 0.26130258, 0.27577711] , UpperCamelCase_: bool = True , UpperCamelCase_: Tuple=7 , UpperCamelCase_: Union[str, Any]=30 , UpperCamelCase_: Optional[int]=400 , UpperCamelCase_: List[str]=3 , ) -> Tuple: """simple docstring""" lowercase__ = parent lowercase__ = do_resize lowercase__ = size if size is not None else {'''shortest_edge''': 288} lowercase__ = size_divisor lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_normalize lowercase__ = do_center_crop lowercase__ = image_mean lowercase__ = image_std lowercase__ = do_pad lowercase__ = batch_size lowercase__ = num_channels lowercase__ = min_resolution lowercase__ = max_resolution def lowerCamelCase_ ( self: Tuple ) -> str: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Union[str, Any]=False ) -> str: """simple docstring""" if not batched: lowercase__ = self.size['''shortest_edge'''] lowercase__ = image_inputs[0] if isinstance(UpperCamelCase_ , Image.Image ): lowercase__ , lowercase__ = image.size else: lowercase__ , lowercase__ = image.shape[1], image.shape[2] lowercase__ = size / min(UpperCamelCase_ , UpperCamelCase_ ) if h < w: lowercase__ , lowercase__ = size, scale * w else: lowercase__ , lowercase__ = scale * h, size lowercase__ = int((1_333 / 800) * size ) if max(UpperCamelCase_ , UpperCamelCase_ ) > max_size: lowercase__ = max_size / max(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = newh * scale lowercase__ = neww * scale lowercase__ , lowercase__ = int(newh + 0.5 ), int(neww + 0.5 ) lowercase__ , lowercase__ = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: lowercase__ = [] for image in image_inputs: lowercase__ , lowercase__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase__ = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[0] )[0] lowercase__ = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[Any] = BridgeTowerImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self: int ) -> Tuple: """simple docstring""" lowercase__ = BridgeTowerImageProcessingTester(self ) @property def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size_divisor''' ) ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" pass def lowerCamelCase_ ( self: Union[str, Any] ) -> Tuple: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
43
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Any = ['''image_processor''', '''tokenizer'''] UpperCAmelCase : Optional[int] = '''ViTImageProcessor''' UpperCAmelCase : int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Tuple , _UpperCAmelCase : int=None , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : Dict ): _A = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) _A = kwargs.pop('feature_extractor' ) _A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : Optional[Any] , _UpperCAmelCase : int=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Union[str, Any] ): if text is None and visual_prompt is None and images is None: raise ValueError('You have to specify either text, visual prompt or images.' ) if text is not None and visual_prompt is not None: raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' ) if text is not None: _A = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if visual_prompt is not None: _A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if images is not None: _A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if visual_prompt is not None and images is not None: _A = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: _A = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: _A = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def lowerCAmelCase_ ( self : str , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Union[str, Any] ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCAmelCase_ ( self : Dict ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def lowerCAmelCase_ ( self : Tuple ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
7
0
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase__ : def __init__( self : Any,__A : int=2,__A : Any=3,__A : Optional[int]=6_4,__A : Tuple=None ): _lowerCamelCase : int = np.random.default_rng(__A ) _lowerCamelCase : List[str] = length _lowerCamelCase : Optional[Any] = rng.normal(size=(length,) ).astype(np.floataa ) _lowerCamelCase : Optional[int] = a * self.x + b + rng.normal(scale=0.1,size=(length,) ).astype(np.floataa ) def __len__( self : Dict ): return self.length def __getitem__( self : str,__A : List[str] ): return {"x": self.x[i], "y": self.y[i]} class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : Optional[Any]=0,__A : Optional[int]=0,__A : Dict=False ): super().__init__() _lowerCamelCase : Tuple = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : Optional[int] = True def lowerCamelCase_ ( self : List[str],__A : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a[0] + self.b[0] class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : List[str]=0,__A : List[str]=0,__A : int=False ): super().__init__() _lowerCamelCase : Optional[int] = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Dict = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Tuple = True def lowerCamelCase_ ( self : str,__A : List[Any]=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a + self.b def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCamelCase : List[Any] = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} _lowerCamelCase : int = load_dataset("csv" , data_files=_lowerCAmelCase ) _lowerCamelCase : Dict = datasets["train"].unique("label" ) _lowerCamelCase : Optional[Any] = {v: i for i, v in enumerate(_lowerCAmelCase )} def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Optional[int] = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) if "label" in examples: _lowerCamelCase : str = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCamelCase : Optional[Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(_lowerCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _lowerCamelCase : str = DataLoader(tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=2 ) _lowerCamelCase : Optional[int] = DataLoader(tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
44
"""simple docstring""" import math from datetime import datetime, timedelta def _snake_case ( _snake_case : int ) -> datetime: '''simple docstring''' _A = year % 19 _A = year % 4 _A = year % 7 _A = math.floor(year / 1_00 ) _A = math.floor((13 + 8 * leap_day_inhibits) / 25 ) _A = leap_day_inhibits / 4 _A = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 _A = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 _A = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon _A = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(_snake_case , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(_snake_case , 4 , 18 ) else: return datetime(_snake_case , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_994, 2_000, 2_010, 2_021, 2_023): a = '''will be''' if year > datetime.now().year else '''was''' print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
7
0
import math def A ( lowercase__ : Tuple , lowercase__ : Union[str, Any] ) -> Optional[Any]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowercase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. UpperCamelCase = "Enter the base and the power separated by a comma: " UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) UpperCamelCase , UpperCamelCase = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. UpperCamelCase = res(xa, ya) UpperCamelCase = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
45
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''gpt_bigcode''' UpperCAmelCase : str = ['''past_key_values'''] UpperCAmelCase : Dict = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Tuple , _UpperCAmelCase : Dict=50_257 , _UpperCAmelCase : List[Any]=1_024 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : str="gelu_pytorch_tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[Any]=50_256 , _UpperCAmelCase : Dict=50_256 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Any=True , **_UpperCAmelCase : Any , ): _A = vocab_size _A = n_positions _A = n_embd _A = n_layer _A = n_head _A = n_inner _A = activation_function _A = resid_pdrop _A = embd_pdrop _A = attn_pdrop _A = layer_norm_epsilon _A = initializer_range _A = scale_attn_weights _A = use_cache _A = attention_softmax_in_fpaa _A = scale_attention_softmax_in_fpaa _A = multi_query _A = bos_token_id _A = eos_token_id super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
7
0
"""simple docstring""" import operator as op def lowerCamelCase_( _lowerCamelCase ) -> Tuple: '''simple docstring''' _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Union[str, Any] = lambda _lowerCamelCase , _lowerCamelCase : int(x / y ) # noqa: E731 integer division operation _lowerCamelCase : Optional[int] = { "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print("Symbol".center(8 ) , "Action".center(12 ) , "Stack" , sep=" | " ) print("-" * (30 + len(_lowerCamelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(_lowerCamelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("push(" + x + ")").ljust(12 ) , ",".join(_lowerCamelCase ) , sep=" | " ) else: _lowerCamelCase : Optional[Any] = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + b + ")").ljust(12 ) , ",".join(_lowerCamelCase ) , sep=" | " ) _lowerCamelCase : Tuple = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + a + ")").ljust(12 ) , ",".join(_lowerCamelCase ) , sep=" | " ) stack.append( str(opr[x](int(_lowerCamelCase ) , int(_lowerCamelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("push(" + a + x + b + ")").ljust(12 ) , ",".join(_lowerCamelCase ) , sep=" | " , ) return int(stack[0] ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = input('''\n\nEnter a Postfix Equation (space separated) = ''').split(''' ''') print('''\n\tResult = ''', solve(Postfix))
46
"""simple docstring""" def _snake_case ( _snake_case : str ) -> str: '''simple docstring''' return " ".join( ''.join(word[::-1] ) if len(_snake_case ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
7
0
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCamelCase( __lowerCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = LEDTokenizer __SCREAMING_SNAKE_CASE : List[str] = LEDTokenizerFast __SCREAMING_SNAKE_CASE : Optional[Any] = True def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' super().setUp() __a : str = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __a : Union[str, Any] = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __a : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __a : Optional[int] = {'unk_token': '<unk>'} __a : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE__ ) ) def __lowerCAmelCase ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : str , **SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def __lowerCAmelCase ( self : str ): '''simple docstring''' return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' __a : str = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __a : int = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a : Optional[int] = tokenizer(SCREAMING_SNAKE_CASE__ , max_length=len(SCREAMING_SNAKE_CASE__ ) , padding=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) __a : int = batch.input_ids.tolist()[0] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_torch def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' __a : Any = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a : Dict = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) self.assertIn('input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('labels' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_attention_mask' , SCREAMING_SNAKE_CASE__ ) @require_torch def __lowerCAmelCase ( self : Dict ): '''simple docstring''' __a : int = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a : Optional[int] = tokenizer(text_target=SCREAMING_SNAKE_CASE__ , max_length=3_2 , padding='max_length' , return_tensors='pt' ) self.assertEqual(3_2 , targets['input_ids'].shape[1] ) @require_torch def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a : List[Any] = tokenizer( ['I am a small frog' * 1_0_2_4, 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) ) @require_torch def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' __a : Dict = ['A long paragraph for summarization.'] __a : List[Any] = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a : List[str] = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) __a : Union[str, Any] = tokenizer(text_target=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) __a : Tuple = inputs['input_ids'] __a : List[str] = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a : Tuple = ['Summary of the text.', 'Another summary.'] __a : Tuple = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] __a : Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ ) __a : Dict = [[0] * len(SCREAMING_SNAKE_CASE__ ) for x in encoded_output['input_ids']] __a : Optional[int] = tokenizer.pad(SCREAMING_SNAKE_CASE__ ) self.assertSequenceEqual(outputs['global_attention_mask'] , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : str ): '''simple docstring''' pass def __lowerCAmelCase ( self : int ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a : Tuple = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __a : str = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = 'A, <mask> AllenNLP sentence.' __a : Dict = tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) __a : Dict = tokenizer_p.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) __a : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) __a : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
47
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[int] = (KDPMaDiscreteScheduler,) UpperCAmelCase : Any = 10 def lowerCAmelCase_ ( self : Dict , **_UpperCAmelCase : Optional[Any] ): _A = { 'num_train_timesteps': 1_100, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**_UpperCAmelCase ) return config def lowerCAmelCase_ ( self : Any ): for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _A = self.scheduler_classes[0] _A = self.get_scheduler_config(prediction_type='v_prediction' ) _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) _A = self.dummy_model() _A = self.dummy_sample_deter * scheduler.init_noise_sigma _A = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4E-0_7 ) < 1E-2 assert abs(result_mean.item() - 6.1_1_1_2E-1_0 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2E-0_7 ) < 1E-2 assert abs(result_mean.item() - 0.0002 ) < 1E-3 def lowerCAmelCase_ ( self : Optional[Any] ): if torch_device == "mps": return _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) _A = self.dummy_model() _A = self.dummy_sample_deter * scheduler.init_noise_sigma _A = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 def lowerCAmelCase_ ( self : Any ): if torch_device == "mps": return _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase ) _A = self.dummy_model() _A = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) if str(_UpperCAmelCase ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3
7
0
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def A ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Any ) -> int: '''simple docstring''' lowerCAmelCase__ = RemBertConfig.from_json_file(UpperCamelCase_ ) print("Building PyTorch model from configuration: {}".format(str(UpperCamelCase_ ) ) ) lowerCAmelCase__ = RemBertModel(UpperCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save pytorch-model print("Save PyTorch model to {}".format(UpperCamelCase_ ) ) torch.save(model.state_dict() , UpperCamelCase_ ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ : Tuple = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
48
"""simple docstring""" import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any]=10 ) -> Optional[int]: '''simple docstring''' _A = [] for _ in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def _snake_case ( _snake_case : Optional[Any] , _snake_case : Union[str, Any]=10 ) -> List[str]: '''simple docstring''' _A = [] for step in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(_snake_case , 'schedule.bin' ) torch.save(scheduler.state_dict() , _snake_case ) _A = torch.load(_snake_case ) scheduler.load_state_dict(_snake_case ) return lrs @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ): self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any ): _A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase ) _A = torch.tensor([0.4, 0.2, -0.5] ) _A = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _A = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): _A = criterion(_UpperCAmelCase , _UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def lowerCAmelCase_ ( self : int ): _A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase ) _A = torch.tensor([0.4, 0.2, -0.5] ) _A = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _A = Adafactor( params=[w] , lr=1E-2 , eps=(1E-3_0, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_UpperCAmelCase , weight_decay=0.0 , relative_step=_UpperCAmelCase , scale_parameter=_UpperCAmelCase , warmup_init=_UpperCAmelCase , ) for _ in range(1_000 ): _A = criterion(_UpperCAmelCase , _UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : List[str] = nn.Linear(50 , 50 ) if is_torch_available() else None UpperCAmelCase : Tuple = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None UpperCAmelCase : Dict = 10 def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]=None ): self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase , msg=_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _A = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) _A = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): _A , _A = data _A = scheduler_func(self.optimizer , **_UpperCAmelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) _A = unwrap_schedule(_UpperCAmelCase , self.num_steps ) self.assertListAlmostEqual( _UpperCAmelCase , _UpperCAmelCase , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , ) _A = scheduler_func(self.optimizer , **_UpperCAmelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(_UpperCAmelCase ) # wrap to test picklability of the schedule _A = unwrap_and_save_reload_schedule(_UpperCAmelCase , self.num_steps ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase , msg=F'''failed for {scheduler_func} in save and reload''' ) class lowercase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int] ): _A = fn def __call__( self : Tuple , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : List[str] ): return self.fn(*_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Any ): _A = list(map(self , scheduler.lr_lambdas ) )
7
0
"""simple docstring""" from collections import deque class _UpperCAmelCase : def __init__( self : List[Any] , _lowercase : str , _lowercase : int , _lowercase : int ): __UpperCAmelCase = process_name # process name __UpperCAmelCase = arrival_time # arrival time of the process # completion time of finished process or last interrupted time __UpperCAmelCase = arrival_time __UpperCAmelCase = burst_time # remaining burst time __UpperCAmelCase = 0 # total time of the process wait in ready queue __UpperCAmelCase = 0 # time from arrival time to completion time class _UpperCAmelCase : def __init__( self : List[str] , _lowercase : int , _lowercase : list[int] , _lowercase : deque[Process] , _lowercase : int , ): # total number of mlfq's queues __UpperCAmelCase = number_of_queues # time slice of queues that round robin algorithm applied __UpperCAmelCase = time_slices # unfinished process is in this ready_queue __UpperCAmelCase = queue # current time __UpperCAmelCase = current_time # finished process is in this sequence queue __UpperCAmelCase = deque() def a ( self : Dict ): __UpperCAmelCase = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def a ( self : str , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def a ( self : Any , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def a ( self : Tuple , _lowercase : list[Process] ): __UpperCAmelCase = [] for i in range(len(_lowercase ) ): completion_times.append(queue[i].stop_time ) return completion_times def a ( self : Optional[int] , _lowercase : deque[Process] ): return [q.burst_time for q in queue] def a ( self : str , _lowercase : Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def a ( self : Union[str, Any] , _lowercase : deque[Process] ): __UpperCAmelCase = deque() # sequence deque of finished process while len(_lowercase ) != 0: __UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_lowercase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 __UpperCAmelCase = 0 # set the process's turnaround time because it is finished __UpperCAmelCase = self.current_time - cp.arrival_time # set the completion time __UpperCAmelCase = self.current_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def a ( self : Union[str, Any] , _lowercase : deque[Process] , _lowercase : int ): __UpperCAmelCase = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_lowercase ) ): __UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_lowercase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time __UpperCAmelCase = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_lowercase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished __UpperCAmelCase = 0 # set the finish time __UpperCAmelCase = self.current_time # update the process' turnaround time because it is finished __UpperCAmelCase = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_lowercase ) self.finish_queue.extend(_lowercase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def a ( self : Union[str, Any] ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): __UpperCAmelCase , __UpperCAmelCase = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _lowercase : List[str] = Process('P1', 0, 53) _lowercase : str = Process('P2', 0, 17) _lowercase : Union[str, Any] = Process('P3', 0, 68) _lowercase : int = Process('P4', 0, 24) _lowercase : Any = 3 _lowercase : Union[str, Any] = [17, 25] _lowercase : Dict = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) _lowercase : Optional[Any] = Process('P1', 0, 53) _lowercase : Tuple = Process('P2', 0, 17) _lowercase : Optional[int] = Process('P3', 0, 68) _lowercase : int = Process('P4', 0, 24) _lowercase : int = 3 _lowercase : int = [17, 25] _lowercase : List[str] = deque([Pa, Pa, Pa, Pa]) _lowercase : List[Any] = MLFQ(number_of_queues, time_slices, queue, 0) _lowercase : str = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( f"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( f"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
49
"""simple docstring""" import math def _snake_case ( _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' if ( not isinstance(_snake_case , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * power_factor def _snake_case ( _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' if ( not isinstance(_snake_case , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
7
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu UpperCamelCase : Tuple = [ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Any=None , __lowerCAmelCase : int=None ): lowerCamelCase__ = True while ask_again: lowerCamelCase__ = input(__lowerCAmelCase ) try: if default is not None and len(__lowerCAmelCase ) == 0: return default return convert_value(__lowerCAmelCase ) if convert_value is not None else result except Exception: if error_message is not None: print(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any]=[] , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[int]=0 ): lowerCamelCase__ = BulletMenu(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = menu.run(default_choice=__lowerCAmelCase ) return convert_value(__lowerCAmelCase ) if convert_value is not None else result def A__ ( __lowerCAmelCase : Union[str, Any] ): lowerCamelCase__ = int(__lowerCAmelCase ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def A__ ( __lowerCAmelCase : str ): lowerCamelCase__ = int(__lowerCAmelCase ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def A__ ( __lowerCAmelCase : str ): lowerCamelCase__ = int(__lowerCAmelCase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def A__ ( __lowerCAmelCase : Optional[Any] ): lowerCamelCase__ = int(__lowerCAmelCase ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def A__ ( __lowerCAmelCase : List[Any] ): lowerCamelCase__ = int(__lowerCAmelCase ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def A__ ( __lowerCAmelCase : Any ): return {"yes": True, "no": False}[value.lower()] class UpperCamelCase__ (argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = super()._format_usage(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = usage.replace("""<command> [<args>] """ ,"""""" ) return usage
50
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[Any] = '''xmod''' def __init__( self : str , _UpperCAmelCase : Optional[Any]=30_522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Dict=3_072 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Any=1E-1_2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Tuple=("en_XX",) , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Optional[Any] , ): super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = position_embedding_type _A = use_cache _A = classifier_dropout _A = pre_norm _A = adapter_reduction_factor _A = adapter_layer_norm _A = adapter_reuse_layer_norm _A = ln_before_adapter _A = list(_UpperCAmelCase ) _A = default_language class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' @property def lowerCAmelCase_ ( self : Dict ): if self.task == "multiple-choice": _A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
7
0
'''simple docstring''' def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> float: """simple docstring""" UpperCAmelCase = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __snake_case ( ) -> List[Any]: """simple docstring""" print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
51
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort a = logging.get_logger(__name__) a = { '''tensor(bool)''': np.bool_, '''tensor(int8)''': np.inta, '''tensor(uint8)''': np.uinta, '''tensor(int16)''': np.intaa, '''tensor(uint16)''': np.uintaa, '''tensor(int32)''': np.intaa, '''tensor(uint32)''': np.uintaa, '''tensor(int64)''': np.intaa, '''tensor(uint64)''': np.uintaa, '''tensor(float16)''': np.floataa, '''tensor(float)''': np.floataa, '''tensor(double)''': np.floataa, } class lowercase_ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : Optional[Any] ): logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) _A = model _A = kwargs.get('model_save_dir' , _UpperCAmelCase ) _A = kwargs.get('latest_model_name' , _UpperCAmelCase ) def __call__( self : Dict , **_UpperCAmelCase : List[Any] ): _A = {k: np.array(_UpperCAmelCase ) for k, v in kwargs.items()} return self.model.run(_UpperCAmelCase , _UpperCAmelCase ) @staticmethod def lowerCAmelCase_ ( _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=None ): if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) _A = 'CPUExecutionProvider' return ort.InferenceSession(_UpperCAmelCase , providers=[provider] , sess_options=_UpperCAmelCase ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : List[Any] ): _A = file_name if file_name is not None else ONNX_WEIGHTS_NAME _A = self.model_save_dir.joinpath(self.latest_model_name ) _A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase ) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) _A = self.model_save_dir.joinpath(_UpperCAmelCase ) if src_path.exists(): _A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase ) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase ) except shutil.SameFileError: pass def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] , ): if os.path.isfile(_UpperCAmelCase ): logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) # saving model weights/files self._save_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( cls : Tuple , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[Union[bool, str, None]] = None , _UpperCAmelCase : Optional[Union[str, None]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional["ort.SessionOptions"] = None , **_UpperCAmelCase : Union[str, Any] , ): _A = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_UpperCAmelCase ): _A = OnnxRuntimeModel.load_model( os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase ) _A = Path(_UpperCAmelCase ) # load model from hub else: # download model _A = hf_hub_download( repo_id=_UpperCAmelCase , filename=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , ) _A = Path(_UpperCAmelCase ).parent _A = Path(_UpperCAmelCase ).name _A = OnnxRuntimeModel.load_model(_UpperCAmelCase , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase ) return cls(model=_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( cls : List[Any] , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : Tuple , ): _A = None if len(str(_UpperCAmelCase ).split('@' ) ) == 2: _A , _A = model_id.split('@' ) return cls._from_pretrained( model_id=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , **_UpperCAmelCase , )
7
0
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowercase ( _UpperCamelCase ): '''simple docstring''' @slow @require_torch def _lowerCamelCase ( self ): __a : List[str] = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) __a : Optional[Any] = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __a : Optional[int] = bertabert.config.encoder.vocab_size __a : str = tokenizer.sep_token_id __a : Union[str, Any] = tokenizer.cls_token_id __a : Tuple = 128 __a : Tuple = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) __a : int = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) __a : Optional[int] = train_dataset.select(range(32 ) ) __a : Optional[Any] = val_dataset.select(range(16 ) ) __a : List[Any] = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] __a : Tuple = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=_UpperCAmelCase , max_length=512 ) __a : int = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=_UpperCAmelCase , max_length=128 ) __a : int = inputs.input_ids __a : Optional[int] = inputs.attention_mask __a : Tuple = outputs.input_ids __a : str = outputs.input_ids.copy() __a : Tuple = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] __a : Tuple = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase ): __a : int = pred.label_ids __a : int = pred.predictions # all unnecessary tokens are removed __a : Optional[int] = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) __a : Union[str, Any] = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) __a : Any = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset __a : str = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset __a : Optional[int] = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) __a : Optional[Any] = self.get_auto_remove_tmp_dir() __a : int = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy='''steps''' , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __a : Dict = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
52
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : str = '''speech_to_text''' UpperCAmelCase : List[Any] = ['''past_key_values'''] UpperCAmelCase : Tuple = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : int , _UpperCAmelCase : Union[str, Any]=10_000 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2_048 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Tuple=2_048 , _UpperCAmelCase : str=4 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]="relu" , _UpperCAmelCase : List[Any]=256 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : List[str]=6_000 , _UpperCAmelCase : Optional[Any]=1_024 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Any=(5, 5) , _UpperCAmelCase : int=1_024 , _UpperCAmelCase : str=80 , _UpperCAmelCase : Any=1 , **_UpperCAmelCase : Tuple , ): _A = vocab_size _A = d_model _A = encoder_ffn_dim _A = encoder_layers _A = encoder_attention_heads _A = decoder_ffn_dim _A = decoder_layers _A = decoder_attention_heads _A = dropout _A = attention_dropout _A = activation_dropout _A = activation_function _A = init_std _A = encoder_layerdrop _A = decoder_layerdrop _A = use_cache _A = encoder_layers _A = scale_embedding # scale factor will be sqrt(d_model) if True _A = max_source_positions _A = max_target_positions _A = num_conv_layers _A = list(_UpperCAmelCase ) _A = conv_channels _A = input_feat_per_channel _A = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' F'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' ) super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
7
0
def a_ ( lowerCAmelCase_ : int = 200_0000 ): __lowerCAmelCase = [0 for i in range(n + 1 )] __lowerCAmelCase = 1 __lowerCAmelCase = 1 for i in range(2, int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i, n + 1, lowerCAmelCase_ ): __lowerCAmelCase = 1 __lowerCAmelCase = 0 for i in range(lowerCAmelCase_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
53
"""simple docstring""" from manim import * class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Rectangle(height=0.5 , width=0.5 ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _A = Rectangle(height=0.25 , width=0.25 ) _A = [mem.copy() for i in range(6 )] _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('CPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(4 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('GPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Model' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_UpperCAmelCase ) _A = [] _A = [] for i, rect in enumerate(_UpperCAmelCase ): _A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 ) target.move_to(_UpperCAmelCase ) model_arr.append(_UpperCAmelCase ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_UpperCAmelCase ) self.add(*_UpperCAmelCase , *_UpperCAmelCase ) _A = [meta_mem.copy() for i in range(6 )] _A = [meta_mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Disk' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _A = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_UpperCAmelCase ) _A = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase ) ) _A = Square(0.3 ) input.set_fill(_UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 ) self.play(Write(_UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 ) self.play(MoveToTarget(_UpperCAmelCase ) ) self.play(FadeOut(_UpperCAmelCase ) ) _A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _A = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) ) _A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _A = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _A = AnimationGroup( FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _A = 0.7 self.play( Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _A = a_c _A = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , ) _A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) ) self.wait()
7
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase : str =logging.get_logger(__name__) __lowercase : List[str] ={ """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class A ( __lowercase ): _snake_case ='''xmod''' def __init__( self: Union[str, Any] , _lowerCAmelCase: Optional[int]=3_0522 , _lowerCAmelCase: Union[str, Any]=768 , _lowerCAmelCase: Dict=12 , _lowerCAmelCase: Any=12 , _lowerCAmelCase: Dict=3072 , _lowerCAmelCase: List[Any]="gelu" , _lowerCAmelCase: int=0.1 , _lowerCAmelCase: Optional[Any]=0.1 , _lowerCAmelCase: Optional[int]=512 , _lowerCAmelCase: Union[str, Any]=2 , _lowerCAmelCase: Union[str, Any]=0.02 , _lowerCAmelCase: Any=1e-12 , _lowerCAmelCase: List[Any]=1 , _lowerCAmelCase: Union[str, Any]=0 , _lowerCAmelCase: Any=2 , _lowerCAmelCase: Any="absolute" , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: Optional[Any]=None , _lowerCAmelCase: Any=False , _lowerCAmelCase: Union[str, Any]=2 , _lowerCAmelCase: str=False , _lowerCAmelCase: Any=True , _lowerCAmelCase: Optional[Any]=True , _lowerCAmelCase: List[Any]=("en_XX",) , _lowerCAmelCase: Tuple=None , **_lowerCAmelCase: Optional[int] , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =hidden_act UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =type_vocab_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =layer_norm_eps UpperCAmelCase_ =position_embedding_type UpperCAmelCase_ =use_cache UpperCAmelCase_ =classifier_dropout UpperCAmelCase_ =pre_norm UpperCAmelCase_ =adapter_reduction_factor UpperCAmelCase_ =adapter_layer_norm UpperCAmelCase_ =adapter_reuse_layer_norm UpperCAmelCase_ =ln_before_adapter UpperCAmelCase_ =list(_lowerCAmelCase ) UpperCAmelCase_ =default_language class A ( __lowercase ): @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ ={0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ ={0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
54
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int ) -> int: '''simple docstring''' return int((input_a, input_a).count(1 ) != 0 ) def _snake_case ( ) -> None: '''simple docstring''' assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
7
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE :Tuple = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[int] = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments a = logging.getLogger(__name__) @dataclass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[float] = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''whether to use adafactor'''} ) UpperCAmelCase : Optional[float] = field( default=__lowerCAmelCase , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) UpperCAmelCase : Optional[float] = field( default=__lowerCAmelCase , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) UpperCAmelCase : Optional[float] = field(default=__lowerCAmelCase , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) UpperCAmelCase : Optional[float] = field( default=__lowerCAmelCase , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) UpperCAmelCase : Optional[str] = field( default='''linear''' , metadata={'''help''': f'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
7
0
'''simple docstring''' import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 _a : Dict = 0B10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 _a : Tuple = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class _lowercase : def __init__( self : List[Any] ) -> int: __snake_case = WATERMARK_BITS __snake_case = WatermarkEncoder() self.encoder.set_watermark('bits' , self.watermark ) def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : torch.FloatTensor ) -> Dict: # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images __snake_case = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __snake_case = [self.encoder.encode(SCREAMING_SNAKE_CASE_ , 'dwtDct' ) for image in images] __snake_case = torch.from_numpy(np.array(SCREAMING_SNAKE_CASE_ ) ).permute(0 , 3 , 1 , 2 ) __snake_case = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
56
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule a = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
7
0
def snake_case (UpperCAmelCase__ ) -> list[int]: if num <= 0: raise ValueError('Input must be a positive integer' ) UpperCamelCase_: List[str] = [True] * (num + 1) UpperCamelCase_: Union[str, Any] = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , UpperCAmelCase__ ): UpperCamelCase_: Any = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() A_ : Any = int(input('Enter a positive integer: ').strip()) print(prime_sieve_eratosthenes(user_num))
57
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : UNetaDModel UpperCAmelCase : KarrasVeScheduler def __init__( self : Any , _UpperCAmelCase : UNetaDModel , _UpperCAmelCase : KarrasVeScheduler ): super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self : Optional[int] , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Optional[Any] , ): _A = self.unet.config.sample_size _A = (batch_size, 3, img_size, img_size) _A = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) _A = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper _A = self.scheduler.schedule[t] _A = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat _A , _A = self.scheduler.add_noise_to_input(_UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. _A = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev _A = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. _A = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample _A = self.scheduler.step_correct( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , step_output.prev_sample , step_output['derivative'] , ) _A = step_output.prev_sample _A = (sample / 2 + 0.5).clamp(0 , 1 ) _A = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _A = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
7
0
"""simple docstring""" from __future__ import annotations def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : list[list[int]] = [] create_all_state(1 , __UpperCamelCase , __UpperCamelCase , [] , __UpperCamelCase ) return result def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : list[int] , __UpperCamelCase : list[list[int]] , ): '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(__UpperCamelCase , total_number - level + 2 ): current_list.append(__UpperCamelCase ) create_all_state(i + 1 , __UpperCamelCase , level - 1 , __UpperCamelCase , __UpperCamelCase ) current_list.pop() def __lowerCAmelCase ( __UpperCamelCase : list[list[int]] ): '''simple docstring''' for i in total_list: print(*__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Any = 4 __lowerCAmelCase : List[str] = 2 __lowerCAmelCase : Dict = generate_all_combinations(n, k) print_all_state(total_list)
58
"""simple docstring""" class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ): _A = None _A = None _A = graph self._normalize_graph(_UpperCAmelCase , _UpperCAmelCase ) _A = len(_UpperCAmelCase ) _A = None def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ): if sources is int: _A = [sources] if sinks is int: _A = [sinks] if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) == 0: return _A = sources[0] _A = sinks[0] # make fake vertex if there are more # than one source or sink if len(_UpperCAmelCase ) > 1 or len(_UpperCAmelCase ) > 1: _A = 0 for i in sources: max_input_flow += sum(self.graph[i] ) _A = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: _A = max_input_flow _A = 0 _A = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: _A = max_input_flow _A = size - 1 def lowerCAmelCase_ ( self : Optional[Any] ): if self.maximum_flow_algorithm is None: raise Exception('You need to set maximum flow algorithm before.' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Union[str, Any] ): _A = algorithm(self ) class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Union[str, Any] ): _A = flow_network _A = flow_network.verticesCount _A = flow_network.sourceIndex _A = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that _A = flow_network.graph _A = False def lowerCAmelCase_ ( self : Optional[Any] ): if not self.executed: self._algorithm() _A = True def lowerCAmelCase_ ( self : int ): pass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : int , _UpperCAmelCase : Any ): super().__init__(_UpperCAmelCase ) # use this to save your result _A = -1 def lowerCAmelCase_ ( self : Optional[Any] ): if not self.executed: raise Exception('You should execute algorithm before using its result!' ) return self.maximum_flow class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : List[Any] ): super().__init__(_UpperCAmelCase ) _A = [[0] * self.verticies_count for i in range(self.verticies_count )] _A = [0] * self.verticies_count _A = [0] * self.verticies_count def lowerCAmelCase_ ( self : Dict ): _A = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule _A = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list _A = 0 while i < len(_UpperCAmelCase ): _A = vertices_list[i] _A = self.heights[vertex_index] self.process_vertex(_UpperCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_UpperCAmelCase ) ) _A = 0 else: i += 1 _A = sum(self.preflow[self.source_index] ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Any ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_UpperCAmelCase , _UpperCAmelCase ) self.relabel(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ): _A = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : int ): _A = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): _A = self.heights[to_index] if min_height is not None: _A = min_height + 1 if __name__ == "__main__": a = [0] a = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] a = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network a = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate a = flow_network.find_maximum_flow() print(F'''maximum flow is {maximum_flow}''')
7
0
__A = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def lowerCAmelCase_ ( __a , __a , __a ) -> list[str]: """simple docstring""" lowerCamelCase__: Optional[int] =set() # keep track of all the paths to be checked lowerCamelCase__: Tuple =[[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue lowerCamelCase__: Optional[Any] =queue.pop(0 ) # get the last node from the path lowerCamelCase__: Any =path[-1] if node not in explored: lowerCamelCase__: Tuple =graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: lowerCamelCase__: Any =list(__a ) new_path.append(__a ) queue.append(__a ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(__a ) # in case there's no path between the 2 nodes return [] def lowerCAmelCase_ ( __a , __a , __a ) -> int: """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 lowerCamelCase__: Tuple =[start] lowerCamelCase__: str =set(__a ) # Keep tab on distances from `start` node. lowerCamelCase__: Any ={start: 0, target: -1} while queue: lowerCamelCase__: List[Any] =queue.pop(0 ) if node == target: lowerCamelCase__: List[str] =( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(__a ) queue.append(__a ) lowerCamelCase__: Optional[int] =dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
59
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class lowercase_ ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : List[str] = SpeechTaTokenizer UpperCAmelCase : Tuple = False UpperCAmelCase : Optional[int] = True def lowerCAmelCase_ ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing _A = SpeechTaTokenizer(_UpperCAmelCase ) _A = AddedToken('<mask>' , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) _A = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Tuple ): _A = 'this is a test' _A = 'this is a test' return input_text, output_text def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict=20 , _UpperCAmelCase : str=5 ): _A , _A = self.get_input_output_texts(_UpperCAmelCase ) _A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) _A = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) return text, ids def lowerCAmelCase_ ( self : Optional[Any] ): _A = '<pad>' _A = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-4] , 'œ' ) self.assertEqual(vocab_keys[-2] , '<mask>' ) self.assertEqual(vocab_keys[-1] , '<ctc_blank>' ) self.assertEqual(len(_UpperCAmelCase ) , 81 ) def lowerCAmelCase_ ( self : Optional[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def lowerCAmelCase_ ( self : Any ): _A = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A = tokenizer.vocab_size _A = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _A = ['aaaaa bbbbbb', 'cccccccccdddddddd'] _A = tokenizer.add_tokens(_UpperCAmelCase ) _A = tokenizer.vocab_size _A = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , all_size + len(_UpperCAmelCase ) ) _A = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=_UpperCAmelCase ) self.assertGreaterEqual(len(_UpperCAmelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) _A = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} _A = tokenizer.add_special_tokens(_UpperCAmelCase ) _A = tokenizer.vocab_size _A = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , all_size_a + len(_UpperCAmelCase ) ) _A = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=_UpperCAmelCase ) self.assertGreaterEqual(len(_UpperCAmelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def lowerCAmelCase_ ( self : str ): pass def lowerCAmelCase_ ( self : Any ): pass def lowerCAmelCase_ ( self : Dict ): _A = self.get_tokenizer() _A = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(_UpperCAmelCase , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) _A = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) _A = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) # fmt: off self.assertListEqual(_UpperCAmelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _A = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def lowerCAmelCase_ ( self : List[Any] ): # Use custom sequence because this tokenizer does not handle numbers. _A = [ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off _A = { 'input_ids': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=_UpperCAmelCase , )
7
0
from __future__ import annotations lowerCAmelCase_ = [-1_0, -5, 0, 5, 5.1, 1_1, 1_3, 2_1, 3, 4, -2_1, -1_0, -5, -1, 0] lowerCAmelCase_ = [-5, 0, 5, 5.1, 1_1, 1_3, 2_1, -1, 4, -1, -1_0, -5, -1, 0, -1] def lowerCamelCase_ ( _UpperCamelCase ) -> list[float]: """simple docstring""" snake_case_ : List[Any] = [] snake_case_ : Any = len(_UpperCamelCase ) for i in range(_UpperCamelCase ): snake_case_ : float = -1 for j in range(i + 1 , _UpperCamelCase ): if arr[i] < arr[j]: snake_case_ : List[Any] = arr[j] break result.append(_UpperCamelCase ) return result def lowerCamelCase_ ( _UpperCamelCase ) -> list[float]: """simple docstring""" snake_case_ : List[str] = [] for i, outer in enumerate(_UpperCamelCase ): snake_case_ : float = -1 for inner in arr[i + 1 :]: if outer < inner: snake_case_ : int = inner break result.append(_UpperCamelCase ) return result def lowerCamelCase_ ( _UpperCamelCase ) -> list[float]: """simple docstring""" snake_case_ : Tuple = len(_UpperCamelCase ) snake_case_ : list[float] = [] snake_case_ : list[float] = [-1] * arr_size for index in reversed(range(_UpperCamelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: snake_case_ : Optional[Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCAmelCase_ = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
60
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
7
0
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'vocab_file': 'spiece.model'} UpperCamelCase = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } UpperCamelCase = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] snake_case__ = [] def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str]="<unk>" , SCREAMING_SNAKE_CASE__ : List[str]="<s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE__ : Tuple="<pad>" , SCREAMING_SNAKE_CASE__ : Any="[SEP]" , SCREAMING_SNAKE_CASE__ : Optional[int]="[MASK]" , SCREAMING_SNAKE_CASE__ : List[Any]="[CLS]" , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : List[Any] , ) -> None: lowerCAmelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else bos_token lowerCAmelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else eos_token lowerCAmelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else unk_token lowerCAmelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else pad_token lowerCAmelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else cls_token lowerCAmelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = vocab_file lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE__ ) @property def a ( self : List[str] ) -> List[str]: return self.sp_model.get_piece_size() def a ( self : List[str] ) -> Dict: lowerCAmelCase__ = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) -> Any: lowerCAmelCase__ = self.__dict__.copy() lowerCAmelCase__ = None return state def __setstate__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any: lowerCAmelCase__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase__ = {} lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple: return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE__ ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[str]: lowerCAmelCase__ = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ ) return token def a ( self : str , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: lowerCAmelCase__ = [] lowerCAmelCase__ = "" lowerCAmelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) + token lowerCAmelCase__ = True lowerCAmelCase__ = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) return out_string.strip() def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : bool = True , **SCREAMING_SNAKE_CASE__ : int , ) -> str: lowerCAmelCase__ = kwargs.pop("use_source_tokenizer" , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowerCAmelCase__ = [] lowerCAmelCase__ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = [] sub_texts.append(SCREAMING_SNAKE_CASE__ ) else: current_sub_text.append(SCREAMING_SNAKE_CASE__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: lowerCAmelCase__ = re.sub(r" (\[(MASK|SEP)\])" , r"\1" , " ".join(SCREAMING_SNAKE_CASE__ ) ) else: lowerCAmelCase__ = "".join(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowerCAmelCase__ = self.clean_up_tokenization(SCREAMING_SNAKE_CASE__ ) return clean_text else: return text def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , "wb" ) as fi: lowerCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] lowerCAmelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
61
"""simple docstring""" import argparse a = '''docs/source/_static/js/custom.js''' def _snake_case ( _snake_case : Dict ) -> Any: '''simple docstring''' with open(_snake_case , encoding='utf-8' , newline='\n' ) as f: _A = f.readlines() _A = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 _A = F'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F''' "v{version}": "v{version}",\n''' with open(_snake_case , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_snake_case ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') a = parser.parse_args() update_custom_js(args.version)
7
0
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path snake_case = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def lowerCamelCase__ ( lowercase=True ): """simple docstring""" if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=lowerCAmelCase ) ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = None UpperCamelCase_ : Union[str, Any] = None def _A ( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] ): with TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE : List[str] = dataset_module_factory(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = import_main_class(dataset_module.module_path , dataset=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : DatasetBuilder = builder_cls( cache_dir=UpperCAmelCase_ , config_name=UpperCAmelCase_ , hash=dataset_module.hash , ) SCREAMING_SNAKE_CASE : int = "/".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=UpperCAmelCase_ ).replace(os.sep , "/" ), config.DATASET_INFO_FILENAME, ] ) SCREAMING_SNAKE_CASE : int = cached_path(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ) self.assertTrue(os.path.exists(UpperCAmelCase_ ) ) @pytest.mark.integration def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = tmp_path_factory.mktemp("test_hf_gcp" ) / "test_wikipedia_simple" SCREAMING_SNAKE_CASE : str = dataset_module_factory("wikipedia" , cache_dir=lowercase ) SCREAMING_SNAKE_CASE : Tuple = import_main_class(dataset_module.module_path ) SCREAMING_SNAKE_CASE : DatasetBuilder = builder_cls( cache_dir=lowercase , config_name="20220301.frr" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam SCREAMING_SNAKE_CASE : Any = None builder_instance.download_and_prepare() SCREAMING_SNAKE_CASE : Optional[Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = dataset_module_factory("wikipedia" , cache_dir=lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = import_main_class(dataset_module.module_path , dataset=lowercase ) SCREAMING_SNAKE_CASE : DatasetBuilder = builder_cls( cache_dir=lowercase , config_name="20220301.frr" , hash=dataset_module.hash , ) SCREAMING_SNAKE_CASE : List[Any] = builder_instance.as_streaming_dataset() assert ds assert isinstance(lowercase , lowercase ) assert "train" in ds assert isinstance(ds["train"] , lowercase ) assert next(iter(ds["train"] ) )
62
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''vit_mae''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int]=768 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Optional[int]=3_072 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : Optional[Any]=224 , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=512 , _UpperCAmelCase : int=8 , _UpperCAmelCase : List[Any]=2_048 , _UpperCAmelCase : Optional[Any]=0.75 , _UpperCAmelCase : List[str]=False , **_UpperCAmelCase : Union[str, Any] , ): super().__init__(**_UpperCAmelCase ) _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = initializer_range _A = layer_norm_eps _A = image_size _A = patch_size _A = num_channels _A = qkv_bias _A = decoder_num_attention_heads _A = decoder_hidden_size _A = decoder_num_hidden_layers _A = decoder_intermediate_size _A = mask_ratio _A = norm_pix_loss
7
0
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand a : str = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) a : str = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) a : int = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) a : str = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) a : List[str] = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]), ("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [14, 13, 12, 11, 10]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) a : List[str] = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) a : Tuple = ( ("JH AH TH KH QH", 23), ("JH 9H TH KH QH", 22), ("JC KH JS JD JH", 21), ("KH KC 3S 3H 3D", 20), ("8C 9C 5C 3C TC", 19), ("JS QS 9H TS KH", 18), ("7C 7S KH 2H 7H", 17), ("3C KH 5D 5S KH", 16), ("QH 8H KD JH 8S", 15), ("2D 6D 9D TH 7D", 14), ) def lowerCamelCase__ ( ): __UpperCAmelCase , __UpperCAmelCase : Optional[int] = randrange(len(__lowerCamelCase ) ), randrange(len(__lowerCamelCase ) ) __UpperCAmelCase : str = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] __UpperCAmelCase , __UpperCAmelCase : int = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCamelCase__ ( __lowerCamelCase : int = 100 ): return (generate_random_hand() for _ in range(__lowerCamelCase )) @pytest.mark.parametrize("""hand, expected""" , __lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Tuple , __lowerCamelCase : int ): assert PokerHand(__lowerCamelCase )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , __lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple ): assert PokerHand(__lowerCamelCase )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , __lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] ): __UpperCAmelCase : int = PokerHand(__lowerCamelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , __lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] ): assert PokerHand(__lowerCamelCase )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , __lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ): assert PokerHand(__lowerCamelCase )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , __lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] ): assert PokerHand(__lowerCamelCase ).compare_with(PokerHand(__lowerCamelCase ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] ): assert PokerHand(__lowerCamelCase ).compare_with(PokerHand(__lowerCamelCase ) ) == expected def lowerCamelCase__ ( ): __UpperCAmelCase : Optional[Any] = [PokerHand(__lowerCamelCase ) for hand in SORTED_HANDS] __UpperCAmelCase : Any = poker_hands.copy() shuffle(__lowerCamelCase ) __UpperCAmelCase : str = chain(sorted(__lowerCamelCase ) ) for index, hand in enumerate(__lowerCamelCase ): assert hand == poker_hands[index] def lowerCamelCase__ ( ): # Test that five high straights are compared correctly. __UpperCAmelCase : Any = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=__lowerCamelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCamelCase__ ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. __UpperCAmelCase : List[Any] = PokerHand("""2C 4S AS 3D 5C""" ) __UpperCAmelCase : str = True __UpperCAmelCase : Dict = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCamelCase__ ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : Tuple = os.path.abspath(os.path.dirname(__lowerCamelCase ) ) __UpperCAmelCase : Dict = os.path.join(__lowerCamelCase , """poker_hands.txt""" ) with open(__lowerCamelCase ) as file_hand: for line in file_hand: __UpperCAmelCase : Optional[Any] = line[:14].strip() __UpperCAmelCase : List[Any] = line[15:].strip() __UpperCAmelCase , __UpperCAmelCase : List[str] = PokerHand(__lowerCamelCase ), PokerHand(__lowerCamelCase ) __UpperCAmelCase : Dict = player.compare_with(__lowerCamelCase ) if output == "Win": answer += 1 assert answer == 376
63
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) a = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] a = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def _snake_case ( _snake_case : Optional[Any] ) -> str: '''simple docstring''' _A = torch.load(_snake_case , map_location='cpu' ) return sd def _snake_case ( _snake_case : Union[str, Any] , _snake_case : str , _snake_case : Tuple=rename_keys_prefix ) -> List[str]: '''simple docstring''' _A = OrderedDict() _A = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _A = key for name_pair in rename_keys_prefix: _A = new_key.replace(name_pair[0] , name_pair[1] ) _A = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _A = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def _snake_case ( _snake_case : List[str] , _snake_case : Dict ) -> Dict: '''simple docstring''' assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: _A = 'pretraining' if "vcr" in checkpoint_path: _A = {'visual_embedding_dim': 5_12} elif "vqa_advanced" in checkpoint_path: _A = {'visual_embedding_dim': 20_48} elif "vqa" in checkpoint_path: _A = {'visual_embedding_dim': 20_48} elif "nlvr" in checkpoint_path: _A = {'visual_embedding_dim': 10_24} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: _A = {'visual_embedding_dim': 5_12} _A = 'multichoice' elif "vqa_advanced" in checkpoint_path: _A = {'visual_embedding_dim': 20_48} _A = 'vqa_advanced' elif "vqa" in checkpoint_path: _A = {'visual_embedding_dim': 20_48, 'num_labels': 31_29} _A = 'vqa' elif "nlvr" in checkpoint_path: _A = { 'visual_embedding_dim': 10_24, 'num_labels': 2, } _A = 'nlvr' _A = VisualBertConfig(**_snake_case ) # Load State Dict _A = load_state_dict(_snake_case ) _A = get_new_dict(_snake_case , _snake_case ) if model_type == "pretraining": _A = VisualBertForPreTraining(_snake_case ) elif model_type == "vqa": _A = VisualBertForQuestionAnswering(_snake_case ) elif model_type == "nlvr": _A = VisualBertForVisualReasoning(_snake_case ) elif model_type == "multichoice": _A = VisualBertForMultipleChoice(_snake_case ) model.load_state_dict(_snake_case ) # Save Checkpoints Path(_snake_case ).mkdir(exist_ok=_snake_case ) model.save_pretrained(_snake_case ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') a = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
7
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _lowerCamelCase ( UpperCamelCase_ ): __a = (DPMSolverSinglestepScheduler,) __a = (("num_inference_steps", 25),) def UpperCamelCase_ ( self , **lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__: Any= { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf''' ), '''variance_type''': None, } config.update(**lowerCAmelCase ) return config def UpperCamelCase_ ( self , lowerCAmelCase=0 , **lowerCAmelCase ) -> Any: SCREAMING_SNAKE_CASE__: Union[str, Any]= dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE__: Tuple= kwargs.pop('''num_inference_steps''' , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Tuple= self.dummy_sample SCREAMING_SNAKE_CASE__: List[Any]= 0.1 * sample SCREAMING_SNAKE_CASE__: Optional[Any]= [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE__: str= self.get_scheduler_config(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Dict= scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE__: Tuple= dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[str]= scheduler_class.from_pretrained(lowerCAmelCase ) new_scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE__: int= dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Dict= sample, sample for t in range(lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ): SCREAMING_SNAKE_CASE__: str= scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample SCREAMING_SNAKE_CASE__: str= new_scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self ) -> Optional[Any]: pass def UpperCamelCase_ ( self , lowerCAmelCase=0 , **lowerCAmelCase ) -> Dict: SCREAMING_SNAKE_CASE__: Optional[int]= dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE__: List[Any]= kwargs.pop('''num_inference_steps''' , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Tuple= self.dummy_sample SCREAMING_SNAKE_CASE__: Dict= 0.1 * sample SCREAMING_SNAKE_CASE__: Optional[Any]= [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE__: Optional[Any]= self.get_scheduler_config() SCREAMING_SNAKE_CASE__: Tuple= scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE__: Tuple= dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[Any]= scheduler_class.from_pretrained(lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE__: Union[str, Any]= dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE__: Dict= scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample SCREAMING_SNAKE_CASE__: str= new_scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self , lowerCAmelCase=None , **lowerCAmelCase ) -> List[Any]: if scheduler is None: SCREAMING_SNAKE_CASE__: Dict= self.scheduler_classes[0] SCREAMING_SNAKE_CASE__: Dict= self.get_scheduler_config(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[str]= scheduler_class(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__: str= self.scheduler_classes[0] SCREAMING_SNAKE_CASE__: Tuple= self.get_scheduler_config(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[Any]= scheduler_class(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Tuple= 10 SCREAMING_SNAKE_CASE__: Optional[Any]= self.dummy_model() SCREAMING_SNAKE_CASE__: List[Any]= self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE__: str= model(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Tuple= scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample return sample def UpperCamelCase_ ( self ) -> List[str]: SCREAMING_SNAKE_CASE__: Union[str, Any]= DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE__: Tuple= 50 SCREAMING_SNAKE_CASE__: List[Any]= self.dummy_model() SCREAMING_SNAKE_CASE__: List[str]= self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): SCREAMING_SNAKE_CASE__: Dict= model(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: str= scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample SCREAMING_SNAKE_CASE__: Union[str, Any]= torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1e-3 def UpperCamelCase_ ( self ) -> str: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase ) def UpperCamelCase_ ( self ) -> int: # make sure that iterating over schedulers with same config names gives same results # for defaults SCREAMING_SNAKE_CASE__: Optional[int]= DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE__: int= self.full_loop(scheduler=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[int]= torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 SCREAMING_SNAKE_CASE__: Tuple= DEISMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE__: str= DPMSolverMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE__: Dict= UniPCMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE__: Union[str, Any]= DPMSolverSinglestepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE__: List[Any]= self.full_loop(scheduler=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: int= torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 def UpperCamelCase_ ( self ) -> int: self.check_over_configs(thresholding=lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , algorithm_type='''dpmsolver++''' , solver_order=lowerCAmelCase , solver_type=lowerCAmelCase , ) def UpperCamelCase_ ( self ) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase ) def UpperCamelCase_ ( self ) -> int: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCAmelCase , solver_type=lowerCAmelCase , prediction_type=lowerCAmelCase , algorithm_type=lowerCAmelCase , ) SCREAMING_SNAKE_CASE__: int= self.full_loop( solver_order=lowerCAmelCase , solver_type=lowerCAmelCase , prediction_type=lowerCAmelCase , algorithm_type=lowerCAmelCase , ) assert not torch.isnan(lowerCAmelCase ).any(), "Samples have nan numbers" def UpperCamelCase_ ( self ) -> int: self.check_over_configs(lower_order_final=lowerCAmelCase ) self.check_over_configs(lower_order_final=lowerCAmelCase ) def UpperCamelCase_ ( self ) -> Dict: self.check_over_configs(lambda_min_clipped=-float('''inf''' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def UpperCamelCase_ ( self ) -> Union[str, Any]: self.check_over_configs(variance_type=lowerCAmelCase ) self.check_over_configs(variance_type='''learned_range''' ) def UpperCamelCase_ ( self ) -> Union[str, Any]: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=lowerCAmelCase , time_step=0 ) def UpperCamelCase_ ( self ) -> List[str]: SCREAMING_SNAKE_CASE__: List[str]= self.full_loop() SCREAMING_SNAKE_CASE__: List[Any]= torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 def UpperCamelCase_ ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__: Optional[int]= self.full_loop(use_karras_sigmas=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Dict= torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1e-3 def UpperCamelCase_ ( self ) -> Dict: SCREAMING_SNAKE_CASE__: Any= self.full_loop(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE__: Union[str, Any]= torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1e-3 def UpperCamelCase_ ( self ) -> Dict: SCREAMING_SNAKE_CASE__: str= self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Tuple= torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1e-3 def UpperCamelCase_ ( self ) -> Tuple: SCREAMING_SNAKE_CASE__: int= self.scheduler_classes[0] SCREAMING_SNAKE_CASE__: int= self.get_scheduler_config(thresholding=lowerCAmelCase , dynamic_thresholding_ratio=0 ) SCREAMING_SNAKE_CASE__: Optional[int]= scheduler_class(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__: str= 10 SCREAMING_SNAKE_CASE__: Tuple= self.dummy_model() SCREAMING_SNAKE_CASE__: Any= self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE__: Union[str, Any]= model(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Union[str, Any]= scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa
64
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def _snake_case ( _snake_case : Dict ) -> Optional[Any]: '''simple docstring''' for param in module.parameters(): _A = False def _snake_case ( ) -> Tuple: '''simple docstring''' _A = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _A = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def _snake_case ( _snake_case : Dict ) -> Optional[Any]: '''simple docstring''' _A = plt.imshow(_snake_case ) fig.axes.get_xaxis().set_visible(_snake_case ) fig.axes.get_yaxis().set_visible(_snake_case ) plt.show() def _snake_case ( ) -> Optional[Any]: '''simple docstring''' _A = datetime.now() _A = current_time.strftime('%H:%M:%S' ) return timestamp
7
0
"""simple docstring""" from __future__ import annotations import math class __lowercase : def __init__( self : Tuple ,A : int ): '''simple docstring''' UpperCAmelCase__ : str = size # approximate the overall size of segment tree with given value UpperCAmelCase__ : Any = [0 for i in range(0 ,4 * size )] # create array to store lazy update UpperCAmelCase__ : Dict = [0 for i in range(0 ,4 * size )] UpperCAmelCase__ : List[Any] = [0 for i in range(0 ,4 * size )] # flag for lazy update def __lowercase ( self : int ,A : int ): '''simple docstring''' return idx * 2 def __lowercase ( self : Tuple ,A : int ): '''simple docstring''' return idx * 2 + 1 def __lowercase ( self : Union[str, Any] ,A : int ,A : int ,A : int ,A : list[int] ): '''simple docstring''' if left_element == right_element: UpperCAmelCase__ : Optional[int] = a[left_element - 1] else: UpperCAmelCase__ : Dict = (left_element + right_element) // 2 self.build(self.left(A ) ,A ,A ,A ) self.build(self.right(A ) ,mid + 1 ,A ,A ) UpperCAmelCase__ : Union[str, Any] = max( self.segment_tree[self.left(A )] ,self.segment_tree[self.right(A )] ) def __lowercase ( self : Optional[int] ,A : int ,A : int ,A : int ,A : int ,A : int ,A : int ): '''simple docstring''' if self.flag[idx] is True: UpperCAmelCase__ : Dict = self.lazy[idx] UpperCAmelCase__ : int = False if left_element != right_element: UpperCAmelCase__ : List[str] = self.lazy[idx] UpperCAmelCase__ : List[Any] = self.lazy[idx] UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : Any = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: UpperCAmelCase__ : Any = val if left_element != right_element: UpperCAmelCase__ : str = val UpperCAmelCase__ : List[str] = val UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : Optional[int] = True return True UpperCAmelCase__ : Optional[int] = (left_element + right_element) // 2 self.update(self.left(A ) ,A ,A ,A ,A ,A ) self.update(self.right(A ) ,mid + 1 ,A ,A ,A ,A ) UpperCAmelCase__ : List[str] = max( self.segment_tree[self.left(A )] ,self.segment_tree[self.right(A )] ) return True def __lowercase ( self : List[str] ,A : int ,A : int ,A : int ,A : int ,A : int ): '''simple docstring''' if self.flag[idx] is True: UpperCAmelCase__ : Any = self.lazy[idx] UpperCAmelCase__ : Optional[int] = False if left_element != right_element: UpperCAmelCase__ : List[Any] = self.lazy[idx] UpperCAmelCase__ : Union[str, Any] = self.lazy[idx] UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Optional[int] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] UpperCAmelCase__ : Dict = (left_element + right_element) // 2 UpperCAmelCase__ : Tuple = self.query(self.left(A ) ,A ,A ,A ,A ) UpperCAmelCase__ : Any = self.query(self.right(A ) ,mid + 1 ,A ,A ,A ) return max(A ,A ) def __str__( self : str ): '''simple docstring''' return str([self.query(1 ,1 ,self.size ,A ,A ) for i in range(1 ,self.size + 1 )] ) if __name__ == "__main__": __UpperCAmelCase = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] __UpperCAmelCase = 15 __UpperCAmelCase = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
65
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Any = ['''image_processor''', '''tokenizer'''] UpperCAmelCase : Optional[int] = '''ViTImageProcessor''' UpperCAmelCase : int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Tuple , _UpperCAmelCase : int=None , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : Dict ): _A = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) _A = kwargs.pop('feature_extractor' ) _A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : Optional[Any] , _UpperCAmelCase : int=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Union[str, Any] ): if text is None and visual_prompt is None and images is None: raise ValueError('You have to specify either text, visual prompt or images.' ) if text is not None and visual_prompt is not None: raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' ) if text is not None: _A = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if visual_prompt is not None: _A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if images is not None: _A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if visual_prompt is not None and images is not None: _A = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: _A = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: _A = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def lowerCAmelCase_ ( self : str , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Union[str, Any] ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCAmelCase_ ( self : Dict ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def lowerCAmelCase_ ( self : Tuple ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
7
0
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def __magic_name__ ( SCREAMING_SNAKE_CASE = 8 ) -> str: _lowercase : Any = ascii_letters + digits + punctuation return "".join(secrets.choice(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(SCREAMING_SNAKE_CASE ) _lowercase : Any = i // 3 _lowercase : Union[str, Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _lowercase : Dict = ( chars_incl + random(SCREAMING_SNAKE_CASE , quotient + remainder ) + random(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) + random(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) _lowercase : Any = list(SCREAMING_SNAKE_CASE ) shuffle(SCREAMING_SNAKE_CASE ) return "".join(SCREAMING_SNAKE_CASE ) # random is a generalised function for letters, characters and numbers def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: return "".join(secrets.choice(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: pass # Put your code here... def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: pass # Put your code here... def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: pass # Put your code here... def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 8 ) -> bool: if len(SCREAMING_SNAKE_CASE ) < min_length: # Your Password must be at least 8 characters long return False _lowercase : List[str] = any(char in ascii_uppercase for char in password ) _lowercase : Union[str, Any] = any(char in ascii_lowercase for char in password ) _lowercase : Optional[int] = any(char in digits for char in password ) _lowercase : int = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def __magic_name__ ( ) -> int: _lowercase : Tuple = int(input('Please indicate the max length of your password: ' ).strip() ) _lowercase : Optional[Any] = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' , password_generator(SCREAMING_SNAKE_CASE ) ) print( 'Alternative Password generated:' , alternative_password_generator(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
66
"""simple docstring""" import math from datetime import datetime, timedelta def _snake_case ( _snake_case : int ) -> datetime: '''simple docstring''' _A = year % 19 _A = year % 4 _A = year % 7 _A = math.floor(year / 1_00 ) _A = math.floor((13 + 8 * leap_day_inhibits) / 25 ) _A = leap_day_inhibits / 4 _A = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 _A = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 _A = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon _A = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(_snake_case , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(_snake_case , 4 , 18 ) else: return datetime(_snake_case , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_994, 2_000, 2_010, 2_021, 2_023): a = '''will be''' if year > datetime.now().year else '''was''' print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
7
0
def SCREAMING_SNAKE_CASE__ ( snake_case__ :int = 400_0000 ) -> int: _lowercase = [] _lowercase , _lowercase = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(snake_case__ ) _lowercase , _lowercase = b, a + b return sum(snake_case__ ) if __name__ == "__main__": print(F"""{solution() = }""")
67
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''gpt_bigcode''' UpperCAmelCase : str = ['''past_key_values'''] UpperCAmelCase : Dict = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Tuple , _UpperCAmelCase : Dict=50_257 , _UpperCAmelCase : List[Any]=1_024 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : str="gelu_pytorch_tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[Any]=50_256 , _UpperCAmelCase : Dict=50_256 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Any=True , **_UpperCAmelCase : Any , ): _A = vocab_size _A = n_positions _A = n_embd _A = n_layer _A = n_head _A = n_inner _A = activation_function _A = resid_pdrop _A = embd_pdrop _A = attn_pdrop _A = layer_norm_epsilon _A = initializer_range _A = scale_attn_weights _A = use_cache _A = attention_softmax_in_fpaa _A = scale_attention_softmax_in_fpaa _A = multi_query _A = bos_token_id _A = eos_token_id super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
7
0
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _A ( UpperCamelCase ): """simple docstring""" def __init__( self : Optional[int] , *__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Tuple=None , **__SCREAMING_SNAKE_CASE : Tuple ) -> Any: super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =eval_examples __UpperCAmelCase =post_process_function def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Dataset] = None , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Optional[List[str]] = None , __SCREAMING_SNAKE_CASE : str = "eval" , **__SCREAMING_SNAKE_CASE : str , ) -> Dict[str, float]: __UpperCAmelCase =gen_kwargs.copy() __UpperCAmelCase =( gen_kwargs["""max_length"""] if gen_kwargs.get("""max_length""" ) is not None else self.args.generation_max_length ) __UpperCAmelCase =( gen_kwargs["""num_beams"""] if gen_kwargs.get("""num_beams""" ) is not None else self.args.generation_num_beams ) __UpperCAmelCase =gen_kwargs __UpperCAmelCase =self.eval_dataset if eval_dataset is None else eval_dataset __UpperCAmelCase =self.get_eval_dataloader(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __UpperCAmelCase =self.compute_metrics __UpperCAmelCase =None __UpperCAmelCase =time.time() __UpperCAmelCase =self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __UpperCAmelCase =eval_loop( __SCREAMING_SNAKE_CASE , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__SCREAMING_SNAKE_CASE , metric_key_prefix=__SCREAMING_SNAKE_CASE , ) finally: __UpperCAmelCase =compute_metrics __UpperCAmelCase =self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __UpperCAmelCase =self.post_process_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =self.compute_metrics(__SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): __UpperCAmelCase =metrics.pop(__SCREAMING_SNAKE_CASE ) metrics.update(output.metrics ) else: __UpperCAmelCase =output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__SCREAMING_SNAKE_CASE ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __UpperCAmelCase =self.callback_handler.on_evaluate(self.args , self.state , self.control , __SCREAMING_SNAKE_CASE ) return metrics def _a ( self : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : str = "test" , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: __UpperCAmelCase =gen_kwargs.copy() __UpperCAmelCase =self.get_test_dataloader(__SCREAMING_SNAKE_CASE ) # Temporarily disable metric computation, we will do it in the loop here. __UpperCAmelCase =self.compute_metrics __UpperCAmelCase =None __UpperCAmelCase =time.time() __UpperCAmelCase =self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __UpperCAmelCase =eval_loop( __SCREAMING_SNAKE_CASE , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__SCREAMING_SNAKE_CASE , metric_key_prefix=__SCREAMING_SNAKE_CASE , ) finally: __UpperCAmelCase =compute_metrics __UpperCAmelCase =self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __UpperCAmelCase =self.post_process_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , """predict""" ) __UpperCAmelCase =self.compute_metrics(__SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): __UpperCAmelCase =metrics.pop(__SCREAMING_SNAKE_CASE ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__SCREAMING_SNAKE_CASE )
68
"""simple docstring""" def _snake_case ( _snake_case : str ) -> str: '''simple docstring''' return " ".join( ''.join(word[::-1] ) if len(_snake_case ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
7
0
'''simple docstring''' import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def __UpperCAmelCase ( _UpperCAmelCase : List[Any] ) -> Dict: return EnvironmentCommand() class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): @staticmethod def A ( a_ : ArgumentParser ): """simple docstring""" __snake_case = parser.add_parser("env" ) download_parser.set_defaults(func=a_ ) def A ( self : List[Any] ): """simple docstring""" __snake_case = huggingface_hub.__version__ __snake_case = "not installed" __snake_case = "NA" if is_torch_available(): import torch __snake_case = torch.__version__ __snake_case = torch.cuda.is_available() __snake_case = "not installed" if is_transformers_available(): import transformers __snake_case = transformers.__version__ __snake_case = "not installed" if is_accelerate_available(): import accelerate __snake_case = accelerate.__version__ __snake_case = "not installed" if is_xformers_available(): import xformers __snake_case = xformers.__version__ __snake_case = { "`diffusers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": f'''{pt_version} ({pt_cuda_available})''', "Huggingface_hub version": hub_version, "Transformers version": transformers_version, "Accelerate version": accelerate_version, "xFormers version": xformers_version, "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(a_ ) ) return info @staticmethod def A ( a_ : Union[str, Any] ): """simple docstring""" return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
69
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[int] = (KDPMaDiscreteScheduler,) UpperCAmelCase : Any = 10 def lowerCAmelCase_ ( self : Dict , **_UpperCAmelCase : Optional[Any] ): _A = { 'num_train_timesteps': 1_100, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**_UpperCAmelCase ) return config def lowerCAmelCase_ ( self : Any ): for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _A = self.scheduler_classes[0] _A = self.get_scheduler_config(prediction_type='v_prediction' ) _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) _A = self.dummy_model() _A = self.dummy_sample_deter * scheduler.init_noise_sigma _A = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4E-0_7 ) < 1E-2 assert abs(result_mean.item() - 6.1_1_1_2E-1_0 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2E-0_7 ) < 1E-2 assert abs(result_mean.item() - 0.0002 ) < 1E-3 def lowerCAmelCase_ ( self : Optional[Any] ): if torch_device == "mps": return _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) _A = self.dummy_model() _A = self.dummy_sample_deter * scheduler.init_noise_sigma _A = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 def lowerCAmelCase_ ( self : Any ): if torch_device == "mps": return _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase ) _A = self.dummy_model() _A = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) if str(_UpperCAmelCase ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3
7
0
def _SCREAMING_SNAKE_CASE ( lowercase : dict ): '''simple docstring''' lowerCamelCase_ = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowerCamelCase_ = set() return any( node not in visited and depth_first_search(lowercase , lowercase , lowercase , lowercase ) for node in graph ) def _SCREAMING_SNAKE_CASE ( lowercase : dict , lowercase : int , lowercase : set , lowercase : set ): '''simple docstring''' visited.add(lowercase ) rec_stk.add(lowercase ) for node in graph[vertex]: if node not in visited: if depth_first_search(lowercase , lowercase , lowercase , lowercase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(lowercase ) return False if __name__ == "__main__": from doctest import testmod testmod()
70
"""simple docstring""" import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any]=10 ) -> Optional[int]: '''simple docstring''' _A = [] for _ in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def _snake_case ( _snake_case : Optional[Any] , _snake_case : Union[str, Any]=10 ) -> List[str]: '''simple docstring''' _A = [] for step in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(_snake_case , 'schedule.bin' ) torch.save(scheduler.state_dict() , _snake_case ) _A = torch.load(_snake_case ) scheduler.load_state_dict(_snake_case ) return lrs @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ): self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any ): _A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase ) _A = torch.tensor([0.4, 0.2, -0.5] ) _A = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _A = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): _A = criterion(_UpperCAmelCase , _UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def lowerCAmelCase_ ( self : int ): _A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase ) _A = torch.tensor([0.4, 0.2, -0.5] ) _A = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _A = Adafactor( params=[w] , lr=1E-2 , eps=(1E-3_0, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_UpperCAmelCase , weight_decay=0.0 , relative_step=_UpperCAmelCase , scale_parameter=_UpperCAmelCase , warmup_init=_UpperCAmelCase , ) for _ in range(1_000 ): _A = criterion(_UpperCAmelCase , _UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : List[str] = nn.Linear(50 , 50 ) if is_torch_available() else None UpperCAmelCase : Tuple = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None UpperCAmelCase : Dict = 10 def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]=None ): self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase , msg=_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _A = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) _A = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): _A , _A = data _A = scheduler_func(self.optimizer , **_UpperCAmelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) _A = unwrap_schedule(_UpperCAmelCase , self.num_steps ) self.assertListAlmostEqual( _UpperCAmelCase , _UpperCAmelCase , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , ) _A = scheduler_func(self.optimizer , **_UpperCAmelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(_UpperCAmelCase ) # wrap to test picklability of the schedule _A = unwrap_and_save_reload_schedule(_UpperCAmelCase , self.num_steps ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase , msg=F'''failed for {scheduler_func} in save and reload''' ) class lowercase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int] ): _A = fn def __call__( self : Tuple , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : List[str] ): return self.fn(*_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Any ): _A = list(map(self , scheduler.lr_lambdas ) )
7
0
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case : def __init__( self ,_snake_case ,_snake_case=12 ,_snake_case=7 ,_snake_case=True ,_snake_case=True ,_snake_case=True ,_snake_case=99 ,_snake_case=32 ,_snake_case=32 ,_snake_case=2 ,_snake_case=4 ,_snake_case=37 ,_snake_case=0.1 ,_snake_case=0.1 ,_snake_case=5_12 ,_snake_case=0.02 ,_snake_case=0 ,_snake_case=None ,): UpperCAmelCase_ : int = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Tuple = seq_length UpperCAmelCase_ : int = is_training UpperCAmelCase_ : Dict = use_input_mask UpperCAmelCase_ : List[str] = use_labels UpperCAmelCase_ : int = vocab_size UpperCAmelCase_ : int = hidden_size UpperCAmelCase_ : Any = projection_dim UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : Optional[Any] = intermediate_size UpperCAmelCase_ : Optional[Any] = dropout UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : List[str] = max_position_embeddings UpperCAmelCase_ : Dict = initializer_range UpperCAmelCase_ : Tuple = scope UpperCAmelCase_ : List[Any] = bos_token_id def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : Optional[Any] = None if self.use_input_mask: UpperCAmelCase_ : str = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: UpperCAmelCase_ : Tuple = input_mask.numpy() UpperCAmelCase_ , UpperCAmelCase_ : str = input_mask.shape UpperCAmelCase_ : Union[str, Any] = np.random.randint(1 ,seq_length - 1 ,size=(batch_size,) ) for batch_idx, start_index in enumerate(_snake_case ): UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : int = self.get_config() return config, input_ids, tf.convert_to_tensor(_snake_case ) def UpperCamelCase__ ( self ): return BlipTextConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,projection_dim=self.projection_dim ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,dropout=self.dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,bos_token_id=self.bos_token_id ,) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : Tuple = TFBlipTextModel(config=_snake_case ) UpperCAmelCase_ : Tuple = model(_snake_case ,attention_mask=_snake_case ,training=_snake_case ) UpperCAmelCase_ : int = model(_snake_case ,training=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = config_and_inputs UpperCAmelCase_ : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _snake_case (__SCREAMING_SNAKE_CASE , unittest.TestCase): __A : Optional[Any] =(TFBlipTextModel,) if is_tf_available() else () __A : Dict =False __A : Optional[Any] =False __A : Union[str, Any] =False def UpperCamelCase__ ( self ): UpperCAmelCase_ : str = BlipTextModelTester(self ) UpperCAmelCase_ : Dict = ConfigTester(self ,config_class=_snake_case ,hidden_size=37 ) def UpperCamelCase__ ( self ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def UpperCamelCase__ ( self ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def UpperCamelCase__ ( self ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def UpperCamelCase__ ( self ): pass @slow def UpperCamelCase__ ( self ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = TFBlipTextModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def UpperCamelCase__ ( self ,_snake_case=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_snake_case )
71
"""simple docstring""" import math def _snake_case ( _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' if ( not isinstance(_snake_case , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * power_factor def _snake_case ( _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' if ( not isinstance(_snake_case , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
7
0
'''simple docstring''' from string import ascii_uppercase _UpperCAmelCase : List[str] = {str(ord(c) - 55): c for c in ascii_uppercase} def UpperCamelCase ( lowercase_ : int , lowercase_ : int ) -> str: '''simple docstring''' if isinstance(lowercase_ , lowercase_ ): raise TypeError('''int() can\'t convert non-string with explicit base''' ) if num < 0: raise ValueError('''parameter must be positive int''' ) if isinstance(lowercase_ , lowercase_ ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if isinstance(lowercase_ , lowercase_ ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if base in (0, 1): raise ValueError('''base must be >= 2''' ) if base > 3_6: raise ValueError('''base must be <= 36''' ) lowercase ='''''' lowercase =0 lowercase =0 while div != 1: lowercase , lowercase =divmod(lowercase_ , lowercase_ ) if base >= 1_1 and 9 < mod < 3_6: lowercase =ALPHABET_VALUES[str(lowercase_ )] else: lowercase =str(lowercase_ ) new_value += actual_value lowercase =num // base lowercase =div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(lowercase_ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(10_00): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
72
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[Any] = '''xmod''' def __init__( self : str , _UpperCAmelCase : Optional[Any]=30_522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Dict=3_072 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Any=1E-1_2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Tuple=("en_XX",) , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Optional[Any] , ): super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = position_embedding_type _A = use_cache _A = classifier_dropout _A = pre_norm _A = adapter_reduction_factor _A = adapter_layer_norm _A = adapter_reuse_layer_norm _A = ln_before_adapter _A = list(_UpperCAmelCase ) _A = default_language class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' @property def lowerCAmelCase_ ( self : Dict ): if self.task == "multiple-choice": _A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
7
0
import re def lowerCamelCase__ (_UpperCAmelCase): if len(re.findall('[ATCG]' , _UpperCAmelCase)) != len(_UpperCAmelCase): raise ValueError('Invalid Strand') return dna.translate(dna.maketrans('ATCG' , 'TAGC')) if __name__ == "__main__": import doctest doctest.testmod()
73
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort a = logging.get_logger(__name__) a = { '''tensor(bool)''': np.bool_, '''tensor(int8)''': np.inta, '''tensor(uint8)''': np.uinta, '''tensor(int16)''': np.intaa, '''tensor(uint16)''': np.uintaa, '''tensor(int32)''': np.intaa, '''tensor(uint32)''': np.uintaa, '''tensor(int64)''': np.intaa, '''tensor(uint64)''': np.uintaa, '''tensor(float16)''': np.floataa, '''tensor(float)''': np.floataa, '''tensor(double)''': np.floataa, } class lowercase_ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : Optional[Any] ): logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) _A = model _A = kwargs.get('model_save_dir' , _UpperCAmelCase ) _A = kwargs.get('latest_model_name' , _UpperCAmelCase ) def __call__( self : Dict , **_UpperCAmelCase : List[Any] ): _A = {k: np.array(_UpperCAmelCase ) for k, v in kwargs.items()} return self.model.run(_UpperCAmelCase , _UpperCAmelCase ) @staticmethod def lowerCAmelCase_ ( _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=None ): if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) _A = 'CPUExecutionProvider' return ort.InferenceSession(_UpperCAmelCase , providers=[provider] , sess_options=_UpperCAmelCase ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : List[Any] ): _A = file_name if file_name is not None else ONNX_WEIGHTS_NAME _A = self.model_save_dir.joinpath(self.latest_model_name ) _A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase ) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) _A = self.model_save_dir.joinpath(_UpperCAmelCase ) if src_path.exists(): _A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase ) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase ) except shutil.SameFileError: pass def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] , ): if os.path.isfile(_UpperCAmelCase ): logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) # saving model weights/files self._save_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( cls : Tuple , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[Union[bool, str, None]] = None , _UpperCAmelCase : Optional[Union[str, None]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional["ort.SessionOptions"] = None , **_UpperCAmelCase : Union[str, Any] , ): _A = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_UpperCAmelCase ): _A = OnnxRuntimeModel.load_model( os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase ) _A = Path(_UpperCAmelCase ) # load model from hub else: # download model _A = hf_hub_download( repo_id=_UpperCAmelCase , filename=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , ) _A = Path(_UpperCAmelCase ).parent _A = Path(_UpperCAmelCase ).name _A = OnnxRuntimeModel.load_model(_UpperCAmelCase , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase ) return cls(model=_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( cls : List[Any] , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : Tuple , ): _A = None if len(str(_UpperCAmelCase ).split('@' ) ) == 2: _A , _A = model_id.split('@' ) return cls._from_pretrained( model_id=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , **_UpperCAmelCase , )
7
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { """ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""", } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''deta''' lowerCAmelCase_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : List[str] , _A : Dict=None , _A : Optional[int]=900 , _A : Dict=2048 , _A : int=6 , _A : Dict=2048 , _A : List[Any]=8 , _A : Union[str, Any]=6 , _A : Tuple=1024 , _A : Tuple=8 , _A : Dict=0.0 , _A : List[Any]=True , _A : List[Any]="relu" , _A : Tuple=256 , _A : Union[str, Any]=0.1 , _A : Optional[Any]=0.0 , _A : Dict=0.0 , _A : int=0.02 , _A : int=1.0 , _A : Optional[Any]=True , _A : Any=False , _A : Optional[int]="sine" , _A : Optional[int]=5 , _A : List[Any]=4 , _A : Tuple=4 , _A : Dict=True , _A : Tuple=300 , _A : Union[str, Any]=True , _A : Optional[Any]=True , _A : Optional[Any]=1 , _A : Dict=5 , _A : Optional[int]=2 , _A : Tuple=1 , _A : Union[str, Any]=1 , _A : Union[str, Any]=5 , _A : Tuple=2 , _A : str=0.1 , _A : Optional[int]=0.25 , **_A : Optional[Any] , ): """simple docstring""" if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __SCREAMING_SNAKE_CASE : Dict = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : int = backbone_config.pop('''model_type''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] __SCREAMING_SNAKE_CASE : Any = config_class.from_dict(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = backbone_config __SCREAMING_SNAKE_CASE : Tuple = num_queries __SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings __SCREAMING_SNAKE_CASE : Tuple = d_model __SCREAMING_SNAKE_CASE : Any = encoder_ffn_dim __SCREAMING_SNAKE_CASE : int = encoder_layers __SCREAMING_SNAKE_CASE : List[str] = encoder_attention_heads __SCREAMING_SNAKE_CASE : Tuple = decoder_ffn_dim __SCREAMING_SNAKE_CASE : str = decoder_layers __SCREAMING_SNAKE_CASE : Tuple = decoder_attention_heads __SCREAMING_SNAKE_CASE : Tuple = dropout __SCREAMING_SNAKE_CASE : int = attention_dropout __SCREAMING_SNAKE_CASE : Dict = activation_dropout __SCREAMING_SNAKE_CASE : str = activation_function __SCREAMING_SNAKE_CASE : List[str] = init_std __SCREAMING_SNAKE_CASE : Union[str, Any] = init_xavier_std __SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layerdrop __SCREAMING_SNAKE_CASE : Tuple = auxiliary_loss __SCREAMING_SNAKE_CASE : Optional[int] = position_embedding_type # deformable attributes __SCREAMING_SNAKE_CASE : Dict = num_feature_levels __SCREAMING_SNAKE_CASE : Optional[int] = encoder_n_points __SCREAMING_SNAKE_CASE : Dict = decoder_n_points __SCREAMING_SNAKE_CASE : List[str] = two_stage __SCREAMING_SNAKE_CASE : Dict = two_stage_num_proposals __SCREAMING_SNAKE_CASE : List[Any] = with_box_refine __SCREAMING_SNAKE_CASE : Optional[Any] = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher __SCREAMING_SNAKE_CASE : Optional[int] = class_cost __SCREAMING_SNAKE_CASE : List[Any] = bbox_cost __SCREAMING_SNAKE_CASE : str = giou_cost # Loss coefficients __SCREAMING_SNAKE_CASE : Optional[int] = mask_loss_coefficient __SCREAMING_SNAKE_CASE : Tuple = dice_loss_coefficient __SCREAMING_SNAKE_CASE : int = bbox_loss_coefficient __SCREAMING_SNAKE_CASE : str = giou_loss_coefficient __SCREAMING_SNAKE_CASE : int = eos_coefficient __SCREAMING_SNAKE_CASE : List[str] = focal_alpha super().__init__(is_encoder_decoder=_A , **_A ) @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" return self.encoder_attention_heads @property def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" return self.d_model def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE : List[Any] = self.backbone_config.to_dict() __SCREAMING_SNAKE_CASE : Optional[Any] = self.__class__.model_type return output
74
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : str = '''speech_to_text''' UpperCAmelCase : List[Any] = ['''past_key_values'''] UpperCAmelCase : Tuple = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : int , _UpperCAmelCase : Union[str, Any]=10_000 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2_048 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Tuple=2_048 , _UpperCAmelCase : str=4 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]="relu" , _UpperCAmelCase : List[Any]=256 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : List[str]=6_000 , _UpperCAmelCase : Optional[Any]=1_024 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Any=(5, 5) , _UpperCAmelCase : int=1_024 , _UpperCAmelCase : str=80 , _UpperCAmelCase : Any=1 , **_UpperCAmelCase : Tuple , ): _A = vocab_size _A = d_model _A = encoder_ffn_dim _A = encoder_layers _A = encoder_attention_heads _A = decoder_ffn_dim _A = decoder_layers _A = decoder_attention_heads _A = dropout _A = attention_dropout _A = activation_dropout _A = activation_function _A = init_std _A = encoder_layerdrop _A = decoder_layerdrop _A = use_cache _A = encoder_layers _A = scale_embedding # scale factor will be sqrt(d_model) if True _A = max_source_positions _A = max_target_positions _A = num_conv_layers _A = list(_UpperCAmelCase ) _A = conv_channels _A = input_feat_per_channel _A = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' F'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' ) super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
7
0
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class lowerCamelCase_ : def __init__( self : List[str] , _A : List[Any] , _A : int=13 , _A : List[Any]=7 , _A : Optional[Any]=6 , _A : Tuple=17 , _A : Union[str, Any]=23 , _A : str=11 , _A : Dict=True , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = parent UpperCAmelCase__ : Tuple = batch_size UpperCAmelCase__ : Optional[Any] = seq_length UpperCAmelCase__ : Tuple = act_dim UpperCAmelCase__ : Dict = state_dim UpperCAmelCase__ : int = hidden_size UpperCAmelCase__ : Dict = max_length UpperCAmelCase__ : Any = is_training def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[str] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) UpperCAmelCase__ : Dict = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) UpperCAmelCase__ : Optional[Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ : str = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ : str = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000 ) UpperCAmelCase__ : Optional[Any] = random_attention_mask((self.batch_size, self.seq_length) ) UpperCAmelCase__ : Tuple = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def lowercase_ ( self : Dict ): '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def lowercase_ ( self : int , _A : int , _A : Optional[int] , _A : int , _A : int , _A : Union[str, Any] , _A : List[str] , _A : List[str] , ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = DecisionTransformerModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase__ : List[Any] = model(_A , _A , _A , _A , _A , _A ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase__ : Optional[int] = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class lowerCamelCase_ ( __a , __a , __a , unittest.TestCase ): lowerCAmelCase__ = (DecisionTransformerModel,) if is_torch_available() else () lowerCAmelCase__ = () lowerCAmelCase__ = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowerCAmelCase__ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = DecisionTransformerModelTester(self ) UpperCAmelCase__ : str = ConfigTester(self , config_class=_A , hidden_size=37 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) @slow def lowercase_ ( self : Tuple ): '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[str] = DecisionTransformerModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(_A ) UpperCAmelCase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Dict = [*signature.parameters.keys()] UpperCAmelCase__ : str = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(_A )] , _A ) @require_torch class lowerCamelCase_ ( unittest.TestCase ): @slow def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = 2 # number of steps of autoregressive prediction we will perform UpperCAmelCase__ : Dict = 10 # defined by the RL environment, may be normalized UpperCAmelCase__ : Optional[int] = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) UpperCAmelCase__ : Union[str, Any] = model.to(_A ) UpperCAmelCase__ : str = model.config torch.manual_seed(0 ) UpperCAmelCase__ : str = torch.randn(1 , 1 , config.state_dim ).to(device=_A , dtype=torch.floataa ) # env.reset() UpperCAmelCase__ : Optional[int] = torch.tensor( [[0.2_4_2_7_9_3, -0.2_8_6_9_3_0_7_4, 0.8_7_4_2_6_1_3], [0.6_7_8_1_5_2_7_4, -0.0_8_1_0_1_0_8_5, -0.1_2_9_5_2_1_4_7]] , device=_A ) UpperCAmelCase__ : Tuple = torch.tensor(_A , device=_A , dtype=torch.floataa ).reshape(1 , 1 , 1 ) UpperCAmelCase__ : Tuple = state UpperCAmelCase__ : Union[str, Any] = torch.zeros(1 , 0 , config.act_dim , device=_A , dtype=torch.floataa ) UpperCAmelCase__ : int = torch.zeros(1 , 0 , device=_A , dtype=torch.floataa ) UpperCAmelCase__ : Union[str, Any] = torch.tensor(0 , device=_A , dtype=torch.long ).reshape(1 , 1 ) for step in range(_A ): UpperCAmelCase__ : Optional[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=_A )] , dim=1 ) UpperCAmelCase__ : Union[str, Any] = torch.cat([rewards, torch.zeros(1 , 1 , device=_A )] , dim=1 ) UpperCAmelCase__ : List[str] = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = model( states=_A , actions=_A , rewards=_A , returns_to_go=_A , timesteps=_A , attention_mask=_A , return_dict=_A , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=_A , dtype=torch.floataa ), 1.0, False, {}, ) UpperCAmelCase__ : Optional[Any] = action_pred[0, -1] UpperCAmelCase__ : Tuple = torch.cat([states, state] , dim=1 ) UpperCAmelCase__ : Any = returns_to_go[0, -1] - reward UpperCAmelCase__ : Union[str, Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) UpperCAmelCase__ : Optional[int] = torch.cat( [timesteps, torch.ones((1, 1) , device=_A , dtype=torch.long ) * (step + 1)] , dim=1 )
75
"""simple docstring""" from manim import * class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Rectangle(height=0.5 , width=0.5 ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _A = Rectangle(height=0.25 , width=0.25 ) _A = [mem.copy() for i in range(6 )] _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('CPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(4 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('GPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Model' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_UpperCAmelCase ) _A = [] _A = [] for i, rect in enumerate(_UpperCAmelCase ): _A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 ) target.move_to(_UpperCAmelCase ) model_arr.append(_UpperCAmelCase ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_UpperCAmelCase ) self.add(*_UpperCAmelCase , *_UpperCAmelCase ) _A = [meta_mem.copy() for i in range(6 )] _A = [meta_mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Disk' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _A = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_UpperCAmelCase ) _A = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase ) ) _A = Square(0.3 ) input.set_fill(_UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 ) self.play(Write(_UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 ) self.play(MoveToTarget(_UpperCAmelCase ) ) self.play(FadeOut(_UpperCAmelCase ) ) _A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _A = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) ) _A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _A = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _A = AnimationGroup( FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _A = 0.7 self.play( Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _A = a_c _A = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , ) _A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) ) self.wait()
7
0
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __UpperCAmelCase ( ): __lowercase : Union[str, Any] = HfArgumentParser(__UpperCamelCase ) __lowercase : int = parser.parse_args_into_dataclasses()[0] __lowercase : int = TensorFlowBenchmark(args=__UpperCamelCase ) try: __lowercase : str = parser.parse_args_into_dataclasses()[0] except ValueError as e: __lowercase : Optional[int] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' __lowercase : Any = ''' '''.join(str(__UpperCamelCase ).split(''' ''' )[:-1] ) __lowercase : int = '''''' __lowercase : List[str] = eval(str(__UpperCamelCase ).split(''' ''' )[-1] ) __lowercase : Any = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: __lowercase : Union[str, Any] = full_error_msg + begin_error_msg + str(__UpperCamelCase ) raise ValueError(__UpperCamelCase ) benchmark.run() if __name__ == "__main__": main()
76
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int ) -> int: '''simple docstring''' return int((input_a, input_a).count(1 ) != 0 ) def _snake_case ( ) -> None: '''simple docstring''' assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
7
0
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black A = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. A = """ def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states """ class a__ ( unittest.TestCase ): def a_ ( self : Dict): """simple docstring""" __UpperCAmelCase : Tuple = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , "models/bert/")) __UpperCAmelCase : List[str] = self.transformer_dir shutil.copy( os.path.join(UpperCamelCase_ , "src/transformers/models/bert/modeling_bert.py") , os.path.join(self.transformer_dir , "models/bert/modeling_bert.py") , ) def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase : Dict = "src/transformers" shutil.rmtree(self.transformer_dir) def a_ ( self : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any=None): """simple docstring""" __UpperCAmelCase : Optional[int] = comment + F"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: __UpperCAmelCase : Any = comment + F"\nclass {class_name}(nn.Module):\n" + overwrite_result __UpperCAmelCase : Union[str, Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119) __UpperCAmelCase : Any = black.format_str(UpperCamelCase_ , mode=UpperCamelCase_) __UpperCAmelCase : Optional[Any] = os.path.join(self.transformer_dir , "new_code.py") with open(UpperCamelCase_ , "w" , newline="\n") as f: f.write(UpperCamelCase_) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(UpperCamelCase_)) == 0) else: check_copies.is_copy_consistent(f.name , overwrite=UpperCamelCase_) with open(UpperCamelCase_ , "r") as f: self.assertTrue(f.read() , UpperCamelCase_) def a_ ( self : Optional[int]): """simple docstring""" __UpperCAmelCase : Optional[Any] = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead") self.assertEqual(UpperCamelCase_ , UpperCamelCase_) def a_ ( self : Union[str, Any]): """simple docstring""" self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , UpperCamelCase_ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , re.sub("Bert" , "TestModel" , UpperCamelCase_) , ) # Copy consistency with a really long name __UpperCAmelCase : str = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}" , F"{long_class_name}LMPredictionHead" , re.sub("Bert" , UpperCamelCase_ , UpperCamelCase_) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , UpperCamelCase_ , overwrite_result=re.sub("Bert" , "TestModel" , UpperCamelCase_) , ) def a_ ( self : Any): """simple docstring""" __UpperCAmelCase : Any = check_copies.LOCALIZED_READMES["README_zh-hans.md"] __UpperCAmelCase : Dict = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) __UpperCAmelCase : List[Any] = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) __UpperCAmelCase : Union[str, Any] = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" " Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning 发布。\n" ) __UpperCAmelCase , __UpperCAmelCase : Dict = check_copies.convert_to_localized_md( UpperCamelCase_ , UpperCamelCase_ , localized_readme["format_model_list"]) self.assertFalse(UpperCamelCase_) self.assertEqual(UpperCamelCase_ , UpperCamelCase_) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = check_copies.convert_to_localized_md( UpperCamelCase_ , UpperCamelCase_ , localized_readme["format_model_list"]) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(UpperCamelCase_) __UpperCAmelCase : Dict = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) __UpperCAmelCase : Optional[int] = ( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" " the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) __UpperCAmelCase : Union[str, Any] = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) __UpperCAmelCase , __UpperCAmelCase : Dict = check_copies.convert_to_localized_md( UpperCamelCase_ , UpperCamelCase_ , localized_readme["format_model_list"]) # Check if the model link is synchronized. self.assertEqual(UpperCamelCase_ , UpperCamelCase_)
77
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments a = logging.getLogger(__name__) @dataclass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[float] = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''whether to use adafactor'''} ) UpperCAmelCase : Optional[float] = field( default=__lowerCAmelCase , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) UpperCAmelCase : Optional[float] = field( default=__lowerCAmelCase , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) UpperCAmelCase : Optional[float] = field(default=__lowerCAmelCase , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) UpperCAmelCase : Optional[float] = field( default=__lowerCAmelCase , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) UpperCAmelCase : Optional[str] = field( default='''linear''' , metadata={'''help''': f'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
7
0
'''simple docstring''' import functools def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : str ) -> int: '''simple docstring''' UpperCAmelCase_ = len(snake_case_ ) UpperCAmelCase_ = len(snake_case_ ) @functools.cache def min_distance(snake_case_ : int , snake_case_ : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , snake_case_ ) , 1 + min_distance(snake_case_ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
78
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule a = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
7
0
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch SCREAMING_SNAKE_CASE__ : Dict = """sshleifer/bart-tiny-random""" SCREAMING_SNAKE_CASE__ : List[str] = """patrickvonplaten/t5-tiny-random""" @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self ): return AutoConfig.from_pretrained(_lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ , *UpperCAmelCase__ : Optional[int] = create_student_by_copying_alternating_layers(_lowerCAmelCase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def __UpperCAmelCase ( self ): UpperCAmelCase__ , *UpperCAmelCase__ : int = create_student_by_copying_alternating_layers(_lowerCAmelCase , tempfile.mkdtemp() , e=1 , d=_lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ , *UpperCAmelCase__ : Any = create_student_by_copying_alternating_layers(_lowerCAmelCase , tempfile.mkdtemp() , e=1 , d=_lowerCAmelCase ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def __UpperCAmelCase ( self ): UpperCAmelCase__ , *UpperCAmelCase__ : List[Any] = create_student_by_copying_alternating_layers(_lowerCAmelCase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def __UpperCAmelCase ( self ): with self.assertRaises(_lowerCAmelCase ): create_student_by_copying_alternating_layers(_lowerCAmelCase , tempfile.mkdtemp() , e=_lowerCAmelCase , d=_lowerCAmelCase )
79
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : UNetaDModel UpperCAmelCase : KarrasVeScheduler def __init__( self : Any , _UpperCAmelCase : UNetaDModel , _UpperCAmelCase : KarrasVeScheduler ): super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self : Optional[int] , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Optional[Any] , ): _A = self.unet.config.sample_size _A = (batch_size, 3, img_size, img_size) _A = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) _A = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper _A = self.scheduler.schedule[t] _A = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat _A , _A = self.scheduler.add_noise_to_input(_UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. _A = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev _A = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. _A = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample _A = self.scheduler.step_correct( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , step_output.prev_sample , step_output['derivative'] , ) _A = step_output.prev_sample _A = (sample / 2 + 0.5).clamp(0 , 1 ) _A = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _A = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
7
0
from __future__ import annotations def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): __lowercase , __lowercase = array[indexa], array[indexa] def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if length > 1: __lowercase = int(length / 2 ) for i in range(lowerCamelCase , low + middle ): comp_and_swap(lowerCamelCase , lowerCamelCase , i + middle , lowerCamelCase ) bitonic_merge(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) bitonic_merge(lowerCamelCase , low + middle , lowerCamelCase , lowerCamelCase ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if length > 1: __lowercase = int(length / 2 ) bitonic_sort(lowerCamelCase , lowerCamelCase , lowerCamelCase , 1 ) bitonic_sort(lowerCamelCase , low + middle , lowerCamelCase , 0 ) bitonic_merge(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : Tuple = input("""Enter numbers separated by a comma:\n""").strip() __UpperCamelCase : int = [int(item.strip()) for item in user_input.split(""",""")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("""\nSorted array in ascending order is: """, end="""""") print(*unsorted, sep=""", """) bitonic_merge(unsorted, 0, len(unsorted), 0) print("""Sorted array in descending order is: """, end="""""") print(*unsorted, sep=""", """)
80
"""simple docstring""" class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ): _A = None _A = None _A = graph self._normalize_graph(_UpperCAmelCase , _UpperCAmelCase ) _A = len(_UpperCAmelCase ) _A = None def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ): if sources is int: _A = [sources] if sinks is int: _A = [sinks] if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) == 0: return _A = sources[0] _A = sinks[0] # make fake vertex if there are more # than one source or sink if len(_UpperCAmelCase ) > 1 or len(_UpperCAmelCase ) > 1: _A = 0 for i in sources: max_input_flow += sum(self.graph[i] ) _A = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: _A = max_input_flow _A = 0 _A = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: _A = max_input_flow _A = size - 1 def lowerCAmelCase_ ( self : Optional[Any] ): if self.maximum_flow_algorithm is None: raise Exception('You need to set maximum flow algorithm before.' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Union[str, Any] ): _A = algorithm(self ) class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Union[str, Any] ): _A = flow_network _A = flow_network.verticesCount _A = flow_network.sourceIndex _A = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that _A = flow_network.graph _A = False def lowerCAmelCase_ ( self : Optional[Any] ): if not self.executed: self._algorithm() _A = True def lowerCAmelCase_ ( self : int ): pass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : int , _UpperCAmelCase : Any ): super().__init__(_UpperCAmelCase ) # use this to save your result _A = -1 def lowerCAmelCase_ ( self : Optional[Any] ): if not self.executed: raise Exception('You should execute algorithm before using its result!' ) return self.maximum_flow class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : List[Any] ): super().__init__(_UpperCAmelCase ) _A = [[0] * self.verticies_count for i in range(self.verticies_count )] _A = [0] * self.verticies_count _A = [0] * self.verticies_count def lowerCAmelCase_ ( self : Dict ): _A = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule _A = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list _A = 0 while i < len(_UpperCAmelCase ): _A = vertices_list[i] _A = self.heights[vertex_index] self.process_vertex(_UpperCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_UpperCAmelCase ) ) _A = 0 else: i += 1 _A = sum(self.preflow[self.source_index] ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Any ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_UpperCAmelCase , _UpperCAmelCase ) self.relabel(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ): _A = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : int ): _A = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): _A = self.heights[to_index] if min_height is not None: _A = min_height + 1 if __name__ == "__main__": a = [0] a = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] a = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network a = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate a = flow_network.find_maximum_flow() print(F'''maximum flow is {maximum_flow}''')
7
0
from __future__ import annotations from typing import Any def lowerCAmelCase_ ( __lowerCamelCase ): create_state_space_tree(__lowerCamelCase , [] , 0 ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): if index == len(__lowerCamelCase ): print(__lowerCamelCase ) return create_state_space_tree(__lowerCamelCase , __lowerCamelCase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(__lowerCamelCase , __lowerCamelCase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": _snake_case : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["A", "B", "C"]) generate_all_subsequences(seq)
81
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class lowercase_ ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : List[str] = SpeechTaTokenizer UpperCAmelCase : Tuple = False UpperCAmelCase : Optional[int] = True def lowerCAmelCase_ ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing _A = SpeechTaTokenizer(_UpperCAmelCase ) _A = AddedToken('<mask>' , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) _A = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Tuple ): _A = 'this is a test' _A = 'this is a test' return input_text, output_text def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict=20 , _UpperCAmelCase : str=5 ): _A , _A = self.get_input_output_texts(_UpperCAmelCase ) _A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) _A = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) return text, ids def lowerCAmelCase_ ( self : Optional[Any] ): _A = '<pad>' _A = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-4] , 'œ' ) self.assertEqual(vocab_keys[-2] , '<mask>' ) self.assertEqual(vocab_keys[-1] , '<ctc_blank>' ) self.assertEqual(len(_UpperCAmelCase ) , 81 ) def lowerCAmelCase_ ( self : Optional[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def lowerCAmelCase_ ( self : Any ): _A = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A = tokenizer.vocab_size _A = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _A = ['aaaaa bbbbbb', 'cccccccccdddddddd'] _A = tokenizer.add_tokens(_UpperCAmelCase ) _A = tokenizer.vocab_size _A = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , all_size + len(_UpperCAmelCase ) ) _A = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=_UpperCAmelCase ) self.assertGreaterEqual(len(_UpperCAmelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) _A = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} _A = tokenizer.add_special_tokens(_UpperCAmelCase ) _A = tokenizer.vocab_size _A = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , all_size_a + len(_UpperCAmelCase ) ) _A = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=_UpperCAmelCase ) self.assertGreaterEqual(len(_UpperCAmelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def lowerCAmelCase_ ( self : str ): pass def lowerCAmelCase_ ( self : Any ): pass def lowerCAmelCase_ ( self : Dict ): _A = self.get_tokenizer() _A = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(_UpperCAmelCase , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) _A = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) _A = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) # fmt: off self.assertListEqual(_UpperCAmelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _A = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def lowerCAmelCase_ ( self : List[Any] ): # Use custom sequence because this tokenizer does not handle numbers. _A = [ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off _A = { 'input_ids': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=_UpperCAmelCase , )
7
0
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = args.pruning_method UpperCAmelCase_ = args.threshold UpperCAmelCase_ = args.model_name_or_path.rstrip("/" ) UpperCAmelCase_ = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) UpperCAmelCase_ = torch.load(os.path.join(lowerCAmelCase__ , "pytorch_model.bin" ) ) UpperCAmelCase_ = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: UpperCAmelCase_ = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: UpperCAmelCase_ = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: UpperCAmelCase_ = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": UpperCAmelCase_ = MagnitudeBinarizer.apply(inputs=lowerCAmelCase__ , threshold=lowerCAmelCase__ ) UpperCAmelCase_ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue UpperCAmelCase_ = name[:-6] UpperCAmelCase_ = model[f"""{prefix_}mask_scores"""] UpperCAmelCase_ = TopKBinarizer.apply(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue UpperCAmelCase_ = name[:-6] UpperCAmelCase_ = model[f"""{prefix_}mask_scores"""] UpperCAmelCase_ = ThresholdBinarizer.apply(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue UpperCAmelCase_ = name[:-6] UpperCAmelCase_ = model[f"""{prefix_}mask_scores"""] UpperCAmelCase_ , UpperCAmelCase_ = -0.1, 1.1 UpperCAmelCase_ = torch.sigmoid(lowerCAmelCase__ ) UpperCAmelCase_ = s * (r - l) + l UpperCAmelCase_ = s_bar.clamp(min=0.0 , max=1.0 ) UpperCAmelCase_ = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError("Unknown pruning method" ) if target_model_path is None: UpperCAmelCase_ = os.path.join( os.path.dirname(lowerCAmelCase__ ) , f"""bertarized_{os.path.basename(lowerCAmelCase__ )}""" ) if not os.path.isdir(lowerCAmelCase__ ): shutil.copytree(lowerCAmelCase__ , lowerCAmelCase__ ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , "pytorch_model.bin" ) ) print("\nPruned model saved! See you later!" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) lowerCamelCase = parser.parse_args() main(args)
82
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
7
0
"""simple docstring""" from __future__ import annotations lowerCAmelCase__ = list[tuple[int, int]] lowerCAmelCase__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCAmelCase__ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __snake_case : def __init__( self : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : float , __lowerCAmelCase : Node | None , ): """simple docstring""" _lowerCamelCase : str = pos_x _lowerCamelCase : Optional[Any] = pos_y _lowerCamelCase : List[Any] = (pos_y, pos_x) _lowerCamelCase : Optional[Any] = goal_x _lowerCamelCase : List[Any] = goal_y _lowerCamelCase : str = g_cost _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[int] = self.calculate_heuristic() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = abs(self.pos_x - self.goal_x ) _lowerCamelCase : str = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : Any , __lowerCAmelCase : Dict ): """simple docstring""" return self.f_cost < other.f_cost class __snake_case : def __init__( self : Optional[Any] , __lowerCAmelCase : tuple[int, int] , __lowerCAmelCase : tuple[int, int] ): """simple docstring""" _lowerCamelCase : Any = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __lowerCAmelCase ) _lowerCamelCase : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , __lowerCAmelCase ) _lowerCamelCase : Optional[int] = [self.start] _lowerCamelCase : list[Node] = [] _lowerCamelCase : Dict = False def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _lowerCamelCase : Union[str, Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: _lowerCamelCase : List[str] = True return self.retrace_path(__lowerCAmelCase ) self.closed_nodes.append(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.get_successors(__lowerCAmelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__lowerCAmelCase ) else: # retrieve the best current path _lowerCamelCase : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(__lowerCAmelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__lowerCAmelCase ) else: self.open_nodes.append(__lowerCAmelCase ) if not self.reached: return [self.start.pos] return None def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : Node ): """simple docstring""" _lowerCamelCase : str = [] for action in delta: _lowerCamelCase : Optional[int] = parent.pos_x + action[1] _lowerCamelCase : Tuple = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__lowerCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __lowerCAmelCase , __lowerCAmelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __lowerCAmelCase , ) ) return successors def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : Node | None ): """simple docstring""" _lowerCamelCase : Union[str, Any] = node _lowerCamelCase : Tuple = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCamelCase : List[str] = current_node.parent path.reverse() return path if __name__ == "__main__": lowerCAmelCase__ = (0, 0) lowerCAmelCase__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('''------''') lowerCAmelCase__ = GreedyBestFirst(init, goal) lowerCAmelCase__ = greedy_bf.search() if path: for pos_x, pos_y in path: lowerCAmelCase__ = 2 for elem in grid: print(elem)
83
"""simple docstring""" import argparse a = '''docs/source/_static/js/custom.js''' def _snake_case ( _snake_case : Dict ) -> Any: '''simple docstring''' with open(_snake_case , encoding='utf-8' , newline='\n' ) as f: _A = f.readlines() _A = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 _A = F'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F''' "v{version}": "v{version}",\n''' with open(_snake_case , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_snake_case ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') a = parser.parse_args() update_custom_js(args.version)
7
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. lowercase = [[1, 2, 4], [1, 2, 3, 4]] lowercase = DisjunctiveConstraint(snake_case ) self.assertTrue(isinstance(dc.token_ids , snake_case ) ) with self.assertRaises(snake_case ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(snake_case ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def SCREAMING_SNAKE_CASE__ ( self ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). lowercase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(snake_case ): DisjunctiveConstraint(snake_case ) # fails here def SCREAMING_SNAKE_CASE__ ( self ): lowercase = [[1, 2, 3], [1, 2, 4]] lowercase = DisjunctiveConstraint(snake_case ) lowercase , lowercase , lowercase = dc.update(1 ) lowercase = stepped is True and completed is False and reset is False self.assertTrue(snake_case ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase , lowercase , lowercase = dc.update(2 ) lowercase = stepped is True and completed is False and reset is False self.assertTrue(snake_case ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase , lowercase , lowercase = dc.update(3 ) lowercase = stepped is True and completed is True and reset is False self.assertTrue(snake_case ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowercase = DisjunctiveConstraint(snake_case ) lowercase , lowercase , lowercase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase , lowercase , lowercase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase , lowercase , lowercase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowercase , lowercase , lowercase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowercase , lowercase , lowercase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowercase , lowercase , lowercase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase , lowercase , lowercase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
84
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''vit_mae''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int]=768 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Optional[int]=3_072 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : Optional[Any]=224 , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=512 , _UpperCAmelCase : int=8 , _UpperCAmelCase : List[Any]=2_048 , _UpperCAmelCase : Optional[Any]=0.75 , _UpperCAmelCase : List[str]=False , **_UpperCAmelCase : Union[str, Any] , ): super().__init__(**_UpperCAmelCase ) _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = initializer_range _A = layer_norm_eps _A = image_size _A = patch_size _A = num_channels _A = qkv_bias _A = decoder_num_attention_heads _A = decoder_hidden_size _A = decoder_num_hidden_layers _A = decoder_intermediate_size _A = mask_ratio _A = norm_pix_loss
7
0
def _a ( lowercase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = [0] * len(lowercase__ ) for i in range(1 , len(lowercase__ ) ): # use last results for better performance - dynamic programming SCREAMING_SNAKE_CASE__ : Dict = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 SCREAMING_SNAKE_CASE__ : str = j return prefix_result def _a ( lowercase__ : str ): '''simple docstring''' return max(prefix_function(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
85
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) a = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] a = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def _snake_case ( _snake_case : Optional[Any] ) -> str: '''simple docstring''' _A = torch.load(_snake_case , map_location='cpu' ) return sd def _snake_case ( _snake_case : Union[str, Any] , _snake_case : str , _snake_case : Tuple=rename_keys_prefix ) -> List[str]: '''simple docstring''' _A = OrderedDict() _A = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _A = key for name_pair in rename_keys_prefix: _A = new_key.replace(name_pair[0] , name_pair[1] ) _A = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _A = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def _snake_case ( _snake_case : List[str] , _snake_case : Dict ) -> Dict: '''simple docstring''' assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: _A = 'pretraining' if "vcr" in checkpoint_path: _A = {'visual_embedding_dim': 5_12} elif "vqa_advanced" in checkpoint_path: _A = {'visual_embedding_dim': 20_48} elif "vqa" in checkpoint_path: _A = {'visual_embedding_dim': 20_48} elif "nlvr" in checkpoint_path: _A = {'visual_embedding_dim': 10_24} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: _A = {'visual_embedding_dim': 5_12} _A = 'multichoice' elif "vqa_advanced" in checkpoint_path: _A = {'visual_embedding_dim': 20_48} _A = 'vqa_advanced' elif "vqa" in checkpoint_path: _A = {'visual_embedding_dim': 20_48, 'num_labels': 31_29} _A = 'vqa' elif "nlvr" in checkpoint_path: _A = { 'visual_embedding_dim': 10_24, 'num_labels': 2, } _A = 'nlvr' _A = VisualBertConfig(**_snake_case ) # Load State Dict _A = load_state_dict(_snake_case ) _A = get_new_dict(_snake_case , _snake_case ) if model_type == "pretraining": _A = VisualBertForPreTraining(_snake_case ) elif model_type == "vqa": _A = VisualBertForQuestionAnswering(_snake_case ) elif model_type == "nlvr": _A = VisualBertForVisualReasoning(_snake_case ) elif model_type == "multichoice": _A = VisualBertForMultipleChoice(_snake_case ) model.load_state_dict(_snake_case ) # Save Checkpoints Path(_snake_case ).mkdir(exist_ok=_snake_case ) model.save_pretrained(_snake_case ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') a = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
7
0
from __future__ import annotations def __snake_case ( __UpperCamelCase : list[int] ): # This function is recursive """simple docstring""" A_ = len(__UpperCamelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else A_ = array[0] A_ = False A_ = 1 A_ = [] while not is_found and i < array_length: if array[i] < pivot: A_ = True A_ = [element for element in array[i:] if element >= array[i]] A_ = longest_subsequence(__UpperCamelCase ) if len(__UpperCamelCase ) > len(__UpperCamelCase ): A_ = temp_array else: i += 1 A_ = [element for element in array[1:] if element >= pivot] A_ = [pivot, *longest_subsequence(__UpperCamelCase )] if len(__UpperCamelCase ) > len(__UpperCamelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
86
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def _snake_case ( _snake_case : Dict ) -> Optional[Any]: '''simple docstring''' for param in module.parameters(): _A = False def _snake_case ( ) -> Tuple: '''simple docstring''' _A = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _A = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def _snake_case ( _snake_case : Dict ) -> Optional[Any]: '''simple docstring''' _A = plt.imshow(_snake_case ) fig.axes.get_xaxis().set_visible(_snake_case ) fig.axes.get_yaxis().set_visible(_snake_case ) plt.show() def _snake_case ( ) -> Optional[Any]: '''simple docstring''' _A = datetime.now() _A = current_time.strftime('%H:%M:%S' ) return timestamp
7
0
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py _lowerCamelCase : Dict = """src/transformers""" _lowerCamelCase : Tuple = """docs/source/en/tasks""" def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> int: """simple docstring""" with open(lowercase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: A__ = f.readlines() # Find the start prompt. A__ = 0 while not lines[start_index].startswith(lowercase_ ): start_index += 1 start_index += 1 A__ = start_index while not lines[end_index].startswith(lowercase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. _lowerCamelCase : Union[str, Any] = direct_transformers_import(TRANSFORMERS_PATH) _lowerCamelCase : List[Any] = { """asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, """audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, """language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, """image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, """masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, """multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, """object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, """question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, """semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, """sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, """summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, """translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, """document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, """monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). _lowerCamelCase : List[str] = { """summarization.md""": ("""nllb""",), """translation.md""": ("""nllb""",), } def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: """simple docstring""" A__ = TASK_GUIDE_TO_MODELS[task_guide] A__ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(lowercase_ , set() ) A__ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=False ) -> Any: """simple docstring""" A__ , A__ , A__ , A__ = _find_text_in_file( filename=os.path.join(lowercase_ , lowercase_ ) , start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''' , end_prompt='''<!--End of the generated tip-->''' , ) A__ = get_model_list_for_task(lowercase_ ) if current_list != new_list: if overwrite: with open(os.path.join(lowercase_ , lowercase_ ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" ''' to fix this.''' ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _lowerCamelCase : Optional[Any] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
87
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Any = ['''image_processor''', '''tokenizer'''] UpperCAmelCase : Optional[int] = '''ViTImageProcessor''' UpperCAmelCase : int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Tuple , _UpperCAmelCase : int=None , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : Dict ): _A = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) _A = kwargs.pop('feature_extractor' ) _A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : Optional[Any] , _UpperCAmelCase : int=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Union[str, Any] ): if text is None and visual_prompt is None and images is None: raise ValueError('You have to specify either text, visual prompt or images.' ) if text is not None and visual_prompt is not None: raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' ) if text is not None: _A = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if visual_prompt is not None: _A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if images is not None: _A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if visual_prompt is not None and images is not None: _A = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: _A = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: _A = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def lowerCAmelCase_ ( self : str , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Union[str, Any] ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCAmelCase_ ( self : Dict ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def lowerCAmelCase_ ( self : Tuple ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
7
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) def _snake_case ( __snake_case : Optional[Any] ): """simple docstring""" if "resnet-50" in model_name: _lowerCamelCase : Optional[Any] = ResNetConfig.from_pretrained("""microsoft/resnet-50""" ) elif "resnet-101" in model_name: _lowerCamelCase : Any = ResNetConfig.from_pretrained("""microsoft/resnet-101""" ) else: raise ValueError("""Model name should include either resnet50 or resnet101""" ) _lowerCamelCase : Union[str, Any] = DetrConfig(use_timm_backbone=__snake_case , backbone_config=__snake_case ) # set label attributes _lowerCamelCase : List[Any] = """panoptic""" in model_name if is_panoptic: _lowerCamelCase : str = 250 else: _lowerCamelCase : str = 91 _lowerCamelCase : int = """huggingface/label-files""" _lowerCamelCase : int = """coco-detection-id2label.json""" _lowerCamelCase : Tuple = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type="""dataset""" ) , """r""" ) ) _lowerCamelCase : Optional[int] = {int(__snake_case ): v for k, v in idalabel.items()} _lowerCamelCase : int = idalabel _lowerCamelCase : Dict = {v: k for k, v in idalabel.items()} return config, is_panoptic def _snake_case ( __snake_case : Optional[Any] ): """simple docstring""" _lowerCamelCase : Any = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.conv1.weight""", """backbone.conv_encoder.model.embedder.embedder.convolution.weight""") ) rename_keys.append(("""backbone.0.body.bn1.weight""", """backbone.conv_encoder.model.embedder.embedder.normalization.weight""") ) rename_keys.append(("""backbone.0.body.bn1.bias""", """backbone.conv_encoder.model.embedder.embedder.normalization.bias""") ) rename_keys.append(("""backbone.0.body.bn1.running_mean""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_mean""") ) rename_keys.append(("""backbone.0.body.bn1.running_var""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_var""") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean', ) ) rename_keys.append( ( F'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var', F'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias') ) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) return rename_keys def _snake_case ( __snake_case : List[str] , __snake_case : Dict , __snake_case : int ): """simple docstring""" _lowerCamelCase : Optional[Any] = state_dict.pop(__snake_case ) _lowerCamelCase : Any = val def _snake_case ( __snake_case : Optional[int] , __snake_case : Any=False ): """simple docstring""" _lowerCamelCase : str = """""" if is_panoptic: _lowerCamelCase : Dict = """detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _lowerCamelCase : int = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) _lowerCamelCase : List[Any] = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Dict = in_proj_weight[:256, :] _lowerCamelCase : Optional[Any] = in_proj_bias[:256] _lowerCamelCase : str = in_proj_weight[256:512, :] _lowerCamelCase : List[str] = in_proj_bias[256:512] _lowerCamelCase : Union[str, Any] = in_proj_weight[-256:, :] _lowerCamelCase : Union[str, Any] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _lowerCamelCase : Optional[int] = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) _lowerCamelCase : Optional[Any] = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[Any] = in_proj_weight[:256, :] _lowerCamelCase : Optional[int] = in_proj_bias[:256] _lowerCamelCase : Optional[Any] = in_proj_weight[256:512, :] _lowerCamelCase : Any = in_proj_bias[256:512] _lowerCamelCase : Optional[Any] = in_proj_weight[-256:, :] _lowerCamelCase : Any = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention _lowerCamelCase : str = state_dict.pop( F'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) _lowerCamelCase : str = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict _lowerCamelCase : List[Any] = in_proj_weight_cross_attn[:256, :] _lowerCamelCase : int = in_proj_bias_cross_attn[:256] _lowerCamelCase : int = in_proj_weight_cross_attn[256:512, :] _lowerCamelCase : str = in_proj_bias_cross_attn[256:512] _lowerCamelCase : Dict = in_proj_weight_cross_attn[-256:, :] _lowerCamelCase : Any = in_proj_bias_cross_attn[-256:] def _snake_case ( ): """simple docstring""" _lowerCamelCase : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCamelCase : Union[str, Any] = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def _snake_case ( __snake_case : int , __snake_case : List[str]=None , __snake_case : int=False ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Tuple = get_detr_config(__snake_case ) # load original model from torch hub _lowerCamelCase : int = { """detr-resnet-50""": """detr_resnet50""", """detr-resnet-101""": """detr_resnet101""", } logger.info(F'Converting model {model_name}...' ) _lowerCamelCase : List[str] = torch.hub.load("""facebookresearch/detr""" , model_name_to_original_name[model_name] , pretrained=__snake_case ).eval() _lowerCamelCase : Tuple = detr.state_dict() # rename keys for src, dest in create_rename_keys(__snake_case ): if is_panoptic: _lowerCamelCase : str = """detr.""" + src rename_key(__snake_case , __snake_case , __snake_case ) # query, key and value matrices need special treatment read_in_q_k_v(__snake_case , is_panoptic=__snake_case ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _lowerCamelCase : Optional[Any] = """detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): _lowerCamelCase : Union[str, Any] = state_dict.pop(__snake_case ) _lowerCamelCase : Dict = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _lowerCamelCase : int = state_dict.pop(__snake_case ) _lowerCamelCase : int = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: _lowerCamelCase : Any = state_dict.pop(__snake_case ) _lowerCamelCase : int = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): _lowerCamelCase : Optional[int] = state_dict.pop(__snake_case ) _lowerCamelCase : str = val # finally, create HuggingFace model and load state dict _lowerCamelCase : Tuple = DetrForSegmentation(__snake_case ) if is_panoptic else DetrForObjectDetection(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # verify our conversion on an image _lowerCamelCase : int = """coco_panoptic""" if is_panoptic else """coco_detection""" _lowerCamelCase : List[Any] = DetrImageProcessor(format=__snake_case ) _lowerCamelCase : Optional[int] = processor(images=prepare_img() , return_tensors="""pt""" ) _lowerCamelCase : Union[str, Any] = encoding["""pixel_values"""] _lowerCamelCase : Union[str, Any] = detr(__snake_case ) _lowerCamelCase : Any = model(__snake_case ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) if push_to_hub: # Upload model and image processor to the hub logger.info("""Uploading PyTorch model and image processor to the hub...""" ) model.push_to_hub(F'nielsr/{model_name}' ) processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""detr-resnet-50""", type=str, choices=["""detr-resnet-50""", """detr-resnet-101"""], help="""Name of the DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub or not.""") UpperCAmelCase = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
88
"""simple docstring""" import math from datetime import datetime, timedelta def _snake_case ( _snake_case : int ) -> datetime: '''simple docstring''' _A = year % 19 _A = year % 4 _A = year % 7 _A = math.floor(year / 1_00 ) _A = math.floor((13 + 8 * leap_day_inhibits) / 25 ) _A = leap_day_inhibits / 4 _A = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 _A = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 _A = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon _A = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(_snake_case , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(_snake_case , 4 , 18 ) else: return datetime(_snake_case , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_994, 2_000, 2_010, 2_021, 2_023): a = '''will be''' if year > datetime.now().year else '''was''' print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
7
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Tuple = "▁" SCREAMING_SNAKE_CASE : Optional[Any] = {"vocab_file": "sentencepiece.bpe.model"} SCREAMING_SNAKE_CASE : List[Any] = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), } } SCREAMING_SNAKE_CASE : Tuple = { "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off SCREAMING_SNAKE_CASE : List[Any] = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class _lowerCamelCase( _a ): lowercase_ : Optional[int] = VOCAB_FILES_NAMES lowercase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase_ : int = ["""input_ids""", """attention_mask"""] lowercase_ : List[int] = [] lowercase_ : List[int] = [] def __init__( self, lowerCamelCase, lowerCamelCase="<s>", lowerCamelCase="</s>", lowerCamelCase="</s>", lowerCamelCase="<s>", lowerCamelCase="<unk>", lowerCamelCase="<pad>", lowerCamelCase="<mask>", lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase = None, lowerCamelCase=None, **lowerCamelCase, ) -> int: """simple docstring""" _lowercase : Dict = AddedToken(lowerCamelCase, lstrip=lowerCamelCase, rstrip=lowerCamelCase) if isinstance(lowerCamelCase, lowerCamelCase) else mask_token _lowercase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase, eos_token=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, cls_token=lowerCamelCase, pad_token=lowerCamelCase, mask_token=lowerCamelCase, tokenizer_file=lowerCamelCase, src_lang=lowerCamelCase, tgt_lang=lowerCamelCase, additional_special_tokens=lowerCamelCase, sp_model_kwargs=self.sp_model_kwargs, **lowerCamelCase, ) _lowercase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(lowerCamelCase)) _lowercase : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _lowercase : List[Any] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowercase : Dict = 1 _lowercase : List[Any] = len(self.sp_model) _lowercase : List[Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCamelCase) } _lowercase : Union[str, Any] = {v: k for k, v in self.lang_code_to_id.items()} _lowercase : str = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) _lowercase : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _lowercase : List[Any] = list(self.lang_code_to_id.keys()) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens]) _lowercase : Union[str, Any] = src_lang if src_lang is not None else 'en_XX' _lowercase : int = self.lang_code_to_id[self._src_lang] _lowercase : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__( self) -> str: """simple docstring""" _lowercase : List[str] = self.__dict__.copy() _lowercase : Tuple = None _lowercase : Dict = self.sp_model.serialized_model_proto() return state def __setstate__( self, lowerCamelCase) -> List[Any]: """simple docstring""" _lowercase : Optional[int] = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs'): _lowercase : Tuple = {} _lowercase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) @property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def UpperCamelCase ( self) -> str: """simple docstring""" return self._src_lang @src_lang.setter def UpperCamelCase ( self, lowerCamelCase) -> None: """simple docstring""" _lowercase : List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase, token_ids_a=lowerCamelCase, already_has_special_tokens=lowerCamelCase) _lowercase : List[Any] = [1] * len(self.prefix_tokens) _lowercase : Optional[Any] = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCamelCase)) + suffix_ones return prefix_ones + ([0] * len(lowerCamelCase)) + ([0] * len(lowerCamelCase)) + suffix_ones def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> List[int]: """simple docstring""" _lowercase : Union[str, Any] = [self.sep_token_id] _lowercase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model') _lowercase : List[Any] = src_lang _lowercase : List[str] = self(lowerCamelCase, add_special_tokens=lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase) _lowercase : int = self.convert_tokens_to_ids(lowerCamelCase) _lowercase : Any = tgt_lang_id return inputs def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Union[str, Any] = {self.convert_ids_to_tokens(lowerCamelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def UpperCamelCase ( self, lowerCamelCase) -> List[str]: """simple docstring""" return self.sp_model.encode(lowerCamelCase, out_type=lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> str: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowercase : Optional[Any] = self.sp_model.PieceToId(lowerCamelCase) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase ( self, lowerCamelCase) -> List[Any]: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def UpperCamelCase ( self, lowerCamelCase) -> List[Any]: """simple docstring""" _lowercase : Union[str, Any] = ''.join(lowerCamelCase).replace(lowerCamelCase, ' ').strip() return out_string def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCamelCase): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''') return _lowercase : int = os.path.join( lowerCamelCase, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, lowerCamelCase) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase, 'wb') as fi: _lowercase : Dict = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase) return (out_vocab_file,) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = "en_XX", lowerCamelCase = None, lowerCamelCase = "ro_RO", **lowerCamelCase, ) -> BatchEncoding: """simple docstring""" _lowercase : Union[str, Any] = src_lang _lowercase : str = tgt_lang return super().prepare_seqaseq_batch(lowerCamelCase, lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang) def UpperCamelCase ( self, lowerCamelCase) -> None: """simple docstring""" _lowercase : List[str] = self.lang_code_to_id[src_lang] _lowercase : str = [] _lowercase : List[Any] = [self.eos_token_id, self.cur_lang_code] def UpperCamelCase ( self, lowerCamelCase) -> None: """simple docstring""" _lowercase : Optional[Any] = self.lang_code_to_id[lang] _lowercase : Union[str, Any] = [] _lowercase : List[str] = [self.eos_token_id, self.cur_lang_code]
89
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''gpt_bigcode''' UpperCAmelCase : str = ['''past_key_values'''] UpperCAmelCase : Dict = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Tuple , _UpperCAmelCase : Dict=50_257 , _UpperCAmelCase : List[Any]=1_024 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : str="gelu_pytorch_tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[Any]=50_256 , _UpperCAmelCase : Dict=50_256 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Any=True , **_UpperCAmelCase : Any , ): _A = vocab_size _A = n_positions _A = n_embd _A = n_layer _A = n_head _A = n_inner _A = activation_function _A = resid_pdrop _A = embd_pdrop _A = attn_pdrop _A = layer_norm_epsilon _A = initializer_range _A = scale_attn_weights _A = use_cache _A = attention_softmax_in_fpaa _A = scale_attention_softmax_in_fpaa _A = multi_query _A = bos_token_id _A = eos_token_id super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
7
0
'''simple docstring''' def _snake_case ( A ) -> float: return 10 - x * x def _snake_case ( A , A ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(A ) * equation(A ) >= 0: raise ValueError('''Wrong space!''' ) lowerCAmelCase__ = a while (b - a) >= 0.01: # Find middle point lowerCAmelCase__ = (a + b) / 2 # Check if middle point is root if equation(A ) == 0.0: break # Decide the side to repeat the steps if equation(A ) * equation(A ) < 0: lowerCAmelCase__ = c else: lowerCAmelCase__ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
90
"""simple docstring""" def _snake_case ( _snake_case : str ) -> str: '''simple docstring''' return " ".join( ''.join(word[::-1] ) if len(_snake_case ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
7
0
"""simple docstring""" import socket def _snake_case ( ): A = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) A = socket.gethostname() A = 1_2312 sock.connect((host, port) ) sock.send(B'Hello server!' ) with open('Received_file' , 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: A = sock.recv(1024 ) if not data: break out_file.write(snake_case__ ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
91
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[int] = (KDPMaDiscreteScheduler,) UpperCAmelCase : Any = 10 def lowerCAmelCase_ ( self : Dict , **_UpperCAmelCase : Optional[Any] ): _A = { 'num_train_timesteps': 1_100, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**_UpperCAmelCase ) return config def lowerCAmelCase_ ( self : Any ): for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _A = self.scheduler_classes[0] _A = self.get_scheduler_config(prediction_type='v_prediction' ) _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) _A = self.dummy_model() _A = self.dummy_sample_deter * scheduler.init_noise_sigma _A = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4E-0_7 ) < 1E-2 assert abs(result_mean.item() - 6.1_1_1_2E-1_0 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2E-0_7 ) < 1E-2 assert abs(result_mean.item() - 0.0002 ) < 1E-3 def lowerCAmelCase_ ( self : Optional[Any] ): if torch_device == "mps": return _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) _A = self.dummy_model() _A = self.dummy_sample_deter * scheduler.init_noise_sigma _A = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 def lowerCAmelCase_ ( self : Any ): if torch_device == "mps": return _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase ) _A = self.dummy_model() _A = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) if str(_UpperCAmelCase ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3
7
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCamelCase_ = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
92
"""simple docstring""" import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any]=10 ) -> Optional[int]: '''simple docstring''' _A = [] for _ in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def _snake_case ( _snake_case : Optional[Any] , _snake_case : Union[str, Any]=10 ) -> List[str]: '''simple docstring''' _A = [] for step in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(_snake_case , 'schedule.bin' ) torch.save(scheduler.state_dict() , _snake_case ) _A = torch.load(_snake_case ) scheduler.load_state_dict(_snake_case ) return lrs @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ): self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any ): _A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase ) _A = torch.tensor([0.4, 0.2, -0.5] ) _A = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _A = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): _A = criterion(_UpperCAmelCase , _UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def lowerCAmelCase_ ( self : int ): _A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase ) _A = torch.tensor([0.4, 0.2, -0.5] ) _A = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _A = Adafactor( params=[w] , lr=1E-2 , eps=(1E-3_0, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_UpperCAmelCase , weight_decay=0.0 , relative_step=_UpperCAmelCase , scale_parameter=_UpperCAmelCase , warmup_init=_UpperCAmelCase , ) for _ in range(1_000 ): _A = criterion(_UpperCAmelCase , _UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : List[str] = nn.Linear(50 , 50 ) if is_torch_available() else None UpperCAmelCase : Tuple = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None UpperCAmelCase : Dict = 10 def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]=None ): self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase , msg=_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _A = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) _A = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): _A , _A = data _A = scheduler_func(self.optimizer , **_UpperCAmelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) _A = unwrap_schedule(_UpperCAmelCase , self.num_steps ) self.assertListAlmostEqual( _UpperCAmelCase , _UpperCAmelCase , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , ) _A = scheduler_func(self.optimizer , **_UpperCAmelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(_UpperCAmelCase ) # wrap to test picklability of the schedule _A = unwrap_and_save_reload_schedule(_UpperCAmelCase , self.num_steps ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase , msg=F'''failed for {scheduler_func} in save and reload''' ) class lowercase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int] ): _A = fn def __call__( self : Tuple , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : List[str] ): return self.fn(*_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Any ): _A = list(map(self , scheduler.lr_lambdas ) )
7
0
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __A = logging.getLogger(__name__) __A = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __A = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :Optional[str] = field( default=a , metadata={ """help""": ( """The model checkpoint for weights initialization. Leave None if you want to train a model from""" """ scratch.""" ) } , ) __magic_name__ :Optional[str] = field( default=a , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(a )} , ) __magic_name__ :Optional[str] = field( default=a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __magic_name__ :Optional[str] = field( default=a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __magic_name__ :Optional[str] = field( default=a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :Optional[str] = field( default=a , metadata={"""help""": """The input training data file (a text file)."""} ) __magic_name__ :Optional[str] = field( default=a , metadata={ """help""": ( """The input training data files (multiple files in glob format). """ """Very often splitting large files to smaller files can prevent tokenizer going out of memory""" ) } , ) __magic_name__ :Optional[str] = field( default=a , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __magic_name__ :Optional[str] = field( default=a , metadata={"""help""": """An optional input train ref data file for whole word mask in Chinese."""} , ) __magic_name__ :Optional[str] = field( default=a , metadata={"""help""": """An optional input eval ref data file for whole word mask in Chinese."""} , ) __magic_name__ :bool = field( default=a , metadata={"""help""": """Whether distinct lines of text in the dataset are to be handled as distinct sequences."""} , ) __magic_name__ :bool = field( default=a , metadata={"""help""": """Train with masked-language modeling loss instead of language modeling."""} ) __magic_name__ :bool = field(default=a , metadata={"""help""": """Whether ot not to use whole word mask."""} ) __magic_name__ :float = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) __magic_name__ :float = field( default=1 / 6 , metadata={ """help""": ( """Ratio of length of a span of masked tokens to surrounding context length for permutation language""" """ modeling.""" ) } , ) __magic_name__ :int = field( default=5 , metadata={"""help""": """Maximum length of a span of masked tokens for permutation language modeling."""} ) __magic_name__ :int = field( default=-1 , metadata={ """help""": ( """Optional input sequence length after tokenization.""" """The training dataset will be truncated in block of this size for training.""" """Default to the model max input length for single sentence inputs (take into account special tokens).""" ) } , ) __magic_name__ :bool = field( default=a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , ) ->Optional[int]: """simple docstring""" def _dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('You need to set world whole masking and mlm to True for Chinese Whole Word Mask' ) return LineByLineWithRefDataset( tokenizer=_SCREAMING_SNAKE_CASE , file_path=_SCREAMING_SNAKE_CASE , block_size=args.block_size , ref_path=_SCREAMING_SNAKE_CASE , ) return LineByLineTextDataset(tokenizer=_SCREAMING_SNAKE_CASE , file_path=_SCREAMING_SNAKE_CASE , block_size=args.block_size ) else: return TextDataset( tokenizer=_SCREAMING_SNAKE_CASE , file_path=_SCREAMING_SNAKE_CASE , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_SCREAMING_SNAKE_CASE , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(_SCREAMING_SNAKE_CASE ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __A () ->List[Any]: """simple docstring""" lowerCAmelCase__ :Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :int = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( 'Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ' 'or remove the --do_eval argument.' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: lowerCAmelCase__ :Optional[Any] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowerCAmelCase__ :List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: lowerCAmelCase__ :List[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.tokenizer_name: lowerCAmelCase__ :Union[str, Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowerCAmelCase__ :str = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another' ' script, save it,and load it from here, using --tokenizer_name' ) if model_args.model_name_or_path: lowerCAmelCase__ :Optional[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) else: logger.info('Training new model from scratch' ) lowerCAmelCase__ :int = AutoModelWithLMHead.from_config(_SCREAMING_SNAKE_CASE ) model.resize_token_embeddings(len(_SCREAMING_SNAKE_CASE ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( 'BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the' '--mlm flag (masked language modeling).' ) if data_args.block_size <= 0: lowerCAmelCase__ :Dict = tokenizer.max_len # Our input block size will be the max possible for the model else: lowerCAmelCase__ :Any = min(data_args.block_size , tokenizer.max_len ) # Get datasets lowerCAmelCase__ :List[str] = ( get_dataset(_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) lowerCAmelCase__ :Optional[int] = ( get_dataset(_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , evaluate=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": lowerCAmelCase__ :str = DataCollatorForPermutationLanguageModeling( tokenizer=_SCREAMING_SNAKE_CASE , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: lowerCAmelCase__ :Optional[Any] = DataCollatorForWholeWordMask( tokenizer=_SCREAMING_SNAKE_CASE , mlm_probability=data_args.mlm_probability ) else: lowerCAmelCase__ :str = DataCollatorForLanguageModeling( tokenizer=_SCREAMING_SNAKE_CASE , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowerCAmelCase__ :Tuple = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , prediction_loss_only=_SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: lowerCAmelCase__ :Tuple = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=_SCREAMING_SNAKE_CASE ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCAmelCase__ :Optional[Any] = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCAmelCase__ :Any = trainer.evaluate() lowerCAmelCase__ :Optional[Any] = math.exp(eval_output['eval_loss'] ) lowerCAmelCase__ :Dict = {'perplexity': perplexity} lowerCAmelCase__ :List[Any] = os.path.join(training_args.output_dir , 'eval_results_lm.txt' ) if trainer.is_world_master(): with open(_SCREAMING_SNAKE_CASE , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , _SCREAMING_SNAKE_CASE , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) results.update(_SCREAMING_SNAKE_CASE ) return results def __A (_SCREAMING_SNAKE_CASE ) ->Optional[int]: """simple docstring""" main() if __name__ == "__main__": main()
93
"""simple docstring""" import math def _snake_case ( _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' if ( not isinstance(_snake_case , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * power_factor def _snake_case ( _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' if ( not isinstance(_snake_case , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
7
0
'''simple docstring''' # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) SCREAMING_SNAKE_CASE = 'pytorch_model.bin' SCREAMING_SNAKE_CASE = 'pytorch_model.bin.index.json' SCREAMING_SNAKE_CASE = 'adapter_config.json' SCREAMING_SNAKE_CASE = 'adapter_model.bin' SCREAMING_SNAKE_CASE = 'adapter_model.safetensors' SCREAMING_SNAKE_CASE = 'tf_model.h5' SCREAMING_SNAKE_CASE = 'tf_model.h5.index.json' SCREAMING_SNAKE_CASE = 'model.ckpt' SCREAMING_SNAKE_CASE = 'flax_model.msgpack' SCREAMING_SNAKE_CASE = 'flax_model.msgpack.index.json' SCREAMING_SNAKE_CASE = 'model.safetensors' SCREAMING_SNAKE_CASE = 'model.safetensors.index.json' SCREAMING_SNAKE_CASE = 'config.json' SCREAMING_SNAKE_CASE = 'preprocessor_config.json' SCREAMING_SNAKE_CASE = FEATURE_EXTRACTOR_NAME SCREAMING_SNAKE_CASE = 'generation_config.json' SCREAMING_SNAKE_CASE = 'modelcard.json' SCREAMING_SNAKE_CASE = '▁' SCREAMING_SNAKE_CASE = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility SCREAMING_SNAKE_CASE = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. SCREAMING_SNAKE_CASE = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] SCREAMING_SNAKE_CASE = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def lowercase_ ( __A : Tuple ) -> Any: """simple docstring""" if version.parse(__A ) < version.parse(__A ): if "dev" in min_version: lowercase : str =( '''This example requires a source install from HuggingFace Transformers (see ''' '''`https://huggingface.co/docs/transformers/installation#install-from-source`),''' ) else: lowercase : Optional[int] =F'This example requires a minimum version of {min_version},' error_message += F' but the version found is {__version__}.\n' raise ImportError( error_message + '''Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ''' '''versions of HuggingFace Transformers.''' )
94
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[Any] = '''xmod''' def __init__( self : str , _UpperCAmelCase : Optional[Any]=30_522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Dict=3_072 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Any=1E-1_2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Tuple=("en_XX",) , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Optional[Any] , ): super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = position_embedding_type _A = use_cache _A = classifier_dropout _A = pre_norm _A = adapter_reduction_factor _A = adapter_layer_norm _A = adapter_reuse_layer_norm _A = ln_before_adapter _A = list(_UpperCAmelCase ) _A = default_language class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' @property def lowerCAmelCase_ ( self : Dict ): if self.task == "multiple-choice": _A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
7
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase_ (__A ): def __init__( self : List[Any] , lowerCAmelCase_ : TransformeraDModel , lowerCAmelCase_ : AutoencoderKL , lowerCAmelCase_ : KarrasDiffusionSchedulers , lowerCAmelCase_ : Optional[Dict[int, str]] = None , ) -> List[Any]: super().__init__() self.register_modules(transformer=lowerCAmelCase_ , vae=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) # create a imagenet -> id dictionary for easier use UpperCAmelCase_ : str = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): UpperCAmelCase_ : Union[str, Any] = int(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = dict(sorted(self.labels.items() ) ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : Union[str, List[str]] ) -> List[int]: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ : str = list(lowerCAmelCase_ ) for l in label: if l not in self.labels: raise ValueError( f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : float = 4.0 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : int = 50 , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase_ : Optional[int] = len(lowerCAmelCase_ ) UpperCAmelCase_ : int = self.transformer.config.sample_size UpperCAmelCase_ : Optional[Any] = self.transformer.config.in_channels UpperCAmelCase_ : Tuple = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowerCAmelCase_ , device=self.device , dtype=self.transformer.dtype , ) UpperCAmelCase_ : str = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents UpperCAmelCase_ : List[Any] = torch.tensor(lowerCAmelCase_ , device=self.device ).reshape(-1 ) UpperCAmelCase_ : Optional[Any] = torch.tensor([1_000] * batch_size , device=self.device ) UpperCAmelCase_ : int = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowerCAmelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: UpperCAmelCase_ : Optional[Any] = latent_model_input[: len(lowerCAmelCase_ ) // 2] UpperCAmelCase_ : int = torch.cat([half, half] , dim=0 ) UpperCAmelCase_ : Optional[int] = self.scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = t if not torch.is_tensor(lowerCAmelCase_ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) UpperCAmelCase_ : List[Any] = latent_model_input.device.type == "mps" if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ : Optional[int] = torch.floataa if is_mps else torch.floataa else: UpperCAmelCase_ : int = torch.intaa if is_mps else torch.intaa UpperCAmelCase_ : Optional[int] = torch.tensor([timesteps] , dtype=lowerCAmelCase_ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: UpperCAmelCase_ : List[Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase_ : List[Any] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output UpperCAmelCase_ : List[Any] = self.transformer( lowerCAmelCase_ , timestep=lowerCAmelCase_ , class_labels=lowerCAmelCase_ ).sample # perform guidance if guidance_scale > 1: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = torch.split(lowerCAmelCase_ , len(lowerCAmelCase_ ) // 2 , dim=0 ) UpperCAmelCase_ : Optional[Any] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) UpperCAmelCase_ : Tuple = torch.cat([half_eps, half_eps] , dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = torch.split(lowerCAmelCase_ , lowerCAmelCase_ , dim=1 ) else: UpperCAmelCase_ : Optional[Any] = noise_pred # compute previous image: x_t -> x_t-1 UpperCAmelCase_ : Union[str, Any] = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample if guidance_scale > 1: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = latent_model_input.chunk(2 , dim=0 ) else: UpperCAmelCase_ : Optional[int] = latent_model_input UpperCAmelCase_ : Dict = 1 / self.vae.config.scaling_factor * latents UpperCAmelCase_ : Dict = self.vae.decode(lowerCAmelCase_ ).sample UpperCAmelCase_ : Tuple = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase_ : Optional[Any] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : Optional[int] = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowerCAmelCase_ )
95
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort a = logging.get_logger(__name__) a = { '''tensor(bool)''': np.bool_, '''tensor(int8)''': np.inta, '''tensor(uint8)''': np.uinta, '''tensor(int16)''': np.intaa, '''tensor(uint16)''': np.uintaa, '''tensor(int32)''': np.intaa, '''tensor(uint32)''': np.uintaa, '''tensor(int64)''': np.intaa, '''tensor(uint64)''': np.uintaa, '''tensor(float16)''': np.floataa, '''tensor(float)''': np.floataa, '''tensor(double)''': np.floataa, } class lowercase_ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : Optional[Any] ): logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) _A = model _A = kwargs.get('model_save_dir' , _UpperCAmelCase ) _A = kwargs.get('latest_model_name' , _UpperCAmelCase ) def __call__( self : Dict , **_UpperCAmelCase : List[Any] ): _A = {k: np.array(_UpperCAmelCase ) for k, v in kwargs.items()} return self.model.run(_UpperCAmelCase , _UpperCAmelCase ) @staticmethod def lowerCAmelCase_ ( _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=None ): if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) _A = 'CPUExecutionProvider' return ort.InferenceSession(_UpperCAmelCase , providers=[provider] , sess_options=_UpperCAmelCase ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : List[Any] ): _A = file_name if file_name is not None else ONNX_WEIGHTS_NAME _A = self.model_save_dir.joinpath(self.latest_model_name ) _A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase ) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) _A = self.model_save_dir.joinpath(_UpperCAmelCase ) if src_path.exists(): _A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase ) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase ) except shutil.SameFileError: pass def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] , ): if os.path.isfile(_UpperCAmelCase ): logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) # saving model weights/files self._save_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( cls : Tuple , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[Union[bool, str, None]] = None , _UpperCAmelCase : Optional[Union[str, None]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional["ort.SessionOptions"] = None , **_UpperCAmelCase : Union[str, Any] , ): _A = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_UpperCAmelCase ): _A = OnnxRuntimeModel.load_model( os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase ) _A = Path(_UpperCAmelCase ) # load model from hub else: # download model _A = hf_hub_download( repo_id=_UpperCAmelCase , filename=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , ) _A = Path(_UpperCAmelCase ).parent _A = Path(_UpperCAmelCase ).name _A = OnnxRuntimeModel.load_model(_UpperCAmelCase , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase ) return cls(model=_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( cls : List[Any] , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : Tuple , ): _A = None if len(str(_UpperCAmelCase ).split('@' ) ) == 2: _A , _A = model_id.split('@' ) return cls._from_pretrained( model_id=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , **_UpperCAmelCase , )
7
0
"""simple docstring""" # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar __lowerCamelCase = TypeVar('T') class __A ( Generic[T] ): def __init__( self : str , __snake_case : bool = True ) -> None: __magic_name__: dict[T, list[T]] = {} # dictionary of lists __magic_name__: Any = directed def lowerCamelCase__ ( self : Any , __snake_case : T , __snake_case : T ) -> GraphAdjacencyList[T]: if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__snake_case ) self.adj_list[destination_vertex].append(__snake_case ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__snake_case ) __magic_name__: Optional[int] = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(__snake_case ) __magic_name__: Dict = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: __magic_name__: List[Any] = [destination_vertex] __magic_name__: int = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__snake_case ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__snake_case ) __magic_name__: Union[str, Any] = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: __magic_name__: Optional[Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: __magic_name__: List[Any] = [destination_vertex] __magic_name__: List[Any] = [] return self def __repr__( self : Tuple ) -> str: return pformat(self.adj_list )
96
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : str = '''speech_to_text''' UpperCAmelCase : List[Any] = ['''past_key_values'''] UpperCAmelCase : Tuple = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : int , _UpperCAmelCase : Union[str, Any]=10_000 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2_048 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Tuple=2_048 , _UpperCAmelCase : str=4 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]="relu" , _UpperCAmelCase : List[Any]=256 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : List[str]=6_000 , _UpperCAmelCase : Optional[Any]=1_024 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Any=(5, 5) , _UpperCAmelCase : int=1_024 , _UpperCAmelCase : str=80 , _UpperCAmelCase : Any=1 , **_UpperCAmelCase : Tuple , ): _A = vocab_size _A = d_model _A = encoder_ffn_dim _A = encoder_layers _A = encoder_attention_heads _A = decoder_ffn_dim _A = decoder_layers _A = decoder_attention_heads _A = dropout _A = attention_dropout _A = activation_dropout _A = activation_function _A = init_std _A = encoder_layerdrop _A = decoder_layerdrop _A = use_cache _A = encoder_layers _A = scale_embedding # scale factor will be sqrt(d_model) if True _A = max_source_positions _A = max_target_positions _A = num_conv_layers _A = list(_UpperCAmelCase ) _A = conv_channels _A = input_feat_per_channel _A = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' F'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' ) super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
7
0
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": __a = input('Enter image url: ').strip() print(f"Downloading image from {url} ...") __a = BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image __a = soup.find('meta', {'property': 'og:image'})['content'] __a = requests.get(image_url).content __a = f"{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg" with open(file_name, 'wb') as fp: fp.write(image_data) print(f"Done. Image saved to disk as {file_name}.")
97
"""simple docstring""" from manim import * class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Rectangle(height=0.5 , width=0.5 ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _A = Rectangle(height=0.25 , width=0.25 ) _A = [mem.copy() for i in range(6 )] _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('CPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(4 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('GPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Model' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_UpperCAmelCase ) _A = [] _A = [] for i, rect in enumerate(_UpperCAmelCase ): _A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 ) target.move_to(_UpperCAmelCase ) model_arr.append(_UpperCAmelCase ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_UpperCAmelCase ) self.add(*_UpperCAmelCase , *_UpperCAmelCase ) _A = [meta_mem.copy() for i in range(6 )] _A = [meta_mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Disk' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _A = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_UpperCAmelCase ) _A = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase ) ) _A = Square(0.3 ) input.set_fill(_UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 ) self.play(Write(_UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 ) self.play(MoveToTarget(_UpperCAmelCase ) ) self.play(FadeOut(_UpperCAmelCase ) ) _A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _A = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) ) _A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _A = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _A = AnimationGroup( FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _A = 0.7 self.play( Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _A = a_c _A = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , ) _A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) ) self.wait()
7
0
'''simple docstring''' from collections.abc import Sequence def a__ ( lowercase : Sequence[int] | None = None ) -> int: """simple docstring""" if nums is None or not nums: raise ValueError('''Input sequence should not be empty''' ) _UpperCamelCase = nums[0] for i in range(1, len(lowercase ) ): _UpperCamelCase = nums[i] _UpperCamelCase = max(lowercase, ans + num, lowercase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowercase__ : Optional[Any] = int(input('Enter number of elements : ').strip()) lowercase__ : List[Any] = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
98
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int ) -> int: '''simple docstring''' return int((input_a, input_a).count(1 ) != 0 ) def _snake_case ( ) -> None: '''simple docstring''' assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
7
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCAmelCase ( __A , unittest.TestCase ): """simple docstring""" _lowerCamelCase = LDMTextToImagePipeline _lowerCamelCase = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } _lowerCamelCase = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } _lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase = False def snake_case_ ( self ): torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __a = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__A , set_alpha_to_one=__A , ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __a = CLIPTextModel(__A ) __a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __a = { """unet""": unet, """scheduler""": scheduler, """vqvae""": vae, """bert""": text_encoder, """tokenizer""": tokenizer, } return components def snake_case_ ( self , __A , __A=0 ): if str(__A ).startswith("""mps""" ): __a = torch.manual_seed(__A ) else: __a = torch.Generator(device=__A ).manual_seed(__A ) __a = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def snake_case_ ( self ): __a = """cpu""" # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = LDMTextToImagePipeline(**__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) __a = self.get_dummy_inputs(__A ) __a = pipe(**__A ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) __a = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self , __A , __A=torch.floataa , __A=0 ): __a = torch.manual_seed(__A ) __a = np.random.RandomState(__A ).standard_normal((1, 4, 32, 32) ) __a = torch.from_numpy(__A ).to(device=__A , dtype=__A ) __a = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def snake_case_ ( self ): __a = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__A ) pipe.set_progress_bar_config(disable=__A ) __a = self.get_inputs(__A ) __a = pipe(**__A ).images __a = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) __a = np.array([0.51825, 0.52850, 0.52543, 0.54258, 0.52304, 0.52569, 0.54363, 0.55276, 0.56878] ) __a = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self , __A , __A=torch.floataa , __A=0 ): __a = torch.manual_seed(__A ) __a = np.random.RandomState(__A ).standard_normal((1, 4, 32, 32) ) __a = torch.from_numpy(__A ).to(device=__A , dtype=__A ) __a = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def snake_case_ ( self ): __a = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__A ) pipe.set_progress_bar_config(disable=__A ) __a = self.get_inputs(__A ) __a = pipe(**__A ).images[0] __a = load_numpy( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" ) __a = np.abs(expected_image - image ).max() assert max_diff < 1E-3
99
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments a = logging.getLogger(__name__) @dataclass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[float] = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''whether to use adafactor'''} ) UpperCAmelCase : Optional[float] = field( default=__lowerCAmelCase , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) UpperCAmelCase : Optional[float] = field( default=__lowerCAmelCase , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) UpperCAmelCase : Optional[float] = field(default=__lowerCAmelCase , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) UpperCAmelCase : Optional[float] = field( default=__lowerCAmelCase , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) UpperCAmelCase : Optional[str] = field( default='''linear''' , metadata={'''help''': f'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
7
0
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def __snake_case ( lowerCAmelCase_ ) -> Union[str, Any]: return EnvironmentCommand() def __snake_case ( lowerCAmelCase_ ) -> Tuple: return EnvironmentCommand(args.accelerate_config_file ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def lowercase_ ( A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = parser.add_parser('''env''' ) download_parser.set_defaults(func=A_ ) download_parser.add_argument( '''--accelerate-config_file''' , default=A_ , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=A_ ) def __init__( self , A_ , *A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = accelerate_config_file def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''not installed''' if is_safetensors_available(): import safetensors SCREAMING_SNAKE_CASE__ = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors SCREAMING_SNAKE_CASE__ = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' SCREAMING_SNAKE_CASE__ = '''not installed''' SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file SCREAMING_SNAKE_CASE__ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(A_ ): SCREAMING_SNAKE_CASE__ = load_config_from_file(self._accelerate_config_file ).to_dict() SCREAMING_SNAKE_CASE__ = ( '''\n'''.join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(A_ , A_ ) else f'''\t{accelerate_config}''' ) SCREAMING_SNAKE_CASE__ = '''not installed''' SCREAMING_SNAKE_CASE__ = '''NA''' if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ = torch.__version__ SCREAMING_SNAKE_CASE__ = torch.cuda.is_available() SCREAMING_SNAKE_CASE__ = '''not installed''' SCREAMING_SNAKE_CASE__ = '''NA''' if is_tf_available(): import tensorflow as tf SCREAMING_SNAKE_CASE__ = tf.__version__ try: # deprecated in v2.1 SCREAMING_SNAKE_CASE__ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool SCREAMING_SNAKE_CASE__ = bool(tf.config.list_physical_devices('''GPU''' ) ) SCREAMING_SNAKE_CASE__ = '''not installed''' SCREAMING_SNAKE_CASE__ = '''not installed''' SCREAMING_SNAKE_CASE__ = '''not installed''' SCREAMING_SNAKE_CASE__ = '''NA''' if is_flax_available(): import flax import jax import jaxlib SCREAMING_SNAKE_CASE__ = flax.__version__ SCREAMING_SNAKE_CASE__ = jax.__version__ SCREAMING_SNAKE_CASE__ = jaxlib.__version__ SCREAMING_SNAKE_CASE__ = jax.lib.xla_bridge.get_backend().platform SCREAMING_SNAKE_CASE__ = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': f'''{safetensors_version}''', '''Accelerate version''': f'''{accelerate_version}''', '''Accelerate config''': f'''{accelerate_config_str}''', '''PyTorch version (GPU?)''': f'''{pt_version} ({pt_cuda_available})''', '''Tensorflow version (GPU?)''': f'''{tf_version} ({tf_cuda_available})''', '''Flax version (CPU?/GPU?/TPU?)''': f'''{flax_version} ({jax_backend})''', '''Jax version''': f'''{jax_version}''', '''JaxLib version''': f'''{jaxlib_version}''', '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(A_ ) ) return info @staticmethod def lowercase_ ( A_ ): '''simple docstring''' return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
100
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule a = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
7
0