code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
import re
def _snake_case ( _snake_case : str ) -> str:
'''simple docstring'''
if len(re.findall('[ATCG]' , _snake_case ) ) != len(_snake_case ):
raise ValueError('Invalid Strand' )
return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 |
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
a = logging.getLogger(__name__)
@dataclass
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[float] = field(
default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} )
UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''Whether to SortishSamler or not.'''} )
UpperCAmelCase : bool = field(
default=__lowerCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} )
UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''whether to use adafactor'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(default=__lowerCAmelCase , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[str] = field(
default='''linear''' , metadata={'''help''': f'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
| 7 | 1 |
"""simple docstring"""
# Usage:
# ./gen-card-facebook-wmt19.py
import os
from pathlib import Path
def _snake_case ( _snake_case : List[Any] , _snake_case : List[str] , _snake_case : str ) -> Optional[Any]:
'''simple docstring'''
_A = {
'en': 'Machine learning is great, isn\'t it?',
'ru': 'Машинное обучение - это здорово, не так ли?',
'de': 'Maschinelles Lernen ist großartig, oder?',
}
# BLUE scores as follows:
# "pair": [fairseq, transformers]
_A = {
'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'],
'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'],
'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'],
'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'],
}
_A = F'''{src_lang}-{tgt_lang}'''
_A = F'''
---
language:
- {src_lang}
- {tgt_lang}
thumbnail:
tags:
- translation
- wmt19
- facebook
license: apache-2.0
datasets:
- wmt19
metrics:
- bleu
---
# FSMT
## Model description
This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.
For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).
The abbreviation FSMT stands for FairSeqMachineTranslation
All four models are available:
* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)
* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)
* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)
* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)
## Intended uses & limitations
#### How to use
```python
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
mname = "facebook/wmt19-{src_lang}-{tgt_lang}"
tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)
input = "{texts[src_lang]}"
input_ids = tokenizer.encode(input, return_tensors="pt")
outputs = model.generate(input_ids)
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(decoded) # {texts[tgt_lang]}
```
#### Limitations and bias
- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)
## Training data
Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).
## Eval results
pair | fairseq | transformers
-------|---------|----------
{pair} | {scores[pair][0]} | {scores[pair][1]}
The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:
- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).
- re-ranking
The score was calculated using this code:
```bash
git clone https://github.com/huggingface/transformers
cd transformers
export PAIR={pair}
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=15
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
```
note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.
## Data Sources
- [training, etc.](http://www.statmt.org/wmt19/)
- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)
### BibTeX entry and citation info
```bibtex
@inproceedings{{...,
year={{2020}},
title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},
author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},
booktitle={{Proc. of WMT}},
}}
```
## TODO
- port model ensemble (fairseq uses 4 model checkpoints)
'''
os.makedirs(_snake_case , exist_ok=_snake_case )
_A = os.path.join(_snake_case , 'README.md' )
print(F'''Generating {path}''' )
with open(_snake_case , 'w' , encoding='utf-8' ) as f:
f.write(_snake_case )
# make sure we are under the root of the project
a = Path(__file__).resolve().parent.parent.parent
a = repo_dir / '''model_cards'''
for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]:
a , a , a = model_name.split('''-''')
a = model_cards_dir / '''facebook''' / model_name
write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
| 7 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ..utils import _LazyModule
a = {
'''config''': [
'''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''',
'''OnnxConfig''',
'''OnnxConfigWithPast''',
'''OnnxSeq2SeqConfigWithPast''',
'''PatchingSpec''',
],
'''convert''': ['''export''', '''validate_model_outputs'''],
'''features''': ['''FeaturesManager'''],
'''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 7 | 1 |
"""simple docstring"""
import argparse
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import (
RobertaTokenizer,
TrOCRConfig,
TrOCRForCausalLM,
TrOCRProcessor,
VisionEncoderDecoderModel,
ViTConfig,
ViTImageProcessor,
ViTModel,
)
from transformers.utils import logging
logging.set_verbosity_info()
a = logging.get_logger(__name__)
def _snake_case ( _snake_case : str , _snake_case : int ) -> str:
'''simple docstring'''
_A = []
for i in range(encoder_config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(F'''encoder.deit.blocks.{i}.norm1.weight''', F'''encoder.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''encoder.deit.blocks.{i}.norm1.bias''', F'''encoder.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(F'''encoder.deit.blocks.{i}.attn.proj.weight''', F'''encoder.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(F'''encoder.deit.blocks.{i}.attn.proj.bias''', F'''encoder.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append(
(F'''encoder.deit.blocks.{i}.norm2.weight''', F'''encoder.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''encoder.deit.blocks.{i}.norm2.bias''', F'''encoder.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append(
(F'''encoder.deit.blocks.{i}.mlp.fc1.weight''', F'''encoder.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append(
(F'''encoder.deit.blocks.{i}.mlp.fc1.bias''', F'''encoder.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append(
(F'''encoder.deit.blocks.{i}.mlp.fc2.weight''', F'''encoder.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''encoder.deit.blocks.{i}.mlp.fc2.bias''', F'''encoder.encoder.layer.{i}.output.dense.bias''') )
# cls token, position embeddings and patch embeddings of encoder
rename_keys.extend(
[
('encoder.deit.cls_token', 'encoder.embeddings.cls_token'),
('encoder.deit.pos_embed', 'encoder.embeddings.position_embeddings'),
('encoder.deit.patch_embed.proj.weight', 'encoder.embeddings.patch_embeddings.projection.weight'),
('encoder.deit.patch_embed.proj.bias', 'encoder.embeddings.patch_embeddings.projection.bias'),
('encoder.deit.norm.weight', 'encoder.layernorm.weight'),
('encoder.deit.norm.bias', 'encoder.layernorm.bias'),
] )
return rename_keys
def _snake_case ( _snake_case : int , _snake_case : Dict ) -> Optional[Any]:
'''simple docstring'''
for i in range(encoder_config.num_hidden_layers ):
# queries, keys and values (only weights, no biases)
_A = state_dict.pop(F'''encoder.deit.blocks.{i}.attn.qkv.weight''' )
_A = in_proj_weight[
: encoder_config.hidden_size, :
]
_A = in_proj_weight[
encoder_config.hidden_size : encoder_config.hidden_size * 2, :
]
_A = in_proj_weight[
-encoder_config.hidden_size :, :
]
def _snake_case ( _snake_case : Dict , _snake_case : int , _snake_case : int ) -> List[Any]:
'''simple docstring'''
_A = dct.pop(_snake_case )
_A = val
def _snake_case ( _snake_case : Tuple ) -> Any:
'''simple docstring'''
if "handwritten" in checkpoint_url:
_A = 'https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg' # industry
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" #
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg"
elif "printed" in checkpoint_url or "stage1" in checkpoint_url:
_A = 'https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg'
_A = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ).convert('RGB' )
return im
@torch.no_grad()
def _snake_case ( _snake_case : int , _snake_case : str ) -> str:
'''simple docstring'''
_A = ViTConfig(image_size=3_84 , qkv_bias=_snake_case )
_A = TrOCRConfig()
# size of the architecture
if "base" in checkpoint_url:
_A = 7_68
elif "large" in checkpoint_url:
# use ViT-large encoder
_A = 10_24
_A = 40_96
_A = 24
_A = 16
_A = 10_24
else:
raise ValueError('Should either find \'base\' or \'large\' in checkpoint URL' )
# the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards
if "large-printed" in checkpoint_url or "stage1" in checkpoint_url:
_A = False
_A = 'relu'
_A = 10_24
_A = True
_A = False
_A = False
# load HuggingFace model
_A = ViTModel(_snake_case , add_pooling_layer=_snake_case )
_A = TrOCRForCausalLM(_snake_case )
_A = VisionEncoderDecoderModel(encoder=_snake_case , decoder=_snake_case )
model.eval()
# load state_dict of original model, rename some keys
_A = torch.hub.load_state_dict_from_url(_snake_case , map_location='cpu' , check_hash=_snake_case )['model']
_A = create_rename_keys(_snake_case , _snake_case )
for src, dest in rename_keys:
rename_key(_snake_case , _snake_case , _snake_case )
read_in_q_k_v(_snake_case , _snake_case )
# remove parameters we don't need
del state_dict["encoder.deit.head.weight"]
del state_dict["encoder.deit.head.bias"]
del state_dict["decoder.version"]
# add prefix to decoder keys
for key, val in state_dict.copy().items():
_A = state_dict.pop(_snake_case )
if key.startswith('decoder' ) and "output_projection" not in key:
_A = val
else:
_A = val
# load state dict
model.load_state_dict(_snake_case )
# Check outputs on an image
_A = ViTImageProcessor(size=encoder_config.image_size )
_A = RobertaTokenizer.from_pretrained('roberta-large' )
_A = TrOCRProcessor(_snake_case , _snake_case )
_A = processor(images=prepare_img(_snake_case ) , return_tensors='pt' ).pixel_values
# verify logits
_A = torch.tensor([[model.config.decoder.decoder_start_token_id]] )
_A = model(pixel_values=_snake_case , decoder_input_ids=_snake_case )
_A = outputs.logits
_A = torch.Size([1, 1, 5_02_65] )
if "trocr-base-handwritten" in checkpoint_url:
_A = torch.tensor(
[-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] )
elif "trocr-large-handwritten" in checkpoint_url:
_A = torch.tensor(
[-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] )
elif "trocr-base-printed" in checkpoint_url:
_A = torch.tensor(
[-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] )
elif "trocr-large-printed" in checkpoint_url:
_A = torch.tensor(
[-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] )
if "stage1" not in checkpoint_url:
assert logits.shape == expected_shape, "Shape of logits not as expected"
assert torch.allclose(logits[0, 0, :10] , _snake_case , atol=1E-3 ), "First elements of logits not as expected"
Path(_snake_case ).mkdir(exist_ok=_snake_case )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(_snake_case )
print(F'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(_snake_case )
if __name__ == "__main__":
a = argparse.ArgumentParser()
parser.add_argument(
'''--checkpoint_url''',
default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''',
type=str,
help='''URL to the original PyTorch checkpoint (.pth file).''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
a = parser.parse_args()
convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 7 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import KarrasVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : UNetaDModel
UpperCAmelCase : KarrasVeScheduler
def __init__( self : Any , _UpperCAmelCase : UNetaDModel , _UpperCAmelCase : KarrasVeScheduler ):
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase )
@torch.no_grad()
def __call__( self : Optional[int] , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Optional[Any] , ):
_A = self.unet.config.sample_size
_A = (batch_size, 3, img_size, img_size)
_A = self.unet
# sample x_0 ~ N(0, sigma_0^2 * I)
_A = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device ) * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(_UpperCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# here sigma_t == t_i from the paper
_A = self.scheduler.schedule[t]
_A = self.scheduler.schedule[t - 1] if t > 0 else 0
# 1. Select temporarily increased noise level sigma_hat
# 2. Add new noise to move from sample_i to sample_hat
_A , _A = self.scheduler.add_noise_to_input(_UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase )
# 3. Predict the noise residual given the noise magnitude `sigma_hat`
# The model inputs and output are adjusted by following eq. (213) in [1].
_A = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample
# 4. Evaluate dx/dt at sigma_hat
# 5. Take Euler step from sigma to sigma_prev
_A = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if sigma_prev != 0:
# 6. Apply 2nd order correction
# The model inputs and output are adjusted by following eq. (213) in [1].
_A = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample
_A = self.scheduler.step_correct(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , step_output.prev_sample , step_output['derivative'] , )
_A = step_output.prev_sample
_A = (sample / 2 + 0.5).clamp(0 , 1 )
_A = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_A = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_UpperCAmelCase )
| 7 | 1 |
"""simple docstring"""
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
a = [
'''EAGER''',
'''AOT_EAGER''',
'''INDUCTOR''',
'''NVFUSER''',
'''AOT_NVFUSER''',
'''AOT_CUDAGRAPHS''',
'''OFI''',
'''FX2TRT''',
'''ONNXRT''',
'''IPEX''',
]
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Any=None , _snake_case : Any=None , _snake_case : List[str]=None ) -> Optional[int]:
'''simple docstring'''
_A = True
while ask_again:
_A = input(_snake_case )
try:
if default is not None and len(_snake_case ) == 0:
return default
return convert_value(_snake_case ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(_snake_case )
def _snake_case ( _snake_case : List[str] , _snake_case : Optional[Any]=[] , _snake_case : str=None , _snake_case : Tuple=0 ) -> Union[str, Any]:
'''simple docstring'''
_A = BulletMenu(_snake_case , _snake_case )
_A = menu.run(default_choice=_snake_case )
return convert_value(_snake_case ) if convert_value is not None else result
def _snake_case ( _snake_case : str ) -> Optional[Any]:
'''simple docstring'''
_A = int(_snake_case )
return ComputeEnvironment(['LOCAL_MACHINE', 'AMAZON_SAGEMAKER'][value] )
def _snake_case ( _snake_case : Any ) -> Tuple:
'''simple docstring'''
_A = int(_snake_case )
return DistributedType(['NO', 'MULTI_CPU', 'MULTI_XPU', 'MULTI_GPU', 'MULTI_NPU', 'TPU'][value] )
def _snake_case ( _snake_case : List[Any] ) -> Optional[int]:
'''simple docstring'''
_A = int(_snake_case )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def _snake_case ( _snake_case : Tuple ) -> Union[str, Any]:
'''simple docstring'''
_A = int(_snake_case )
return PrecisionType(['no', 'fp16', 'bf16', 'fp8'][value] )
def _snake_case ( _snake_case : Optional[int] ) -> List[str]:
'''simple docstring'''
_A = int(_snake_case )
return SageMakerDistributedType(['NO', 'DATA_PARALLEL', 'MODEL_PARALLEL'][value] )
def _snake_case ( _snake_case : int ) -> List[Any]:
'''simple docstring'''
return {"yes": True, "no": False}[value.lower()]
class lowercase_ ( argparse.RawDescriptionHelpFormatter ):
'''simple docstring'''
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str ):
_A = super()._format_usage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = usage.replace('<command> [<args>] ' , '' )
return usage
| 7 |
"""simple docstring"""
class lowercase_ :
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ):
_A = None
_A = None
_A = graph
self._normalize_graph(_UpperCAmelCase , _UpperCAmelCase )
_A = len(_UpperCAmelCase )
_A = None
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ):
if sources is int:
_A = [sources]
if sinks is int:
_A = [sinks]
if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) == 0:
return
_A = sources[0]
_A = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(_UpperCAmelCase ) > 1 or len(_UpperCAmelCase ) > 1:
_A = 0
for i in sources:
max_input_flow += sum(self.graph[i] )
_A = len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
_A = max_input_flow
_A = 0
_A = len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
_A = max_input_flow
_A = size - 1
def lowerCAmelCase_ ( self : Optional[Any] ):
if self.maximum_flow_algorithm is None:
raise Exception('You need to set maximum flow algorithm before.' )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Union[str, Any] ):
_A = algorithm(self )
class lowercase_ :
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : Union[str, Any] ):
_A = flow_network
_A = flow_network.verticesCount
_A = flow_network.sourceIndex
_A = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
_A = flow_network.graph
_A = False
def lowerCAmelCase_ ( self : Optional[Any] ):
if not self.executed:
self._algorithm()
_A = True
def lowerCAmelCase_ ( self : int ):
pass
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : int , _UpperCAmelCase : Any ):
super().__init__(_UpperCAmelCase )
# use this to save your result
_A = -1
def lowerCAmelCase_ ( self : Optional[Any] ):
if not self.executed:
raise Exception('You should execute algorithm before using its result!' )
return self.maximum_flow
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : List[Any] ):
super().__init__(_UpperCAmelCase )
_A = [[0] * self.verticies_count for i in range(self.verticies_count )]
_A = [0] * self.verticies_count
_A = [0] * self.verticies_count
def lowerCAmelCase_ ( self : Dict ):
_A = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
_A = [
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
_A = 0
while i < len(_UpperCAmelCase ):
_A = vertices_list[i]
_A = self.heights[vertex_index]
self.process_vertex(_UpperCAmelCase )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(_UpperCAmelCase ) )
_A = 0
else:
i += 1
_A = sum(self.preflow[self.source_index] )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Any ):
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(_UpperCAmelCase , _UpperCAmelCase )
self.relabel(_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ):
_A = min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : int ):
_A = None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
_A = self.heights[to_index]
if min_height is not None:
_A = min_height + 1
if __name__ == "__main__":
a = [0]
a = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
a = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
a = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
a = flow_network.find_maximum_flow()
print(F'''maximum flow is {maximum_flow}''')
| 7 | 1 |
"""simple docstring"""
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
a = '''\
@misc{chen2021evaluating,
title={Evaluating Large Language Models Trained on Code},
author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \
and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \
and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \
and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \
and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \
and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \
and Mohammad Bavarian and Clemens Winter and Philippe Tillet \
and Felipe Petroski Such and Dave Cummings and Matthias Plappert \
and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \
and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \
and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \
and William Saunders and Christopher Hesse and Andrew N. Carr \
and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \
and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \
and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \
and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},
year={2021},
eprint={2107.03374},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
'''
a = '''\
This metric implements the evaluation harness for the HumanEval problem solving dataset
described in the paper "Evaluating Large Language Models Trained on Code"
(https://arxiv.org/abs/2107.03374).
'''
a = '''
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of candidates to evaluate. Each candidates should be a list
of strings with several code candidates to solve the problem.
references: a list with a test for each prediction. Each test should evaluate the
correctness of a code candidate.
k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])
num_workers: number of workers used to evaluate the canidate programs (Default: 4).
timeout:
Returns:
pass_at_k: dict with pass rates for each k
results: dict with granular results of each unittest
Examples:
>>> code_eval = datasets.load_metric("code_eval")
>>> test_cases = ["assert add(2,3)==5"]
>>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]
>>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])
>>> print(pass_at_k)
{\'pass@1\': 0.5, \'pass@2\': 1.0}
'''
a = '''
################################################################################
!!!WARNING!!!
################################################################################
The "code_eval" metric executes untrusted model-generated code in Python.
Although it is highly unlikely that model-generated code will do something
overtly malicious in response to this test suite, model-generated code may act
destructively due to a lack of model capability or alignment.
Users are strongly encouraged to sandbox this evaluation suite so that it
does not perform destructive actions on their host or network. For more
information on how OpenAI sandboxes its code, see the paper "Evaluating Large
Language Models Trained on Code" (https://arxiv.org/abs/2107.03374).
Once you have read this disclaimer and taken appropriate precautions,
set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this
with:
>>> import os
>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"
################################################################################\
'''
a = '''The MIT License
Copyright (c) OpenAI (https://openai.com)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase_ ( datasets.Metric ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Optional[Any] ):
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('string' ) ),
'references': datasets.Value('string' ),
} ) , homepage='https://github.com/openai/human-eval' , codebase_urls=['https://github.com/openai/human-eval'] , reference_urls=['https://github.com/openai/human-eval'] , license=_LICENSE , )
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str]=[1, 10, 100] , _UpperCAmelCase : str=4 , _UpperCAmelCase : Union[str, Any]=3.0 ):
if os.getenv('HF_ALLOW_CODE_EVAL' , 0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError('This metric is currently not supported on Windows.' )
with ThreadPoolExecutor(max_workers=_UpperCAmelCase ) as executor:
_A = []
_A = Counter()
_A = 0
_A = defaultdict(_UpperCAmelCase )
for task_id, (candidates, test_case) in enumerate(zip(_UpperCAmelCase , _UpperCAmelCase ) ):
for candidate in candidates:
_A = candidate + '\n' + test_case
_A = (test_program, timeout, task_id, completion_id[task_id])
_A = executor.submit(_UpperCAmelCase , *_UpperCAmelCase )
futures.append(_UpperCAmelCase )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(_UpperCAmelCase ):
_A = future.result()
results[result["task_id"]].append((result['completion_id'], result) )
_A , _A = [], []
for result in results.values():
result.sort()
_A = [r[1]['passed'] for r in result]
total.append(len(_UpperCAmelCase ) )
correct.append(sum(_UpperCAmelCase ) )
_A = np.array(_UpperCAmelCase )
_A = np.array(_UpperCAmelCase )
_A = k
_A = {F'''pass@{k}''': estimate_pass_at_k(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def _snake_case ( _snake_case : Tuple , _snake_case : int , _snake_case : int ) -> int:
'''simple docstring'''
def estimator(_snake_case : int , _snake_case : int , _snake_case : int ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) )
if isinstance(_snake_case , _snake_case ):
_A = itertools.repeat(_snake_case , len(_snake_case ) )
else:
assert len(_snake_case ) == len(_snake_case )
_A = iter(_snake_case )
return np.array([estimator(int(_snake_case ) , int(_snake_case ) , _snake_case ) for n, c in zip(_snake_case , _snake_case )] )
| 7 |
"""simple docstring"""
import unittest
from transformers import SPIECE_UNDERLINE
from transformers.models.speechta import SpeechTaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.tokenization_utils import AddedToken
from ...test_tokenization_common import TokenizerTesterMixin
a = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''')
@require_sentencepiece
@require_tokenizers
class lowercase_ ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = SpeechTaTokenizer
UpperCAmelCase : Tuple = False
UpperCAmelCase : Optional[int] = True
def lowerCAmelCase_ ( self : Tuple ):
super().setUp()
# We have a SentencePiece fixture for testing
_A = SpeechTaTokenizer(_UpperCAmelCase )
_A = AddedToken('<mask>' , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase )
_A = mask_token
tokenizer.add_special_tokens({'mask_token': mask_token} )
tokenizer.add_tokens(['<ctc_blank>'] )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Tuple ):
_A = 'this is a test'
_A = 'this is a test'
return input_text, output_text
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict=20 , _UpperCAmelCase : str=5 ):
_A , _A = self.get_input_output_texts(_UpperCAmelCase )
_A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
_A = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase )
return text, ids
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = '<pad>'
_A = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-4] , 'œ' )
self.assertEqual(vocab_keys[-2] , '<mask>' )
self.assertEqual(vocab_keys[-1] , '<ctc_blank>' )
self.assertEqual(len(_UpperCAmelCase ) , 81 )
def lowerCAmelCase_ ( self : Optional[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 79 )
def lowerCAmelCase_ ( self : Any ):
_A = self.get_tokenizers(do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
_A = ['aaaaa bbbbbb', 'cccccccccdddddddd']
_A = tokenizer.add_tokens(_UpperCAmelCase )
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) )
self.assertEqual(_UpperCAmelCase , all_size + len(_UpperCAmelCase ) )
_A = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=_UpperCAmelCase )
self.assertGreaterEqual(len(_UpperCAmelCase ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
_A = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'}
_A = tokenizer.add_special_tokens(_UpperCAmelCase )
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) )
self.assertEqual(_UpperCAmelCase , all_size_a + len(_UpperCAmelCase ) )
_A = tokenizer.encode(
'>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=_UpperCAmelCase )
self.assertGreaterEqual(len(_UpperCAmelCase ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
def lowerCAmelCase_ ( self : str ):
pass
def lowerCAmelCase_ ( self : Any ):
pass
def lowerCAmelCase_ ( self : Dict ):
_A = self.get_tokenizer()
_A = tokenizer.tokenize('This is a test' )
# fmt: off
self.assertListEqual(_UpperCAmelCase , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] )
# fmt: on
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , )
_A = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
_A = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
# fmt: off
self.assertListEqual(_UpperCAmelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] )
# fmt: on
_A = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
@slow
def lowerCAmelCase_ ( self : List[Any] ):
# Use custom sequence because this tokenizer does not handle numbers.
_A = [
'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides '
'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural '
'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained '
'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.',
'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly '
'conditioning on both left and right context in all layers.',
'The quick brown fox jumps over the lazy dog.',
]
# fmt: off
_A = {
'input_ids': [
[4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2],
[4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
],
'attention_mask': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto.configuration_auto import CONFIG_MAPPING
a = logging.get_logger(__name__)
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = '''upernet'''
def __init__( self : str , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Optional[Any]=512 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Union[str, Any]=[1, 2, 3, 6] , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=0.4 , _UpperCAmelCase : Any=384 , _UpperCAmelCase : Dict=256 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : str=False , _UpperCAmelCase : Optional[Any]=255 , **_UpperCAmelCase : Dict , ):
super().__init__(**_UpperCAmelCase )
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' )
_A = CONFIG_MAPPING['resnet'](out_features=['stage1', 'stage2', 'stage3', 'stage4'] )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_A = backbone_config.get('model_type' )
_A = CONFIG_MAPPING[backbone_model_type]
_A = config_class.from_dict(_UpperCAmelCase )
_A = backbone_config
_A = hidden_size
_A = initializer_range
_A = pool_scales
_A = use_auxiliary_head
_A = auxiliary_loss_weight
_A = auxiliary_in_channels
_A = auxiliary_channels
_A = auxiliary_num_convs
_A = auxiliary_concat_input
_A = loss_ignore_index
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = copy.deepcopy(self.__dict__ )
_A = self.backbone_config.to_dict()
_A = self.__class__.model_type
return output
| 7 |
"""simple docstring"""
from .configuration_bert_masked import MaskedBertConfig
from .modeling_bert_masked import (
MaskedBertForMultipleChoice,
MaskedBertForQuestionAnswering,
MaskedBertForSequenceClassification,
MaskedBertForTokenClassification,
MaskedBertModel,
)
from .modules import *
| 7 | 1 |
"""simple docstring"""
from typing import Dict, Iterable, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
a = logging.get_logger(__name__)
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Tuple = ['''pixel_values''']
def __init__( self : int , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , _UpperCAmelCase : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **_UpperCAmelCase : Any , ):
super().__init__(**_UpperCAmelCase )
_A = size if size is not None else {'shortest_edge': 224}
_A = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
_A = crop_size if crop_size is not None else {'height': 224, 'width': 224}
_A = get_size_dict(_UpperCAmelCase , param_name='crop_size' )
_A = do_resize
_A = size
_A = resample
_A = do_center_crop
_A = crop_size
_A = do_rescale
_A = rescale_factor
_A = do_normalize
_A = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
_A = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Dict , ):
_A = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
# size_dict is a dict with either keys "height" and "width" or "shortest_edge"
if "shortest_edge" in size:
_A = int((256 / 224) * size['shortest_edge'] )
_A = get_resize_output_image_size(_UpperCAmelCase , size=_UpperCAmelCase , default_to_square=_UpperCAmelCase )
_A = {'height': output_size[0], 'width': output_size[1]}
if "height" not in size_dict or "width" not in size_dict:
raise ValueError(
F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' )
return resize(
_UpperCAmelCase , size=(size_dict['height'], size_dict['width']) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[Any] , ):
_A = get_size_dict(_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' )
return center_crop(_UpperCAmelCase , size=(size['height'], size['width']) , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ):
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowerCAmelCase_ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ):
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, Iterable[float]]] = None , _UpperCAmelCase : Optional[Union[float, Iterable[float]]] = None , _UpperCAmelCase : Optional[TensorType] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Dict , ):
_A = do_resize if do_resize is not None else self.do_resize
_A = resample if resample is not None else self.resample
_A = do_center_crop if do_center_crop is not None else self.do_center_crop
_A = do_rescale if do_rescale is not None else self.do_rescale
_A = rescale_factor if rescale_factor is not None else self.rescale_factor
_A = do_normalize if do_normalize is not None else self.do_normalize
_A = image_mean if image_mean is not None else self.image_mean
_A = image_std if image_std is not None else self.image_std
_A = size if size is not None else self.size
_A = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
_A = crop_size if crop_size is not None else self.crop_size
_A = get_size_dict(_UpperCAmelCase , param_name='crop_size' )
_A = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
_A = [to_numpy_array(_UpperCAmelCase ) for image in images]
if do_resize:
_A = [self.resize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for image in images]
if do_center_crop:
_A = [self.center_crop(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
if do_rescale:
_A = [self.rescale(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
if do_normalize:
_A = [self.normalize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for image in images]
_A = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
_A = {'pixel_values': images}
return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
| 7 |
"""simple docstring"""
import argparse
a = '''docs/source/_static/js/custom.js'''
def _snake_case ( _snake_case : Dict ) -> Any:
'''simple docstring'''
with open(_snake_case , encoding='utf-8' , newline='\n' ) as f:
_A = f.readlines()
_A = 0
# First let's put the right version
while not lines[index].startswith('const stableVersion =' ):
index += 1
_A = F'''const stableVersion = "v{version}"\n'''
# Then update the dictionary
while not lines[index].startswith('const versionMapping = {' ):
index += 1
# We go until the end
while not lines[index].startswith('}' ):
index += 1
# We add the new version at the end
lines[index - 1] += F''' "v{version}": "v{version}",\n'''
with open(_snake_case , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(_snake_case )
if __name__ == "__main__":
a = argparse.ArgumentParser()
parser.add_argument('''--version''', help='''Release version.''')
a = parser.parse_args()
update_custom_js(args.version)
| 7 | 1 |
"""simple docstring"""
def _snake_case ( _snake_case : str ) -> str:
'''simple docstring'''
_A = 0
# if input_string is "aba" than new_input_string become "a|b|a"
_A = ''
_A = ''
# append each character + "|" in new_string for range(0, length-1)
for i in input_string[: len(_snake_case ) - 1]:
new_input_string += i + "|"
# append last character
new_input_string += input_string[-1]
# we will store the starting and ending of previous furthest ending palindromic
# substring
_A , _A = 0, 0
# length[i] shows the length of palindromic substring with center i
_A = [1 for i in range(len(_snake_case ) )]
# for each character in new_string find corresponding palindromic string
_A = 0
for j in range(len(_snake_case ) ):
_A = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 )
while (
j - k >= 0
and j + k < len(_snake_case )
and new_input_string[k + j] == new_input_string[j - k]
):
k += 1
_A = 2 * k - 1
# does this string is ending after the previously explored end (that is r) ?
# if yes the update the new r to the last index of this
if j + k - 1 > r:
_A = j - k + 1 # noqa: E741
_A = j + k - 1
# update max_length and start position
if max_length < length[j]:
_A = length[j]
_A = j
# create that string
_A = new_input_string[start - max_length // 2 : start + max_length // 2 + 1]
for i in s:
if i != "|":
output_string += i
return output_string
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''vit_mae'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int]=768 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Optional[int]=3_072 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : Optional[Any]=224 , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=512 , _UpperCAmelCase : int=8 , _UpperCAmelCase : List[Any]=2_048 , _UpperCAmelCase : Optional[Any]=0.75 , _UpperCAmelCase : List[str]=False , **_UpperCAmelCase : Union[str, Any] , ):
super().__init__(**_UpperCAmelCase )
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = intermediate_size
_A = hidden_act
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = initializer_range
_A = layer_norm_eps
_A = image_size
_A = patch_size
_A = num_channels
_A = qkv_bias
_A = decoder_num_attention_heads
_A = decoder_hidden_size
_A = decoder_num_hidden_layers
_A = decoder_intermediate_size
_A = mask_ratio
_A = norm_pix_loss
| 7 | 1 |
"""simple docstring"""
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
a = logging.get_logger(__name__)
def _snake_case ( _snake_case : str , _snake_case : str ) -> Tuple:
'''simple docstring'''
_A = RobertaPreLayerNormConfig.from_pretrained(
_snake_case , architectures=['RobertaPreLayerNormForMaskedLM'] )
# convert state_dict
_A = torch.load(hf_hub_download(repo_id=_snake_case , filename='pytorch_model.bin' ) )
_A = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith('roberta.' ):
_A = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ):
continue
_A = tensor_value
_A = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=_snake_case , config=_snake_case , state_dict=_snake_case )
model.save_pretrained(_snake_case )
# convert tokenizer
_A = AutoTokenizer.from_pretrained(_snake_case )
tokenizer.save_pretrained(_snake_case )
if __name__ == "__main__":
a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint-repo''',
default=None,
type=str,
required=True,
help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
a = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
| 7 |
"""simple docstring"""
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
a = logging.get_logger(__name__)
a = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
a = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def _snake_case ( _snake_case : Optional[Any] ) -> str:
'''simple docstring'''
_A = torch.load(_snake_case , map_location='cpu' )
return sd
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : str , _snake_case : Tuple=rename_keys_prefix ) -> List[str]:
'''simple docstring'''
_A = OrderedDict()
_A = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
_A = key
for name_pair in rename_keys_prefix:
_A = new_key.replace(name_pair[0] , name_pair[1] )
_A = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
_A = new_d['cls.predictions.bias']
return new_d
@torch.no_grad()
def _snake_case ( _snake_case : List[str] , _snake_case : Dict ) -> Dict:
'''simple docstring'''
assert (
checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS
), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'''
# Get Config
if "pre" in checkpoint_path:
_A = 'pretraining'
if "vcr" in checkpoint_path:
_A = {'visual_embedding_dim': 5_12}
elif "vqa_advanced" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
elif "vqa" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
elif "nlvr" in checkpoint_path:
_A = {'visual_embedding_dim': 10_24}
else:
raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' )
else:
if "vcr" in checkpoint_path:
_A = {'visual_embedding_dim': 5_12}
_A = 'multichoice'
elif "vqa_advanced" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
_A = 'vqa_advanced'
elif "vqa" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48, 'num_labels': 31_29}
_A = 'vqa'
elif "nlvr" in checkpoint_path:
_A = {
'visual_embedding_dim': 10_24,
'num_labels': 2,
}
_A = 'nlvr'
_A = VisualBertConfig(**_snake_case )
# Load State Dict
_A = load_state_dict(_snake_case )
_A = get_new_dict(_snake_case , _snake_case )
if model_type == "pretraining":
_A = VisualBertForPreTraining(_snake_case )
elif model_type == "vqa":
_A = VisualBertForQuestionAnswering(_snake_case )
elif model_type == "nlvr":
_A = VisualBertForVisualReasoning(_snake_case )
elif model_type == "multichoice":
_A = VisualBertForMultipleChoice(_snake_case )
model.load_state_dict(_snake_case )
# Save Checkpoints
Path(_snake_case ).mkdir(exist_ok=_snake_case )
model.save_pretrained(_snake_case )
if __name__ == "__main__":
a = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
a = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 7 | 1 |
"""simple docstring"""
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
a = TypeVar('''KEY''')
a = TypeVar('''VAL''')
@dataclass(frozen=__lowerCAmelCase , slots=__lowerCAmelCase )
class lowercase_ ( Generic[KEY, VAL] ):
'''simple docstring'''
UpperCAmelCase : KEY
UpperCAmelCase : VAL
class lowercase_ ( _Item ):
'''simple docstring'''
def __init__( self : Optional[int] ):
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __bool__( self : Dict ):
return False
a = _DeletedItem()
class lowercase_ ( MutableMapping[KEY, VAL] ):
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : int = 8 , _UpperCAmelCase : float = 0.75 ):
_A = initial_block_size
_A = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
_A = capacity_factor
_A = 0
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : KEY ):
return hash(_UpperCAmelCase ) % len(self._buckets )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : int ):
return (ind + 1) % len(self._buckets )
def lowerCAmelCase_ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : KEY , _UpperCAmelCase : VAL ):
_A = self._buckets[ind]
if not stored:
_A = _Item(_UpperCAmelCase , _UpperCAmelCase )
self._len += 1
return True
elif stored.key == key:
_A = _Item(_UpperCAmelCase , _UpperCAmelCase )
return True
else:
return False
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[str] ):
if len(self._buckets ) <= self._initial_block_size:
return False
_A = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : int ):
_A = self._buckets
_A = [None] * new_size
_A = 0
for item in old_buckets:
if item:
self._add_item(item.key , item.val )
def lowerCAmelCase_ ( self : Optional[Any] ):
self._resize(len(self._buckets ) * 2 )
def lowerCAmelCase_ ( self : Dict ):
self._resize(len(self._buckets ) // 2 )
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : KEY ):
_A = self._get_bucket_index(_UpperCAmelCase )
for _ in range(len(self._buckets ) ):
yield ind
_A = self._get_next_ind(_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : KEY , _UpperCAmelCase : VAL ):
for ind in self._iterate_buckets(_UpperCAmelCase ):
if self._try_set(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
break
def __setitem__( self : Optional[Any] , _UpperCAmelCase : KEY , _UpperCAmelCase : VAL ):
if self._is_full():
self._size_up()
self._add_item(_UpperCAmelCase , _UpperCAmelCase )
def __delitem__( self : int , _UpperCAmelCase : KEY ):
for ind in self._iterate_buckets(_UpperCAmelCase ):
_A = self._buckets[ind]
if item is None:
raise KeyError(_UpperCAmelCase )
if item is _deleted:
continue
if item.key == key:
_A = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self : str , _UpperCAmelCase : KEY ):
for ind in self._iterate_buckets(_UpperCAmelCase ):
_A = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(_UpperCAmelCase )
def __len__( self : List[str] ):
return self._len
def __iter__( self : Tuple ):
yield from (item.key for item in self._buckets if item)
def __repr__( self : Dict ):
_A = ' ,'.join(
F'''{item.key}: {item.val}''' for item in self._buckets if item )
return F'''HashMap({val_string})'''
| 7 |
"""simple docstring"""
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def _snake_case ( _snake_case : Dict ) -> Optional[Any]:
'''simple docstring'''
for param in module.parameters():
_A = False
def _snake_case ( ) -> Tuple:
'''simple docstring'''
_A = 'cuda' if torch.cuda.is_available() else 'cpu'
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
_A = 'mps'
if device == "mps":
print(
'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch'
' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues'
' with generations.' )
return device
def _snake_case ( _snake_case : Dict ) -> Optional[Any]:
'''simple docstring'''
_A = plt.imshow(_snake_case )
fig.axes.get_xaxis().set_visible(_snake_case )
fig.axes.get_yaxis().set_visible(_snake_case )
plt.show()
def _snake_case ( ) -> Optional[Any]:
'''simple docstring'''
_A = datetime.now()
_A = current_time.strftime('%H:%M:%S' )
return timestamp
| 7 | 1 |
"""simple docstring"""
import unittest
from transformers import BertGenerationTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a = '''▁'''
a = get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
class lowercase_ ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : Any = BertGenerationTokenizer
UpperCAmelCase : str = False
UpperCAmelCase : Optional[int] = True
def lowerCAmelCase_ ( self : Tuple ):
super().setUp()
_A = BertGenerationTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCAmelCase_ ( self : Tuple ):
_A = '<s>'
_A = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def lowerCAmelCase_ ( self : int ):
_A = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<unk>' )
self.assertEqual(vocab_keys[1] , '<s>' )
self.assertEqual(vocab_keys[-1] , '<pad>' )
self.assertEqual(len(_UpperCAmelCase ) , 1_002 )
def lowerCAmelCase_ ( self : Dict ):
self.assertEqual(self.get_tokenizer().vocab_size , 1_000 )
def lowerCAmelCase_ ( self : List[str] ):
_A = BertGenerationTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase )
_A = tokenizer.tokenize('This is a test' )
self.assertListEqual(_UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [285, 46, 10, 170, 382] , )
_A = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
_A = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
_A = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
@cached_property
def lowerCAmelCase_ ( self : Optional[Any] ):
return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
@slow
def lowerCAmelCase_ ( self : Optional[int] ):
_A = 'Hello World!'
_A = [18_536, 2_260, 101]
self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) )
@slow
def lowerCAmelCase_ ( self : Optional[int] ):
_A = (
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
)
_A = [
871,
419,
358,
946,
991,
2_521,
452,
358,
1_357,
387,
7_751,
3_536,
112,
985,
456,
126,
865,
938,
5_400,
5_734,
458,
1_368,
467,
786,
2_462,
5_246,
1_159,
633,
865,
4_519,
457,
582,
852,
2_557,
427,
916,
508,
405,
34_324,
497,
391,
408,
11_342,
1_244,
385,
100,
938,
985,
456,
574,
362,
12_597,
3_200,
3_129,
1_172,
]
self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) )
@require_torch
@slow
def lowerCAmelCase_ ( self : Tuple ):
import torch
from transformers import BertGenerationConfig, BertGenerationEncoder
# Build sequence
_A = list(self.big_tokenizer.get_vocab().keys() )[:10]
_A = ' '.join(_UpperCAmelCase )
_A = self.big_tokenizer.encode_plus(_UpperCAmelCase , return_tensors='pt' , return_token_type_ids=_UpperCAmelCase )
_A = self.big_tokenizer.batch_encode_plus(
[sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=_UpperCAmelCase )
_A = BertGenerationConfig()
_A = BertGenerationEncoder(_UpperCAmelCase )
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**_UpperCAmelCase )
model(**_UpperCAmelCase )
@slow
def lowerCAmelCase_ ( self : Optional[Any] ):
# fmt: off
_A = {'input_ids': [[39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114], [448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
| 7 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Any = ['''image_processor''', '''tokenizer''']
UpperCAmelCase : Optional[int] = '''ViTImageProcessor'''
UpperCAmelCase : int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''')
def __init__( self : Tuple , _UpperCAmelCase : int=None , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : Dict ):
_A = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _UpperCAmelCase , )
_A = kwargs.pop('feature_extractor' )
_A = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __call__( self : Optional[Any] , _UpperCAmelCase : int=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Union[str, Any] ):
if text is None and visual_prompt is None and images is None:
raise ValueError('You have to specify either text, visual prompt or images.' )
if text is not None and visual_prompt is not None:
raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' )
if text is not None:
_A = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if visual_prompt is not None:
_A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if images is not None:
_A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if visual_prompt is not None and images is not None:
_A = {
'pixel_values': image_features.pixel_values,
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
elif text is not None and images is not None:
_A = image_features.pixel_values
return encoding
elif text is not None:
return encoding
elif visual_prompt is not None:
_A = {
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
else:
return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase )
def lowerCAmelCase_ ( self : str , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Union[str, Any] ):
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def lowerCAmelCase_ ( self : Union[str, Any] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ):
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
def lowerCAmelCase_ ( self : Dict ):
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , )
return self.image_processor_class
@property
def lowerCAmelCase_ ( self : Tuple ):
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , )
return self.image_processor
| 7 | 1 |
"""simple docstring"""
def _snake_case ( _snake_case : str , _snake_case : str ) -> int:
'''simple docstring'''
if len(_snake_case ) != len(_snake_case ):
raise ValueError('String lengths must match!' )
_A = 0
for chara, chara in zip(_snake_case , _snake_case ):
if chara != chara:
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 |
"""simple docstring"""
import math
from datetime import datetime, timedelta
def _snake_case ( _snake_case : int ) -> datetime:
'''simple docstring'''
_A = year % 19
_A = year % 4
_A = year % 7
_A = math.floor(year / 1_00 )
_A = math.floor((13 + 8 * leap_day_inhibits) / 25 )
_A = leap_day_inhibits / 4
_A = (
15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 30
_A = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
_A = (19 * metonic_cycle + secular_moon_shift) % 30
# PHM -> Paschal Full Moon
_A = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 29 and days_from_phm_to_sunday == 6:
return datetime(_snake_case , 4 , 19 )
elif days_to_add == 28 and days_from_phm_to_sunday == 6:
return datetime(_snake_case , 4 , 18 )
else:
return datetime(_snake_case , 3 , 22 ) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday ) )
if __name__ == "__main__":
for year in (1_994, 2_000, 2_010, 2_021, 2_023):
a = '''will be''' if year > datetime.now().year else '''was'''
print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
| 7 | 1 |
"""simple docstring"""
import json
import os
from typing import Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''vocab_file''': '''vocab.json''',
'''merges_file''': '''merges.txt''',
}
a = {
'''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''},
'''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''},
}
a = {
'''ctrl''': 256,
}
a = {
'''Pregnancy''': 168_629,
'''Christianity''': 7_675,
'''Explain''': 106_423,
'''Fitness''': 63_440,
'''Saving''': 63_163,
'''Ask''': 27_171,
'''Ass''': 95_985,
'''Joke''': 163_509,
'''Questions''': 45_622,
'''Thoughts''': 49_605,
'''Retail''': 52_342,
'''Feminism''': 164_338,
'''Writing''': 11_992,
'''Atheism''': 192_263,
'''Netflix''': 48_616,
'''Computing''': 39_639,
'''Opinion''': 43_213,
'''Alone''': 44_967,
'''Funny''': 58_917,
'''Gaming''': 40_358,
'''Human''': 4_088,
'''India''': 1_331,
'''Joker''': 77_138,
'''Diet''': 36_206,
'''Legal''': 11_859,
'''Norman''': 4_939,
'''Tip''': 72_689,
'''Weight''': 52_343,
'''Movies''': 46_273,
'''Running''': 23_425,
'''Science''': 2_090,
'''Horror''': 37_793,
'''Confession''': 60_572,
'''Finance''': 12_250,
'''Politics''': 16_360,
'''Scary''': 191_985,
'''Support''': 12_654,
'''Technologies''': 32_516,
'''Teenage''': 66_160,
'''Event''': 32_769,
'''Learned''': 67_460,
'''Notion''': 182_770,
'''Wikipedia''': 37_583,
'''Books''': 6_665,
'''Extract''': 76_050,
'''Confessions''': 102_701,
'''Conspiracy''': 75_932,
'''Links''': 63_674,
'''Narcissus''': 150_425,
'''Relationship''': 54_766,
'''Relationships''': 134_796,
'''Reviews''': 41_671,
'''News''': 4_256,
'''Translation''': 26_820,
'''multilingual''': 128_406,
}
def _snake_case ( _snake_case : Optional[Any] ) -> Any:
'''simple docstring'''
_A = set()
_A = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_A = char
_A = set(_snake_case )
return pairs
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = VOCAB_FILES_NAMES
UpperCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase : Optional[int] = CONTROL_CODES
def __init__( self : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Tuple="<unk>" , **_UpperCAmelCase : Any ):
super().__init__(unk_token=_UpperCAmelCase , **_UpperCAmelCase )
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
_A = json.load(_UpperCAmelCase )
_A = {v: k for k, v in self.encoder.items()}
with open(_UpperCAmelCase , encoding='utf-8' ) as merges_handle:
_A = merges_handle.read().split('\n' )[1:-1]
_A = [tuple(merge.split() ) for merge in merges]
_A = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
_A = {}
@property
def lowerCAmelCase_ ( self : Dict ):
return len(self.encoder )
def lowerCAmelCase_ ( self : Any ):
return dict(self.encoder , **self.added_tokens_encoder )
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : List[str] ):
if token in self.cache:
return self.cache[token]
_A = tuple(_UpperCAmelCase )
_A = tuple(list(word[:-1] ) + [word[-1] + '</w>'] )
_A = get_pairs(_UpperCAmelCase )
if not pairs:
return token
while True:
_A = min(_UpperCAmelCase , key=lambda _UpperCAmelCase : self.bpe_ranks.get(_UpperCAmelCase , float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
_A , _A = bigram
_A = []
_A = 0
while i < len(_UpperCAmelCase ):
try:
_A = word.index(_UpperCAmelCase , _UpperCAmelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
_A = j
if word[i] == first and i < len(_UpperCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_A = tuple(_UpperCAmelCase )
_A = new_word
if len(_UpperCAmelCase ) == 1:
break
else:
_A = get_pairs(_UpperCAmelCase )
_A = '@@ '.join(_UpperCAmelCase )
_A = word[:-4]
_A = word
return word
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Dict ):
_A = []
_A = re.findall(r'\S+\n?' , _UpperCAmelCase )
for token in words:
split_tokens.extend(list(self.bpe(_UpperCAmelCase ).split(' ' ) ) )
return split_tokens
def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Dict ):
return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token ) )
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Tuple ):
return self.decoder.get(_UpperCAmelCase , self.unk_token )
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Tuple ):
_A = ' '.join(_UpperCAmelCase ).replace('@@ ' , '' ).strip()
return out_string
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ):
if not os.path.isdir(_UpperCAmelCase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
_A = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
_A = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) + '\n' )
_A = 0
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
' Please check that the tokenizer is not corrupted!' )
_A = token_index
writer.write(' '.join(_UpperCAmelCase ) + '\n' )
index += 1
return vocab_file, merge_file
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
# return ''.join(tokens_generated_so_far)
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''gpt_bigcode'''
UpperCAmelCase : str = ['''past_key_values''']
UpperCAmelCase : Dict = {
'''hidden_size''': '''n_embd''',
'''max_position_embeddings''': '''n_positions''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Tuple , _UpperCAmelCase : Dict=50_257 , _UpperCAmelCase : List[Any]=1_024 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : str="gelu_pytorch_tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[Any]=50_256 , _UpperCAmelCase : Dict=50_256 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Any=True , **_UpperCAmelCase : Any , ):
_A = vocab_size
_A = n_positions
_A = n_embd
_A = n_layer
_A = n_head
_A = n_inner
_A = activation_function
_A = resid_pdrop
_A = embd_pdrop
_A = attn_pdrop
_A = layer_norm_epsilon
_A = initializer_range
_A = scale_attn_weights
_A = use_cache
_A = attention_softmax_in_fpaa
_A = scale_attention_softmax_in_fpaa
_A = multi_query
_A = bos_token_id
_A = eos_token_id
super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
| 7 | 1 |
"""simple docstring"""
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Dict = (PNDMScheduler,)
UpperCAmelCase : Any = (('''num_inference_steps''', 50),)
def lowerCAmelCase_ ( self : Optional[int] , **_UpperCAmelCase : Optional[Any] ):
_A = {
'num_train_timesteps': 1_000,
'beta_start': 0.0001,
'beta_end': 0.02,
'beta_schedule': 'linear',
}
config.update(**_UpperCAmelCase )
return config
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Dict=0 , **_UpperCAmelCase : str ):
_A = dict(self.forward_default_kwargs )
_A = kwargs.pop('num_inference_steps' , _UpperCAmelCase )
_A = self.dummy_sample
_A = 0.1 * sample
_A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
_A = self.get_scheduler_config(**_UpperCAmelCase )
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
_A = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
_A = scheduler_class.from_pretrained(_UpperCAmelCase )
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
_A = dummy_past_residuals[:]
_A = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
_A = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
_A = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
_A = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCAmelCase_ ( self : List[Any] ):
pass
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[Any]=0 , **_UpperCAmelCase : str ):
_A = dict(self.forward_default_kwargs )
_A = kwargs.pop('num_inference_steps' , _UpperCAmelCase )
_A = self.dummy_sample
_A = 0.1 * sample
_A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
_A = self.get_scheduler_config()
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
_A = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
_A = scheduler_class.from_pretrained(_UpperCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
_A = dummy_past_residuals[:]
_A = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
_A = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
_A = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
_A = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCAmelCase_ ( self : Tuple , **_UpperCAmelCase : Dict ):
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config(**_UpperCAmelCase )
_A = scheduler_class(**_UpperCAmelCase )
_A = 10
_A = self.dummy_model()
_A = self.dummy_sample_deter
scheduler.set_timesteps(_UpperCAmelCase )
for i, t in enumerate(scheduler.prk_timesteps ):
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
return sample
def lowerCAmelCase_ ( self : Optional[int] ):
_A = dict(self.forward_default_kwargs )
_A = kwargs.pop('num_inference_steps' , _UpperCAmelCase )
for scheduler_class in self.scheduler_classes:
_A = self.get_scheduler_config()
_A = scheduler_class(**_UpperCAmelCase )
_A = self.dummy_sample
_A = 0.1 * sample
if num_inference_steps is not None and hasattr(_UpperCAmelCase , 'set_timesteps' ):
scheduler.set_timesteps(_UpperCAmelCase )
elif num_inference_steps is not None and not hasattr(_UpperCAmelCase , 'set_timesteps' ):
_A = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
_A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
_A = dummy_past_residuals[:]
_A = scheduler.step_prk(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
_A = scheduler.step_prk(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
_A = scheduler.step_plms(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
_A = scheduler.step_plms(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def lowerCAmelCase_ ( self : Union[str, Any] ):
for timesteps in [100, 1_000]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase )
def lowerCAmelCase_ ( self : str ):
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=_UpperCAmelCase )
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config(steps_offset=1 )
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(10 )
assert torch.equal(
scheduler.timesteps , torch.LongTensor(
[901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , )
def lowerCAmelCase_ ( self : Tuple ):
for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ):
self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[str] ):
for t in [1, 5, 10]:
self.check_over_forward(time_step=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[Any] ):
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=_UpperCAmelCase )
def lowerCAmelCase_ ( self : str ):
# earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3
_A = 27
for scheduler_class in self.scheduler_classes:
_A = self.dummy_sample
_A = 0.1 * sample
_A = self.get_scheduler_config()
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
_A = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
def lowerCAmelCase_ ( self : Any ):
with self.assertRaises(_UpperCAmelCase ):
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config()
_A = scheduler_class(**_UpperCAmelCase )
scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample
def lowerCAmelCase_ ( self : Any ):
_A = self.full_loop()
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 198.1318 ) < 1E-2
assert abs(result_mean.item() - 0.2580 ) < 1E-3
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = self.full_loop(prediction_type='v_prediction' )
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 67.3986 ) < 1E-2
assert abs(result_mean.item() - 0.0878 ) < 1E-3
def lowerCAmelCase_ ( self : str ):
# We specify different beta, so that the first alpha is 0.99
_A = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 )
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 230.0399 ) < 1E-2
assert abs(result_mean.item() - 0.2995 ) < 1E-3
def lowerCAmelCase_ ( self : Union[str, Any] ):
# We specify different beta, so that the first alpha is 0.99
_A = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 )
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 186.9482 ) < 1E-2
assert abs(result_mean.item() - 0.2434 ) < 1E-3
| 7 |
"""simple docstring"""
def _snake_case ( _snake_case : str ) -> str:
'''simple docstring'''
return " ".join(
''.join(word[::-1] ) if len(_snake_case ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words('''Hey wollef sroirraw'''))
| 7 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
a = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ['''PLBartTokenizer''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
'''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PLBartForCausalLM''',
'''PLBartForConditionalGeneration''',
'''PLBartForSequenceClassification''',
'''PLBartModel''',
'''PLBartPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_plbart import PLBartTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_plbart import (
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST,
PLBartForCausalLM,
PLBartForConditionalGeneration,
PLBartForSequenceClassification,
PLBartModel,
PLBartPreTrainedModel,
)
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 7 |
"""simple docstring"""
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = (KDPMaDiscreteScheduler,)
UpperCAmelCase : Any = 10
def lowerCAmelCase_ ( self : Dict , **_UpperCAmelCase : Optional[Any] ):
_A = {
'num_train_timesteps': 1_100,
'beta_start': 0.0001,
'beta_end': 0.02,
'beta_schedule': 'linear',
}
config.update(**_UpperCAmelCase )
return config
def lowerCAmelCase_ ( self : Any ):
for timesteps in [10, 50, 100, 1_000]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict ):
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Tuple ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[int] ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config(prediction_type='v_prediction' )
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
_A = self.dummy_model()
_A = self.dummy_sample_deter * scheduler.init_noise_sigma
_A = sample.to(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = output.prev_sample
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.6_9_3_4E-0_7 ) < 1E-2
assert abs(result_mean.item() - 6.1_1_1_2E-1_0 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2E-0_7 ) < 1E-2
assert abs(result_mean.item() - 0.0002 ) < 1E-3
def lowerCAmelCase_ ( self : Optional[Any] ):
if torch_device == "mps":
return
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config()
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
_A = self.dummy_model()
_A = self.dummy_sample_deter * scheduler.init_noise_sigma
_A = sample.to(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = output.prev_sample
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
def lowerCAmelCase_ ( self : Any ):
if torch_device == "mps":
return
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config()
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase )
_A = self.dummy_model()
_A = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
_A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = output.prev_sample
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
if str(_UpperCAmelCase ).startswith('cpu' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
| 7 | 1 |
"""simple docstring"""
def _snake_case ( _snake_case : Dict ) -> Tuple:
'''simple docstring'''
_A = len(_snake_case )
for i in range(length - 1 ):
_A = i
for k in range(i + 1 , _snake_case ):
if collection[k] < collection[least]:
_A = k
if least != i:
_A , _A = (collection[i], collection[least])
return collection
if __name__ == "__main__":
a = input('''Enter numbers separated by a comma:\n''').strip()
a = [int(item) for item in user_input.split(''',''')]
print(selection_sort(unsorted))
| 7 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any]=10 ) -> Optional[int]:
'''simple docstring'''
_A = []
for _ in range(_snake_case ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def _snake_case ( _snake_case : Optional[Any] , _snake_case : Union[str, Any]=10 ) -> List[str]:
'''simple docstring'''
_A = []
for step in range(_snake_case ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
_A = os.path.join(_snake_case , 'schedule.bin' )
torch.save(scheduler.state_dict() , _snake_case )
_A = torch.load(_snake_case )
scheduler.load_state_dict(_snake_case )
return lrs
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ):
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Any ):
_A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase )
_A = torch.tensor([0.4, 0.2, -0.5] )
_A = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_A = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
_A = criterion(_UpperCAmelCase , _UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def lowerCAmelCase_ ( self : int ):
_A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase )
_A = torch.tensor([0.4, 0.2, -0.5] )
_A = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_A = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-3_0, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_UpperCAmelCase , weight_decay=0.0 , relative_step=_UpperCAmelCase , scale_parameter=_UpperCAmelCase , warmup_init=_UpperCAmelCase , )
for _ in range(1_000 ):
_A = criterion(_UpperCAmelCase , _UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = nn.Linear(50 , 50 ) if is_torch_available() else None
UpperCAmelCase : Tuple = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None
UpperCAmelCase : Dict = 10
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]=None ):
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase , msg=_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] ):
_A = {'num_warmup_steps': 2, 'num_training_steps': 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
_A = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{'num_warmup_steps': 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, 'num_cycles': 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, 'power': 2.0, 'lr_end': 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{'num_warmup_steps': 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
_A , _A = data
_A = scheduler_func(self.optimizer , **_UpperCAmelCase )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
_A = unwrap_schedule(_UpperCAmelCase , self.num_steps )
self.assertListAlmostEqual(
_UpperCAmelCase , _UpperCAmelCase , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , )
_A = scheduler_func(self.optimizer , **_UpperCAmelCase )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(_UpperCAmelCase ) # wrap to test picklability of the schedule
_A = unwrap_and_save_reload_schedule(_UpperCAmelCase , self.num_steps )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase , msg=F'''failed for {scheduler_func} in save and reload''' )
class lowercase_ :
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int] ):
_A = fn
def __call__( self : Tuple , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : List[str] ):
return self.fn(*_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Any ):
_A = list(map(self , scheduler.lr_lambdas ) )
| 7 | 1 |
"""simple docstring"""
import argparse
import json
import os
import time
import zipfile
from get_ci_error_statistics import download_artifact, get_artifacts_links
from transformers import logging
a = logging.get_logger(__name__)
def _snake_case ( _snake_case : List[str] , _snake_case : Any ) -> Dict:
'''simple docstring'''
_A = set()
_A = []
def parse_line(_snake_case : Optional[Any] ):
for line in fp:
if isinstance(_snake_case , _snake_case ):
_A = line.decode('UTF-8' )
if "warnings summary (final)" in line:
continue
# This means we are outside the body of a warning
elif not line.startswith(' ' ):
# process a single warning and move it to `selected_warnings`.
if len(_snake_case ) > 0:
_A = '\n'.join(_snake_case )
# Only keep the warnings specified in `targets`
if any(F''': {x}: ''' in warning for x in targets ):
selected_warnings.add(_snake_case )
buffer.clear()
continue
else:
_A = line.strip()
buffer.append(_snake_case )
if from_gh:
for filename in os.listdir(_snake_case ):
_A = os.path.join(_snake_case , _snake_case )
if not os.path.isdir(_snake_case ):
# read the file
if filename != "warnings.txt":
continue
with open(_snake_case ) as fp:
parse_line(_snake_case )
else:
try:
with zipfile.ZipFile(_snake_case ) as z:
for filename in z.namelist():
if not os.path.isdir(_snake_case ):
# read the file
if filename != "warnings.txt":
continue
with z.open(_snake_case ) as fp:
parse_line(_snake_case )
except Exception:
logger.warning(
F'''{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.''' )
return selected_warnings
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[str] ) -> Dict:
'''simple docstring'''
_A = set()
_A = [os.path.join(_snake_case , _snake_case ) for p in os.listdir(_snake_case ) if (p.endswith('.zip' ) or from_gh)]
for p in paths:
selected_warnings.update(extract_warnings_from_single_artifact(_snake_case , _snake_case ) )
return selected_warnings
if __name__ == "__main__":
def _snake_case ( _snake_case : int ) -> Dict:
'''simple docstring'''
return values.split(',' )
a = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''')
parser.add_argument(
'''--output_dir''',
type=str,
required=True,
help='''Where to store the downloaded artifacts and other result files.''',
)
parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''')
# optional parameters
parser.add_argument(
'''--targets''',
default='''DeprecationWarning,UserWarning,FutureWarning''',
type=list_str,
help='''Comma-separated list of target warning(s) which we want to extract.''',
)
parser.add_argument(
'''--from_gh''',
action='''store_true''',
help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''',
)
a = parser.parse_args()
a = args.from_gh
if from_gh:
# The artifacts have to be downloaded using `actions/download-artifact@v3`
pass
else:
os.makedirs(args.output_dir, exist_ok=True)
# get download links
a = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
# download artifacts
for idx, (name, url) in enumerate(artifacts.items()):
print(name)
print(url)
print('''=''' * 80)
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
# extract warnings from artifacts
a = extract_warnings(args.output_dir, args.targets)
a = sorted(selected_warnings)
with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
| 7 |
"""simple docstring"""
import math
def _snake_case ( _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
if (
not isinstance(_snake_case , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('power_factor must be a valid float value between -1 and 1.' )
return apparent_power * power_factor
def _snake_case ( _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
if (
not isinstance(_snake_case , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('power_factor must be a valid float value between -1 and 1.' )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 | 1 |
"""simple docstring"""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot import BlenderbotTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
a = logging.get_logger(__name__)
a = {
'''vocab_file''': '''vocab.json''',
'''merges_file''': '''merges.txt''',
'''tokenizer_config_file''': '''tokenizer_config.json''',
}
a = {
'''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''},
'''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''},
'''tokenizer_config_file''': {
'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json'''
},
}
a = {'''facebook/blenderbot-3B''': 128}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : str = VOCAB_FILES_NAMES
UpperCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase : List[str] = ['''input_ids''', '''attention_mask''']
UpperCAmelCase : Any = BlenderbotTokenizer
def __init__( self : Optional[Any] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Optional[int]="replace" , _UpperCAmelCase : int="<s>" , _UpperCAmelCase : str="</s>" , _UpperCAmelCase : List[Any]="</s>" , _UpperCAmelCase : int="<s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : List[str]="<pad>" , _UpperCAmelCase : Optional[int]="<mask>" , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : str=True , **_UpperCAmelCase : str , ):
super().__init__(
_UpperCAmelCase , _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase , **_UpperCAmelCase , )
_A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' , _UpperCAmelCase ) != add_prefix_space:
_A = getattr(_UpperCAmelCase , pre_tok_state.pop('type' ) )
_A = add_prefix_space
_A = pre_tok_class(**_UpperCAmelCase )
_A = add_prefix_space
_A = 'post_processor'
_A = getattr(self.backend_tokenizer , _UpperCAmelCase , _UpperCAmelCase )
if tokenizer_component_instance:
_A = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
_A = tuple(state['sep'] )
if "cls" in state:
_A = tuple(state['cls'] )
_A = False
if state.get('add_prefix_space' , _UpperCAmelCase ) != add_prefix_space:
_A = add_prefix_space
_A = True
if state.get('trim_offsets' , _UpperCAmelCase ) != trim_offsets:
_A = trim_offsets
_A = True
if changes_to_apply:
_A = getattr(_UpperCAmelCase , state.pop('type' ) )
_A = component_class(**_UpperCAmelCase )
setattr(self.backend_tokenizer , _UpperCAmelCase , _UpperCAmelCase )
@property
# Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot
def lowerCAmelCase_ ( self : Optional[Any] ):
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Union[str, Any] ):
_A = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else value
_A = value
def lowerCAmelCase_ ( self : int , *_UpperCAmelCase : int , **_UpperCAmelCase : Optional[int] ):
_A = kwargs.get('is_split_into_words' , _UpperCAmelCase )
assert self.add_prefix_space or not is_split_into_words, (
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*_UpperCAmelCase , **_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Union[str, Any] ):
_A = kwargs.get('is_split_into_words' , _UpperCAmelCase )
assert self.add_prefix_space or not is_split_into_words, (
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*_UpperCAmelCase , **_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ):
_A = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase )
return tuple(_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
_A = [self.sep_token_id]
_A = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
return token_ids_a + [self.eos_token_id]
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : "Conversation" ):
_A = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(' ' + text )
else:
# Generated responses should contain them already.
inputs.append(_UpperCAmelCase )
_A = ' '.join(_UpperCAmelCase )
_A = self.encode(_UpperCAmelCase )
if len(_UpperCAmelCase ) > self.model_max_length:
_A = input_ids[-self.model_max_length :]
logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' )
return input_ids
| 7 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''',
'''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''',
'''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''',
'''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''',
'''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''',
'''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''',
'''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''',
'''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''',
'''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = '''xmod'''
def __init__( self : str , _UpperCAmelCase : Optional[Any]=30_522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Dict=3_072 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Any=1E-1_2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Tuple=("en_XX",) , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Optional[Any] , ):
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
_A = vocab_size
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = hidden_act
_A = intermediate_size
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = type_vocab_size
_A = initializer_range
_A = layer_norm_eps
_A = position_embedding_type
_A = use_cache
_A = classifier_dropout
_A = pre_norm
_A = adapter_reduction_factor
_A = adapter_layer_norm
_A = adapter_reuse_layer_norm
_A = ln_before_adapter
_A = list(_UpperCAmelCase )
_A = default_language
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
@property
def lowerCAmelCase_ ( self : Dict ):
if self.task == "multiple-choice":
_A = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_A = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 7 | 1 |
"""simple docstring"""
from typing import Dict, Optional
import numpy as np
import datasets
a = '''
IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union
between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,
the mean IoU of the image is calculated by taking the IoU of each class and averaging them.
'''
a = '''
Args:
predictions (`List[ndarray]`):
List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
references (`List[ndarray]`):
List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
num_labels (`int`):
Number of classes (categories).
ignore_index (`int`):
Index that will be ignored during evaluation.
nan_to_num (`int`, *optional*):
If specified, NaN values will be replaced by the number defined by the user.
label_map (`dict`, *optional*):
If specified, dictionary mapping old label indices to new label indices.
reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
Returns:
`Dict[str, float | ndarray]` comprising various elements:
- *mean_iou* (`float`):
Mean Intersection-over-Union (IoU averaged over all categories).
- *mean_accuracy* (`float`):
Mean accuracy (averaged over all categories).
- *overall_accuracy* (`float`):
Overall accuracy on all images.
- *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):
Per category accuracy.
- *per_category_iou* (`ndarray` of shape `(num_labels,)`):
Per category IoU.
Examples:
>>> import numpy as np
>>> mean_iou = datasets.load_metric("mean_iou")
>>> # suppose one has 3 different segmentation maps predicted
>>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])
>>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])
>>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])
>>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])
>>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])
>>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])
>>> predicted = [predicted_1, predicted_2, predicted_3]
>>> ground_truth = [actual_1, actual_2, actual_3]
>>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}
'''
a = '''\
@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,
author = {{MMSegmentation Contributors}},
license = {Apache-2.0},
month = {7},
title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},
url = {https://github.com/open-mmlab/mmsegmentation},
year = {2020}
}'''
def _snake_case ( _snake_case : Any , _snake_case : Dict , _snake_case : Any , _snake_case : bool , _snake_case : Optional[Dict[int, int]] = None , _snake_case : bool = False , ) -> List[Any]:
'''simple docstring'''
if label_map is not None:
for old_id, new_id in label_map.items():
_A = new_id
# turn into Numpy arrays
_A = np.array(_snake_case )
_A = np.array(_snake_case )
if reduce_labels:
_A = 2_55
_A = label - 1
_A = 2_55
_A = label != ignore_index
_A = np.not_equal(_snake_case , _snake_case )
_A = pred_label[mask]
_A = np.array(_snake_case )[mask]
_A = pred_label[pred_label == label]
_A = np.histogram(_snake_case , bins=_snake_case , range=(0, num_labels - 1) )[0]
_A = np.histogram(_snake_case , bins=_snake_case , range=(0, num_labels - 1) )[0]
_A = np.histogram(_snake_case , bins=_snake_case , range=(0, num_labels - 1) )[0]
_A = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : List[Any] , _snake_case : bool , _snake_case : Optional[Dict[int, int]] = None , _snake_case : bool = False , ) -> str:
'''simple docstring'''
_A = np.zeros((num_labels,) , dtype=np.floataa )
_A = np.zeros((num_labels,) , dtype=np.floataa )
_A = np.zeros((num_labels,) , dtype=np.floataa )
_A = np.zeros((num_labels,) , dtype=np.floataa )
for result, gt_seg_map in zip(_snake_case , _snake_case ):
_A , _A , _A , _A = intersect_and_union(
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def _snake_case ( _snake_case : Tuple , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : bool , _snake_case : Optional[int] = None , _snake_case : Optional[Dict[int, int]] = None , _snake_case : bool = False , ) -> int:
'''simple docstring'''
_A , _A , _A , _A = total_intersect_and_union(
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )
# compute metrics
_A = {}
_A = total_area_intersect.sum() / total_area_label.sum()
_A = total_area_intersect / total_area_union
_A = total_area_intersect / total_area_label
_A = np.nanmean(_snake_case )
_A = np.nanmean(_snake_case )
_A = all_acc
_A = iou
_A = acc
if nan_to_num is not None:
_A = {metric: np.nan_to_num(_snake_case , nan=_snake_case ) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase_ ( datasets.Metric ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Any ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ),
'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ),
} ) , reference_urls=[
'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py'
] , )
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : bool , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Dict[int, int]] = None , _UpperCAmelCase : bool = False , ):
_A = mean_iou(
results=_UpperCAmelCase , gt_seg_maps=_UpperCAmelCase , num_labels=_UpperCAmelCase , ignore_index=_UpperCAmelCase , nan_to_num=_UpperCAmelCase , label_map=_UpperCAmelCase , reduce_labels=_UpperCAmelCase , )
return iou_result
| 7 |
"""simple docstring"""
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
a = logging.get_logger(__name__)
a = {
'''tensor(bool)''': np.bool_,
'''tensor(int8)''': np.inta,
'''tensor(uint8)''': np.uinta,
'''tensor(int16)''': np.intaa,
'''tensor(uint16)''': np.uintaa,
'''tensor(int32)''': np.intaa,
'''tensor(uint32)''': np.uintaa,
'''tensor(int64)''': np.intaa,
'''tensor(uint64)''': np.uintaa,
'''tensor(float16)''': np.floataa,
'''tensor(float)''': np.floataa,
'''tensor(double)''': np.floataa,
}
class lowercase_ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : Optional[Any] ):
logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' )
_A = model
_A = kwargs.get('model_save_dir' , _UpperCAmelCase )
_A = kwargs.get('latest_model_name' , _UpperCAmelCase )
def __call__( self : Dict , **_UpperCAmelCase : List[Any] ):
_A = {k: np.array(_UpperCAmelCase ) for k, v in kwargs.items()}
return self.model.run(_UpperCAmelCase , _UpperCAmelCase )
@staticmethod
def lowerCAmelCase_ ( _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=None ):
if provider is None:
logger.info('No onnxruntime provider specified, using CPUExecutionProvider' )
_A = 'CPUExecutionProvider'
return ort.InferenceSession(_UpperCAmelCase , providers=[provider] , sess_options=_UpperCAmelCase )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : List[Any] ):
_A = file_name if file_name is not None else ONNX_WEIGHTS_NAME
_A = self.model_save_dir.joinpath(self.latest_model_name )
_A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase )
try:
shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase )
except shutil.SameFileError:
pass
# copy external weights (for models >2GB)
_A = self.model_save_dir.joinpath(_UpperCAmelCase )
if src_path.exists():
_A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase )
try:
shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase )
except shutil.SameFileError:
pass
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] , ):
if os.path.isfile(_UpperCAmelCase ):
logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' )
return
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase )
# saving model weights/files
self._save_pretrained(_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( cls : Tuple , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[Union[bool, str, None]] = None , _UpperCAmelCase : Optional[Union[str, None]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional["ort.SessionOptions"] = None , **_UpperCAmelCase : Union[str, Any] , ):
_A = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(_UpperCAmelCase ):
_A = OnnxRuntimeModel.load_model(
os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase )
_A = Path(_UpperCAmelCase )
# load model from hub
else:
# download model
_A = hf_hub_download(
repo_id=_UpperCAmelCase , filename=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , )
_A = Path(_UpperCAmelCase ).parent
_A = Path(_UpperCAmelCase ).name
_A = OnnxRuntimeModel.load_model(_UpperCAmelCase , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase )
return cls(model=_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( cls : List[Any] , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : Tuple , ):
_A = None
if len(str(_UpperCAmelCase ).split('@' ) ) == 2:
_A , _A = model_id.split('@' )
return cls._from_pretrained(
model_id=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , **_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
import argparse
import glob
import importlib.util
import os
import re
import black
from doc_builder.style_doc import style_docstrings_in_code
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
a = '''src/diffusers'''
a = '''.'''
# This is to make sure the diffusers module imported is the one in the repo.
a = importlib.util.spec_from_file_location(
'''diffusers''',
os.path.join(DIFFUSERS_PATH, '''__init__.py'''),
submodule_search_locations=[DIFFUSERS_PATH],
)
a = spec.loader.load_module()
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : int ) -> Union[str, Any]:
'''simple docstring'''
return line.startswith(_snake_case ) or len(_snake_case ) <= 1 or re.search(R'^\s*\)(\s*->.*:|:)\s*$' , _snake_case ) is not None
def _snake_case ( _snake_case : Optional[int] ) -> int:
'''simple docstring'''
_A = object_name.split('.' )
_A = 0
# First let's find the module where our object lives.
_A = parts[i]
while i < len(_snake_case ) and not os.path.isfile(os.path.join(_snake_case , F'''{module}.py''' ) ):
i += 1
if i < len(_snake_case ):
_A = os.path.join(_snake_case , parts[i] )
if i >= len(_snake_case ):
raise ValueError(F'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' )
with open(os.path.join(_snake_case , F'''{module}.py''' ) , 'r' , encoding='utf-8' , newline='\n' ) as f:
_A = f.readlines()
# Now let's find the class / func in the code!
_A = ''
_A = 0
for name in parts[i + 1 :]:
while (
line_index < len(_snake_case ) and re.search(RF'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index] ) is None
):
line_index += 1
indent += " "
line_index += 1
if line_index >= len(_snake_case ):
raise ValueError(F''' {object_name} does not match any function or class in {module}.''' )
# We found the beginning of the class / func, now let's find the end (when the indent diminishes).
_A = line_index
while line_index < len(_snake_case ) and _should_continue(lines[line_index] , _snake_case ):
line_index += 1
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
_A = lines[start_index:line_index]
return "".join(_snake_case )
a = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''')
a = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''')
a = re.compile(r'''<FILL\s+[^>]*>''')
def _snake_case ( _snake_case : Optional[int] ) -> Any:
'''simple docstring'''
_A = code.split('\n' )
_A = 0
while idx < len(_snake_case ) and len(lines[idx] ) == 0:
idx += 1
if idx < len(_snake_case ):
return re.search(R'^(\s*)\S' , lines[idx] ).groups()[0]
return ""
def _snake_case ( _snake_case : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
_A = len(get_indent(_snake_case ) ) > 0
if has_indent:
_A = F'''class Bla:\n{code}'''
_A = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=_snake_case )
_A = black.format_str(_snake_case , mode=_snake_case )
_A , _A = style_docstrings_in_code(_snake_case )
return result[len('class Bla:\n' ) :] if has_indent else result
def _snake_case ( _snake_case : Tuple , _snake_case : List[Any]=False ) -> Tuple:
'''simple docstring'''
with open(_snake_case , 'r' , encoding='utf-8' , newline='\n' ) as f:
_A = f.readlines()
_A = []
_A = 0
# Not a for loop cause `lines` is going to change (if `overwrite=True`).
while line_index < len(_snake_case ):
_A = _re_copy_warning.search(lines[line_index] )
if search is None:
line_index += 1
continue
# There is some copied code here, let's retrieve the original.
_A , _A , _A = search.groups()
_A = find_code_in_diffusers(_snake_case )
_A = get_indent(_snake_case )
_A = line_index + 1 if indent == theoretical_indent else line_index + 2
_A = theoretical_indent
_A = start_index
# Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment.
_A = True
while line_index < len(_snake_case ) and should_continue:
line_index += 1
if line_index >= len(_snake_case ):
break
_A = lines[line_index]
_A = _should_continue(_snake_case , _snake_case ) and re.search(F'''^{indent}# End copy''' , _snake_case ) is None
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
_A = lines[start_index:line_index]
_A = ''.join(_snake_case )
# Remove any nested `Copied from` comments to avoid circular copies
_A = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(_snake_case ) is None]
_A = '\n'.join(_snake_case )
# Before comparing, use the `replace_pattern` on the original code.
if len(_snake_case ) > 0:
_A = replace_pattern.replace('with' , '' ).split(',' )
_A = [_re_replace_pattern.search(_snake_case ) for p in patterns]
for pattern in patterns:
if pattern is None:
continue
_A , _A , _A = pattern.groups()
_A = re.sub(_snake_case , _snake_case , _snake_case )
if option.strip() == "all-casing":
_A = re.sub(obja.lower() , obja.lower() , _snake_case )
_A = re.sub(obja.upper() , obja.upper() , _snake_case )
# Blackify after replacement. To be able to do that, we need the header (class or function definition)
# from the previous line
_A = blackify(lines[start_index - 1] + theoretical_code )
_A = theoretical_code[len(lines[start_index - 1] ) :]
# Test for a diff and act accordingly.
if observed_code != theoretical_code:
diffs.append([object_name, start_index] )
if overwrite:
_A = lines[:start_index] + [theoretical_code] + lines[line_index:]
_A = start_index + 1
if overwrite and len(_snake_case ) > 0:
# Warn the user a file has been modified.
print(F'''Detected changes, rewriting {filename}.''' )
with open(_snake_case , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(_snake_case )
return diffs
def _snake_case ( _snake_case : bool = False ) -> Optional[Any]:
'''simple docstring'''
_A = glob.glob(os.path.join(_snake_case , '**/*.py' ) , recursive=_snake_case )
_A = []
for filename in all_files:
_A = is_copy_consistent(_snake_case , _snake_case )
diffs += [F'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs]
if not overwrite and len(_snake_case ) > 0:
_A = '\n'.join(_snake_case )
raise Exception(
'Found the following copy inconsistencies:\n'
+ diff
+ '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' )
if __name__ == "__main__":
a = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
a = parser.parse_args()
check_copies(args.fix_and_overwrite)
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json'''
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : str = '''speech_to_text'''
UpperCAmelCase : List[Any] = ['''past_key_values''']
UpperCAmelCase : Tuple = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self : int , _UpperCAmelCase : Union[str, Any]=10_000 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2_048 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Tuple=2_048 , _UpperCAmelCase : str=4 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]="relu" , _UpperCAmelCase : List[Any]=256 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : List[str]=6_000 , _UpperCAmelCase : Optional[Any]=1_024 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Any=(5, 5) , _UpperCAmelCase : int=1_024 , _UpperCAmelCase : str=80 , _UpperCAmelCase : Any=1 , **_UpperCAmelCase : Tuple , ):
_A = vocab_size
_A = d_model
_A = encoder_ffn_dim
_A = encoder_layers
_A = encoder_attention_heads
_A = decoder_ffn_dim
_A = decoder_layers
_A = decoder_attention_heads
_A = dropout
_A = attention_dropout
_A = activation_dropout
_A = activation_function
_A = init_std
_A = encoder_layerdrop
_A = decoder_layerdrop
_A = use_cache
_A = encoder_layers
_A = scale_embedding # scale factor will be sqrt(d_model) if True
_A = max_source_positions
_A = max_target_positions
_A = num_conv_layers
_A = list(_UpperCAmelCase )
_A = conv_channels
_A = input_feat_per_channel
_A = input_channels
if len(self.conv_kernel_sizes ) != self.num_conv_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` '
F'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, '''
F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
import random
def _snake_case ( _snake_case : int ) -> bool:
'''simple docstring'''
_A = num - 1
_A = 0
while s % 2 == 0:
_A = s // 2
t += 1
for _ in range(5 ):
_A = random.randrange(2 , num - 1 )
_A = pow(_snake_case , _snake_case , _snake_case )
if v != 1:
_A = 0
while v != (num - 1):
if i == t - 1:
return False
else:
_A = i + 1
_A = (v**2) % num
return True
def _snake_case ( _snake_case : int ) -> bool:
'''simple docstring'''
if num < 2:
return False
_A = [
2,
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97,
1_01,
1_03,
1_07,
1_09,
1_13,
1_27,
1_31,
1_37,
1_39,
1_49,
1_51,
1_57,
1_63,
1_67,
1_73,
1_79,
1_81,
1_91,
1_93,
1_97,
1_99,
2_11,
2_23,
2_27,
2_29,
2_33,
2_39,
2_41,
2_51,
2_57,
2_63,
2_69,
2_71,
2_77,
2_81,
2_83,
2_93,
3_07,
3_11,
3_13,
3_17,
3_31,
3_37,
3_47,
3_49,
3_53,
3_59,
3_67,
3_73,
3_79,
3_83,
3_89,
3_97,
4_01,
4_09,
4_19,
4_21,
4_31,
4_33,
4_39,
4_43,
4_49,
4_57,
4_61,
4_63,
4_67,
4_79,
4_87,
4_91,
4_99,
5_03,
5_09,
5_21,
5_23,
5_41,
5_47,
5_57,
5_63,
5_69,
5_71,
5_77,
5_87,
5_93,
5_99,
6_01,
6_07,
6_13,
6_17,
6_19,
6_31,
6_41,
6_43,
6_47,
6_53,
6_59,
6_61,
6_73,
6_77,
6_83,
6_91,
7_01,
7_09,
7_19,
7_27,
7_33,
7_39,
7_43,
7_51,
7_57,
7_61,
7_69,
7_73,
7_87,
7_97,
8_09,
8_11,
8_21,
8_23,
8_27,
8_29,
8_39,
8_53,
8_57,
8_59,
8_63,
8_77,
8_81,
8_83,
8_87,
9_07,
9_11,
9_19,
9_29,
9_37,
9_41,
9_47,
9_53,
9_67,
9_71,
9_77,
9_83,
9_91,
9_97,
]
if num in low_primes:
return True
for prime in low_primes:
if (num % prime) == 0:
return False
return rabin_miller(_snake_case )
def _snake_case ( _snake_case : int = 10_24 ) -> int:
'''simple docstring'''
while True:
_A = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) )
if is_prime_low_num(_snake_case ):
return num
if __name__ == "__main__":
a = generate_large_prime()
print(('''Prime number:''', num))
print(('''is_prime_low_num:''', is_prime_low_num(num)))
| 7 |
"""simple docstring"""
from manim import *
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = Rectangle(height=0.5 , width=0.5 )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_A = Rectangle(height=0.25 , width=0.25 )
_A = [mem.copy() for i in range(6 )]
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('CPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(4 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('GPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
gpu.move_to([-1, -1, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Model' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
model.move_to([3, -1.0, 0] )
self.add(_UpperCAmelCase )
_A = []
_A = []
for i, rect in enumerate(_UpperCAmelCase ):
_A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 )
target.move_to(_UpperCAmelCase )
model_arr.append(_UpperCAmelCase )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(_UpperCAmelCase )
self.add(*_UpperCAmelCase , *_UpperCAmelCase )
_A = [meta_mem.copy() for i in range(6 )]
_A = [meta_mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Disk' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
disk.move_to([-4, -1.25, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_A = MarkupText(
F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = MarkupText(
F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , )
blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(_UpperCAmelCase )
_A = MarkupText(
F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase ) )
_A = Square(0.3 )
input.set_fill(_UpperCAmelCase , opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 )
self.play(Write(_UpperCAmelCase ) )
input.generate_target()
input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 )
self.play(MoveToTarget(_UpperCAmelCase ) )
self.play(FadeOut(_UpperCAmelCase ) )
_A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 )
a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
_A = MarkupText(
F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) )
_A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02}
self.play(
Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[0] ) )
_A = a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
_A = AnimationGroup(
FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 )
self.play(_UpperCAmelCase )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
_A = 0.7
self.play(
Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , )
else:
self.play(
MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , )
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 )
self.play(
Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[i] ) )
_A = a_c
_A = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 )
self.play(
FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , )
_A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) )
self.wait()
| 7 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a = {
'''configuration_clipseg''': [
'''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''CLIPSegConfig''',
'''CLIPSegTextConfig''',
'''CLIPSegVisionConfig''',
],
'''processing_clipseg''': ['''CLIPSegProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
'''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''CLIPSegModel''',
'''CLIPSegPreTrainedModel''',
'''CLIPSegTextModel''',
'''CLIPSegVisionModel''',
'''CLIPSegForImageSegmentation''',
]
if TYPE_CHECKING:
from .configuration_clipseg import (
CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPSegConfig,
CLIPSegTextConfig,
CLIPSegVisionConfig,
)
from .processing_clipseg import CLIPSegProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clipseg import (
CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPSegForImageSegmentation,
CLIPSegModel,
CLIPSegPreTrainedModel,
CLIPSegTextModel,
CLIPSegVisionModel,
)
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 7 |
"""simple docstring"""
def _snake_case ( _snake_case : int , _snake_case : int ) -> int:
'''simple docstring'''
return int((input_a, input_a).count(1 ) != 0 )
def _snake_case ( ) -> None:
'''simple docstring'''
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 7 | 1 |
"""simple docstring"""
from __future__ import annotations
from math import pow, sqrt
def _snake_case ( _snake_case : float , _snake_case : float , _snake_case : float ) -> dict[str, float]:
'''simple docstring'''
if (resistance, reactance, impedance).count(0 ) != 1:
raise ValueError('One and only one argument must be 0' )
if resistance == 0:
return {"resistance": sqrt(pow(_snake_case , 2 ) - pow(_snake_case , 2 ) )}
elif reactance == 0:
return {"reactance": sqrt(pow(_snake_case , 2 ) - pow(_snake_case , 2 ) )}
elif impedance == 0:
return {"impedance": sqrt(pow(_snake_case , 2 ) + pow(_snake_case , 2 ) )}
else:
raise ValueError('Exactly one argument must be 0' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 |
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
a = logging.getLogger(__name__)
@dataclass
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[float] = field(
default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} )
UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''Whether to SortishSamler or not.'''} )
UpperCAmelCase : bool = field(
default=__lowerCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} )
UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''whether to use adafactor'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(default=__lowerCAmelCase , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[str] = field(
default='''linear''' , metadata={'''help''': f'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
| 7 | 1 |
"""simple docstring"""
import json
import os
from datetime import date
from pathlib import Path
from tabulate import DataRow, TableFormat, tabulate
a = TableFormat(
lineabove=None,
linebelowheader=None,
linebetweenrows=None,
linebelow=None,
headerrow=DataRow('''''', '''|''', '''|'''),
datarow=DataRow('''''', '''|''', '''|'''),
padding=1,
with_header_hide=None,
)
a = []
a = []
a = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}}
a = [
{
'''type''': '''header''',
'''text''': {
'''type''': '''plain_text''',
'''text''': F'''🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results''',
'''emoji''': True,
},
}
]
a = 0
for log in Path().glob('''*.log'''):
a = 0
with open(log, '''r''') as f:
for line in f:
a = json.loads(line)
if line.get('''nodeid''', '''''') != "":
a = line['''nodeid''']
if line.get('''duration''', None) is not None:
a = F'''{line["duration"]:.4f}'''
if line.get('''outcome''', '''''') == "failed":
section_num_failed += 1
failed.append([test, duration, log.name.split('''_''')[0]])
total_num_failed += 1
group_info.append([str(log), section_num_failed, failed])
a = []
log.unlink()
a = ''''''
a = []
if total_num_failed > 0:
for name, num_failed, failed_tests in group_info:
if num_failed > 0:
if num_failed == 1:
message += F"*{name[1:]}: {num_failed} failed test*\n"
else:
message += F"*{name[1:]}: {num_failed} failed tests*\n"
a = []
a = {}
for test in failed_tests:
a = test[0].split('''::''')
a = data[0].split('''/''')[-1]
if data[0] not in filesafailed:
a = [data[1:]]
else:
filesafailed[data[0]] += [data[1:]]
failed_table.append(data)
a = [test[0] for test in failed_table]
a = list(set(files))
# Count number of instances in failed_tests
a = []
for file in individual_files:
table.append([file, len(filesafailed[file])])
a = tabulate(
table,
headers=['''Test Location''', '''Num Failed'''],
tablefmt=hf_table_format,
stralign='''right''',
)
message += F"\n```\n{failed_table}\n```"
all_filesafailed.append(filesafailed)
if len(message) > 3_000:
a = '''Too many failed tests, please see the full report in the Action results.'''
a = len(err) + 10
a = message[: 3_000 - offset] + F'''\n...\n```\n{err}'''
print(F'''### {message}''')
else:
a = '''No failed tests! 🤗'''
print(F'''## {message}''')
payload.append(no_error_payload)
if os.environ.get('''TEST_TYPE''', '''''') != "":
from slack_sdk import WebClient
a = WebClient(token=os.environ['''SLACK_API_TOKEN'''])
if message != "No failed tests! 🤗":
a = {
'''type''': '''section''',
'''text''': {
'''type''': '''mrkdwn''',
'''text''': message,
},
}
payload.append(md_report)
a = {
'''type''': '''section''',
'''text''': {
'''type''': '''mrkdwn''',
'''text''': '''*For more details:*''',
},
'''accessory''': {
'''type''': '''button''',
'''text''': {
'''type''': '''plain_text''',
'''text''': '''Check Action results''',
'''emoji''': True,
},
'''url''': F'''https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}''',
},
}
payload.append(action_button)
a = {
'''type''': '''context''',
'''elements''': [
{
'''type''': '''plain_text''',
'''text''': F'''Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}''',
}
],
}
payload.append(date_report)
a = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload)
a = response.data['''ts''']
for failed_file in all_filesafailed:
for test_location, test_failures in failed_file.items():
# Keep only the first instance of the test name
a = ''''''
for i, row in enumerate(test_failures):
if row[0] != test_class:
a = row[0]
else:
a = ''''''
a = {
'''type''': '''section''',
'''text''': {
'''type''': '''mrkdwn''',
'''text''': F'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```''',
},
}
client.chat_postMessage(
channel='''#accelerate-ci-daily''',
thread_ts=ts,
blocks=[payload],
)
| 7 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ..utils import _LazyModule
a = {
'''config''': [
'''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''',
'''OnnxConfig''',
'''OnnxConfigWithPast''',
'''OnnxSeq2SeqConfigWithPast''',
'''PatchingSpec''',
],
'''convert''': ['''export''', '''validate_model_outputs'''],
'''features''': ['''FeaturesManager'''],
'''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 7 | 1 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
a = logging.get_logger(__name__)
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : int , *_UpperCAmelCase : Any , **_UpperCAmelCase : Dict ):
warnings.warn(
'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use PoolFormerImageProcessor instead.' , _UpperCAmelCase , )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
| 7 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import KarrasVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : UNetaDModel
UpperCAmelCase : KarrasVeScheduler
def __init__( self : Any , _UpperCAmelCase : UNetaDModel , _UpperCAmelCase : KarrasVeScheduler ):
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase )
@torch.no_grad()
def __call__( self : Optional[int] , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Optional[Any] , ):
_A = self.unet.config.sample_size
_A = (batch_size, 3, img_size, img_size)
_A = self.unet
# sample x_0 ~ N(0, sigma_0^2 * I)
_A = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device ) * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(_UpperCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# here sigma_t == t_i from the paper
_A = self.scheduler.schedule[t]
_A = self.scheduler.schedule[t - 1] if t > 0 else 0
# 1. Select temporarily increased noise level sigma_hat
# 2. Add new noise to move from sample_i to sample_hat
_A , _A = self.scheduler.add_noise_to_input(_UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase )
# 3. Predict the noise residual given the noise magnitude `sigma_hat`
# The model inputs and output are adjusted by following eq. (213) in [1].
_A = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample
# 4. Evaluate dx/dt at sigma_hat
# 5. Take Euler step from sigma to sigma_prev
_A = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if sigma_prev != 0:
# 6. Apply 2nd order correction
# The model inputs and output are adjusted by following eq. (213) in [1].
_A = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample
_A = self.scheduler.step_correct(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , step_output.prev_sample , step_output['derivative'] , )
_A = step_output.prev_sample
_A = (sample / 2 + 0.5).clamp(0 , 1 )
_A = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_A = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_UpperCAmelCase )
| 7 | 1 |
"""simple docstring"""
class lowercase_ :
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : int ):
_A = n
_A = [None] * self.n
_A = 0 # index of the first element
_A = 0
_A = 0
def __len__( self : str ):
return self.size
def lowerCAmelCase_ ( self : Dict ):
return self.size == 0
def lowerCAmelCase_ ( self : List[Any] ):
return False if self.is_empty() else self.array[self.front]
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Tuple ):
if self.size >= self.n:
raise Exception('QUEUE IS FULL' )
_A = data
_A = (self.rear + 1) % self.n
self.size += 1
return self
def lowerCAmelCase_ ( self : str ):
if self.size == 0:
raise Exception('UNDERFLOW' )
_A = self.array[self.front]
_A = None
_A = (self.front + 1) % self.n
self.size -= 1
return temp
| 7 |
"""simple docstring"""
class lowercase_ :
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ):
_A = None
_A = None
_A = graph
self._normalize_graph(_UpperCAmelCase , _UpperCAmelCase )
_A = len(_UpperCAmelCase )
_A = None
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ):
if sources is int:
_A = [sources]
if sinks is int:
_A = [sinks]
if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) == 0:
return
_A = sources[0]
_A = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(_UpperCAmelCase ) > 1 or len(_UpperCAmelCase ) > 1:
_A = 0
for i in sources:
max_input_flow += sum(self.graph[i] )
_A = len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
_A = max_input_flow
_A = 0
_A = len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
_A = max_input_flow
_A = size - 1
def lowerCAmelCase_ ( self : Optional[Any] ):
if self.maximum_flow_algorithm is None:
raise Exception('You need to set maximum flow algorithm before.' )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Union[str, Any] ):
_A = algorithm(self )
class lowercase_ :
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : Union[str, Any] ):
_A = flow_network
_A = flow_network.verticesCount
_A = flow_network.sourceIndex
_A = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
_A = flow_network.graph
_A = False
def lowerCAmelCase_ ( self : Optional[Any] ):
if not self.executed:
self._algorithm()
_A = True
def lowerCAmelCase_ ( self : int ):
pass
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : int , _UpperCAmelCase : Any ):
super().__init__(_UpperCAmelCase )
# use this to save your result
_A = -1
def lowerCAmelCase_ ( self : Optional[Any] ):
if not self.executed:
raise Exception('You should execute algorithm before using its result!' )
return self.maximum_flow
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : List[Any] ):
super().__init__(_UpperCAmelCase )
_A = [[0] * self.verticies_count for i in range(self.verticies_count )]
_A = [0] * self.verticies_count
_A = [0] * self.verticies_count
def lowerCAmelCase_ ( self : Dict ):
_A = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
_A = [
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
_A = 0
while i < len(_UpperCAmelCase ):
_A = vertices_list[i]
_A = self.heights[vertex_index]
self.process_vertex(_UpperCAmelCase )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(_UpperCAmelCase ) )
_A = 0
else:
i += 1
_A = sum(self.preflow[self.source_index] )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Any ):
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(_UpperCAmelCase , _UpperCAmelCase )
self.relabel(_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ):
_A = min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : int ):
_A = None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
_A = self.heights[to_index]
if min_height is not None:
_A = min_height + 1
if __name__ == "__main__":
a = [0]
a = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
a = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
a = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
a = flow_network.find_maximum_flow()
print(F'''maximum flow is {maximum_flow}''')
| 7 | 1 |
"""simple docstring"""
def _snake_case ( _snake_case : list[list[float]] ) -> list[list[float]]:
'''simple docstring'''
_A = []
for data in source_data:
for i, el in enumerate(_snake_case ):
if len(_snake_case ) < i + 1:
data_lists.append([] )
data_lists[i].append(float(_snake_case ) )
return data_lists
def _snake_case ( _snake_case : list[list[float]] , _snake_case : list[int] ) -> list[list[float]]:
'''simple docstring'''
_A = []
for dlist, weight in zip(_snake_case , _snake_case ):
_A = min(_snake_case )
_A = max(_snake_case )
_A = []
# for weight 0 score is 1 - actual score
if weight == 0:
for item in dlist:
try:
score.append(1 - ((item - mind) / (maxd - mind)) )
except ZeroDivisionError:
score.append(1 )
elif weight == 1:
for item in dlist:
try:
score.append((item - mind) / (maxd - mind) )
except ZeroDivisionError:
score.append(0 )
# weight not 0 or 1
else:
_A = F'''Invalid weight of {weight:f} provided'''
raise ValueError(_snake_case )
score_lists.append(_snake_case )
return score_lists
def _snake_case ( _snake_case : list[list[float]] ) -> list[float]:
'''simple docstring'''
_A = [0 for i in range(len(score_lists[0] ) )]
for slist in score_lists:
for j, ele in enumerate(_snake_case ):
_A = final_scores[j] + ele
return final_scores
def _snake_case ( _snake_case : list[list[float]] , _snake_case : list[int] ) -> list[list[float]]:
'''simple docstring'''
_A = get_data(_snake_case )
_A = calculate_each_score(_snake_case , _snake_case )
_A = generate_final_scores(_snake_case )
# append scores to source data
for i, ele in enumerate(_snake_case ):
source_data[i].append(_snake_case )
return source_data
| 7 |
"""simple docstring"""
import unittest
from transformers import SPIECE_UNDERLINE
from transformers.models.speechta import SpeechTaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.tokenization_utils import AddedToken
from ...test_tokenization_common import TokenizerTesterMixin
a = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''')
@require_sentencepiece
@require_tokenizers
class lowercase_ ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = SpeechTaTokenizer
UpperCAmelCase : Tuple = False
UpperCAmelCase : Optional[int] = True
def lowerCAmelCase_ ( self : Tuple ):
super().setUp()
# We have a SentencePiece fixture for testing
_A = SpeechTaTokenizer(_UpperCAmelCase )
_A = AddedToken('<mask>' , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase )
_A = mask_token
tokenizer.add_special_tokens({'mask_token': mask_token} )
tokenizer.add_tokens(['<ctc_blank>'] )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Tuple ):
_A = 'this is a test'
_A = 'this is a test'
return input_text, output_text
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict=20 , _UpperCAmelCase : str=5 ):
_A , _A = self.get_input_output_texts(_UpperCAmelCase )
_A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
_A = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase )
return text, ids
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = '<pad>'
_A = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-4] , 'œ' )
self.assertEqual(vocab_keys[-2] , '<mask>' )
self.assertEqual(vocab_keys[-1] , '<ctc_blank>' )
self.assertEqual(len(_UpperCAmelCase ) , 81 )
def lowerCAmelCase_ ( self : Optional[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 79 )
def lowerCAmelCase_ ( self : Any ):
_A = self.get_tokenizers(do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
_A = ['aaaaa bbbbbb', 'cccccccccdddddddd']
_A = tokenizer.add_tokens(_UpperCAmelCase )
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) )
self.assertEqual(_UpperCAmelCase , all_size + len(_UpperCAmelCase ) )
_A = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=_UpperCAmelCase )
self.assertGreaterEqual(len(_UpperCAmelCase ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
_A = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'}
_A = tokenizer.add_special_tokens(_UpperCAmelCase )
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) )
self.assertEqual(_UpperCAmelCase , all_size_a + len(_UpperCAmelCase ) )
_A = tokenizer.encode(
'>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=_UpperCAmelCase )
self.assertGreaterEqual(len(_UpperCAmelCase ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
def lowerCAmelCase_ ( self : str ):
pass
def lowerCAmelCase_ ( self : Any ):
pass
def lowerCAmelCase_ ( self : Dict ):
_A = self.get_tokenizer()
_A = tokenizer.tokenize('This is a test' )
# fmt: off
self.assertListEqual(_UpperCAmelCase , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] )
# fmt: on
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , )
_A = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
_A = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
# fmt: off
self.assertListEqual(_UpperCAmelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] )
# fmt: on
_A = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
@slow
def lowerCAmelCase_ ( self : List[Any] ):
# Use custom sequence because this tokenizer does not handle numbers.
_A = [
'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides '
'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural '
'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained '
'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.',
'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly '
'conditioning on both left and right context in all layers.',
'The quick brown fox jumps over the lazy dog.',
]
# fmt: off
_A = {
'input_ids': [
[4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2],
[4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
],
'attention_mask': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
a = logging.getLogger(__name__)
@dataclass
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[float] = field(
default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} )
UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''Whether to SortishSamler or not.'''} )
UpperCAmelCase : bool = field(
default=__lowerCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} )
UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''whether to use adafactor'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(default=__lowerCAmelCase , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[str] = field(
default='''linear''' , metadata={'''help''': f'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
| 7 |
"""simple docstring"""
from .configuration_bert_masked import MaskedBertConfig
from .modeling_bert_masked import (
MaskedBertForMultipleChoice,
MaskedBertForQuestionAnswering,
MaskedBertForSequenceClassification,
MaskedBertForTokenClassification,
MaskedBertModel,
)
from .modules import *
| 7 | 1 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@property
def lowerCAmelCase_ ( self : Tuple ):
torch.manual_seed(0 )
_A = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , )
return model
def lowerCAmelCase_ ( self : List[Any] ):
_A = self.dummy_uncond_unet
_A = ScoreSdeVeScheduler()
_A = ScoreSdeVePipeline(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase )
sde_ve.to(_UpperCAmelCase )
sde_ve.set_progress_bar_config(disable=_UpperCAmelCase )
_A = torch.manual_seed(0 )
_A = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=_UpperCAmelCase ).images
_A = torch.manual_seed(0 )
_A = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=_UpperCAmelCase , return_dict=_UpperCAmelCase )[
0
]
_A = image[0, -3:, -3:, -1]
_A = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
_A = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = 'google/ncsnpp-church-256'
_A = UNetaDModel.from_pretrained(_UpperCAmelCase )
_A = ScoreSdeVeScheduler.from_pretrained(_UpperCAmelCase )
_A = ScoreSdeVePipeline(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase )
sde_ve.to(_UpperCAmelCase )
sde_ve.set_progress_bar_config(disable=_UpperCAmelCase )
_A = torch.manual_seed(0 )
_A = sde_ve(num_inference_steps=10 , output_type='numpy' , generator=_UpperCAmelCase ).images
_A = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
_A = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 7 |
"""simple docstring"""
import argparse
a = '''docs/source/_static/js/custom.js'''
def _snake_case ( _snake_case : Dict ) -> Any:
'''simple docstring'''
with open(_snake_case , encoding='utf-8' , newline='\n' ) as f:
_A = f.readlines()
_A = 0
# First let's put the right version
while not lines[index].startswith('const stableVersion =' ):
index += 1
_A = F'''const stableVersion = "v{version}"\n'''
# Then update the dictionary
while not lines[index].startswith('const versionMapping = {' ):
index += 1
# We go until the end
while not lines[index].startswith('}' ):
index += 1
# We add the new version at the end
lines[index - 1] += F''' "v{version}": "v{version}",\n'''
with open(_snake_case , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(_snake_case )
if __name__ == "__main__":
a = argparse.ArgumentParser()
parser.add_argument('''--version''', help='''Release version.''')
a = parser.parse_args()
update_custom_js(args.version)
| 7 | 1 |
"""simple docstring"""
def _snake_case ( _snake_case : str ) -> str:
'''simple docstring'''
return " ".join(
''.join(word[::-1] ) if len(_snake_case ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words('''Hey wollef sroirraw'''))
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''vit_mae'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int]=768 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Optional[int]=3_072 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : Optional[Any]=224 , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=512 , _UpperCAmelCase : int=8 , _UpperCAmelCase : List[Any]=2_048 , _UpperCAmelCase : Optional[Any]=0.75 , _UpperCAmelCase : List[str]=False , **_UpperCAmelCase : Union[str, Any] , ):
super().__init__(**_UpperCAmelCase )
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = intermediate_size
_A = hidden_act
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = initializer_range
_A = layer_norm_eps
_A = image_size
_A = patch_size
_A = num_channels
_A = qkv_bias
_A = decoder_num_attention_heads
_A = decoder_hidden_size
_A = decoder_num_hidden_layers
_A = decoder_intermediate_size
_A = mask_ratio
_A = norm_pix_loss
| 7 | 1 |
"""simple docstring"""
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
a = pytest.mark.integration
a = {'''comet'''}
a = importlib.util.find_spec('''fairseq''') is not None
a = {'''code_eval'''}
a = os.name == '''nt'''
a = {'''bertscore''', '''frugalscore''', '''perplexity'''}
a = importlib.util.find_spec('''transformers''') is not None
def _snake_case ( _snake_case : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
@wraps(_snake_case )
def wrapper(self : List[str] , _snake_case : str ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest('"test requires Fairseq"' )
else:
test_case(self , _snake_case )
return wrapper
def _snake_case ( _snake_case : Any ) -> List[str]:
'''simple docstring'''
@wraps(_snake_case )
def wrapper(self : Union[str, Any] , _snake_case : Optional[int] ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest('"test requires transformers"' )
else:
test_case(self , _snake_case )
return wrapper
def _snake_case ( _snake_case : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
@wraps(_snake_case )
def wrapper(self : Union[str, Any] , _snake_case : List[str] ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest('"test not supported on Windows"' )
else:
test_case(self , _snake_case )
return wrapper
def _snake_case ( ) -> Tuple:
'''simple docstring'''
_A = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
@local
class lowercase_ ( parameterized.TestCase ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = {}
UpperCAmelCase : Optional[Any] = None
@pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' )
@pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : str ):
_A = '[...]'
_A = importlib.import_module(
datasets.load.metric_module_factory(os.path.join('metrics' , _UpperCAmelCase ) ).module_path )
_A = datasets.load.import_main_class(metric_module.__name__ , dataset=_UpperCAmelCase )
# check parameters
_A = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(_UpperCAmelCase , metric_module.__name__ ):
with self.use_local_metrics():
try:
_A = doctest.testmod(_UpperCAmelCase , verbose=_UpperCAmelCase , raise_on_error=_UpperCAmelCase )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@slow
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[int] ):
_A = '[...]'
_A = importlib.import_module(
datasets.load.metric_module_factory(os.path.join('metrics' , _UpperCAmelCase ) ).module_path )
# run doctest
with self.use_local_metrics():
_A = doctest.testmod(_UpperCAmelCase , verbose=_UpperCAmelCase , raise_on_error=_UpperCAmelCase )
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@contextmanager
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ):
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](_UpperCAmelCase ):
yield
else:
yield
@contextmanager
def lowerCAmelCase_ ( self : str ):
def load_local_metric(_UpperCAmelCase : Optional[Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Optional[Any] ):
return load_metric(os.path.join('metrics' , _UpperCAmelCase ) , *_UpperCAmelCase , **_UpperCAmelCase )
with patch('datasets.load_metric' ) as mock_load_metric:
_A = load_local_metric
yield
@classmethod
def lowerCAmelCase_ ( cls : Optional[Any] , _UpperCAmelCase : str ):
def wrapper(_UpperCAmelCase : str ):
_A = contextmanager(_UpperCAmelCase )
_A = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher('bleurt' )
def _snake_case ( _snake_case : int ) -> Any:
'''simple docstring'''
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string('sv' , '' , '' ) # handle pytest cli flags
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Dict ):
assert len(input_dict['input_ids'] ) == 2
return np.array([1.03, 1.04] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch('bleurt.score._create_predictor' ) as mock_create_predictor:
_A = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher('bertscore' )
def _snake_case ( _snake_case : Tuple ) -> Tuple:
'''simple docstring'''
import torch
def bert_cos_score_idf(_snake_case : Optional[Any] , _snake_case : Optional[Any] , *_snake_case : Union[str, Any] , **_snake_case : Optional[Any] ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(_snake_case ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch('bert_score.scorer.get_model' ), patch(
'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf:
_A = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher('comet' )
def _snake_case ( _snake_case : List[str] ) -> List[str]:
'''simple docstring'''
def load_from_checkpoint(_snake_case : str ):
class lowercase_ :
'''simple docstring'''
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Tuple ):
assert len(_UpperCAmelCase ) == 2
_A = [0.19, 0.92]
return scores, sum(_UpperCAmelCase ) / len(_UpperCAmelCase )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch('comet.download_model' ) as mock_download_model:
_A = None
with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint:
_A = load_from_checkpoint
yield
def _snake_case ( ) -> List[str]:
'''simple docstring'''
_A = load_metric(os.path.join('metrics' , 'seqeval' ) )
_A = 'ERROR'
_A = F'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}'''
with pytest.raises(_snake_case , match=re.escape(_snake_case ) ):
metric.compute(predictions=[] , references=[] , scheme=_snake_case )
| 7 |
"""simple docstring"""
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
a = logging.get_logger(__name__)
a = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
a = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def _snake_case ( _snake_case : Optional[Any] ) -> str:
'''simple docstring'''
_A = torch.load(_snake_case , map_location='cpu' )
return sd
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : str , _snake_case : Tuple=rename_keys_prefix ) -> List[str]:
'''simple docstring'''
_A = OrderedDict()
_A = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
_A = key
for name_pair in rename_keys_prefix:
_A = new_key.replace(name_pair[0] , name_pair[1] )
_A = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
_A = new_d['cls.predictions.bias']
return new_d
@torch.no_grad()
def _snake_case ( _snake_case : List[str] , _snake_case : Dict ) -> Dict:
'''simple docstring'''
assert (
checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS
), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'''
# Get Config
if "pre" in checkpoint_path:
_A = 'pretraining'
if "vcr" in checkpoint_path:
_A = {'visual_embedding_dim': 5_12}
elif "vqa_advanced" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
elif "vqa" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
elif "nlvr" in checkpoint_path:
_A = {'visual_embedding_dim': 10_24}
else:
raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' )
else:
if "vcr" in checkpoint_path:
_A = {'visual_embedding_dim': 5_12}
_A = 'multichoice'
elif "vqa_advanced" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
_A = 'vqa_advanced'
elif "vqa" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48, 'num_labels': 31_29}
_A = 'vqa'
elif "nlvr" in checkpoint_path:
_A = {
'visual_embedding_dim': 10_24,
'num_labels': 2,
}
_A = 'nlvr'
_A = VisualBertConfig(**_snake_case )
# Load State Dict
_A = load_state_dict(_snake_case )
_A = get_new_dict(_snake_case , _snake_case )
if model_type == "pretraining":
_A = VisualBertForPreTraining(_snake_case )
elif model_type == "vqa":
_A = VisualBertForQuestionAnswering(_snake_case )
elif model_type == "nlvr":
_A = VisualBertForVisualReasoning(_snake_case )
elif model_type == "multichoice":
_A = VisualBertForMultipleChoice(_snake_case )
model.load_state_dict(_snake_case )
# Save Checkpoints
Path(_snake_case ).mkdir(exist_ok=_snake_case )
model.save_pretrained(_snake_case )
if __name__ == "__main__":
a = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
a = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 7 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
a = {
'''configuration_vision_text_dual_encoder''': ['''VisionTextDualEncoderConfig'''],
'''processing_vision_text_dual_encoder''': ['''VisionTextDualEncoderProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ['''VisionTextDualEncoderModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ['''FlaxVisionTextDualEncoderModel''']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ['''TFVisionTextDualEncoderModel''']
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 7 |
"""simple docstring"""
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def _snake_case ( _snake_case : Dict ) -> Optional[Any]:
'''simple docstring'''
for param in module.parameters():
_A = False
def _snake_case ( ) -> Tuple:
'''simple docstring'''
_A = 'cuda' if torch.cuda.is_available() else 'cpu'
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
_A = 'mps'
if device == "mps":
print(
'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch'
' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues'
' with generations.' )
return device
def _snake_case ( _snake_case : Dict ) -> Optional[Any]:
'''simple docstring'''
_A = plt.imshow(_snake_case )
fig.axes.get_xaxis().set_visible(_snake_case )
fig.axes.get_yaxis().set_visible(_snake_case )
plt.show()
def _snake_case ( ) -> Optional[Any]:
'''simple docstring'''
_A = datetime.now()
_A = current_time.strftime('%H:%M:%S' )
return timestamp
| 7 | 1 |
"""simple docstring"""
import re
import string
import numpy as np
import datasets
a = '''
Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.
'''
a = '''
Args:
predictions: List of predicted texts.
references: List of reference texts.
regexes_to_ignore: List, defaults to None. Regex expressions of characters to
ignore when calculating the exact matches. Note: these regexes are removed
from the input data before the changes based on the options below (e.g. ignore_case,
ignore_punctuation, ignore_numbers) are applied.
ignore_case: Boolean, defaults to False. If true, turns everything
to lowercase so that capitalization differences are ignored.
ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before
comparing predictions and references.
ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before
comparing predictions and references.
Returns:
exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.
Examples:
>>> exact_match = datasets.load_metric("exact_match")
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
>>> preds = ["cat?", "theater", "yelling", "agent"]
>>> results = exact_match.compute(references=refs, predictions=preds)
>>> print(round(results["exact_match"], 1))
25.0
>>> exact_match = datasets.load_metric("exact_match")
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
>>> preds = ["cat?", "theater", "yelling", "agent"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)
>>> print(round(results["exact_match"], 1))
50.0
>>> exact_match = datasets.load_metric("exact_match")
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
>>> preds = ["cat?", "theater", "yelling", "agent"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)
>>> print(round(results["exact_match"], 1))
75.0
>>> exact_match = datasets.load_metric("exact_match")
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
>>> preds = ["cat?", "theater", "yelling", "agent"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)
>>> print(round(results["exact_match"], 1))
100.0
>>> exact_match = datasets.load_metric("exact_match")
>>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]
>>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]
>>> results = exact_match.compute(references=refs, predictions=preds)
>>> print(round(results["exact_match"], 1))
33.3
'''
a = '''
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase_ ( datasets.Metric ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Optional[Any] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Value('string' , id='sequence' ),
} ) , reference_urls=[] , )
def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Optional[Any]=False , ):
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
_A = np.array([re.sub(_UpperCAmelCase , '' , _UpperCAmelCase ) for x in predictions] )
_A = np.array([re.sub(_UpperCAmelCase , '' , _UpperCAmelCase ) for x in references] )
else:
_A = np.asarray(_UpperCAmelCase )
_A = np.asarray(_UpperCAmelCase )
if ignore_case:
_A = np.char.lower(_UpperCAmelCase )
_A = np.char.lower(_UpperCAmelCase )
if ignore_punctuation:
_A = string.punctuation.maketrans('' , '' , string.punctuation )
_A = np.char.translate(_UpperCAmelCase , table=_UpperCAmelCase )
_A = np.char.translate(_UpperCAmelCase , table=_UpperCAmelCase )
if ignore_numbers:
_A = string.digits.maketrans('' , '' , string.digits )
_A = np.char.translate(_UpperCAmelCase , table=_UpperCAmelCase )
_A = np.char.translate(_UpperCAmelCase , table=_UpperCAmelCase )
_A = predictions == references
return {"exact_match": np.mean(_UpperCAmelCase ) * 100}
| 7 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Any = ['''image_processor''', '''tokenizer''']
UpperCAmelCase : Optional[int] = '''ViTImageProcessor'''
UpperCAmelCase : int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''')
def __init__( self : Tuple , _UpperCAmelCase : int=None , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : Dict ):
_A = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _UpperCAmelCase , )
_A = kwargs.pop('feature_extractor' )
_A = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __call__( self : Optional[Any] , _UpperCAmelCase : int=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Union[str, Any] ):
if text is None and visual_prompt is None and images is None:
raise ValueError('You have to specify either text, visual prompt or images.' )
if text is not None and visual_prompt is not None:
raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' )
if text is not None:
_A = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if visual_prompt is not None:
_A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if images is not None:
_A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if visual_prompt is not None and images is not None:
_A = {
'pixel_values': image_features.pixel_values,
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
elif text is not None and images is not None:
_A = image_features.pixel_values
return encoding
elif text is not None:
return encoding
elif visual_prompt is not None:
_A = {
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
else:
return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase )
def lowerCAmelCase_ ( self : str , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Union[str, Any] ):
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def lowerCAmelCase_ ( self : Union[str, Any] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ):
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
def lowerCAmelCase_ ( self : Dict ):
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , )
return self.image_processor_class
@property
def lowerCAmelCase_ ( self : Tuple ):
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , )
return self.image_processor
| 7 | 1 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : List[Any] = XGLMConfig
UpperCAmelCase : List[str] = {}
UpperCAmelCase : Dict = '''gelu'''
def __init__( self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int=14 , _UpperCAmelCase : List[Any]=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=99 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : int=4 , _UpperCAmelCase : List[str]=37 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : int=512 , _UpperCAmelCase : List[str]=0.02 , ):
_A = parent
_A = batch_size
_A = seq_length
_A = is_training
_A = use_input_mask
_A = use_labels
_A = vocab_size
_A = d_model
_A = num_hidden_layers
_A = num_attention_heads
_A = ffn_dim
_A = activation_function
_A = activation_dropout
_A = attention_dropout
_A = max_position_embeddings
_A = initializer_range
_A = None
_A = 0
_A = 2
_A = 1
def lowerCAmelCase_ ( self : Any ):
return XGLMConfig.from_pretrained('facebook/xglm-564M' )
def lowerCAmelCase_ ( self : str ):
_A = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
_A = None
if self.use_input_mask:
_A = random_attention_mask([self.batch_size, self.seq_length] )
_A = self.get_config()
_A = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def lowerCAmelCase_ ( self : Dict ):
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=_UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=_UpperCAmelCase , )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = self.prepare_config_and_inputs()
(
(
_A
) , (
_A
) , (
_A
) , (
_A
) ,
) = config_and_inputs
_A = {
'input_ids': input_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_tf
class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : Any = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else ()
UpperCAmelCase : str = (
{'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {}
)
UpperCAmelCase : Optional[Any] = False
UpperCAmelCase : Tuple = False
UpperCAmelCase : int = False
def lowerCAmelCase_ ( self : List[Any] ):
_A = TFXGLMModelTester(self )
_A = ConfigTester(self , config_class=_UpperCAmelCase , n_embd=37 )
def lowerCAmelCase_ ( self : List[str] ):
self.config_tester.run_common_tests()
@slow
def lowerCAmelCase_ ( self : List[Any] ):
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A = TFXGLMModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' )
def lowerCAmelCase_ ( self : List[str] ):
super().test_resize_token_embeddings()
@require_tf
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : str=True ):
_A = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
_A = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
_A = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581]
# fmt: on
_A = model.generate(_UpperCAmelCase , do_sample=_UpperCAmelCase , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , _UpperCAmelCase )
@slow
def lowerCAmelCase_ ( self : List[Any] ):
_A = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
_A = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
tf.random.set_seed(0 )
_A = tokenizer('Today is a nice day and' , return_tensors='tf' )
_A = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(':/CPU:0' ):
_A = model.generate(_UpperCAmelCase , do_sample=_UpperCAmelCase , seed=[7, 0] )
_A = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCAmelCase )
_A = (
'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due'
)
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
@slow
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
_A = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
_A = 'left'
# use different length sentences to test batching
_A = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When',
'Hello, my dog is a little',
]
_A = tokenizer(_UpperCAmelCase , return_tensors='tf' , padding=_UpperCAmelCase )
_A = inputs['input_ids']
_A = model.generate(input_ids=_UpperCAmelCase , attention_mask=inputs['attention_mask'] , max_new_tokens=12 )
_A = tokenizer(sentences[0] , return_tensors='tf' ).input_ids
_A = model.generate(input_ids=_UpperCAmelCase , max_new_tokens=12 )
_A = tokenizer(sentences[1] , return_tensors='tf' ).input_ids
_A = model.generate(input_ids=_UpperCAmelCase , max_new_tokens=12 )
_A = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
_A = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCAmelCase )
_A = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCAmelCase )
_A = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be '
'a single',
'Hello, my dog is a little bit of a shy one, but he is very friendly',
]
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , [non_padded_sentence, padded_sentence] )
| 7 |
"""simple docstring"""
import math
from datetime import datetime, timedelta
def _snake_case ( _snake_case : int ) -> datetime:
'''simple docstring'''
_A = year % 19
_A = year % 4
_A = year % 7
_A = math.floor(year / 1_00 )
_A = math.floor((13 + 8 * leap_day_inhibits) / 25 )
_A = leap_day_inhibits / 4
_A = (
15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 30
_A = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
_A = (19 * metonic_cycle + secular_moon_shift) % 30
# PHM -> Paschal Full Moon
_A = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 29 and days_from_phm_to_sunday == 6:
return datetime(_snake_case , 4 , 19 )
elif days_to_add == 28 and days_from_phm_to_sunday == 6:
return datetime(_snake_case , 4 , 18 )
else:
return datetime(_snake_case , 3 , 22 ) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday ) )
if __name__ == "__main__":
for year in (1_994, 2_000, 2_010, 2_021, 2_023):
a = '''will be''' if year > datetime.now().year else '''was'''
print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
| 7 | 1 |
"""simple docstring"""
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str=13 , _UpperCAmelCase : Dict=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict=False , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Tuple=99 , _UpperCAmelCase : Union[str, Any]=32 , _UpperCAmelCase : Tuple=5 , _UpperCAmelCase : str=4 , _UpperCAmelCase : Optional[int]=64 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Union[str, Any]=512 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Tuple=3 , _UpperCAmelCase : List[str]=4 , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : str=1 , ):
_A = parent
_A = batch_size
_A = seq_length
_A = is_training
_A = use_input_mask
_A = use_token_type_ids
_A = use_labels
_A = vocab_size
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = intermediate_size
_A = hidden_act
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = type_vocab_size
_A = type_sequence_label_size
_A = initializer_range
_A = num_labels
_A = num_choices
_A = scope
_A = q_groups
_A = k_groups
_A = v_groups
_A = post_attention_groups
_A = intermediate_groups
_A = output_groups
def lowerCAmelCase_ ( self : int ):
_A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_A = None
if self.use_input_mask:
_A = random_attention_mask([self.batch_size, self.seq_length] )
_A = None
_A = None
_A = None
if self.use_labels:
_A = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_A = ids_tensor([self.batch_size] , self.num_choices )
_A = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase_ ( self : List[str] ):
return SqueezeBertConfig(
embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , )
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ):
_A = SqueezeBertModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] ):
_A = SqueezeBertForMaskedLM(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : str ):
_A = SqueezeBertForQuestionAnswering(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ):
_A = self.num_labels
_A = SqueezeBertForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ):
_A = self.num_labels
_A = SqueezeBertForTokenClassification(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ):
_A = self.num_choices
_A = SqueezeBertForMultipleChoice(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_A = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCAmelCase_ ( self : List[Any] ):
_A = self.prepare_config_and_inputs()
((_A) , (_A) , (_A) , (_A) , (_A) , (_A)) = config_and_inputs
_A = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : Dict = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
UpperCAmelCase : List[str] = (
{
'''feature-extraction''': SqueezeBertModel,
'''fill-mask''': SqueezeBertForMaskedLM,
'''question-answering''': SqueezeBertForQuestionAnswering,
'''text-classification''': SqueezeBertForSequenceClassification,
'''token-classification''': SqueezeBertForTokenClassification,
'''zero-shot''': SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCAmelCase : int = False
UpperCAmelCase : Union[str, Any] = True
UpperCAmelCase : Tuple = False
def lowerCAmelCase_ ( self : str ):
_A = SqueezeBertModelTester(self )
_A = ConfigTester(self , config_class=_UpperCAmelCase , dim=37 )
def lowerCAmelCase_ ( self : Dict ):
self.config_tester.run_common_tests()
def lowerCAmelCase_ ( self : Tuple ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : int ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : Any ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : Tuple ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : Tuple ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_UpperCAmelCase )
@slow
def lowerCAmelCase_ ( self : List[Any] ):
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A = SqueezeBertModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@require_sentencepiece
@require_tokenizers
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def lowerCAmelCase_ ( self : Tuple ):
_A = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' )
_A = torch.tensor([[1, 29_414, 232, 328, 740, 1_140, 12_695, 69, 13, 1_588, 2]] )
_A = model(_UpperCAmelCase )[0]
_A = torch.Size((1, 3) )
self.assertEqual(output.shape , _UpperCAmelCase )
_A = torch.tensor([[0.6401, -0.0349, -0.6041]] )
self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-4 ) )
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''gpt_bigcode'''
UpperCAmelCase : str = ['''past_key_values''']
UpperCAmelCase : Dict = {
'''hidden_size''': '''n_embd''',
'''max_position_embeddings''': '''n_positions''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Tuple , _UpperCAmelCase : Dict=50_257 , _UpperCAmelCase : List[Any]=1_024 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : str="gelu_pytorch_tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[Any]=50_256 , _UpperCAmelCase : Dict=50_256 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Any=True , **_UpperCAmelCase : Any , ):
_A = vocab_size
_A = n_positions
_A = n_embd
_A = n_layer
_A = n_head
_A = n_inner
_A = activation_function
_A = resid_pdrop
_A = embd_pdrop
_A = attn_pdrop
_A = layer_norm_epsilon
_A = initializer_range
_A = scale_attn_weights
_A = use_cache
_A = attention_softmax_in_fpaa
_A = scale_attention_softmax_in_fpaa
_A = multi_query
_A = bos_token_id
_A = eos_token_id
super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
| 7 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a = {
'''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''],
'''tokenization_roformer''': ['''RoFormerTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ['''RoFormerTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
'''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''RoFormerForCausalLM''',
'''RoFormerForMaskedLM''',
'''RoFormerForMultipleChoice''',
'''RoFormerForQuestionAnswering''',
'''RoFormerForSequenceClassification''',
'''RoFormerForTokenClassification''',
'''RoFormerLayer''',
'''RoFormerModel''',
'''RoFormerPreTrainedModel''',
'''load_tf_weights_in_roformer''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
'''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFRoFormerForCausalLM''',
'''TFRoFormerForMaskedLM''',
'''TFRoFormerForMultipleChoice''',
'''TFRoFormerForQuestionAnswering''',
'''TFRoFormerForSequenceClassification''',
'''TFRoFormerForTokenClassification''',
'''TFRoFormerLayer''',
'''TFRoFormerModel''',
'''TFRoFormerPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
'''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''FlaxRoFormerForMaskedLM''',
'''FlaxRoFormerForMultipleChoice''',
'''FlaxRoFormerForQuestionAnswering''',
'''FlaxRoFormerForSequenceClassification''',
'''FlaxRoFormerForTokenClassification''',
'''FlaxRoFormerModel''',
'''FlaxRoFormerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
from .tokenization_roformer import RoFormerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roformer_fast import RoFormerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roformer import (
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roformer import (
FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
FlaxRoFormerPreTrainedModel,
)
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 7 |
"""simple docstring"""
def _snake_case ( _snake_case : str ) -> str:
'''simple docstring'''
return " ".join(
''.join(word[::-1] ) if len(_snake_case ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words('''Hey wollef sroirraw'''))
| 7 | 1 |
"""simple docstring"""
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
a = logging.get_logger(__name__)
a = {'''vocab_file''': '''vocab.txt'''}
a = {
'''vocab_file''': {
'''facebook/esm2_t6_8M_UR50D''': '''https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt''',
'''facebook/esm2_t12_35M_UR50D''': '''https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt''',
},
}
a = {
'''facebook/esm2_t6_8M_UR50D''': 1_024,
'''facebook/esm2_t12_35M_UR50D''': 1_024,
}
def _snake_case ( _snake_case : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
with open(_snake_case , 'r' ) as f:
_A = f.read().splitlines()
return [l.strip() for l in lines]
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : str = VOCAB_FILES_NAMES
UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase : int = ['''input_ids''', '''attention_mask''']
def __init__( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Any="<unk>" , _UpperCAmelCase : int="<cls>" , _UpperCAmelCase : Optional[Any]="<pad>" , _UpperCAmelCase : List[str]="<mask>" , _UpperCAmelCase : List[str]="<eos>" , **_UpperCAmelCase : Dict , ):
super().__init__(**_UpperCAmelCase )
_A = load_vocab_file(_UpperCAmelCase )
_A = dict(enumerate(self.all_tokens ) )
_A = {tok: ind for ind, tok in enumerate(self.all_tokens )}
_A = unk_token
_A = cls_token
_A = pad_token
_A = mask_token
_A = eos_token
_A = self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : int ):
return self._id_to_token.get(_UpperCAmelCase , self.unk_token )
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : str ):
return self._token_to_id.get(_UpperCAmelCase , self._token_to_id.get(self.unk_token ) )
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : int , **_UpperCAmelCase : List[str] ):
return text.split()
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : List[str]=False ):
return len(self._id_to_token )
def lowerCAmelCase_ ( self : Optional[int] ):
return {token: i for i, token in enumerate(self.all_tokens )}
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : str ):
return self._token_to_id.get(_UpperCAmelCase , self._token_to_id.get(self.unk_token ) )
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : int ):
return self._id_to_token.get(_UpperCAmelCase , self.unk_token )
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
_A = [self.cls_token_id]
_A = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : List , _UpperCAmelCase : Optional[List] = None , _UpperCAmelCase : bool = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
_A = [1] + ([0] * len(_UpperCAmelCase )) + [1]
if token_ids_a is not None:
mask += [0] * len(_UpperCAmelCase ) + [1]
return mask
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Any ):
_A = os.path.join(_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' )
with open(_UpperCAmelCase , 'w' ) as f:
f.write('\n'.join(self.all_tokens ) )
return (vocab_file,)
@property
def lowerCAmelCase_ ( self : int ):
return self.get_vocab_size(with_added_tokens=_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Union[List[str], List[AddedToken]] , _UpperCAmelCase : bool = False ):
return super()._add_tokens(_UpperCAmelCase , special_tokens=_UpperCAmelCase )
| 7 |
"""simple docstring"""
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = (KDPMaDiscreteScheduler,)
UpperCAmelCase : Any = 10
def lowerCAmelCase_ ( self : Dict , **_UpperCAmelCase : Optional[Any] ):
_A = {
'num_train_timesteps': 1_100,
'beta_start': 0.0001,
'beta_end': 0.02,
'beta_schedule': 'linear',
}
config.update(**_UpperCAmelCase )
return config
def lowerCAmelCase_ ( self : Any ):
for timesteps in [10, 50, 100, 1_000]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict ):
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Tuple ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[int] ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config(prediction_type='v_prediction' )
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
_A = self.dummy_model()
_A = self.dummy_sample_deter * scheduler.init_noise_sigma
_A = sample.to(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = output.prev_sample
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.6_9_3_4E-0_7 ) < 1E-2
assert abs(result_mean.item() - 6.1_1_1_2E-1_0 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2E-0_7 ) < 1E-2
assert abs(result_mean.item() - 0.0002 ) < 1E-3
def lowerCAmelCase_ ( self : Optional[Any] ):
if torch_device == "mps":
return
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config()
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
_A = self.dummy_model()
_A = self.dummy_sample_deter * scheduler.init_noise_sigma
_A = sample.to(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = output.prev_sample
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
def lowerCAmelCase_ ( self : Any ):
if torch_device == "mps":
return
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config()
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase )
_A = self.dummy_model()
_A = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
_A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = output.prev_sample
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
if str(_UpperCAmelCase ).startswith('cpu' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
| 7 | 1 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import EsmConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy
import tensorflow as tf
from transformers.models.esm.modeling_tf_esm import (
TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
TFEsmModel,
)
class lowercase_ :
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : Any , ):
_A = parent
_A = 13
_A = 7
_A = True
_A = True
_A = True
_A = 99
_A = 32
_A = 2
_A = 4
_A = 37
_A = 'gelu'
_A = 0.1
_A = 0.1
_A = 512
_A = 16
_A = 2
_A = 0.02
_A = 3
_A = 4
_A = None
def lowerCAmelCase_ ( self : Dict ):
_A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_A = None
if self.use_input_mask:
_A = random_attention_mask([self.batch_size, self.seq_length] )
_A = None
_A = None
_A = None
if self.use_labels:
_A = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_A = ids_tensor([self.batch_size] , self.num_choices )
_A = EsmConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase_ ( self : int ):
(
(
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) ,
) = self.prepare_config_and_inputs()
_A = True
_A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
_A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] ):
_A = TFEsmModel(config=_UpperCAmelCase )
_A = {'input_ids': input_ids, 'attention_mask': input_mask}
_A = model(_UpperCAmelCase )
_A = [input_ids, input_mask]
_A = model(_UpperCAmelCase )
_A = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , ):
_A = True
_A = TFEsmModel(config=_UpperCAmelCase )
_A = {
'input_ids': input_ids,
'attention_mask': input_mask,
'encoder_hidden_states': encoder_hidden_states,
'encoder_attention_mask': encoder_attention_mask,
}
_A = model(_UpperCAmelCase )
_A = [input_ids, input_mask]
_A = model(_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase )
# Also check the case where encoder outputs are not passed
_A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] ):
_A = TFEsmForMaskedLM(config=_UpperCAmelCase )
_A = model([input_ids, input_mask] )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ):
_A = self.num_labels
_A = TFEsmForTokenClassification(config=_UpperCAmelCase )
_A = {'input_ids': input_ids, 'attention_mask': input_mask}
_A = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = self.prepare_config_and_inputs()
(
(
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) ,
) = config_and_inputs
_A = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[Any] = (
(
TFEsmModel,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
)
if is_tf_available()
else ()
)
UpperCAmelCase : str = (
{
'''feature-extraction''': TFEsmModel,
'''fill-mask''': TFEsmForMaskedLM,
'''text-classification''': TFEsmForSequenceClassification,
'''token-classification''': TFEsmForTokenClassification,
'''zero-shot''': TFEsmForSequenceClassification,
}
if is_tf_available()
else {}
)
UpperCAmelCase : List[str] = False
UpperCAmelCase : str = False
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = TFEsmModelTester(self )
_A = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def lowerCAmelCase_ ( self : Union[str, Any] ):
self.config_tester.run_common_tests()
def lowerCAmelCase_ ( self : int ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] ):
_A = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase )
@slow
def lowerCAmelCase_ ( self : List[str] ):
for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A = TFEsmModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@unittest.skip('Protein models do not support embedding resizing.' )
def lowerCAmelCase_ ( self : str ):
pass
@unittest.skip('Protein models do not support embedding resizing.' )
def lowerCAmelCase_ ( self : int ):
pass
def lowerCAmelCase_ ( self : Dict ):
_A , _A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A = model_class(_UpperCAmelCase )
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer )
if model_class is TFEsmForMaskedLM:
# Output embedding test differs from the main test because they're a matrix, not a layer
_A = model.get_bias()
assert isinstance(_UpperCAmelCase , _UpperCAmelCase )
for k, v in name.items():
assert isinstance(_UpperCAmelCase , tf.Variable )
else:
_A = model.get_output_embeddings()
assert x is None
_A = model.get_bias()
assert name is None
@require_tf
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def lowerCAmelCase_ ( self : List[str] ):
_A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' )
_A = tf.constant([[0, 1, 2, 3, 4, 5]] )
_A = model(_UpperCAmelCase )[0]
_A = [1, 6, 33]
self.assertEqual(list(output.numpy().shape ) , _UpperCAmelCase )
# compare the actual values for a slice.
_A = tf.constant(
[
[
[8.92_1518, -10.58_9814, -6.467_1307],
[-6.396_7156, -13.91_1377, -1.121_1915],
[-7.78_1247, -13.95_1557, -3.74_0592],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) )
@slow
def lowerCAmelCase_ ( self : int ):
_A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' )
_A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
_A = model(_UpperCAmelCase )[0]
# compare the actual values for a slice.
_A = tf.constant(
[
[
[0.1444_3092, 0.5412_5327, 0.324_7739],
[0.3034_0484, 0.0052_6676, 0.3107_7722],
[0.3227_8043, -0.2498_7096, 0.341_4628],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 7 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any]=10 ) -> Optional[int]:
'''simple docstring'''
_A = []
for _ in range(_snake_case ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def _snake_case ( _snake_case : Optional[Any] , _snake_case : Union[str, Any]=10 ) -> List[str]:
'''simple docstring'''
_A = []
for step in range(_snake_case ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
_A = os.path.join(_snake_case , 'schedule.bin' )
torch.save(scheduler.state_dict() , _snake_case )
_A = torch.load(_snake_case )
scheduler.load_state_dict(_snake_case )
return lrs
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ):
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Any ):
_A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase )
_A = torch.tensor([0.4, 0.2, -0.5] )
_A = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_A = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
_A = criterion(_UpperCAmelCase , _UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def lowerCAmelCase_ ( self : int ):
_A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase )
_A = torch.tensor([0.4, 0.2, -0.5] )
_A = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_A = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-3_0, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_UpperCAmelCase , weight_decay=0.0 , relative_step=_UpperCAmelCase , scale_parameter=_UpperCAmelCase , warmup_init=_UpperCAmelCase , )
for _ in range(1_000 ):
_A = criterion(_UpperCAmelCase , _UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = nn.Linear(50 , 50 ) if is_torch_available() else None
UpperCAmelCase : Tuple = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None
UpperCAmelCase : Dict = 10
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]=None ):
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase , msg=_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] ):
_A = {'num_warmup_steps': 2, 'num_training_steps': 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
_A = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{'num_warmup_steps': 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, 'num_cycles': 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, 'power': 2.0, 'lr_end': 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{'num_warmup_steps': 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
_A , _A = data
_A = scheduler_func(self.optimizer , **_UpperCAmelCase )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
_A = unwrap_schedule(_UpperCAmelCase , self.num_steps )
self.assertListAlmostEqual(
_UpperCAmelCase , _UpperCAmelCase , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , )
_A = scheduler_func(self.optimizer , **_UpperCAmelCase )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(_UpperCAmelCase ) # wrap to test picklability of the schedule
_A = unwrap_and_save_reload_schedule(_UpperCAmelCase , self.num_steps )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase , msg=F'''failed for {scheduler_func} in save and reload''' )
class lowercase_ :
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int] ):
_A = fn
def __call__( self : Tuple , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : List[str] ):
return self.fn(*_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Any ):
_A = list(map(self , scheduler.lr_lambdas ) )
| 7 | 1 |
"""simple docstring"""
import absl # noqa: F401 # Here to have a nice missing dependency error message early on
import nltk # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import six # noqa: F401 # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import datasets
a = '''\
@inproceedings{lin-2004-rouge,
title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",
author = "Lin, Chin-Yew",
booktitle = "Text Summarization Branches Out",
month = jul,
year = "2004",
address = "Barcelona, Spain",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W04-1013",
pages = "74--81",
}
'''
a = '''\
ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for
evaluating automatic summarization and machine translation software in natural language processing.
The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.
Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.
This metrics is a wrapper around Google Research reimplementation of ROUGE:
https://github.com/google-research/google-research/tree/master/rouge
'''
a = '''
Calculates average rouge scores for a list of hypotheses and references
Args:
predictions: list of predictions to score. Each prediction
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
rouge_types: A list of rouge types to calculate.
Valid names:
`"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,
`"rougeL"`: Longest common subsequence based scoring.
`"rougeLSum"`: rougeLsum splits text using `"\n"`.
See details in https://github.com/huggingface/datasets/issues/617
use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.
use_aggregator: Return aggregates if this is set to True
Returns:
rouge1: rouge_1 (precision, recall, f1),
rouge2: rouge_2 (precision, recall, f1),
rougeL: rouge_l (precision, recall, f1),
rougeLsum: rouge_lsum (precision, recall, f1)
Examples:
>>> rouge = datasets.load_metric(\'rouge\')
>>> predictions = ["hello there", "general kenobi"]
>>> references = ["hello there", "general kenobi"]
>>> results = rouge.compute(predictions=predictions, references=references)
>>> print(list(results.keys()))
[\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']
>>> print(results["rouge1"])
AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))
>>> print(results["rouge1"].mid.fmeasure)
1.0
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase_ ( datasets.Metric ):
'''simple docstring'''
def lowerCAmelCase_ ( self : List[Any] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Value('string' , id='sequence' ),
} ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[
'https://en.wikipedia.org/wiki/ROUGE_(metric)',
'https://github.com/google-research/google-research/tree/master/rouge',
] , )
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=False ):
if rouge_types is None:
_A = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
_A = rouge_scorer.RougeScorer(rouge_types=_UpperCAmelCase , use_stemmer=_UpperCAmelCase )
if use_aggregator:
_A = scoring.BootstrapAggregator()
else:
_A = []
for ref, pred in zip(_UpperCAmelCase , _UpperCAmelCase ):
_A = scorer.score(_UpperCAmelCase , _UpperCAmelCase )
if use_aggregator:
aggregator.add_scores(_UpperCAmelCase )
else:
scores.append(_UpperCAmelCase )
if use_aggregator:
_A = aggregator.aggregate()
else:
_A = {}
for key in scores[0]:
_A = [score[key] for score in scores]
return result
| 7 |
"""simple docstring"""
import math
def _snake_case ( _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
if (
not isinstance(_snake_case , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('power_factor must be a valid float value between -1 and 1.' )
return apparent_power * power_factor
def _snake_case ( _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
if (
not isinstance(_snake_case , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('power_factor must be a valid float value between -1 and 1.' )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 | 1 |
"""simple docstring"""
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
a = logging.get_logger(__name__)
a = {
'''tensor(bool)''': np.bool_,
'''tensor(int8)''': np.inta,
'''tensor(uint8)''': np.uinta,
'''tensor(int16)''': np.intaa,
'''tensor(uint16)''': np.uintaa,
'''tensor(int32)''': np.intaa,
'''tensor(uint32)''': np.uintaa,
'''tensor(int64)''': np.intaa,
'''tensor(uint64)''': np.uintaa,
'''tensor(float16)''': np.floataa,
'''tensor(float)''': np.floataa,
'''tensor(double)''': np.floataa,
}
class lowercase_ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : Optional[Any] ):
logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' )
_A = model
_A = kwargs.get('model_save_dir' , _UpperCAmelCase )
_A = kwargs.get('latest_model_name' , _UpperCAmelCase )
def __call__( self : Dict , **_UpperCAmelCase : List[Any] ):
_A = {k: np.array(_UpperCAmelCase ) for k, v in kwargs.items()}
return self.model.run(_UpperCAmelCase , _UpperCAmelCase )
@staticmethod
def lowerCAmelCase_ ( _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=None ):
if provider is None:
logger.info('No onnxruntime provider specified, using CPUExecutionProvider' )
_A = 'CPUExecutionProvider'
return ort.InferenceSession(_UpperCAmelCase , providers=[provider] , sess_options=_UpperCAmelCase )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : List[Any] ):
_A = file_name if file_name is not None else ONNX_WEIGHTS_NAME
_A = self.model_save_dir.joinpath(self.latest_model_name )
_A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase )
try:
shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase )
except shutil.SameFileError:
pass
# copy external weights (for models >2GB)
_A = self.model_save_dir.joinpath(_UpperCAmelCase )
if src_path.exists():
_A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase )
try:
shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase )
except shutil.SameFileError:
pass
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] , ):
if os.path.isfile(_UpperCAmelCase ):
logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' )
return
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase )
# saving model weights/files
self._save_pretrained(_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( cls : Tuple , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[Union[bool, str, None]] = None , _UpperCAmelCase : Optional[Union[str, None]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional["ort.SessionOptions"] = None , **_UpperCAmelCase : Union[str, Any] , ):
_A = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(_UpperCAmelCase ):
_A = OnnxRuntimeModel.load_model(
os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase )
_A = Path(_UpperCAmelCase )
# load model from hub
else:
# download model
_A = hf_hub_download(
repo_id=_UpperCAmelCase , filename=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , )
_A = Path(_UpperCAmelCase ).parent
_A = Path(_UpperCAmelCase ).name
_A = OnnxRuntimeModel.load_model(_UpperCAmelCase , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase )
return cls(model=_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( cls : List[Any] , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : Tuple , ):
_A = None
if len(str(_UpperCAmelCase ).split('@' ) ) == 2:
_A , _A = model_id.split('@' )
return cls._from_pretrained(
model_id=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , **_UpperCAmelCase , )
| 7 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''',
'''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''',
'''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''',
'''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''',
'''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''',
'''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''',
'''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''',
'''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''',
'''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = '''xmod'''
def __init__( self : str , _UpperCAmelCase : Optional[Any]=30_522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Dict=3_072 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Any=1E-1_2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Tuple=("en_XX",) , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Optional[Any] , ):
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
_A = vocab_size
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = hidden_act
_A = intermediate_size
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = type_vocab_size
_A = initializer_range
_A = layer_norm_eps
_A = position_embedding_type
_A = use_cache
_A = classifier_dropout
_A = pre_norm
_A = adapter_reduction_factor
_A = adapter_layer_norm
_A = adapter_reuse_layer_norm
_A = ln_before_adapter
_A = list(_UpperCAmelCase )
_A = default_language
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
@property
def lowerCAmelCase_ ( self : Dict ):
if self.task == "multiple-choice":
_A = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_A = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 7 | 1 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
a = logging.get_logger(__name__) # pylint: disable=invalid-name
a = '''
Examples:
```py
>>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline
>>> from diffusers.utils import load_image
>>> import torch
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
... )
>>> pipe_prior.to("cuda")
>>> prompt = "A red cartoon frog, 4k"
>>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)
>>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(
... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16
... )
>>> pipe.to("cuda")
>>> init_image = load_image(
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
... "/kandinsky/frog.png"
... )
>>> image = pipe(
... image=init_image,
... image_embeds=image_emb,
... negative_image_embeds=zero_image_emb,
... height=768,
... width=768,
... num_inference_steps=100,
... strength=0.2,
... ).images
>>> image[0].save("red_frog.png")
```
'''
def _snake_case ( _snake_case : Optional[int] , _snake_case : Any , _snake_case : List[str]=8 ) -> Any:
'''simple docstring'''
_A = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
_A = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Union[str, Any]=5_12 , _snake_case : Union[str, Any]=5_12 ) -> List[str]:
'''simple docstring'''
_A = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 )
_A = np.array(pil_image.convert('RGB' ) )
_A = arr.astype(np.floataa ) / 127.5 - 1
_A = np.transpose(_snake_case , [2, 0, 1] )
_A = torch.from_numpy(_snake_case ).unsqueeze(0 )
return image
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Any , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : DDPMScheduler , _UpperCAmelCase : VQModel , ):
super().__init__()
self.register_modules(
unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , movq=_UpperCAmelCase , )
_A = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Dict ):
# get the original timestep using init_timestep
_A = min(int(num_inference_steps * strength ) , _UpperCAmelCase )
_A = max(num_inference_steps - init_timestep , 0 )
_A = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int]=None ):
if not isinstance(_UpperCAmelCase , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_UpperCAmelCase )}''' )
_A = image.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase )
_A = batch_size * num_images_per_prompt
if image.shape[1] == 4:
_A = image
else:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(_UpperCAmelCase )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_A = [
self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCAmelCase )
]
_A = torch.cat(_UpperCAmelCase , dim=0 )
else:
_A = self.movq.encode(_UpperCAmelCase ).latent_dist.sample(_UpperCAmelCase )
_A = self.movq.config.scaling_factor * init_latents
_A = torch.cat([init_latents] , dim=0 )
_A = init_latents.shape
_A = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase )
# get latents
_A = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = init_latents
return latents
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Tuple=0 ):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('Please install accelerate via `pip install accelerate`' )
_A = torch.device(F'''cuda:{gpu_id}''' )
_A = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(_UpperCAmelCase , _UpperCAmelCase )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : List[str]=0 ):
if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' )
_A = torch.device(F'''cuda:{gpu_id}''' )
if self.device.type != "cpu":
self.to('cpu' , silence_dtype_warnings=_UpperCAmelCase )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
_A = None
for cpu_offloaded_model in [self.unet, self.movq]:
_A , _A = cpu_offload_with_hook(_UpperCAmelCase , _UpperCAmelCase , prev_module_hook=_UpperCAmelCase )
# We'll offload the last model manually.
_A = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def lowerCAmelCase_ ( self : Tuple ):
if not hasattr(self.unet , '_hf_hook' ):
return self.device
for module in self.unet.modules():
if (
hasattr(_UpperCAmelCase , '_hf_hook' )
and hasattr(module._hf_hook , 'execution_device' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(_UpperCAmelCase )
def __call__( self : Any , _UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _UpperCAmelCase : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , _UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _UpperCAmelCase : int = 512 , _UpperCAmelCase : int = 512 , _UpperCAmelCase : int = 100 , _UpperCAmelCase : float = 4.0 , _UpperCAmelCase : float = 0.3 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , ):
_A = self._execution_device
_A = guidance_scale > 1.0
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_A = torch.cat(_UpperCAmelCase , dim=0 )
_A = image_embeds.shape[0]
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_A = torch.cat(_UpperCAmelCase , dim=0 )
if do_classifier_free_guidance:
_A = image_embeds.repeat_interleave(_UpperCAmelCase , dim=0 )
_A = negative_image_embeds.repeat_interleave(_UpperCAmelCase , dim=0 )
_A = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_UpperCAmelCase )
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_A = [image]
if not all(isinstance(_UpperCAmelCase , (PIL.Image.Image, torch.Tensor) ) for i in image ):
raise ValueError(
F'''Input is in incorrect format: {[type(_UpperCAmelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor''' )
_A = torch.cat([prepare_image(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for i in image] , dim=0 )
_A = image.to(dtype=image_embeds.dtype , device=_UpperCAmelCase )
_A = self.movq.encode(_UpperCAmelCase )['latents']
_A = latents.repeat_interleave(_UpperCAmelCase , dim=0 )
self.scheduler.set_timesteps(_UpperCAmelCase , device=_UpperCAmelCase )
_A , _A = self.get_timesteps(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = timesteps[:1].repeat(batch_size * num_images_per_prompt )
_A , _A = downscale_height_and_width(_UpperCAmelCase , _UpperCAmelCase , self.movq_scale_factor )
_A = self.prepare_latents(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , image_embeds.dtype , _UpperCAmelCase , _UpperCAmelCase )
for i, t in enumerate(self.progress_bar(_UpperCAmelCase ) ):
# expand the latents if we are doing classifier free guidance
_A = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_A = {'image_embeds': image_embeds}
_A = self.unet(
sample=_UpperCAmelCase , timestep=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , added_cond_kwargs=_UpperCAmelCase , return_dict=_UpperCAmelCase , )[0]
if do_classifier_free_guidance:
_A , _A = noise_pred.split(latents.shape[1] , dim=1 )
_A , _A = noise_pred.chunk(2 )
_A , _A = variance_pred.chunk(2 )
_A = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
_A = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , 'variance_type' )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
_A , _A = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
_A = self.scheduler.step(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase , )[0]
# post-processing
_A = self.movq.decode(_UpperCAmelCase , force_not_quantize=_UpperCAmelCase )['sample']
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' )
if output_type in ["np", "pil"]:
_A = image * 0.5 + 0.5
_A = image.clamp(0 , 1 )
_A = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
_A = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_UpperCAmelCase )
| 7 |
"""simple docstring"""
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
a = logging.get_logger(__name__)
a = {
'''tensor(bool)''': np.bool_,
'''tensor(int8)''': np.inta,
'''tensor(uint8)''': np.uinta,
'''tensor(int16)''': np.intaa,
'''tensor(uint16)''': np.uintaa,
'''tensor(int32)''': np.intaa,
'''tensor(uint32)''': np.uintaa,
'''tensor(int64)''': np.intaa,
'''tensor(uint64)''': np.uintaa,
'''tensor(float16)''': np.floataa,
'''tensor(float)''': np.floataa,
'''tensor(double)''': np.floataa,
}
class lowercase_ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : Optional[Any] ):
logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' )
_A = model
_A = kwargs.get('model_save_dir' , _UpperCAmelCase )
_A = kwargs.get('latest_model_name' , _UpperCAmelCase )
def __call__( self : Dict , **_UpperCAmelCase : List[Any] ):
_A = {k: np.array(_UpperCAmelCase ) for k, v in kwargs.items()}
return self.model.run(_UpperCAmelCase , _UpperCAmelCase )
@staticmethod
def lowerCAmelCase_ ( _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=None ):
if provider is None:
logger.info('No onnxruntime provider specified, using CPUExecutionProvider' )
_A = 'CPUExecutionProvider'
return ort.InferenceSession(_UpperCAmelCase , providers=[provider] , sess_options=_UpperCAmelCase )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : List[Any] ):
_A = file_name if file_name is not None else ONNX_WEIGHTS_NAME
_A = self.model_save_dir.joinpath(self.latest_model_name )
_A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase )
try:
shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase )
except shutil.SameFileError:
pass
# copy external weights (for models >2GB)
_A = self.model_save_dir.joinpath(_UpperCAmelCase )
if src_path.exists():
_A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase )
try:
shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase )
except shutil.SameFileError:
pass
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] , ):
if os.path.isfile(_UpperCAmelCase ):
logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' )
return
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase )
# saving model weights/files
self._save_pretrained(_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( cls : Tuple , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[Union[bool, str, None]] = None , _UpperCAmelCase : Optional[Union[str, None]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional["ort.SessionOptions"] = None , **_UpperCAmelCase : Union[str, Any] , ):
_A = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(_UpperCAmelCase ):
_A = OnnxRuntimeModel.load_model(
os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase )
_A = Path(_UpperCAmelCase )
# load model from hub
else:
# download model
_A = hf_hub_download(
repo_id=_UpperCAmelCase , filename=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , )
_A = Path(_UpperCAmelCase ).parent
_A = Path(_UpperCAmelCase ).name
_A = OnnxRuntimeModel.load_model(_UpperCAmelCase , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase )
return cls(model=_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( cls : List[Any] , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : Tuple , ):
_A = None
if len(str(_UpperCAmelCase ).split('@' ) ) == 2:
_A , _A = model_id.split('@' )
return cls._from_pretrained(
model_id=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , **_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : List[str]
UpperCAmelCase : Optional[str] = None
# Automatically constructed
UpperCAmelCase : ClassVar[str] = "dict"
UpperCAmelCase : ClassVar[Any] = None
UpperCAmelCase : str = field(default='''Translation''' , init=__lowerCAmelCase , repr=__lowerCAmelCase )
def __call__( self : List[Any] ):
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def lowerCAmelCase_ ( self : int ):
from .features import Value
return {k: Value('string' ) for k in sorted(self.languages )}
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : Optional[List] = None
UpperCAmelCase : Optional[int] = None
UpperCAmelCase : Optional[str] = None
# Automatically constructed
UpperCAmelCase : ClassVar[str] = "dict"
UpperCAmelCase : ClassVar[Any] = None
UpperCAmelCase : str = field(default='''TranslationVariableLanguages''' , init=__lowerCAmelCase , repr=__lowerCAmelCase )
def lowerCAmelCase_ ( self : Tuple ):
_A = sorted(set(self.languages ) ) if self.languages else None
_A = len(self.languages ) if self.languages else None
def __call__( self : Tuple ):
return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} )
def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Union[str, Any] ):
_A = set(self.languages )
if self.languages and set(_UpperCAmelCase ) - lang_set:
raise ValueError(
F'''Some languages in example ({", ".join(sorted(set(_UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(_UpperCAmelCase )}).''' )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
_A = []
for lang, text in translation_dict.items():
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
_A , _A = zip(*sorted(_UpperCAmelCase ) )
return {"language": languages, "translation": translations}
def lowerCAmelCase_ ( self : Optional[int] ):
from .features import Sequence, Value
return {
"language": Sequence(Value('string' ) ),
"translation": Sequence(Value('string' ) ),
}
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json'''
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : str = '''speech_to_text'''
UpperCAmelCase : List[Any] = ['''past_key_values''']
UpperCAmelCase : Tuple = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self : int , _UpperCAmelCase : Union[str, Any]=10_000 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2_048 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Tuple=2_048 , _UpperCAmelCase : str=4 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]="relu" , _UpperCAmelCase : List[Any]=256 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : List[str]=6_000 , _UpperCAmelCase : Optional[Any]=1_024 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Any=(5, 5) , _UpperCAmelCase : int=1_024 , _UpperCAmelCase : str=80 , _UpperCAmelCase : Any=1 , **_UpperCAmelCase : Tuple , ):
_A = vocab_size
_A = d_model
_A = encoder_ffn_dim
_A = encoder_layers
_A = encoder_attention_heads
_A = decoder_ffn_dim
_A = decoder_layers
_A = decoder_attention_heads
_A = dropout
_A = attention_dropout
_A = activation_dropout
_A = activation_function
_A = init_std
_A = encoder_layerdrop
_A = decoder_layerdrop
_A = use_cache
_A = encoder_layers
_A = scale_embedding # scale factor will be sqrt(d_model) if True
_A = max_source_positions
_A = max_target_positions
_A = num_conv_layers
_A = list(_UpperCAmelCase )
_A = conv_channels
_A = input_feat_per_channel
_A = input_channels
if len(self.conv_kernel_sizes ) != self.num_conv_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` '
F'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, '''
F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@parameterized.expand([(None,), ('foo.json',)] )
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : str ):
_A = GenerationConfig(
do_sample=_UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(_UpperCAmelCase , config_name=_UpperCAmelCase )
_A = GenerationConfig.from_pretrained(_UpperCAmelCase , config_name=_UpperCAmelCase )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , _UpperCAmelCase )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 50 )
self.assertEqual(loaded_config.max_length , 20 )
self.assertEqual(loaded_config.max_time , _UpperCAmelCase )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = AutoConfig.from_pretrained('gpt2' )
_A = GenerationConfig.from_model_config(_UpperCAmelCase )
_A = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def lowerCAmelCase_ ( self : Dict ):
_A = GenerationConfig()
_A = {
'max_new_tokens': 1_024,
'foo': 'bar',
}
_A = copy.deepcopy(_UpperCAmelCase )
_A = generation_config.update(**_UpperCAmelCase )
# update_kwargs was not modified (no side effects)
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1_024 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(_UpperCAmelCase , {'foo': 'bar'} )
def lowerCAmelCase_ ( self : str ):
_A = GenerationConfig()
_A = 'bar'
with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir:
generation_config.save_pretrained(_UpperCAmelCase )
_A = GenerationConfig.from_pretrained(_UpperCAmelCase )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , 'bar' )
_A = GenerationConfig.from_model_config(_UpperCAmelCase )
assert not hasattr(_UpperCAmelCase , 'foo' ) # no new kwargs should be initialized if from config
def lowerCAmelCase_ ( self : Any ):
_A = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , _UpperCAmelCase )
self.assertEqual(default_config.num_beams , 1 )
_A = GenerationConfig(
do_sample=_UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , _UpperCAmelCase )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(_UpperCAmelCase )
_A = GenerationConfig.from_pretrained(_UpperCAmelCase , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , _UpperCAmelCase )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def lowerCAmelCase_ ( cls : Any ):
_A = TOKEN
HfFolder.save_token(_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( cls : str ):
try:
delete_repo(token=cls._token , repo_id='test-generation-config' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org' )
except HTTPError:
pass
def lowerCAmelCase_ ( self : List[Any] ):
_A = GenerationConfig(
do_sample=_UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('test-generation-config' , use_auth_token=self._token )
_A = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id='test-generation-config' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
_UpperCAmelCase , repo_id='test-generation-config' , push_to_hub=_UpperCAmelCase , use_auth_token=self._token )
_A = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Any ):
_A = GenerationConfig(
do_sample=_UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token )
_A = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
_UpperCAmelCase , repo_id='valid_org/test-generation-config-org' , push_to_hub=_UpperCAmelCase , use_auth_token=self._token )
_A = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) )
| 7 |
"""simple docstring"""
from manim import *
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = Rectangle(height=0.5 , width=0.5 )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_A = Rectangle(height=0.25 , width=0.25 )
_A = [mem.copy() for i in range(6 )]
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('CPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(4 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('GPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
gpu.move_to([-1, -1, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Model' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
model.move_to([3, -1.0, 0] )
self.add(_UpperCAmelCase )
_A = []
_A = []
for i, rect in enumerate(_UpperCAmelCase ):
_A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 )
target.move_to(_UpperCAmelCase )
model_arr.append(_UpperCAmelCase )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(_UpperCAmelCase )
self.add(*_UpperCAmelCase , *_UpperCAmelCase )
_A = [meta_mem.copy() for i in range(6 )]
_A = [meta_mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Disk' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
disk.move_to([-4, -1.25, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_A = MarkupText(
F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = MarkupText(
F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , )
blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(_UpperCAmelCase )
_A = MarkupText(
F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase ) )
_A = Square(0.3 )
input.set_fill(_UpperCAmelCase , opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 )
self.play(Write(_UpperCAmelCase ) )
input.generate_target()
input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 )
self.play(MoveToTarget(_UpperCAmelCase ) )
self.play(FadeOut(_UpperCAmelCase ) )
_A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 )
a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
_A = MarkupText(
F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) )
_A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02}
self.play(
Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[0] ) )
_A = a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
_A = AnimationGroup(
FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 )
self.play(_UpperCAmelCase )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
_A = 0.7
self.play(
Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , )
else:
self.play(
MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , )
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 )
self.play(
Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[i] ) )
_A = a_c
_A = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 )
self.play(
FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , )
_A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) )
self.wait()
| 7 | 1 |
"""simple docstring"""
import io
import json
import unittest
from parameterized import parameterized
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device
from utils import calculate_bleu
a = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json'''
with io.open(filename, '''r''', encoding='''utf-8''') as f:
a = json.load(f)
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : List[Any] ):
return FSMTTokenizer.from_pretrained(_UpperCAmelCase )
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : int ):
_A = FSMTForConditionalGeneration.from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase )
if torch_device == "cuda":
model.half()
return model
@parameterized.expand(
[
['en-ru', 26.0],
['ru-en', 22.0],
['en-de', 22.0],
['de-en', 29.0],
] )
@slow
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] ):
# note: this test is not testing the best performance since it only evals a small batch
# but it should be enough to detect a regression in the output quality
_A = F'''facebook/wmt19-{pair}'''
_A = self.get_tokenizer(_UpperCAmelCase )
_A = self.get_model(_UpperCAmelCase )
_A = bleu_data[pair]['src']
_A = bleu_data[pair]['tgt']
_A = tokenizer(_UpperCAmelCase , return_tensors='pt' , truncation=_UpperCAmelCase , padding='longest' ).to(_UpperCAmelCase )
_A = model.generate(
input_ids=batch.input_ids , num_beams=8 , )
_A = tokenizer.batch_decode(
_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase )
_A = calculate_bleu(_UpperCAmelCase , _UpperCAmelCase )
print(_UpperCAmelCase )
self.assertGreaterEqual(scores['bleu'] , _UpperCAmelCase )
| 7 |
"""simple docstring"""
def _snake_case ( _snake_case : int , _snake_case : int ) -> int:
'''simple docstring'''
return int((input_a, input_a).count(1 ) != 0 )
def _snake_case ( ) -> None:
'''simple docstring'''
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 7 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
a = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ['''MLukeTokenizer''']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 7 |
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
a = logging.getLogger(__name__)
@dataclass
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[float] = field(
default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} )
UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''Whether to SortishSamler or not.'''} )
UpperCAmelCase : bool = field(
default=__lowerCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} )
UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''whether to use adafactor'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(default=__lowerCAmelCase , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[str] = field(
default='''linear''' , metadata={'''help''': f'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
| 7 | 1 |
"""simple docstring"""
import inspect
import unittest
from math import floor
from transformers import CvtConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import CvtForImageClassification, CvtModel
from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : str ):
_A = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_UpperCAmelCase , 'embed_dim' ) )
self.parent.assertTrue(hasattr(_UpperCAmelCase , 'num_heads' ) )
class lowercase_ :
'''simple docstring'''
def __init__( self : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : str=3 , _UpperCAmelCase : List[Any]=[16, 48, 96] , _UpperCAmelCase : Any=[1, 3, 6] , _UpperCAmelCase : Optional[int]=[1, 2, 10] , _UpperCAmelCase : Optional[Any]=[7, 3, 3] , _UpperCAmelCase : List[Any]=[4, 2, 2] , _UpperCAmelCase : Optional[Any]=[2, 1, 1] , _UpperCAmelCase : Optional[Any]=[2, 2, 2] , _UpperCAmelCase : Dict=[False, False, True] , _UpperCAmelCase : Optional[Any]=[0.0, 0.0, 0.0] , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Tuple=1E-1_2 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=2 , ):
_A = parent
_A = batch_size
_A = image_size
_A = patch_sizes
_A = patch_stride
_A = patch_padding
_A = is_training
_A = use_labels
_A = num_labels
_A = num_channels
_A = embed_dim
_A = num_heads
_A = stride_kv
_A = depth
_A = cls_token
_A = attention_drop_rate
_A = initializer_range
_A = layer_norm_eps
def lowerCAmelCase_ ( self : Dict ):
_A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A = None
if self.use_labels:
_A = ids_tensor([self.batch_size] , self.num_labels )
_A = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase_ ( self : Optional[int] ):
return CvtConfig(
image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , )
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] ):
_A = CvtModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase )
_A = (self.image_size, self.image_size)
_A , _A = image_size[0], image_size[1]
for i in range(len(self.depth ) ):
_A = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
_A = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) )
def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ):
_A = self.num_labels
_A = CvtForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase_ ( self : Tuple ):
_A = self.prepare_config_and_inputs()
_A , _A , _A = config_and_inputs
_A = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : Any = (CvtModel, CvtForImageClassification) if is_torch_available() else ()
UpperCAmelCase : List[Any] = (
{'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification}
if is_torch_available()
else {}
)
UpperCAmelCase : Tuple = False
UpperCAmelCase : Optional[Any] = False
UpperCAmelCase : List[Any] = False
UpperCAmelCase : Optional[Any] = False
UpperCAmelCase : List[Any] = False
def lowerCAmelCase_ ( self : Any ):
_A = CvtModelTester(self )
_A = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 )
def lowerCAmelCase_ ( self : Optional[int] ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase_ ( self : List[str] ):
return
@unittest.skip(reason='Cvt does not output attentions' )
def lowerCAmelCase_ ( self : Dict ):
pass
@unittest.skip(reason='Cvt does not use inputs_embeds' )
def lowerCAmelCase_ ( self : Union[str, Any] ):
pass
@unittest.skip(reason='Cvt does not support input and output embeddings' )
def lowerCAmelCase_ ( self : Optional[Any] ):
pass
def lowerCAmelCase_ ( self : List[str] ):
_A , _A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A = model_class(_UpperCAmelCase )
_A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A = [*signature.parameters.keys()]
_A = ['pixel_values']
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : str ):
def check_hidden_states_output(_UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] ):
_A = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
with torch.no_grad():
_A = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
_A = outputs.hidden_states
_A = len(self.model_tester.depth )
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) , [
self.model_tester.embed_dim[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
_A , _A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_A = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def lowerCAmelCase_ ( self : Optional[int] ):
pass
@slow
def lowerCAmelCase_ ( self : Optional[Any] ):
for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A = CvtModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def _snake_case ( ) -> List[Any]:
'''simple docstring'''
_A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowerCAmelCase_ ( self : int ):
return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def lowerCAmelCase_ ( self : str ):
_A = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_UpperCAmelCase )
_A = self.default_image_processor
_A = prepare_img()
_A = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
_A = model(**_UpperCAmelCase )
# verify the logits
_A = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
_A = torch.tensor([0.9285, 0.9015, -0.3150] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
| 7 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ..utils import _LazyModule
a = {
'''config''': [
'''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''',
'''OnnxConfig''',
'''OnnxConfigWithPast''',
'''OnnxSeq2SeqConfigWithPast''',
'''PatchingSpec''',
],
'''convert''': ['''export''', '''validate_model_outputs'''],
'''features''': ['''FeaturesManager'''],
'''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 7 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ..utils import _LazyModule
a = {
'''config''': [
'''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''',
'''OnnxConfig''',
'''OnnxConfigWithPast''',
'''OnnxSeq2SeqConfigWithPast''',
'''PatchingSpec''',
],
'''convert''': ['''export''', '''validate_model_outputs'''],
'''features''': ['''FeaturesManager'''],
'''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 7 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import KarrasVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : UNetaDModel
UpperCAmelCase : KarrasVeScheduler
def __init__( self : Any , _UpperCAmelCase : UNetaDModel , _UpperCAmelCase : KarrasVeScheduler ):
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase )
@torch.no_grad()
def __call__( self : Optional[int] , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Optional[Any] , ):
_A = self.unet.config.sample_size
_A = (batch_size, 3, img_size, img_size)
_A = self.unet
# sample x_0 ~ N(0, sigma_0^2 * I)
_A = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device ) * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(_UpperCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# here sigma_t == t_i from the paper
_A = self.scheduler.schedule[t]
_A = self.scheduler.schedule[t - 1] if t > 0 else 0
# 1. Select temporarily increased noise level sigma_hat
# 2. Add new noise to move from sample_i to sample_hat
_A , _A = self.scheduler.add_noise_to_input(_UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase )
# 3. Predict the noise residual given the noise magnitude `sigma_hat`
# The model inputs and output are adjusted by following eq. (213) in [1].
_A = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample
# 4. Evaluate dx/dt at sigma_hat
# 5. Take Euler step from sigma to sigma_prev
_A = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if sigma_prev != 0:
# 6. Apply 2nd order correction
# The model inputs and output are adjusted by following eq. (213) in [1].
_A = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample
_A = self.scheduler.step_correct(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , step_output.prev_sample , step_output['derivative'] , )
_A = step_output.prev_sample
_A = (sample / 2 + 0.5).clamp(0 , 1 )
_A = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_A = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_UpperCAmelCase )
| 7 | 1 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
a = logging.get_logger(__name__)
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : int ):
warnings.warn(
'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use SegformerImageProcessor instead.' , _UpperCAmelCase , )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
| 7 |
"""simple docstring"""
class lowercase_ :
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ):
_A = None
_A = None
_A = graph
self._normalize_graph(_UpperCAmelCase , _UpperCAmelCase )
_A = len(_UpperCAmelCase )
_A = None
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ):
if sources is int:
_A = [sources]
if sinks is int:
_A = [sinks]
if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) == 0:
return
_A = sources[0]
_A = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(_UpperCAmelCase ) > 1 or len(_UpperCAmelCase ) > 1:
_A = 0
for i in sources:
max_input_flow += sum(self.graph[i] )
_A = len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
_A = max_input_flow
_A = 0
_A = len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
_A = max_input_flow
_A = size - 1
def lowerCAmelCase_ ( self : Optional[Any] ):
if self.maximum_flow_algorithm is None:
raise Exception('You need to set maximum flow algorithm before.' )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Union[str, Any] ):
_A = algorithm(self )
class lowercase_ :
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : Union[str, Any] ):
_A = flow_network
_A = flow_network.verticesCount
_A = flow_network.sourceIndex
_A = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
_A = flow_network.graph
_A = False
def lowerCAmelCase_ ( self : Optional[Any] ):
if not self.executed:
self._algorithm()
_A = True
def lowerCAmelCase_ ( self : int ):
pass
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : int , _UpperCAmelCase : Any ):
super().__init__(_UpperCAmelCase )
# use this to save your result
_A = -1
def lowerCAmelCase_ ( self : Optional[Any] ):
if not self.executed:
raise Exception('You should execute algorithm before using its result!' )
return self.maximum_flow
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : List[Any] ):
super().__init__(_UpperCAmelCase )
_A = [[0] * self.verticies_count for i in range(self.verticies_count )]
_A = [0] * self.verticies_count
_A = [0] * self.verticies_count
def lowerCAmelCase_ ( self : Dict ):
_A = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
_A = [
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
_A = 0
while i < len(_UpperCAmelCase ):
_A = vertices_list[i]
_A = self.heights[vertex_index]
self.process_vertex(_UpperCAmelCase )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(_UpperCAmelCase ) )
_A = 0
else:
i += 1
_A = sum(self.preflow[self.source_index] )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Any ):
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(_UpperCAmelCase , _UpperCAmelCase )
self.relabel(_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ):
_A = min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : int ):
_A = None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
_A = self.heights[to_index]
if min_height is not None:
_A = min_height + 1
if __name__ == "__main__":
a = [0]
a = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
a = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
a = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
a = flow_network.find_maximum_flow()
print(F'''maximum flow is {maximum_flow}''')
| 7 | 1 |
"""simple docstring"""
import math
def _snake_case ( _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
if initial_intensity < 0:
raise ValueError('The value of intensity cannot be negative' )
# handling of negative values of initial intensity
if angle < 0 or angle > 3_60:
raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' )
# handling of values out of allowed range
return initial_intensity * (math.cos(math.radians(_snake_case ) ) ** 2)
if __name__ == "__main__":
import doctest
doctest.testmod(name='''malus_law''')
| 7 |
"""simple docstring"""
import unittest
from transformers import SPIECE_UNDERLINE
from transformers.models.speechta import SpeechTaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.tokenization_utils import AddedToken
from ...test_tokenization_common import TokenizerTesterMixin
a = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''')
@require_sentencepiece
@require_tokenizers
class lowercase_ ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = SpeechTaTokenizer
UpperCAmelCase : Tuple = False
UpperCAmelCase : Optional[int] = True
def lowerCAmelCase_ ( self : Tuple ):
super().setUp()
# We have a SentencePiece fixture for testing
_A = SpeechTaTokenizer(_UpperCAmelCase )
_A = AddedToken('<mask>' , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase )
_A = mask_token
tokenizer.add_special_tokens({'mask_token': mask_token} )
tokenizer.add_tokens(['<ctc_blank>'] )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Tuple ):
_A = 'this is a test'
_A = 'this is a test'
return input_text, output_text
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict=20 , _UpperCAmelCase : str=5 ):
_A , _A = self.get_input_output_texts(_UpperCAmelCase )
_A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
_A = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase )
return text, ids
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = '<pad>'
_A = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-4] , 'œ' )
self.assertEqual(vocab_keys[-2] , '<mask>' )
self.assertEqual(vocab_keys[-1] , '<ctc_blank>' )
self.assertEqual(len(_UpperCAmelCase ) , 81 )
def lowerCAmelCase_ ( self : Optional[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 79 )
def lowerCAmelCase_ ( self : Any ):
_A = self.get_tokenizers(do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
_A = ['aaaaa bbbbbb', 'cccccccccdddddddd']
_A = tokenizer.add_tokens(_UpperCAmelCase )
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) )
self.assertEqual(_UpperCAmelCase , all_size + len(_UpperCAmelCase ) )
_A = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=_UpperCAmelCase )
self.assertGreaterEqual(len(_UpperCAmelCase ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
_A = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'}
_A = tokenizer.add_special_tokens(_UpperCAmelCase )
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) )
self.assertEqual(_UpperCAmelCase , all_size_a + len(_UpperCAmelCase ) )
_A = tokenizer.encode(
'>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=_UpperCAmelCase )
self.assertGreaterEqual(len(_UpperCAmelCase ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
def lowerCAmelCase_ ( self : str ):
pass
def lowerCAmelCase_ ( self : Any ):
pass
def lowerCAmelCase_ ( self : Dict ):
_A = self.get_tokenizer()
_A = tokenizer.tokenize('This is a test' )
# fmt: off
self.assertListEqual(_UpperCAmelCase , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] )
# fmt: on
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , )
_A = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
_A = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
# fmt: off
self.assertListEqual(_UpperCAmelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] )
# fmt: on
_A = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
@slow
def lowerCAmelCase_ ( self : List[Any] ):
# Use custom sequence because this tokenizer does not handle numbers.
_A = [
'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides '
'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural '
'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained '
'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.',
'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly '
'conditioning on both left and right context in all layers.',
'The quick brown fox jumps over the lazy dog.',
]
# fmt: off
_A = {
'input_ids': [
[4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2],
[4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
],
'attention_mask': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class lowercase_ :
'''simple docstring'''
def __init__( self : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : Union[str, Any]=7 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Any=99 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : Dict=36 , _UpperCAmelCase : Tuple=6 , _UpperCAmelCase : List[Any]=6 , _UpperCAmelCase : Tuple=6 , _UpperCAmelCase : List[Any]=37 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Union[str, Any]=512 , _UpperCAmelCase : Tuple=16 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : Optional[int]=None , ):
_A = parent
_A = batch_size
_A = seq_length
_A = is_training
_A = use_input_mask
_A = use_token_type_ids
_A = use_labels
_A = vocab_size
_A = embedding_size
_A = hidden_size
_A = num_hidden_layers
_A = num_hidden_groups
_A = num_attention_heads
_A = intermediate_size
_A = hidden_act
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = type_vocab_size
_A = type_sequence_label_size
_A = initializer_range
_A = num_labels
_A = num_choices
_A = scope
def lowerCAmelCase_ ( self : Dict ):
_A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_A = None
if self.use_input_mask:
_A = random_attention_mask([self.batch_size, self.seq_length] )
_A = None
if self.use_token_type_ids:
_A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_A = None
_A = None
_A = None
if self.use_labels:
_A = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_A = ids_tensor([self.batch_size] , self.num_choices )
_A = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase_ ( self : List[Any] ):
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str ):
_A = AlbertModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
_A = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
_A = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : Any ):
_A = AlbertForPreTraining(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , sentence_order_label=_UpperCAmelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ):
_A = AlbertForMaskedLM(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ):
_A = AlbertForQuestionAnswering(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ):
_A = self.num_labels
_A = AlbertForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any ):
_A = self.num_labels
_A = AlbertForTokenClassification(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ):
_A = self.num_choices
_A = AlbertForMultipleChoice(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_A = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = self.prepare_config_and_inputs()
(
(
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) ,
) = config_and_inputs
_A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : Any = (
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
UpperCAmelCase : List[Any] = (
{
'''feature-extraction''': AlbertModel,
'''fill-mask''': AlbertForMaskedLM,
'''question-answering''': AlbertForQuestionAnswering,
'''text-classification''': AlbertForSequenceClassification,
'''token-classification''': AlbertForTokenClassification,
'''zero-shot''': AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCAmelCase : int = True
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int=False ):
_A = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase )
if return_labels:
if model_class in get_values(_UpperCAmelCase ):
_A = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase )
_A = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
return inputs_dict
def lowerCAmelCase_ ( self : Any ):
_A = AlbertModelTester(self )
_A = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def lowerCAmelCase_ ( self : int ):
self.config_tester.run_common_tests()
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : int ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : int ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : int ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_A = type
self.model_tester.create_and_check_model(*_UpperCAmelCase )
@slow
def lowerCAmelCase_ ( self : int ):
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A = AlbertModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = AlbertModel.from_pretrained('albert-base-v2' )
_A = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] )
_A = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
_A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0]
_A = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , _UpperCAmelCase )
_A = torch.tensor(
[[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1E-4 ) )
| 7 |
"""simple docstring"""
from .configuration_bert_masked import MaskedBertConfig
from .modeling_bert_masked import (
MaskedBertForMultipleChoice,
MaskedBertForQuestionAnswering,
MaskedBertForSequenceClassification,
MaskedBertForTokenClassification,
MaskedBertModel,
)
from .modules import *
| 7 | 1 |
"""simple docstring"""
import logging
import os
from typing import List, TextIO, Union
from conllu import parse_incr
from utils_ner import InputExample, Split, TokenClassificationTask
a = logging.getLogger(__name__)
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : Tuple=-1 ):
# in NER datasets, the last column is usually reserved for NER label
_A = label_idx
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Union[Split, str] ):
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_A = mode.value
_A = os.path.join(_UpperCAmelCase , F'''{mode}.txt''' )
_A = 1
_A = []
with open(_UpperCAmelCase , encoding='utf-8' ) as f:
_A = []
_A = []
for line in f:
if line.startswith('-DOCSTART-' ) or line == "" or line == "\n":
if words:
examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=_UpperCAmelCase , labels=_UpperCAmelCase ) )
guid_index += 1
_A = []
_A = []
else:
_A = line.split(' ' )
words.append(splits[0] )
if len(_UpperCAmelCase ) > 1:
labels.append(splits[self.label_idx].replace('\n' , '' ) )
else:
# Examples could have no label for mode = "test"
labels.append('O' )
if words:
examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=_UpperCAmelCase , labels=_UpperCAmelCase ) )
return examples
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : TextIO , _UpperCAmelCase : TextIO , _UpperCAmelCase : List ):
_A = 0
for line in test_input_reader:
if line.startswith('-DOCSTART-' ) or line == "" or line == "\n":
writer.write(_UpperCAmelCase )
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
_A = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n'
writer.write(_UpperCAmelCase )
else:
logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] )
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : str ):
if path:
with open(_UpperCAmelCase , 'r' ) as f:
_A = f.read().splitlines()
if "O" not in labels:
_A = ['O'] + labels
return labels
else:
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Tuple ):
# in CONLL2003 dataset chunk column is second-to-last
super().__init__(label_idx=-2 )
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : str ):
if path:
with open(_UpperCAmelCase , 'r' ) as f:
_A = f.read().splitlines()
if "O" not in labels:
_A = ['O'] + labels
return labels
else:
return [
"O",
"B-ADVP",
"B-INTJ",
"B-LST",
"B-PRT",
"B-NP",
"B-SBAR",
"B-VP",
"B-ADJP",
"B-CONJP",
"B-PP",
"I-ADVP",
"I-INTJ",
"I-LST",
"I-PRT",
"I-NP",
"I-SBAR",
"I-VP",
"I-ADJP",
"I-CONJP",
"I-PP",
]
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[Split, str] ):
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_A = mode.value
_A = os.path.join(_UpperCAmelCase , F'''{mode}.txt''' )
_A = 1
_A = []
with open(_UpperCAmelCase , encoding='utf-8' ) as f:
for sentence in parse_incr(_UpperCAmelCase ):
_A = []
_A = []
for token in sentence:
words.append(token['form'] )
labels.append(token['upos'] )
assert len(_UpperCAmelCase ) == len(_UpperCAmelCase )
if words:
examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=_UpperCAmelCase , labels=_UpperCAmelCase ) )
guid_index += 1
return examples
def lowerCAmelCase_ ( self : str , _UpperCAmelCase : TextIO , _UpperCAmelCase : TextIO , _UpperCAmelCase : List ):
_A = 0
for sentence in parse_incr(_UpperCAmelCase ):
_A = preds_list[example_id]
_A = ''
for token in sentence:
out += F'''{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) '''
out += "\n"
writer.write(_UpperCAmelCase )
example_id += 1
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : str ):
if path:
with open(_UpperCAmelCase , 'r' ) as f:
return f.read().splitlines()
else:
return [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
]
| 7 |
"""simple docstring"""
import argparse
a = '''docs/source/_static/js/custom.js'''
def _snake_case ( _snake_case : Dict ) -> Any:
'''simple docstring'''
with open(_snake_case , encoding='utf-8' , newline='\n' ) as f:
_A = f.readlines()
_A = 0
# First let's put the right version
while not lines[index].startswith('const stableVersion =' ):
index += 1
_A = F'''const stableVersion = "v{version}"\n'''
# Then update the dictionary
while not lines[index].startswith('const versionMapping = {' ):
index += 1
# We go until the end
while not lines[index].startswith('}' ):
index += 1
# We add the new version at the end
lines[index - 1] += F''' "v{version}": "v{version}",\n'''
with open(_snake_case , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(_snake_case )
if __name__ == "__main__":
a = argparse.ArgumentParser()
parser.add_argument('''--version''', help='''Release version.''')
a = parser.parse_args()
update_custom_js(args.version)
| 7 | 1 |
"""simple docstring"""
def _snake_case ( _snake_case : Any , _snake_case : List[Any] , _snake_case : List[Any]=False ) -> List[Any]:
'''simple docstring'''
if isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ):
_A = len(set_a.intersection(_snake_case ) )
if alternative_union:
_A = len(_snake_case ) + len(_snake_case )
else:
_A = len(set_a.union(_snake_case ) )
return intersection / union
if isinstance(_snake_case , (list, tuple) ) and isinstance(_snake_case , (list, tuple) ):
_A = [element for element in set_a if element in set_b]
if alternative_union:
_A = len(_snake_case ) + len(_snake_case )
return len(_snake_case ) / union
else:
_A = set_a + [element for element in set_b if element not in set_a]
return len(_snake_case ) / len(_snake_case )
return len(_snake_case ) / len(_snake_case )
return None
if __name__ == "__main__":
a = {'''a''', '''b''', '''c''', '''d''', '''e'''}
a = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''}
print(jaccard_similarity(set_a, set_b))
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''vit_mae'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int]=768 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Optional[int]=3_072 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : Optional[Any]=224 , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=512 , _UpperCAmelCase : int=8 , _UpperCAmelCase : List[Any]=2_048 , _UpperCAmelCase : Optional[Any]=0.75 , _UpperCAmelCase : List[str]=False , **_UpperCAmelCase : Union[str, Any] , ):
super().__init__(**_UpperCAmelCase )
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = intermediate_size
_A = hidden_act
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = initializer_range
_A = layer_norm_eps
_A = image_size
_A = patch_size
_A = num_channels
_A = qkv_bias
_A = decoder_num_attention_heads
_A = decoder_hidden_size
_A = decoder_num_hidden_layers
_A = decoder_intermediate_size
_A = mask_ratio
_A = norm_pix_loss
| 7 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_tf_available,
is_torch_available,
)
a = {
'''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''],
'''processing_speech_to_text''': ['''Speech2TextProcessor'''],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ['''Speech2TextTokenizer''']
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ['''Speech2TextFeatureExtractor''']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
'''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFSpeech2TextForConditionalGeneration''',
'''TFSpeech2TextModel''',
'''TFSpeech2TextPreTrainedModel''',
]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
'''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Speech2TextForConditionalGeneration''',
'''Speech2TextModel''',
'''Speech2TextPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig
from .processing_speech_to_text import SpeechaTextProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speech_to_text import SpeechaTextTokenizer
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_speech_to_text import (
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSpeechaTextForConditionalGeneration,
TFSpeechaTextModel,
TFSpeechaTextPreTrainedModel,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_to_text import (
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechaTextForConditionalGeneration,
SpeechaTextModel,
SpeechaTextPreTrainedModel,
)
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 7 |
"""simple docstring"""
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
a = logging.get_logger(__name__)
a = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
a = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def _snake_case ( _snake_case : Optional[Any] ) -> str:
'''simple docstring'''
_A = torch.load(_snake_case , map_location='cpu' )
return sd
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : str , _snake_case : Tuple=rename_keys_prefix ) -> List[str]:
'''simple docstring'''
_A = OrderedDict()
_A = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
_A = key
for name_pair in rename_keys_prefix:
_A = new_key.replace(name_pair[0] , name_pair[1] )
_A = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
_A = new_d['cls.predictions.bias']
return new_d
@torch.no_grad()
def _snake_case ( _snake_case : List[str] , _snake_case : Dict ) -> Dict:
'''simple docstring'''
assert (
checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS
), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'''
# Get Config
if "pre" in checkpoint_path:
_A = 'pretraining'
if "vcr" in checkpoint_path:
_A = {'visual_embedding_dim': 5_12}
elif "vqa_advanced" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
elif "vqa" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
elif "nlvr" in checkpoint_path:
_A = {'visual_embedding_dim': 10_24}
else:
raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' )
else:
if "vcr" in checkpoint_path:
_A = {'visual_embedding_dim': 5_12}
_A = 'multichoice'
elif "vqa_advanced" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
_A = 'vqa_advanced'
elif "vqa" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48, 'num_labels': 31_29}
_A = 'vqa'
elif "nlvr" in checkpoint_path:
_A = {
'visual_embedding_dim': 10_24,
'num_labels': 2,
}
_A = 'nlvr'
_A = VisualBertConfig(**_snake_case )
# Load State Dict
_A = load_state_dict(_snake_case )
_A = get_new_dict(_snake_case , _snake_case )
if model_type == "pretraining":
_A = VisualBertForPreTraining(_snake_case )
elif model_type == "vqa":
_A = VisualBertForQuestionAnswering(_snake_case )
elif model_type == "nlvr":
_A = VisualBertForVisualReasoning(_snake_case )
elif model_type == "multichoice":
_A = VisualBertForMultipleChoice(_snake_case )
model.load_state_dict(_snake_case )
# Save Checkpoints
Path(_snake_case ).mkdir(exist_ok=_snake_case )
model.save_pretrained(_snake_case )
if __name__ == "__main__":
a = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
a = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 7 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = '''data2vec-text'''
def __init__( self : List[str] , _UpperCAmelCase : List[str]=30_522 , _UpperCAmelCase : str=768 , _UpperCAmelCase : List[Any]=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=3_072 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=512 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : str=1E-1_2 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Optional[Any]="absolute" , _UpperCAmelCase : Dict=True , _UpperCAmelCase : str=None , **_UpperCAmelCase : Union[str, Any] , ):
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
_A = vocab_size
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = hidden_act
_A = intermediate_size
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = type_vocab_size
_A = initializer_range
_A = layer_norm_eps
_A = position_embedding_type
_A = use_cache
_A = classifier_dropout
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
@property
def lowerCAmelCase_ ( self : Optional[int] ):
if self.task == "multiple-choice":
_A = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_A = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 7 |
"""simple docstring"""
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def _snake_case ( _snake_case : Dict ) -> Optional[Any]:
'''simple docstring'''
for param in module.parameters():
_A = False
def _snake_case ( ) -> Tuple:
'''simple docstring'''
_A = 'cuda' if torch.cuda.is_available() else 'cpu'
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
_A = 'mps'
if device == "mps":
print(
'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch'
' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues'
' with generations.' )
return device
def _snake_case ( _snake_case : Dict ) -> Optional[Any]:
'''simple docstring'''
_A = plt.imshow(_snake_case )
fig.axes.get_xaxis().set_visible(_snake_case )
fig.axes.get_yaxis().set_visible(_snake_case )
plt.show()
def _snake_case ( ) -> Optional[Any]:
'''simple docstring'''
_A = datetime.now()
_A = current_time.strftime('%H:%M:%S' )
return timestamp
| 7 | 1 |
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
a = logging.get_logger(__name__)
a = {
'''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = '''blip_2_vision_model'''
def __init__( self : Dict , _UpperCAmelCase : str=1_408 , _UpperCAmelCase : List[str]=6_144 , _UpperCAmelCase : Optional[int]=39 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=224 , _UpperCAmelCase : Optional[int]=14 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : Dict=0.0_0001 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : int=1E-1_0 , _UpperCAmelCase : int=True , **_UpperCAmelCase : List[str] , ):
super().__init__(**_UpperCAmelCase )
_A = hidden_size
_A = intermediate_size
_A = num_hidden_layers
_A = num_attention_heads
_A = patch_size
_A = image_size
_A = initializer_range
_A = attention_dropout
_A = layer_norm_eps
_A = hidden_act
_A = qkv_bias
@classmethod
def lowerCAmelCase_ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] ):
cls._set_token_in_kwargs(_UpperCAmelCase )
_A , _A = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the vision config dict if we are loading from Blip2Config
if config_dict.get('model_type' ) == "blip-2":
_A = config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Dict = '''blip_2_qformer'''
def __init__( self : Dict , _UpperCAmelCase : Any=30_522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Optional[int]=3_072 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=1E-1_2 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Tuple="absolute" , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[str]=1_408 , **_UpperCAmelCase : Optional[Any] , ):
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
_A = vocab_size
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = hidden_act
_A = intermediate_size
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = initializer_range
_A = layer_norm_eps
_A = position_embedding_type
_A = cross_attention_frequency
_A = encoder_hidden_size
@classmethod
def lowerCAmelCase_ ( cls : Union[str, Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ):
cls._set_token_in_kwargs(_UpperCAmelCase )
_A , _A = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the qformer config dict if we are loading from Blip2Config
if config_dict.get('model_type' ) == "blip-2":
_A = config_dict['qformer_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : List[Any] = '''blip-2'''
UpperCAmelCase : str = True
def __init__( self : Tuple , _UpperCAmelCase : int=None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=32 , **_UpperCAmelCase : List[str] ):
super().__init__(**_UpperCAmelCase )
if vision_config is None:
_A = {}
logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' )
if qformer_config is None:
_A = {}
logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' )
if text_config is None:
_A = {}
logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' )
_A = BlipaVisionConfig(**_UpperCAmelCase )
_A = BlipaQFormerConfig(**_UpperCAmelCase )
_A = text_config['model_type'] if 'model_type' in text_config else 'opt'
_A = CONFIG_MAPPING[text_model_type](**_UpperCAmelCase )
_A = self.text_config.tie_word_embeddings
_A = self.text_config.is_encoder_decoder
_A = num_query_tokens
_A = self.vision_config.hidden_size
_A = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
_A = 1.0
_A = 0.02
@classmethod
def lowerCAmelCase_ ( cls : Optional[int] , _UpperCAmelCase : BlipaVisionConfig , _UpperCAmelCase : BlipaQFormerConfig , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Union[str, Any] , ):
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_UpperCAmelCase , )
def lowerCAmelCase_ ( self : Any ):
_A = copy.deepcopy(self.__dict__ )
_A = self.vision_config.to_dict()
_A = self.qformer_config.to_dict()
_A = self.text_config.to_dict()
_A = self.__class__.model_type
return output
| 7 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Any = ['''image_processor''', '''tokenizer''']
UpperCAmelCase : Optional[int] = '''ViTImageProcessor'''
UpperCAmelCase : int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''')
def __init__( self : Tuple , _UpperCAmelCase : int=None , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : Dict ):
_A = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _UpperCAmelCase , )
_A = kwargs.pop('feature_extractor' )
_A = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __call__( self : Optional[Any] , _UpperCAmelCase : int=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Union[str, Any] ):
if text is None and visual_prompt is None and images is None:
raise ValueError('You have to specify either text, visual prompt or images.' )
if text is not None and visual_prompt is not None:
raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' )
if text is not None:
_A = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if visual_prompt is not None:
_A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if images is not None:
_A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if visual_prompt is not None and images is not None:
_A = {
'pixel_values': image_features.pixel_values,
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
elif text is not None and images is not None:
_A = image_features.pixel_values
return encoding
elif text is not None:
return encoding
elif visual_prompt is not None:
_A = {
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
else:
return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase )
def lowerCAmelCase_ ( self : str , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Union[str, Any] ):
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def lowerCAmelCase_ ( self : Union[str, Any] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ):
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
def lowerCAmelCase_ ( self : Dict ):
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , )
return self.image_processor_class
@property
def lowerCAmelCase_ ( self : Tuple ):
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , )
return self.image_processor
| 7 | 1 |
"""simple docstring"""
from maths.prime_factors import prime_factors
def _snake_case ( _snake_case : int ) -> int:
'''simple docstring'''
if not isinstance(_snake_case , _snake_case ):
_A = F'''Input value of [number={number}] must be an integer'''
raise TypeError(_snake_case )
if number < 1:
raise ValueError('Input must be a positive integer' )
return -1 if len(prime_factors(_snake_case ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 |
"""simple docstring"""
import math
from datetime import datetime, timedelta
def _snake_case ( _snake_case : int ) -> datetime:
'''simple docstring'''
_A = year % 19
_A = year % 4
_A = year % 7
_A = math.floor(year / 1_00 )
_A = math.floor((13 + 8 * leap_day_inhibits) / 25 )
_A = leap_day_inhibits / 4
_A = (
15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 30
_A = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
_A = (19 * metonic_cycle + secular_moon_shift) % 30
# PHM -> Paschal Full Moon
_A = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 29 and days_from_phm_to_sunday == 6:
return datetime(_snake_case , 4 , 19 )
elif days_to_add == 28 and days_from_phm_to_sunday == 6:
return datetime(_snake_case , 4 , 18 )
else:
return datetime(_snake_case , 3 , 22 ) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday ) )
if __name__ == "__main__":
for year in (1_994, 2_000, 2_010, 2_021, 2_023):
a = '''will be''' if year > datetime.now().year else '''was'''
print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
| 7 | 1 |
"""simple docstring"""
from __future__ import annotations
from typing import Any
class lowercase_ :
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : int = 6 ):
_A = None
_A = None
self.create_linked_list(_UpperCAmelCase )
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : int ):
_A = Node()
_A = current_node
_A = current_node
_A = current_node
for _ in range(1 , _UpperCAmelCase ):
_A = Node()
_A = current_node
_A = previous_node
_A = current_node
_A = self.front
_A = previous_node
def lowerCAmelCase_ ( self : int ):
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def lowerCAmelCase_ ( self : List[str] ):
self.check_can_perform_operation()
return self.front.data if self.front else None
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Any ):
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
_A = self.rear.next
if self.rear:
_A = data
def lowerCAmelCase_ ( self : List[Any] ):
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
_A = self.front.data
_A = None
return data
_A = self.front
_A = old_front.next
_A = old_front.data
_A = None
return data
def lowerCAmelCase_ ( self : Tuple ):
if self.is_empty():
raise Exception('Empty Queue' )
def lowerCAmelCase_ ( self : Any ):
if self.rear and self.rear.next == self.front:
raise Exception('Full Queue' )
class lowercase_ :
'''simple docstring'''
def __init__( self : Union[str, Any] ):
_A = None
_A = None
_A = None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''gpt_bigcode'''
UpperCAmelCase : str = ['''past_key_values''']
UpperCAmelCase : Dict = {
'''hidden_size''': '''n_embd''',
'''max_position_embeddings''': '''n_positions''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Tuple , _UpperCAmelCase : Dict=50_257 , _UpperCAmelCase : List[Any]=1_024 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : str="gelu_pytorch_tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[Any]=50_256 , _UpperCAmelCase : Dict=50_256 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Any=True , **_UpperCAmelCase : Any , ):
_A = vocab_size
_A = n_positions
_A = n_embd
_A = n_layer
_A = n_head
_A = n_inner
_A = activation_function
_A = resid_pdrop
_A = embd_pdrop
_A = attn_pdrop
_A = layer_norm_epsilon
_A = initializer_range
_A = scale_attn_weights
_A = use_cache
_A = attention_softmax_in_fpaa
_A = scale_attention_softmax_in_fpaa
_A = multi_query
_A = bos_token_id
_A = eos_token_id
super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
| 7 | 1 |
"""simple docstring"""
import copy
import os
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence
from datasets.features import ArrayaD, ClassLabel, Features, Image, Value
from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects
from datasets.keyhash import DuplicatedKeysError, InvalidKeyError
from .utils import require_pil
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Tuple ):
_A = pa.array(TypedSequence([1, 2, 3] ) )
self.assertEqual(arr.type , pa.intaa() )
def lowerCAmelCase_ ( self : Tuple ):
with self.assertRaises(_UpperCAmelCase ):
_A = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() )
def lowerCAmelCase_ ( self : str ):
with self.assertRaises(_UpperCAmelCase ):
_A = pa.array(TypedSequence([1, 2, 3] , try_type=Value('bool' ) , type=Value('int64' ) ) )
def lowerCAmelCase_ ( self : str ):
_A = pa.array(TypedSequence([1, 2, 3] , type=Value('int32' ) ) )
self.assertEqual(arr.type , pa.intaa() )
def lowerCAmelCase_ ( self : Union[str, Any] ):
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
_A = pa.array(TypedSequence(['foo', 'bar'] , type=Value('int64' ) ) )
def lowerCAmelCase_ ( self : int ):
_A = pa.array(TypedSequence([1, 2, 3] , try_type=Value('int32' ) ) )
self.assertEqual(arr.type , pa.intaa() )
def lowerCAmelCase_ ( self : List[str] ):
_A = pa.array(TypedSequence(['foo', 'bar'] , try_type=Value('int64' ) ) )
self.assertEqual(arr.type , pa.string() )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , 'int64' ) ) )
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) )
def lowerCAmelCase_ ( self : Optional[int] ):
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
_A = pa.array(TypedSequence(['foo', 'bar'] , type=ArrayaD((1, 3) , 'int64' ) ) )
def lowerCAmelCase_ ( self : List[Any] ):
_A = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , 'int64' ) ) )
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) )
def lowerCAmelCase_ ( self : Dict ):
_A = pa.array(TypedSequence(['foo', 'bar'] , try_type=ArrayaD((1, 3) , 'int64' ) ) )
self.assertEqual(arr.type , pa.string() )
@require_pil
def lowerCAmelCase_ ( self : Union[str, Any] ):
import PIL.Image
_A = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) )
with patch(
'datasets.arrow_writer.cast_to_python_objects' , side_effect=_UpperCAmelCase ) as mock_cast_to_python_objects:
_A = pa.array(TypedSequence([{'path': None, 'bytes': b'image_bytes'}, pil_image] , type=Image() ) )
_A , _A = mock_cast_to_python_objects.call_args_list[-1]
self.assertIn('optimize_list_casting' , _UpperCAmelCase )
self.assertFalse(kwargs['optimize_list_casting'] )
def _snake_case ( _snake_case : Any , _snake_case : int ) -> List[str]:
'''simple docstring'''
_A = pa.BufferReader(_snake_case ) if isinstance(_snake_case , pa.Buffer ) else pa.memory_map(_snake_case )
_A = pa.ipc.open_stream(_snake_case )
_A = f.read_all()
assert len(pa_table.to_batches() ) == expected_num_chunks
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
del pa_table
@pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] )
@pytest.mark.parametrize(
'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def _snake_case ( _snake_case : Optional[Any] , _snake_case : Dict ) -> Optional[int]:
'''simple docstring'''
_A = pa.BufferOutputStream()
_A = pa.schema(_snake_case ) if fields else None
with ArrowWriter(stream=_snake_case , schema=_snake_case , writer_batch_size=_snake_case ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
_A , _A = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
_A = {'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(_snake_case , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def _snake_case ( ) -> Dict:
'''simple docstring'''
_A = pa.BufferOutputStream()
_A = Features({'labels': ClassLabel(names=['neg', 'pos'] )} )
with ArrowWriter(stream=_snake_case , features=_snake_case ) as writer:
writer.write({'labels': 0} )
writer.write({'labels': 1} )
_A , _A = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == features.arrow_schema
assert writer._schema.metadata == features.arrow_schema.metadata
_A = pa.BufferReader(output.getvalue() )
_A = pa.ipc.open_stream(_snake_case )
_A = f.read_all()
_A = pa_table.schema
assert pa_table.num_rows == 2
assert schema == features.arrow_schema
assert schema.metadata == features.arrow_schema.metadata
assert features == Features.from_arrow_schema(_snake_case )
@pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] )
def _snake_case ( _snake_case : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_A = pa.BufferOutputStream()
with ArrowWriter(
stream=_snake_case , writer_batch_size=_snake_case , hash_salt='split_name' , check_duplicates=_snake_case , ) as writer:
with pytest.raises(_snake_case ):
writer.write({'col_1': 'foo', 'col_2': 1} , key=[1, 2] )
_A , _A = writer.finalize()
@pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] )
def _snake_case ( _snake_case : str ) -> Dict:
'''simple docstring'''
_A = pa.BufferOutputStream()
with ArrowWriter(
stream=_snake_case , writer_batch_size=_snake_case , hash_salt='split_name' , check_duplicates=_snake_case , ) as writer:
with pytest.raises(_snake_case ):
writer.write({'col_1': 'foo', 'col_2': 1} , key=10 )
writer.write({'col_1': 'bar', 'col_2': 2} , key=10 )
_A , _A = writer.finalize()
@pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] )
def _snake_case ( _snake_case : Dict ) -> Union[str, Any]:
'''simple docstring'''
_A = pa.BufferOutputStream()
with ArrowWriter(
stream=_snake_case , writer_batch_size=_snake_case , hash_salt='split_name' , check_duplicates=_snake_case , ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1} , key=1 )
writer.write({'col_1': 'bar', 'col_2': 2} , key=2 )
_A , _A = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] )
@pytest.mark.parametrize(
'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def _snake_case ( _snake_case : int , _snake_case : Tuple ) -> List[Any]:
'''simple docstring'''
_A = pa.BufferOutputStream()
_A = pa.schema(_snake_case ) if fields else None
with ArrowWriter(stream=_snake_case , schema=_snake_case , writer_batch_size=_snake_case ) as writer:
writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} )
writer.write_batch({'col_1': [], 'col_2': []} )
_A , _A = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
_A = {'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(_snake_case , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] )
@pytest.mark.parametrize(
'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] ) -> Dict:
'''simple docstring'''
_A = pa.BufferOutputStream()
_A = pa.schema(_snake_case ) if fields else None
with ArrowWriter(stream=_snake_case , schema=_snake_case , writer_batch_size=_snake_case ) as writer:
writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) )
_A , _A = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
_A = {'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(_snake_case , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] )
@pytest.mark.parametrize(
'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] )
def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_A = pa.BufferOutputStream()
_A = pa.schema(_snake_case ) if fields else None
with ArrowWriter(stream=_snake_case , schema=_snake_case , writer_batch_size=_snake_case ) as writer:
writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) )
writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) )
_A , _A = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
_A = {'col_1': pa.string(), 'col_2': pa.intaa()}
assert writer._schema == pa.schema(_snake_case , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def _snake_case ( ) -> Tuple:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
_A = {'col_1': pa.string(), 'col_2': pa.intaa()}
_A = os.path.join(_snake_case , 'test.arrow' )
with ArrowWriter(path=_snake_case , schema=pa.schema(_snake_case ) ) as writer:
writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} )
_A , _A = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == pa.schema(_snake_case , metadata=writer._schema.metadata )
_check_output(_snake_case , 1 )
def _snake_case ( _snake_case : Optional[int] ) -> Tuple:
'''simple docstring'''
if pa.types.is_list(_snake_case ):
return get_base_dtype(arr_type.value_type )
else:
return arr_type
def _snake_case ( _snake_case : Any , _snake_case : List[Any] ) -> Any:
'''simple docstring'''
if isinstance(lst[0] , _snake_case ):
change_first_primitive_element_in_list(lst[0] , _snake_case )
else:
_A = value
@pytest.mark.parametrize('optimized_int_type, expected_dtype' , [(None, pa.intaa()), (Value('int32' ), pa.intaa())] )
@pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def _snake_case ( _snake_case : List[Any] , _snake_case : List[str] , _snake_case : Optional[int] ) -> Any:
'''simple docstring'''
_A = pa.array(TypedSequence(_snake_case , optimized_int_type=_snake_case ) )
assert get_base_dtype(arr.type ) == expected_dtype
@pytest.mark.parametrize(
'col, expected_dtype' , [
('attention_mask', pa.inta()),
('special_tokens_mask', pa.inta()),
('token_type_ids', pa.inta()),
('input_ids', pa.intaa()),
('other', pa.intaa()),
] , )
@pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def _snake_case ( _snake_case : str , _snake_case : Any , _snake_case : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
_A = pa.array(OptimizedTypedSequence(_snake_case , col=_snake_case ) )
assert get_base_dtype(arr.type ) == expected_dtype
# not in range
if col != "other":
# avoids errors due to in-place modifications
_A = copy.deepcopy(_snake_case )
_A = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1
change_first_primitive_element_in_list(_snake_case , _snake_case )
_A = pa.array(OptimizedTypedSequence(_snake_case , col=_snake_case ) )
assert get_base_dtype(arr.type ) == pa.intaa()
@pytest.mark.parametrize('raise_exception' , [False, True] )
def _snake_case ( _snake_case : Dict , _snake_case : Optional[int] ) -> str:
'''simple docstring'''
_A = str(tmp_path / 'dataset-train.arrow' )
try:
with ArrowWriter(path=_snake_case ) as writer:
if raise_exception:
raise pa.lib.ArrowInvalid()
else:
writer.stream.close()
except pa.lib.ArrowInvalid:
pass
finally:
assert writer.stream.closed
def _snake_case ( _snake_case : int ) -> Any:
'''simple docstring'''
_A = 'mock://dataset-train.arrow'
with ArrowWriter(path=_snake_case , storage_options=mockfs.storage_options ) as writer:
assert isinstance(writer._fs , type(_snake_case ) )
assert writer._fs.storage_options == mockfs.storage_options
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
_A , _A = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert mockfs.exists(_snake_case )
def _snake_case ( ) -> Dict:
'''simple docstring'''
_A = pa.BufferOutputStream()
with ParquetWriter(stream=_snake_case ) as writer:
writer.write({'col_1': 'foo', 'col_2': 1} )
writer.write({'col_1': 'bar', 'col_2': 2} )
_A , _A = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
_A = pa.BufferReader(output.getvalue() )
_A = pq.read_table(_snake_case )
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
@require_pil
@pytest.mark.parametrize('embed_local_files' , [False, True] )
def _snake_case ( _snake_case : str , _snake_case : List[str] ) -> Dict:
'''simple docstring'''
import PIL.Image
_A = str(tmp_path / 'test_image_rgb.jpg' )
PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(_snake_case , format='png' )
_A = pa.BufferOutputStream()
with ParquetWriter(
stream=_snake_case , features=Features({'image': Image()} ) , embed_local_files=_snake_case ) as writer:
writer.write({'image': image_path} )
writer.finalize()
_A = pa.BufferReader(output.getvalue() )
_A = pq.read_table(_snake_case )
_A = pa_table.to_pydict()
if embed_local_files:
assert isinstance(out['image'][0]['path'] , _snake_case )
with open(_snake_case , 'rb' ) as f:
assert out["image"][0]["bytes"] == f.read()
else:
assert out["image"][0]["path"] == image_path
assert out["image"][0]["bytes"] is None
def _snake_case ( ) -> int:
'''simple docstring'''
_A = pa.schema([pa.field('col_1' , pa.string() , nullable=_snake_case )] )
_A = pa.BufferOutputStream()
with ArrowWriter(stream=_snake_case ) as writer:
writer._build_writer(inferred_schema=_snake_case )
assert writer._schema == pa.schema([pa.field('col_1' , pa.string() )] )
| 7 |
"""simple docstring"""
def _snake_case ( _snake_case : str ) -> str:
'''simple docstring'''
return " ".join(
''.join(word[::-1] ) if len(_snake_case ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words('''Hey wollef sroirraw'''))
| 7 | 1 |
"""simple docstring"""
import collections
import gzip
import os
import urllib
import numpy
from tensorflow.python.framework import dtypes, random_seed
from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated
a = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test'''])
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
a = '''https://storage.googleapis.com/cvdf-datasets/mnist/'''
def _snake_case ( _snake_case : int ) -> List[str]:
'''simple docstring'''
_A = numpy.dtype(numpy.uintaa ).newbyteorder('>' )
return numpy.frombuffer(bytestream.read(4 ) , dtype=_snake_case )[0]
@deprecated(_snake_case , 'Please use tf.data to implement this functionality.' )
def _snake_case ( _snake_case : Dict ) -> Union[str, Any]:
'''simple docstring'''
print('Extracting' , f.name )
with gzip.GzipFile(fileobj=_snake_case ) as bytestream:
_A = _readaa(_snake_case )
if magic != 20_51:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) )
_A = _readaa(_snake_case )
_A = _readaa(_snake_case )
_A = _readaa(_snake_case )
_A = bytestream.read(rows * cols * num_images )
_A = numpy.frombuffer(_snake_case , dtype=numpy.uinta )
_A = data.reshape(_snake_case , _snake_case , _snake_case , 1 )
return data
@deprecated(_snake_case , 'Please use tf.one_hot on tensors.' )
def _snake_case ( _snake_case : List[str] , _snake_case : List[str] ) -> Optional[int]:
'''simple docstring'''
_A = labels_dense.shape[0]
_A = numpy.arange(_snake_case ) * num_classes
_A = numpy.zeros((num_labels, num_classes) )
_A = 1
return labels_one_hot
@deprecated(_snake_case , 'Please use tf.data to implement this functionality.' )
def _snake_case ( _snake_case : Dict , _snake_case : int=False , _snake_case : Tuple=10 ) -> int:
'''simple docstring'''
print('Extracting' , f.name )
with gzip.GzipFile(fileobj=_snake_case ) as bytestream:
_A = _readaa(_snake_case )
if magic != 20_49:
raise ValueError(
'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) )
_A = _readaa(_snake_case )
_A = bytestream.read(_snake_case )
_A = numpy.frombuffer(_snake_case , dtype=numpy.uinta )
if one_hot:
return _dense_to_one_hot(_snake_case , _snake_case )
return labels
class lowercase_ :
'''simple docstring'''
@deprecated(
_UpperCAmelCase , 'Please use alternatives such as official/mnist/_DataSet.py'
' from tensorflow/models.' , )
def __init__( self : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : str=dtypes.floataa , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[str]=None , ):
_A , _A = random_seed.get_seed(_UpperCAmelCase )
# If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seeda if seed is None else seeda )
_A = dtypes.as_dtype(_UpperCAmelCase ).base_dtype
if dtype not in (dtypes.uinta, dtypes.floataa):
raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype )
if fake_data:
_A = 10_000
_A = one_hot
else:
assert (
images.shape[0] == labels.shape[0]
), F'''images.shape: {images.shape} labels.shape: {labels.shape}'''
_A = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
if reshape:
assert images.shape[3] == 1
_A = images.reshape(
images.shape[0] , images.shape[1] * images.shape[2] )
if dtype == dtypes.floataa:
# Convert from [0, 255] -> [0.0, 1.0].
_A = images.astype(numpy.floataa )
_A = numpy.multiply(_UpperCAmelCase , 1.0 / 255.0 )
_A = images
_A = labels
_A = 0
_A = 0
@property
def lowerCAmelCase_ ( self : Dict ):
return self._images
@property
def lowerCAmelCase_ ( self : int ):
return self._labels
@property
def lowerCAmelCase_ ( self : Optional[int] ):
return self._num_examples
@property
def lowerCAmelCase_ ( self : Any ):
return self._epochs_completed
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : List[Any]=True ):
if fake_data:
_A = [1] * 784
_A = [1] + [0] * 9 if self.one_hot else 0
return (
[fake_image for _ in range(_UpperCAmelCase )],
[fake_label for _ in range(_UpperCAmelCase )],
)
_A = self._index_in_epoch
# Shuffle for the first epoch
if self._epochs_completed == 0 and start == 0 and shuffle:
_A = numpy.arange(self._num_examples )
numpy.random.shuffle(_UpperCAmelCase )
_A = self.images[perma]
_A = self.labels[perma]
# Go to the next epoch
if start + batch_size > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Get the rest examples in this epoch
_A = self._num_examples - start
_A = self._images[start : self._num_examples]
_A = self._labels[start : self._num_examples]
# Shuffle the data
if shuffle:
_A = numpy.arange(self._num_examples )
numpy.random.shuffle(_UpperCAmelCase )
_A = self.images[perm]
_A = self.labels[perm]
# Start next epoch
_A = 0
_A = batch_size - rest_num_examples
_A = self._index_in_epoch
_A = self._images[start:end]
_A = self._labels[start:end]
return (
numpy.concatenate((images_rest_part, images_new_part) , axis=0 ),
numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ),
)
else:
self._index_in_epoch += batch_size
_A = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
@deprecated(_snake_case , 'Please write your own downloading logic.' )
def _snake_case ( _snake_case : Optional[Any] , _snake_case : Dict , _snake_case : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
if not gfile.Exists(_snake_case ):
gfile.MakeDirs(_snake_case )
_A = os.path.join(_snake_case , _snake_case )
if not gfile.Exists(_snake_case ):
urllib.request.urlretrieve(_snake_case , _snake_case ) # noqa: S310
with gfile.GFile(_snake_case ) as f:
_A = f.size()
print('Successfully downloaded' , _snake_case , _snake_case , 'bytes.' )
return filepath
@deprecated(
_snake_case , 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' )
def _snake_case ( _snake_case : Dict , _snake_case : List[str]=False , _snake_case : Optional[Any]=False , _snake_case : int=dtypes.floataa , _snake_case : Union[str, Any]=True , _snake_case : int=50_00 , _snake_case : Any=None , _snake_case : str=DEFAULT_SOURCE_URL , ) -> Union[str, Any]:
'''simple docstring'''
if fake_data:
def fake():
return _DataSet(
[] , [] , fake_data=_snake_case , one_hot=_snake_case , dtype=_snake_case , seed=_snake_case )
_A = fake()
_A = fake()
_A = fake()
return _Datasets(train=_snake_case , validation=_snake_case , test=_snake_case )
if not source_url: # empty string check
_A = DEFAULT_SOURCE_URL
_A = 'train-images-idx3-ubyte.gz'
_A = 'train-labels-idx1-ubyte.gz'
_A = 't10k-images-idx3-ubyte.gz'
_A = 't10k-labels-idx1-ubyte.gz'
_A = _maybe_download(
_snake_case , _snake_case , source_url + train_images_file )
with gfile.Open(_snake_case , 'rb' ) as f:
_A = _extract_images(_snake_case )
_A = _maybe_download(
_snake_case , _snake_case , source_url + train_labels_file )
with gfile.Open(_snake_case , 'rb' ) as f:
_A = _extract_labels(_snake_case , one_hot=_snake_case )
_A = _maybe_download(
_snake_case , _snake_case , source_url + test_images_file )
with gfile.Open(_snake_case , 'rb' ) as f:
_A = _extract_images(_snake_case )
_A = _maybe_download(
_snake_case , _snake_case , source_url + test_labels_file )
with gfile.Open(_snake_case , 'rb' ) as f:
_A = _extract_labels(_snake_case , one_hot=_snake_case )
if not 0 <= validation_size <= len(_snake_case ):
_A = (
'Validation size should be between 0 and '
F'''{len(_snake_case )}. Received: {validation_size}.'''
)
raise ValueError(_snake_case )
_A = train_images[:validation_size]
_A = train_labels[:validation_size]
_A = train_images[validation_size:]
_A = train_labels[validation_size:]
_A = {'dtype': dtype, 'reshape': reshape, 'seed': seed}
_A = _DataSet(_snake_case , _snake_case , **_snake_case )
_A = _DataSet(_snake_case , _snake_case , **_snake_case )
_A = _DataSet(_snake_case , _snake_case , **_snake_case )
return _Datasets(train=_snake_case , validation=_snake_case , test=_snake_case )
| 7 |
"""simple docstring"""
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = (KDPMaDiscreteScheduler,)
UpperCAmelCase : Any = 10
def lowerCAmelCase_ ( self : Dict , **_UpperCAmelCase : Optional[Any] ):
_A = {
'num_train_timesteps': 1_100,
'beta_start': 0.0001,
'beta_end': 0.02,
'beta_schedule': 'linear',
}
config.update(**_UpperCAmelCase )
return config
def lowerCAmelCase_ ( self : Any ):
for timesteps in [10, 50, 100, 1_000]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict ):
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Tuple ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[int] ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config(prediction_type='v_prediction' )
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
_A = self.dummy_model()
_A = self.dummy_sample_deter * scheduler.init_noise_sigma
_A = sample.to(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = output.prev_sample
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.6_9_3_4E-0_7 ) < 1E-2
assert abs(result_mean.item() - 6.1_1_1_2E-1_0 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2E-0_7 ) < 1E-2
assert abs(result_mean.item() - 0.0002 ) < 1E-3
def lowerCAmelCase_ ( self : Optional[Any] ):
if torch_device == "mps":
return
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config()
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
_A = self.dummy_model()
_A = self.dummy_sample_deter * scheduler.init_noise_sigma
_A = sample.to(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = output.prev_sample
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
def lowerCAmelCase_ ( self : Any ):
if torch_device == "mps":
return
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config()
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase )
_A = self.dummy_model()
_A = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
_A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = output.prev_sample
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
if str(_UpperCAmelCase ).startswith('cpu' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
| 7 | 1 |
"""simple docstring"""
from manim import *
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = Rectangle(height=0.5 , width=0.5 )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_A = Rectangle(height=0.25 , width=0.25 )
_A = [mem.copy() for i in range(6 )]
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('CPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(4 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('GPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
gpu.move_to([-1, -1, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Model' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
model.move_to([3, -1.0, 0] )
self.add(_UpperCAmelCase )
_A = []
_A = []
for i, rect in enumerate(_UpperCAmelCase ):
_A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 )
target.move_to(_UpperCAmelCase )
model_arr.append(_UpperCAmelCase )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(_UpperCAmelCase )
self.add(*_UpperCAmelCase , *_UpperCAmelCase )
_A = [meta_mem.copy() for i in range(6 )]
_A = [meta_mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Disk' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
disk.move_to([-4, -1.25, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_A = MarkupText(
F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = MarkupText(
F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , )
blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(_UpperCAmelCase )
_A = MarkupText(
F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase ) )
_A = Square(0.3 )
input.set_fill(_UpperCAmelCase , opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 )
self.play(Write(_UpperCAmelCase ) )
input.generate_target()
input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 )
self.play(MoveToTarget(_UpperCAmelCase ) )
self.play(FadeOut(_UpperCAmelCase ) )
_A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 )
a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
_A = MarkupText(
F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) )
_A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02}
self.play(
Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[0] ) )
_A = a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
_A = AnimationGroup(
FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 )
self.play(_UpperCAmelCase )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
_A = 0.7
self.play(
Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , )
else:
self.play(
MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , )
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 )
self.play(
Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[i] ) )
_A = a_c
_A = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 )
self.play(
FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , )
_A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) )
self.wait()
| 7 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any]=10 ) -> Optional[int]:
'''simple docstring'''
_A = []
for _ in range(_snake_case ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def _snake_case ( _snake_case : Optional[Any] , _snake_case : Union[str, Any]=10 ) -> List[str]:
'''simple docstring'''
_A = []
for step in range(_snake_case ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
_A = os.path.join(_snake_case , 'schedule.bin' )
torch.save(scheduler.state_dict() , _snake_case )
_A = torch.load(_snake_case )
scheduler.load_state_dict(_snake_case )
return lrs
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ):
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Any ):
_A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase )
_A = torch.tensor([0.4, 0.2, -0.5] )
_A = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_A = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
_A = criterion(_UpperCAmelCase , _UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def lowerCAmelCase_ ( self : int ):
_A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase )
_A = torch.tensor([0.4, 0.2, -0.5] )
_A = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_A = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-3_0, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_UpperCAmelCase , weight_decay=0.0 , relative_step=_UpperCAmelCase , scale_parameter=_UpperCAmelCase , warmup_init=_UpperCAmelCase , )
for _ in range(1_000 ):
_A = criterion(_UpperCAmelCase , _UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = nn.Linear(50 , 50 ) if is_torch_available() else None
UpperCAmelCase : Tuple = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None
UpperCAmelCase : Dict = 10
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]=None ):
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase , msg=_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] ):
_A = {'num_warmup_steps': 2, 'num_training_steps': 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
_A = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{'num_warmup_steps': 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, 'num_cycles': 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, 'power': 2.0, 'lr_end': 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{'num_warmup_steps': 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
_A , _A = data
_A = scheduler_func(self.optimizer , **_UpperCAmelCase )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
_A = unwrap_schedule(_UpperCAmelCase , self.num_steps )
self.assertListAlmostEqual(
_UpperCAmelCase , _UpperCAmelCase , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , )
_A = scheduler_func(self.optimizer , **_UpperCAmelCase )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(_UpperCAmelCase ) # wrap to test picklability of the schedule
_A = unwrap_and_save_reload_schedule(_UpperCAmelCase , self.num_steps )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase , msg=F'''failed for {scheduler_func} in save and reload''' )
class lowercase_ :
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int] ):
_A = fn
def __call__( self : Tuple , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : List[str] ):
return self.fn(*_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Any ):
_A = list(map(self , scheduler.lr_lambdas ) )
| 7 | 1 |
"""simple docstring"""
import argparse
import collections
import os
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
a = '''src/transformers'''
a = '''docs/source/en'''
a = '''.'''
def _snake_case ( _snake_case : Tuple , _snake_case : Dict , _snake_case : Tuple ) -> Optional[Any]:
'''simple docstring'''
with open(_snake_case , 'r' , encoding='utf-8' , newline='\n' ) as f:
_A = f.readlines()
# Find the start prompt.
_A = 0
while not lines[start_index].startswith(_snake_case ):
start_index += 1
start_index += 1
_A = start_index
while not lines[end_index].startswith(_snake_case ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# Add here suffixes that are used to identify models, separated by |
a = '''Model|Encoder|Decoder|ForConditionalGeneration'''
# Regexes that match TF/Flax/PT model names.
a = re.compile(r'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''')
a = re.compile(r'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''')
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
a = re.compile(r'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''')
# This is to make sure the transformers module imported is the one in the repo.
a = direct_transformers_import(TRANSFORMERS_PATH)
def _snake_case ( _snake_case : Dict ) -> List[str]:
'''simple docstring'''
_A = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , _snake_case )
return [m.group(0 ) for m in matches]
def _snake_case ( _snake_case : str , _snake_case : Any ) -> int:
'''simple docstring'''
_A = 2 if text == '✅' or text == '❌' else len(_snake_case )
_A = (width - text_length) // 2
_A = width - text_length - left_indent
return " " * left_indent + text + " " * right_indent
def _snake_case ( ) -> Optional[Any]:
'''simple docstring'''
_A = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
_A = {
name: config_maping_names[code]
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if code in config_maping_names
}
_A = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
_A = collections.defaultdict(_snake_case )
_A = collections.defaultdict(_snake_case )
_A = collections.defaultdict(_snake_case )
_A = collections.defaultdict(_snake_case )
_A = collections.defaultdict(_snake_case )
# Let's lookup through all transformers object (once).
for attr_name in dir(_snake_case ):
_A = None
if attr_name.endswith('Tokenizer' ):
_A = slow_tokenizers
_A = attr_name[:-9]
elif attr_name.endswith('TokenizerFast' ):
_A = fast_tokenizers
_A = attr_name[:-13]
elif _re_tf_models.match(_snake_case ) is not None:
_A = tf_models
_A = _re_tf_models.match(_snake_case ).groups()[0]
elif _re_flax_models.match(_snake_case ) is not None:
_A = flax_models
_A = _re_flax_models.match(_snake_case ).groups()[0]
elif _re_pt_models.match(_snake_case ) is not None:
_A = pt_models
_A = _re_pt_models.match(_snake_case ).groups()[0]
if lookup_dict is not None:
while len(_snake_case ) > 0:
if attr_name in model_name_to_prefix.values():
_A = True
break
# Try again after removing the last word in the name
_A = ''.join(camel_case_split(_snake_case )[:-1] )
# Let's build that table!
_A = list(model_name_to_config.keys() )
model_names.sort(key=str.lower )
_A = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support']
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
_A = [len(_snake_case ) + 2 for c in columns]
_A = max([len(_snake_case ) for name in model_names] ) + 2
# Build the table per se
_A = '|' + '|'.join([_center_text(_snake_case , _snake_case ) for c, w in zip(_snake_case , _snake_case )] ) + '|\n'
# Use ":-----:" format to center-aligned table cell texts
table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n"
_A = {True: '✅', False: '❌'}
for name in model_names:
_A = model_name_to_prefix[name]
_A = [
name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],
]
table += "|" + "|".join([_center_text(_snake_case , _snake_case ) for l, w in zip(_snake_case , _snake_case )] ) + "|\n"
return table
def _snake_case ( _snake_case : List[str]=False ) -> Union[str, Any]:
'''simple docstring'''
_A , _A , _A , _A = _find_text_in_file(
filename=os.path.join(_snake_case , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , )
_A = get_model_table_from_auto_modules()
if current_table != new_table:
if overwrite:
with open(os.path.join(_snake_case , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(lines[:start_index] + [new_table] + lines[end_index:] )
else:
raise ValueError(
'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' )
if __name__ == "__main__":
a = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
a = parser.parse_args()
check_model_table(args.fix_and_overwrite)
| 7 |
"""simple docstring"""
import math
def _snake_case ( _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
if (
not isinstance(_snake_case , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('power_factor must be a valid float value between -1 and 1.' )
return apparent_power * power_factor
def _snake_case ( _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
if (
not isinstance(_snake_case , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('power_factor must be a valid float value between -1 and 1.' )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 | 1 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
a = logging.get_logger(__name__)
a = '''▁'''
a = {'''vocab_file''': '''sentencepiece.bpe.model'''}
a = {
'''vocab_file''': {
'''facebook/nllb-200-distilled-600M''': (
'''https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model'''
),
}
}
a = {
'''facebook/nllb-200-distilled-600M''': 1_024,
}
# fmt: off
a = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn''']
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : List[Any] = VOCAB_FILES_NAMES
UpperCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase : Optional[Any] = ['''input_ids''', '''attention_mask''']
UpperCAmelCase : List[int] = []
UpperCAmelCase : List[int] = []
def __init__( self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int="<s>" , _UpperCAmelCase : Union[str, Any]="</s>" , _UpperCAmelCase : Any="</s>" , _UpperCAmelCase : str="<s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : Optional[Any]="<pad>" , _UpperCAmelCase : Dict="<mask>" , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Optional[Dict[str, Any]] = None , _UpperCAmelCase : Any=None , _UpperCAmelCase : Tuple=False , **_UpperCAmelCase : Tuple , ):
# Mask token behave like a normal word, i.e. include the space before it
_A = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token
_A = {} if sp_model_kwargs is None else sp_model_kwargs
_A = legacy_behaviour
super().__init__(
bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , src_lang=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=_UpperCAmelCase , **_UpperCAmelCase , )
_A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_UpperCAmelCase ) )
_A = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a'
# spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s'
# Mimic fairseq token-to-id alignment for the first 4 token
_A = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
_A = 1
_A = len(self.sp_model )
_A = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_UpperCAmelCase )
}
_A = {v: k for k, v in self.lang_code_to_id.items()}
_A = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
_A = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
_A = list(self.lang_code_to_id.keys() )
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
self._additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in self._additional_special_tokens] )
_A = src_lang if src_lang is not None else 'eng_Latn'
_A = self.lang_code_to_id[self._src_lang]
_A = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self : List[Any] ):
_A = self.__dict__.copy()
_A = None
_A = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] ):
_A = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
_A = {}
_A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
@property
def lowerCAmelCase_ ( self : Optional[int] ):
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def lowerCAmelCase_ ( self : Union[str, Any] ):
return self._src_lang
@src_lang.setter
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : str ):
_A = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
_A = [1] * len(self.prefix_tokens )
_A = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones
return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
_A = [self.sep_token_id]
_A = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] , _UpperCAmelCase : Optional[str] , **_UpperCAmelCase : Union[str, Any] ):
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
_A = src_lang
_A = self(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
_A = self.convert_tokens_to_ids(_UpperCAmelCase )
_A = tgt_lang_id
return inputs
def lowerCAmelCase_ ( self : List[Any] ):
_A = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : str ):
return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
_A = self.sp_model.PieceToId(_UpperCAmelCase )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : List[Any] ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Dict ):
_A = ''.join(_UpperCAmelCase ).replace(_UpperCAmelCase , ' ' ).strip()
return out_string
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ):
if not os.path.isdir(_UpperCAmelCase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
_A = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCAmelCase , 'wb' ) as fi:
_A = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (out_vocab_file,)
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str = "eng_Latn" , _UpperCAmelCase : Optional[List[str]] = None , _UpperCAmelCase : str = "fra_Latn" , **_UpperCAmelCase : str , ):
_A = src_lang
_A = tgt_lang
return super().prepare_seqaseq_batch(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[Any] ):
return self.set_src_lang_special_tokens(self.src_lang )
def lowerCAmelCase_ ( self : int ):
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Tuple ):
_A = self.lang_code_to_id[src_lang]
if self.legacy_behaviour:
_A = []
_A = [self.eos_token_id, self.cur_lang_code]
else:
_A = [self.cur_lang_code]
_A = [self.eos_token_id]
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : str ):
_A = self.lang_code_to_id[lang]
if self.legacy_behaviour:
_A = []
_A = [self.eos_token_id, self.cur_lang_code]
else:
_A = [self.cur_lang_code]
_A = [self.eos_token_id]
| 7 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''',
'''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''',
'''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''',
'''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''',
'''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''',
'''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''',
'''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''',
'''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''',
'''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = '''xmod'''
def __init__( self : str , _UpperCAmelCase : Optional[Any]=30_522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Dict=3_072 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Any=1E-1_2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Tuple=("en_XX",) , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Optional[Any] , ):
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
_A = vocab_size
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = hidden_act
_A = intermediate_size
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = type_vocab_size
_A = initializer_range
_A = layer_norm_eps
_A = position_embedding_type
_A = use_cache
_A = classifier_dropout
_A = pre_norm
_A = adapter_reduction_factor
_A = adapter_layer_norm
_A = adapter_reuse_layer_norm
_A = ln_before_adapter
_A = list(_UpperCAmelCase )
_A = default_language
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
@property
def lowerCAmelCase_ ( self : Dict ):
if self.task == "multiple-choice":
_A = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_A = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 7 | 1 |
"""simple docstring"""
import unittest
from diffusers.pipelines.pipeline_utils import is_safetensors_compatible
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Dict ):
_A = [
'safety_checker/pytorch_model.bin',
'safety_checker/model.safetensors',
'vae/diffusion_pytorch_model.bin',
'vae/diffusion_pytorch_model.safetensors',
'text_encoder/pytorch_model.bin',
'text_encoder/model.safetensors',
'unet/diffusion_pytorch_model.bin',
'unet/diffusion_pytorch_model.safetensors',
]
self.assertTrue(is_safetensors_compatible(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : str ):
_A = [
'unet/diffusion_pytorch_model.bin',
'unet/diffusion_pytorch_model.safetensors',
]
self.assertTrue(is_safetensors_compatible(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : List[str] ):
_A = [
'safety_checker/pytorch_model.bin',
'safety_checker/model.safetensors',
'vae/diffusion_pytorch_model.bin',
'vae/diffusion_pytorch_model.safetensors',
'text_encoder/pytorch_model.bin',
'text_encoder/model.safetensors',
'unet/diffusion_pytorch_model.bin',
# Removed: 'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Any ):
_A = [
'text_encoder/pytorch_model.bin',
'text_encoder/model.safetensors',
]
self.assertTrue(is_safetensors_compatible(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Any ):
_A = [
'safety_checker/pytorch_model.bin',
'safety_checker/model.safetensors',
'vae/diffusion_pytorch_model.bin',
'vae/diffusion_pytorch_model.safetensors',
'text_encoder/pytorch_model.bin',
# Removed: 'text_encoder/model.safetensors',
'unet/diffusion_pytorch_model.bin',
'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : List[str] ):
_A = [
'safety_checker/pytorch_model.fp16.bin',
'safety_checker/model.fp16.safetensors',
'vae/diffusion_pytorch_model.fp16.bin',
'vae/diffusion_pytorch_model.fp16.safetensors',
'text_encoder/pytorch_model.fp16.bin',
'text_encoder/model.fp16.safetensors',
'unet/diffusion_pytorch_model.fp16.bin',
'unet/diffusion_pytorch_model.fp16.safetensors',
]
_A = 'fp16'
self.assertTrue(is_safetensors_compatible(_UpperCAmelCase , variant=_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Tuple ):
_A = [
'unet/diffusion_pytorch_model.fp16.bin',
'unet/diffusion_pytorch_model.fp16.safetensors',
]
_A = 'fp16'
self.assertTrue(is_safetensors_compatible(_UpperCAmelCase , variant=_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Dict ):
# pass variant but use the non-variant filenames
_A = [
'unet/diffusion_pytorch_model.bin',
'unet/diffusion_pytorch_model.safetensors',
]
_A = 'fp16'
self.assertTrue(is_safetensors_compatible(_UpperCAmelCase , variant=_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = [
'safety_checker/pytorch_model.fp16.bin',
'safety_checker/model.fp16.safetensors',
'vae/diffusion_pytorch_model.fp16.bin',
'vae/diffusion_pytorch_model.fp16.safetensors',
'text_encoder/pytorch_model.fp16.bin',
'text_encoder/model.fp16.safetensors',
'unet/diffusion_pytorch_model.fp16.bin',
# Removed: 'unet/diffusion_pytorch_model.fp16.safetensors',
]
_A = 'fp16'
self.assertFalse(is_safetensors_compatible(_UpperCAmelCase , variant=_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : List[str] ):
_A = [
'text_encoder/pytorch_model.fp16.bin',
'text_encoder/model.fp16.safetensors',
]
_A = 'fp16'
self.assertTrue(is_safetensors_compatible(_UpperCAmelCase , variant=_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Tuple ):
# pass variant but use the non-variant filenames
_A = [
'text_encoder/pytorch_model.bin',
'text_encoder/model.safetensors',
]
_A = 'fp16'
self.assertTrue(is_safetensors_compatible(_UpperCAmelCase , variant=_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : List[Any] ):
_A = [
'safety_checker/pytorch_model.fp16.bin',
'safety_checker/model.fp16.safetensors',
'vae/diffusion_pytorch_model.fp16.bin',
'vae/diffusion_pytorch_model.fp16.safetensors',
'text_encoder/pytorch_model.fp16.bin',
# 'text_encoder/model.fp16.safetensors',
'unet/diffusion_pytorch_model.fp16.bin',
'unet/diffusion_pytorch_model.fp16.safetensors',
]
_A = 'fp16'
self.assertFalse(is_safetensors_compatible(_UpperCAmelCase , variant=_UpperCAmelCase ) )
| 7 |
"""simple docstring"""
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
a = logging.get_logger(__name__)
a = {
'''tensor(bool)''': np.bool_,
'''tensor(int8)''': np.inta,
'''tensor(uint8)''': np.uinta,
'''tensor(int16)''': np.intaa,
'''tensor(uint16)''': np.uintaa,
'''tensor(int32)''': np.intaa,
'''tensor(uint32)''': np.uintaa,
'''tensor(int64)''': np.intaa,
'''tensor(uint64)''': np.uintaa,
'''tensor(float16)''': np.floataa,
'''tensor(float)''': np.floataa,
'''tensor(double)''': np.floataa,
}
class lowercase_ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : Optional[Any] ):
logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' )
_A = model
_A = kwargs.get('model_save_dir' , _UpperCAmelCase )
_A = kwargs.get('latest_model_name' , _UpperCAmelCase )
def __call__( self : Dict , **_UpperCAmelCase : List[Any] ):
_A = {k: np.array(_UpperCAmelCase ) for k, v in kwargs.items()}
return self.model.run(_UpperCAmelCase , _UpperCAmelCase )
@staticmethod
def lowerCAmelCase_ ( _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=None ):
if provider is None:
logger.info('No onnxruntime provider specified, using CPUExecutionProvider' )
_A = 'CPUExecutionProvider'
return ort.InferenceSession(_UpperCAmelCase , providers=[provider] , sess_options=_UpperCAmelCase )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : List[Any] ):
_A = file_name if file_name is not None else ONNX_WEIGHTS_NAME
_A = self.model_save_dir.joinpath(self.latest_model_name )
_A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase )
try:
shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase )
except shutil.SameFileError:
pass
# copy external weights (for models >2GB)
_A = self.model_save_dir.joinpath(_UpperCAmelCase )
if src_path.exists():
_A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase )
try:
shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase )
except shutil.SameFileError:
pass
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] , ):
if os.path.isfile(_UpperCAmelCase ):
logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' )
return
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase )
# saving model weights/files
self._save_pretrained(_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( cls : Tuple , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[Union[bool, str, None]] = None , _UpperCAmelCase : Optional[Union[str, None]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional["ort.SessionOptions"] = None , **_UpperCAmelCase : Union[str, Any] , ):
_A = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(_UpperCAmelCase ):
_A = OnnxRuntimeModel.load_model(
os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase )
_A = Path(_UpperCAmelCase )
# load model from hub
else:
# download model
_A = hf_hub_download(
repo_id=_UpperCAmelCase , filename=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , )
_A = Path(_UpperCAmelCase ).parent
_A = Path(_UpperCAmelCase ).name
_A = OnnxRuntimeModel.load_model(_UpperCAmelCase , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase )
return cls(model=_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( cls : List[Any] , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : Tuple , ):
_A = None
if len(str(_UpperCAmelCase ).split('@' ) ) == 2:
_A , _A = model_id.split('@' )
return cls._from_pretrained(
model_id=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , **_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
import math
import flax.linen as nn
import jax.numpy as jnp
def _snake_case ( _snake_case : jnp.ndarray , _snake_case : int , _snake_case : float = 1 , _snake_case : float = 1 , _snake_case : float = 1.0E4 , _snake_case : bool = False , _snake_case : float = 1.0 , ) -> jnp.ndarray:
'''simple docstring'''
assert timesteps.ndim == 1, "Timesteps should be a 1d-array"
assert embedding_dim % 2 == 0, F'''Embedding dimension {embedding_dim} should be even'''
_A = float(embedding_dim // 2 )
_A = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift)
_A = min_timescale * jnp.exp(jnp.arange(_snake_case , dtype=jnp.floataa ) * -log_timescale_increment )
_A = jnp.expand_dims(_snake_case , 1 ) * jnp.expand_dims(_snake_case , 0 )
# scale embeddings
_A = scale * emb
if flip_sin_to_cos:
_A = jnp.concatenate([jnp.cos(_snake_case ), jnp.sin(_snake_case )] , axis=1 )
else:
_A = jnp.concatenate([jnp.sin(_snake_case ), jnp.cos(_snake_case )] , axis=1 )
_A = jnp.reshape(_snake_case , [jnp.shape(_snake_case )[0], embedding_dim] )
return signal
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int = 32
UpperCAmelCase : jnp.dtype = jnp.floataa
@nn.compact
def __call__( self : Union[str, Any] , _UpperCAmelCase : str ):
_A = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_1' )(_UpperCAmelCase )
_A = nn.silu(_UpperCAmelCase )
_A = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_2' )(_UpperCAmelCase )
return temb
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int = 32
UpperCAmelCase : bool = False
UpperCAmelCase : float = 1
@nn.compact
def __call__( self : Optional[Any] , _UpperCAmelCase : str ):
return get_sinusoidal_embeddings(
_UpperCAmelCase , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json'''
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : str = '''speech_to_text'''
UpperCAmelCase : List[Any] = ['''past_key_values''']
UpperCAmelCase : Tuple = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self : int , _UpperCAmelCase : Union[str, Any]=10_000 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2_048 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Tuple=2_048 , _UpperCAmelCase : str=4 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]="relu" , _UpperCAmelCase : List[Any]=256 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : List[str]=6_000 , _UpperCAmelCase : Optional[Any]=1_024 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Any=(5, 5) , _UpperCAmelCase : int=1_024 , _UpperCAmelCase : str=80 , _UpperCAmelCase : Any=1 , **_UpperCAmelCase : Tuple , ):
_A = vocab_size
_A = d_model
_A = encoder_ffn_dim
_A = encoder_layers
_A = encoder_attention_heads
_A = decoder_ffn_dim
_A = decoder_layers
_A = decoder_attention_heads
_A = dropout
_A = attention_dropout
_A = activation_dropout
_A = activation_function
_A = init_std
_A = encoder_layerdrop
_A = decoder_layerdrop
_A = use_cache
_A = encoder_layers
_A = scale_embedding # scale factor will be sqrt(d_model) if True
_A = max_source_positions
_A = max_target_positions
_A = num_conv_layers
_A = list(_UpperCAmelCase )
_A = conv_channels
_A = input_feat_per_channel
_A = input_channels
if len(self.conv_kernel_sizes ) != self.num_conv_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` '
F'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, '''
F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
import baseaa
def _snake_case ( _snake_case : str ) -> bytes:
'''simple docstring'''
return baseaa.aaaencode(string.encode('utf-8' ) )
def _snake_case ( _snake_case : bytes ) -> str:
'''simple docstring'''
return baseaa.aaadecode(_snake_case ).decode('utf-8' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 |
"""simple docstring"""
from manim import *
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = Rectangle(height=0.5 , width=0.5 )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_A = Rectangle(height=0.25 , width=0.25 )
_A = [mem.copy() for i in range(6 )]
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('CPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(4 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('GPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
gpu.move_to([-1, -1, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Model' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
model.move_to([3, -1.0, 0] )
self.add(_UpperCAmelCase )
_A = []
_A = []
for i, rect in enumerate(_UpperCAmelCase ):
_A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 )
target.move_to(_UpperCAmelCase )
model_arr.append(_UpperCAmelCase )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(_UpperCAmelCase )
self.add(*_UpperCAmelCase , *_UpperCAmelCase )
_A = [meta_mem.copy() for i in range(6 )]
_A = [meta_mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Disk' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
disk.move_to([-4, -1.25, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_A = MarkupText(
F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = MarkupText(
F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , )
blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(_UpperCAmelCase )
_A = MarkupText(
F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase ) )
_A = Square(0.3 )
input.set_fill(_UpperCAmelCase , opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 )
self.play(Write(_UpperCAmelCase ) )
input.generate_target()
input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 )
self.play(MoveToTarget(_UpperCAmelCase ) )
self.play(FadeOut(_UpperCAmelCase ) )
_A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 )
a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
_A = MarkupText(
F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) )
_A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02}
self.play(
Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[0] ) )
_A = a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
_A = AnimationGroup(
FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 )
self.play(_UpperCAmelCase )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
_A = 0.7
self.play(
Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , )
else:
self.play(
MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , )
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 )
self.play(
Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[i] ) )
_A = a_c
_A = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 )
self.play(
FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , )
_A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) )
self.wait()
| 7 | 1 |
"""simple docstring"""
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
# TODO Update this
a = {
'''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''',
# See all ESM models at https://huggingface.co/models?filter=esm
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Dict = '''esm'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : int=768 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : int=3_072 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=1_026 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Optional[int]=1E-1_2 , _UpperCAmelCase : str="absolute" , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Any=None , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : List[str] , ):
super().__init__(pad_token_id=_UpperCAmelCase , mask_token_id=_UpperCAmelCase , **_UpperCAmelCase )
_A = vocab_size
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = intermediate_size
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = initializer_range
_A = layer_norm_eps
_A = position_embedding_type
_A = use_cache
_A = emb_layer_norm_before
_A = token_dropout
_A = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info('No esmfold_config supplied for folding model, using default values.' )
_A = EsmFoldConfig()
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_A = EsmFoldConfig(**_UpperCAmelCase )
_A = esmfold_config
if vocab_list is None:
logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' )
_A = get_default_vocab_list()
else:
_A = vocab_list
else:
_A = None
_A = None
if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , _UpperCAmelCase ):
raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = super().to_dict()
if isinstance(self.esmfold_config , _UpperCAmelCase ):
_A = self.esmfold_config.to_dict()
return output
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : str = None
UpperCAmelCase : bool = True
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : float = 0
UpperCAmelCase : bool = True
UpperCAmelCase : bool = False
UpperCAmelCase : int = 128
UpperCAmelCase : "TrunkConfig" = None
def lowerCAmelCase_ ( self : Optional[int] ):
if self.trunk is None:
_A = TrunkConfig()
elif isinstance(self.trunk , _UpperCAmelCase ):
_A = TrunkConfig(**self.trunk )
def lowerCAmelCase_ ( self : Dict ):
_A = asdict(self )
_A = self.trunk.to_dict()
return output
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : int = 48
UpperCAmelCase : int = 1024
UpperCAmelCase : int = 128
UpperCAmelCase : int = 32
UpperCAmelCase : int = 32
UpperCAmelCase : int = 32
UpperCAmelCase : float = 0
UpperCAmelCase : float = 0
UpperCAmelCase : bool = False
UpperCAmelCase : int = 4
UpperCAmelCase : Optional[int] = 128
UpperCAmelCase : "StructureModuleConfig" = None
def lowerCAmelCase_ ( self : str ):
if self.structure_module is None:
_A = StructureModuleConfig()
elif isinstance(self.structure_module , _UpperCAmelCase ):
_A = StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
'`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got'
F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
'`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got'
F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' )
_A = self.sequence_state_dim // self.sequence_head_width
_A = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
'`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got'
F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
'`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got'
F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' )
if self.dropout >= 0.4:
raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = asdict(self )
_A = self.structure_module.to_dict()
return output
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : int = 384
UpperCAmelCase : int = 128
UpperCAmelCase : int = 16
UpperCAmelCase : int = 128
UpperCAmelCase : int = 12
UpperCAmelCase : int = 4
UpperCAmelCase : int = 8
UpperCAmelCase : float = 0.1
UpperCAmelCase : int = 8
UpperCAmelCase : int = 1
UpperCAmelCase : int = 2
UpperCAmelCase : int = 7
UpperCAmelCase : int = 10
UpperCAmelCase : float = 1E-8
UpperCAmelCase : float = 1E5
def lowerCAmelCase_ ( self : Optional[int] ):
return asdict(self )
def _snake_case ( ) -> List[Any]:
'''simple docstring'''
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 7 |
"""simple docstring"""
def _snake_case ( _snake_case : int , _snake_case : int ) -> int:
'''simple docstring'''
return int((input_a, input_a).count(1 ) != 0 )
def _snake_case ( ) -> None:
'''simple docstring'''
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 7 | 1 |
"""simple docstring"""
def _snake_case ( _snake_case : str , _snake_case : str ) -> float:
'''simple docstring'''
def get_matched_characters(_snake_case : str , _snake_case : str ) -> str:
_A = []
_A = min(len(_stra ) , len(_stra ) ) // 2
for i, l in enumerate(_stra ):
_A = int(max(0 , i - limit ) )
_A = int(min(i + limit + 1 , len(_stra ) ) )
if l in _stra[left:right]:
matched.append(_snake_case )
_A = F'''{_stra[0:_stra.index(_snake_case )]} {_stra[_stra.index(_snake_case ) + 1:]}'''
return "".join(_snake_case )
# matching characters
_A = get_matched_characters(_snake_case , _snake_case )
_A = get_matched_characters(_snake_case , _snake_case )
_A = len(_snake_case )
# transposition
_A = (
len([(ca, ca) for ca, ca in zip(_snake_case , _snake_case ) if ca != ca] ) // 2
)
if not match_count:
_A = 0.0
else:
_A = (
1
/ 3
* (
match_count / len(_snake_case )
+ match_count / len(_snake_case )
+ (match_count - transpositions) / match_count
)
)
# common prefix up to 4 characters
_A = 0
for ca, ca in zip(stra[:4] , stra[:4] ):
if ca == ca:
prefix_len += 1
else:
break
return jaro + 0.1 * prefix_len * (1 - jaro)
if __name__ == "__main__":
import doctest
doctest.testmod()
print(jaro_winkler('''hello''', '''world'''))
| 7 |
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
a = logging.getLogger(__name__)
@dataclass
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[float] = field(
default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} )
UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''Whether to SortishSamler or not.'''} )
UpperCAmelCase : bool = field(
default=__lowerCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} )
UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''whether to use adafactor'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(default=__lowerCAmelCase , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[str] = field(
default='''linear''' , metadata={'''help''': f'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
| 7 | 1 |
"""simple docstring"""
def _snake_case ( _snake_case : int , _snake_case : int ) -> int:
'''simple docstring'''
return int((input_a, input_a).count(1 ) != 0 )
def _snake_case ( ) -> None:
'''simple docstring'''
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 7 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ..utils import _LazyModule
a = {
'''config''': [
'''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''',
'''OnnxConfig''',
'''OnnxConfigWithPast''',
'''OnnxSeq2SeqConfigWithPast''',
'''PatchingSpec''',
],
'''convert''': ['''export''', '''validate_model_outputs'''],
'''features''': ['''FeaturesManager'''],
'''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 7 | 1 |
"""simple docstring"""
from typing import List, Union
import numpy as np
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, logging
from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline
a = logging.get_logger(__name__)
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : str ):
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_A = [label.strip() for label in labels.split(',' ) if label.strip()]
return labels
def __call__( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ):
if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) == 0:
raise ValueError('You must include at least one label and at least one sequence.' )
if hypothesis_template.format(labels[0] ) == hypothesis_template:
raise ValueError(
(
'The provided hypothesis_template "{}" was not able to be formatted with the target labels. '
'Make sure the passed template includes formatting syntax such as {{}} where the label should go.'
).format(_UpperCAmelCase ) )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_A = [sequences]
_A = []
for sequence in sequences:
sequence_pairs.extend([[sequence, hypothesis_template.format(_UpperCAmelCase )] for label in labels] )
return sequence_pairs, sequences
@add_end_docstrings(__lowerCAmelCase )
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Any , _UpperCAmelCase : int=ZeroShotClassificationArgumentHandler() , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Optional[int] ):
_A = args_parser
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
if self.entailment_id == -1:
logger.warning(
'Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to '
'-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.' )
@property
def lowerCAmelCase_ ( self : int ):
for label, ind in self.model.config.labelaid.items():
if label.lower().startswith('entail' ):
return ind
return -1
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : List[str]=TruncationStrategy.ONLY_FIRST , **_UpperCAmelCase : Dict ):
_A = self.framework
if self.tokenizer.pad_token is None:
# Override for tokenizers not supporting padding
logger.error(
'Tokenizer was not supporting padding necessary for zero-shot, attempting to use '
' `pad_token=eos_token`' )
_A = self.tokenizer.eos_token
try:
_A = self.tokenizer(
_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , )
except Exception as e:
if "too short" in str(_UpperCAmelCase ):
# tokenizers might yell that we want to truncate
# to a value that is not even reached by the input.
# In that case we don't want to truncate.
# It seems there's not a really better way to catch that
# exception.
_A = self.tokenizer(
_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , )
else:
raise e
return inputs
def lowerCAmelCase_ ( self : int , **_UpperCAmelCase : Tuple ):
if kwargs.get('multi_class' , _UpperCAmelCase ) is not None:
_A = kwargs['multi_class']
logger.warning(
'The `multi_class` argument has been deprecated and renamed to `multi_label`. '
'`multi_class` will be removed in a future version of Transformers.' )
_A = {}
if "candidate_labels" in kwargs:
_A = self._args_parser._parse_labels(kwargs['candidate_labels'] )
if "hypothesis_template" in kwargs:
_A = kwargs['hypothesis_template']
_A = {}
if "multi_label" in kwargs:
_A = kwargs['multi_label']
return preprocess_params, {}, postprocess_params
def __call__( self : Any , _UpperCAmelCase : Union[str, List[str]] , *_UpperCAmelCase : int , **_UpperCAmelCase : Dict , ):
if len(_UpperCAmelCase ) == 0:
pass
elif len(_UpperCAmelCase ) == 1 and "candidate_labels" not in kwargs:
_A = args[0]
else:
raise ValueError(F'''Unable to understand extra arguments {args}''' )
return super().__call__(_UpperCAmelCase , **_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : List[Any]="This example is {}." ):
_A , _A = self._args_parser(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
for i, (candidate_label, sequence_pair) in enumerate(zip(_UpperCAmelCase , _UpperCAmelCase ) ):
_A = self._parse_and_tokenize([sequence_pair] )
yield {
"candidate_label": candidate_label,
"sequence": sequences[0],
"is_last": i == len(_UpperCAmelCase ) - 1,
**model_input,
}
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : int ):
_A = inputs['candidate_label']
_A = inputs['sequence']
_A = {k: inputs[k] for k in self.tokenizer.model_input_names}
_A = self.model(**_UpperCAmelCase )
_A = {
'candidate_label': candidate_label,
'sequence': sequence,
'is_last': inputs['is_last'],
**outputs,
}
return model_outputs
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict=False ):
_A = [outputs['candidate_label'] for outputs in model_outputs]
_A = [outputs['sequence'] for outputs in model_outputs]
_A = np.concatenate([output['logits'].numpy() for output in model_outputs] )
_A = logits.shape[0]
_A = len(_UpperCAmelCase )
_A = N // n
_A = logits.reshape((num_sequences, n, -1) )
if multi_label or len(_UpperCAmelCase ) == 1:
# softmax over the entailment vs. contradiction dim for each label independently
_A = self.entailment_id
_A = -1 if entailment_id == 0 else 0
_A = reshaped_outputs[..., [contradiction_id, entailment_id]]
_A = np.exp(_UpperCAmelCase ) / np.exp(_UpperCAmelCase ).sum(-1 , keepdims=_UpperCAmelCase )
_A = scores[..., 1]
else:
# softmax the "entailment" logits over all candidate labels
_A = reshaped_outputs[..., self.entailment_id]
_A = np.exp(_UpperCAmelCase ) / np.exp(_UpperCAmelCase ).sum(-1 , keepdims=_UpperCAmelCase )
_A = list(reversed(scores[0].argsort() ) )
return {
"sequence": sequences[0],
"labels": [candidate_labels[i] for i in top_inds],
"scores": scores[0, top_inds].tolist(),
}
| 7 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import KarrasVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : UNetaDModel
UpperCAmelCase : KarrasVeScheduler
def __init__( self : Any , _UpperCAmelCase : UNetaDModel , _UpperCAmelCase : KarrasVeScheduler ):
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase )
@torch.no_grad()
def __call__( self : Optional[int] , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Optional[Any] , ):
_A = self.unet.config.sample_size
_A = (batch_size, 3, img_size, img_size)
_A = self.unet
# sample x_0 ~ N(0, sigma_0^2 * I)
_A = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device ) * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(_UpperCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# here sigma_t == t_i from the paper
_A = self.scheduler.schedule[t]
_A = self.scheduler.schedule[t - 1] if t > 0 else 0
# 1. Select temporarily increased noise level sigma_hat
# 2. Add new noise to move from sample_i to sample_hat
_A , _A = self.scheduler.add_noise_to_input(_UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase )
# 3. Predict the noise residual given the noise magnitude `sigma_hat`
# The model inputs and output are adjusted by following eq. (213) in [1].
_A = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample
# 4. Evaluate dx/dt at sigma_hat
# 5. Take Euler step from sigma to sigma_prev
_A = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if sigma_prev != 0:
# 6. Apply 2nd order correction
# The model inputs and output are adjusted by following eq. (213) in [1].
_A = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample
_A = self.scheduler.step_correct(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , step_output.prev_sample , step_output['derivative'] , )
_A = step_output.prev_sample
_A = (sample / 2 + 0.5).clamp(0 , 1 )
_A = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_A = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_UpperCAmelCase )
| 7 | 1 |
"""simple docstring"""
from __future__ import annotations
a = list[list[int]]
# assigning initial values to the grid
a = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
a = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def _snake_case ( _snake_case : Matrix , _snake_case : int , _snake_case : int , _snake_case : int ) -> bool:
'''simple docstring'''
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def _snake_case ( _snake_case : Matrix ) -> tuple[int, int] | None:
'''simple docstring'''
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def _snake_case ( _snake_case : Matrix ) -> Matrix | None:
'''simple docstring'''
if location := find_empty_location(_snake_case ):
_A , _A = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(_snake_case , _snake_case , _snake_case , _snake_case ):
_A = digit
if sudoku(_snake_case ) is not None:
return grid
_A = 0
return None
def _snake_case ( _snake_case : Matrix ) -> None:
'''simple docstring'''
for row in grid:
for cell in row:
print(_snake_case , end=' ' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print('''\nExample grid:\n''' + '''=''' * 20)
print_solution(example_grid)
print('''\nExample grid solution:''')
a = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print('''Cannot find a solution.''')
| 7 |
"""simple docstring"""
class lowercase_ :
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ):
_A = None
_A = None
_A = graph
self._normalize_graph(_UpperCAmelCase , _UpperCAmelCase )
_A = len(_UpperCAmelCase )
_A = None
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ):
if sources is int:
_A = [sources]
if sinks is int:
_A = [sinks]
if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) == 0:
return
_A = sources[0]
_A = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(_UpperCAmelCase ) > 1 or len(_UpperCAmelCase ) > 1:
_A = 0
for i in sources:
max_input_flow += sum(self.graph[i] )
_A = len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
_A = max_input_flow
_A = 0
_A = len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
_A = max_input_flow
_A = size - 1
def lowerCAmelCase_ ( self : Optional[Any] ):
if self.maximum_flow_algorithm is None:
raise Exception('You need to set maximum flow algorithm before.' )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Union[str, Any] ):
_A = algorithm(self )
class lowercase_ :
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : Union[str, Any] ):
_A = flow_network
_A = flow_network.verticesCount
_A = flow_network.sourceIndex
_A = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
_A = flow_network.graph
_A = False
def lowerCAmelCase_ ( self : Optional[Any] ):
if not self.executed:
self._algorithm()
_A = True
def lowerCAmelCase_ ( self : int ):
pass
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : int , _UpperCAmelCase : Any ):
super().__init__(_UpperCAmelCase )
# use this to save your result
_A = -1
def lowerCAmelCase_ ( self : Optional[Any] ):
if not self.executed:
raise Exception('You should execute algorithm before using its result!' )
return self.maximum_flow
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : List[Any] ):
super().__init__(_UpperCAmelCase )
_A = [[0] * self.verticies_count for i in range(self.verticies_count )]
_A = [0] * self.verticies_count
_A = [0] * self.verticies_count
def lowerCAmelCase_ ( self : Dict ):
_A = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
_A = [
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
_A = 0
while i < len(_UpperCAmelCase ):
_A = vertices_list[i]
_A = self.heights[vertex_index]
self.process_vertex(_UpperCAmelCase )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(_UpperCAmelCase ) )
_A = 0
else:
i += 1
_A = sum(self.preflow[self.source_index] )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Any ):
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(_UpperCAmelCase , _UpperCAmelCase )
self.relabel(_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ):
_A = min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : int ):
_A = None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
_A = self.heights[to_index]
if min_height is not None:
_A = min_height + 1
if __name__ == "__main__":
a = [0]
a = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
a = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
a = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
a = flow_network.find_maximum_flow()
print(F'''maximum flow is {maximum_flow}''')
| 7 | 1 |
"""simple docstring"""
def _snake_case ( _snake_case : int ) -> bool:
'''simple docstring'''
if p < 2:
raise ValueError('p should not be less than 2!' )
elif p == 2:
return True
_A = 4
_A = (1 << p) - 1
for _ in range(p - 2 ):
_A = ((s * s) - 2) % m
return s == 0
if __name__ == "__main__":
print(lucas_lehmer_test(7))
print(lucas_lehmer_test(11))
| 7 |
"""simple docstring"""
import unittest
from transformers import SPIECE_UNDERLINE
from transformers.models.speechta import SpeechTaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.tokenization_utils import AddedToken
from ...test_tokenization_common import TokenizerTesterMixin
a = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''')
@require_sentencepiece
@require_tokenizers
class lowercase_ ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = SpeechTaTokenizer
UpperCAmelCase : Tuple = False
UpperCAmelCase : Optional[int] = True
def lowerCAmelCase_ ( self : Tuple ):
super().setUp()
# We have a SentencePiece fixture for testing
_A = SpeechTaTokenizer(_UpperCAmelCase )
_A = AddedToken('<mask>' , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase )
_A = mask_token
tokenizer.add_special_tokens({'mask_token': mask_token} )
tokenizer.add_tokens(['<ctc_blank>'] )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Tuple ):
_A = 'this is a test'
_A = 'this is a test'
return input_text, output_text
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict=20 , _UpperCAmelCase : str=5 ):
_A , _A = self.get_input_output_texts(_UpperCAmelCase )
_A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
_A = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase )
return text, ids
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = '<pad>'
_A = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-4] , 'œ' )
self.assertEqual(vocab_keys[-2] , '<mask>' )
self.assertEqual(vocab_keys[-1] , '<ctc_blank>' )
self.assertEqual(len(_UpperCAmelCase ) , 81 )
def lowerCAmelCase_ ( self : Optional[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 79 )
def lowerCAmelCase_ ( self : Any ):
_A = self.get_tokenizers(do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
_A = ['aaaaa bbbbbb', 'cccccccccdddddddd']
_A = tokenizer.add_tokens(_UpperCAmelCase )
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) )
self.assertEqual(_UpperCAmelCase , all_size + len(_UpperCAmelCase ) )
_A = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=_UpperCAmelCase )
self.assertGreaterEqual(len(_UpperCAmelCase ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
_A = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'}
_A = tokenizer.add_special_tokens(_UpperCAmelCase )
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) )
self.assertEqual(_UpperCAmelCase , all_size_a + len(_UpperCAmelCase ) )
_A = tokenizer.encode(
'>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=_UpperCAmelCase )
self.assertGreaterEqual(len(_UpperCAmelCase ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
def lowerCAmelCase_ ( self : str ):
pass
def lowerCAmelCase_ ( self : Any ):
pass
def lowerCAmelCase_ ( self : Dict ):
_A = self.get_tokenizer()
_A = tokenizer.tokenize('This is a test' )
# fmt: off
self.assertListEqual(_UpperCAmelCase , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] )
# fmt: on
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , )
_A = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
_A = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
# fmt: off
self.assertListEqual(_UpperCAmelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] )
# fmt: on
_A = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
@slow
def lowerCAmelCase_ ( self : List[Any] ):
# Use custom sequence because this tokenizer does not handle numbers.
_A = [
'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides '
'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural '
'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained '
'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.',
'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly '
'conditioning on both left and right context in all layers.',
'The quick brown fox jumps over the lazy dog.',
]
# fmt: off
_A = {
'input_ids': [
[4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2],
[4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
],
'attention_mask': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
from collections import deque
class lowercase_ :
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ):
_A = process_name # process name
_A = arrival_time # arrival time of the process
# completion time of finished process or last interrupted time
_A = arrival_time
_A = burst_time # remaining burst time
_A = 0 # total time of the process wait in ready queue
_A = 0 # time from arrival time to completion time
class lowercase_ :
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : list[int] , _UpperCAmelCase : deque[Process] , _UpperCAmelCase : int , ):
# total number of mlfq's queues
_A = number_of_queues
# time slice of queues that round robin algorithm applied
_A = time_slices
# unfinished process is in this ready_queue
_A = queue
# current time
_A = current_time
# finished process is in this sequence queue
_A = deque()
def lowerCAmelCase_ ( self : Any ):
_A = []
for i in range(len(self.finish_queue ) ):
sequence.append(self.finish_queue[i].process_name )
return sequence
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : list[Process] ):
_A = []
for i in range(len(_UpperCAmelCase ) ):
waiting_times.append(queue[i].waiting_time )
return waiting_times
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : list[Process] ):
_A = []
for i in range(len(_UpperCAmelCase ) ):
turnaround_times.append(queue[i].turnaround_time )
return turnaround_times
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : list[Process] ):
_A = []
for i in range(len(_UpperCAmelCase ) ):
completion_times.append(queue[i].stop_time )
return completion_times
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : deque[Process] ):
return [q.burst_time for q in queue]
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Process ):
process.waiting_time += self.current_time - process.stop_time
return process.waiting_time
def lowerCAmelCase_ ( self : str , _UpperCAmelCase : deque[Process] ):
_A = deque() # sequence deque of finished process
while len(_UpperCAmelCase ) != 0:
_A = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of current process
self.update_waiting_time(_UpperCAmelCase )
# update current time
self.current_time += cp.burst_time
# finish the process and set the process's burst-time 0
_A = 0
# set the process's turnaround time because it is finished
_A = self.current_time - cp.arrival_time
# set the completion time
_A = self.current_time
# add the process to queue that has finished queue
finished.append(_UpperCAmelCase )
self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue
# FCFS will finish all remaining processes
return finished
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : deque[Process] , _UpperCAmelCase : int ):
_A = deque() # sequence deque of terminated process
# just for 1 cycle and unfinished processes will go back to queue
for _ in range(len(_UpperCAmelCase ) ):
_A = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of unfinished processes
self.update_waiting_time(_UpperCAmelCase )
# if the burst time of process is bigger than time-slice
if cp.burst_time > time_slice:
# use CPU for only time-slice
self.current_time += time_slice
# update remaining burst time
cp.burst_time -= time_slice
# update end point time
_A = self.current_time
# locate the process behind the queue because it is not finished
ready_queue.append(_UpperCAmelCase )
else:
# use CPU for remaining burst time
self.current_time += cp.burst_time
# set burst time 0 because the process is finished
_A = 0
# set the finish time
_A = self.current_time
# update the process' turnaround time because it is finished
_A = self.current_time - cp.arrival_time
# add the process to queue that has finished queue
finished.append(_UpperCAmelCase )
self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue
# return finished processes queue and remaining processes queue
return finished, ready_queue
def lowerCAmelCase_ ( self : Tuple ):
# all queues except last one have round_robin algorithm
for i in range(self.number_of_queues - 1 ):
_A , _A = self.round_robin(
self.ready_queue , self.time_slices[i] )
# the last queue has first_come_first_served algorithm
self.first_come_first_served(self.ready_queue )
return self.finish_queue
if __name__ == "__main__":
import doctest
a = Process('''P1''', 0, 53)
a = Process('''P2''', 0, 17)
a = Process('''P3''', 0, 68)
a = Process('''P4''', 0, 24)
a = 3
a = [17, 25]
a = deque([Pa, Pa, Pa, Pa])
if len(time_slices) != number_of_queues - 1:
raise SystemExit(0)
doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])})
a = Process('''P1''', 0, 53)
a = Process('''P2''', 0, 17)
a = Process('''P3''', 0, 68)
a = Process('''P4''', 0, 24)
a = 3
a = [17, 25]
a = deque([Pa, Pa, Pa, Pa])
a = MLFQ(number_of_queues, time_slices, queue, 0)
a = mlfq.multi_level_feedback_queue()
# print total waiting times of processes(P1, P2, P3, P4)
print(
F'''waiting time:\
\t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}'''
)
# print completion times of processes(P1, P2, P3, P4)
print(
F'''completion time:\
\t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}'''
)
# print total turnaround times of processes(P1, P2, P3, P4)
print(
F'''turnaround time:\
\t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}'''
)
# print sequence of finished processes
print(
F'''sequence of finished processes:\
{mlfq.calculate_sequence_of_finish_queue()}'''
)
| 7 |
"""simple docstring"""
from .configuration_bert_masked import MaskedBertConfig
from .modeling_bert_masked import (
MaskedBertForMultipleChoice,
MaskedBertForQuestionAnswering,
MaskedBertForSequenceClassification,
MaskedBertForTokenClassification,
MaskedBertModel,
)
from .modules import *
| 7 | 1 |
"""simple docstring"""
import pickle
import unittest
import torch
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils import require_cpu
@require_cpu
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : str ):
_A = torch.nn.Linear(10 , 10 )
_A = torch.optim.SGD(model.parameters() , 0.1 )
_A = Accelerator()
_A = accelerator.prepare(_UpperCAmelCase )
try:
pickle.loads(pickle.dumps(_UpperCAmelCase ) )
except Exception as e:
self.fail(F'''Accelerated optimizer pickling failed with {e}''' )
AcceleratorState._reset_state()
| 7 |
"""simple docstring"""
import argparse
a = '''docs/source/_static/js/custom.js'''
def _snake_case ( _snake_case : Dict ) -> Any:
'''simple docstring'''
with open(_snake_case , encoding='utf-8' , newline='\n' ) as f:
_A = f.readlines()
_A = 0
# First let's put the right version
while not lines[index].startswith('const stableVersion =' ):
index += 1
_A = F'''const stableVersion = "v{version}"\n'''
# Then update the dictionary
while not lines[index].startswith('const versionMapping = {' ):
index += 1
# We go until the end
while not lines[index].startswith('}' ):
index += 1
# We add the new version at the end
lines[index - 1] += F''' "v{version}": "v{version}",\n'''
with open(_snake_case , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(_snake_case )
if __name__ == "__main__":
a = argparse.ArgumentParser()
parser.add_argument('''--version''', help='''Release version.''')
a = parser.parse_args()
update_custom_js(args.version)
| 7 | 1 |
"""simple docstring"""
import json
import os
import unittest
from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import (
VOCAB_FILES_NAMES,
GPTSanJapaneseTokenizer,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowercase_ ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = GPTSanJapaneseTokenizer
UpperCAmelCase : str = False
UpperCAmelCase : List[Any] = {'''do_clean_text''': False, '''add_prefix_space''': False}
def lowerCAmelCase_ ( self : str ):
super().setUp()
# fmt: off
_A = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>']
# fmt: on
_A = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀
_A = {'unk_token': '<unk>'}
_A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
_A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
with open(self.emoji_file , 'w' ) as emoji_writer:
emoji_writer.write(json.dumps(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Union[str, Any] , **_UpperCAmelCase : int ):
kwargs.update(self.special_tokens_map )
return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Dict ):
_A = 'こんにちは、世界。 \nこんばんは、㔺界。😀'
_A = 'こんにちは、世界。 \nこんばんは、世界。😀'
return input_text, output_text
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Any ):
_A , _A = self.get_input_output_texts(_UpperCAmelCase )
_A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
_A = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase )
return text, ids
def lowerCAmelCase_ ( self : str ):
pass # TODO add if relevant
def lowerCAmelCase_ ( self : Dict ):
pass # TODO add if relevant
def lowerCAmelCase_ ( self : Optional[Any] ):
pass # TODO add if relevant
def lowerCAmelCase_ ( self : Tuple ):
_A = self.get_tokenizer()
# Testing tokenization
_A = 'こんにちは、世界。 こんばんは、㔺界。'
_A = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。']
_A = tokenizer.tokenize(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
# Testing conversion to ids without special tokens
_A = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6]
_A = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
# Testing conversion to ids with special tokens
_A = tokens + [tokenizer.unk_token]
_A = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19]
_A = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict ):
_A = self.get_tokenizer()
# Testing tokenization
_A = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。'
_A = 'こんにちは、、、、世界。こんばんは、、、、世界。'
_A = tokenizer.encode(_UpperCAmelCase )
_A = tokenizer.decode(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
@slow
def lowerCAmelCase_ ( self : str ):
_A = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
# Testing tokenization
_A = 'こんにちは、世界。'
_A = 'こんばんは、㔺界。😀'
_A = 'こんにちは、世界。こんばんは、世界。😀'
_A = tokenizer.encode(prefix_text + input_text )
_A = tokenizer.encode('' , prefix_text=prefix_text + input_text )
_A = tokenizer.encode(_UpperCAmelCase , prefix_text=_UpperCAmelCase )
_A = tokenizer.decode(_UpperCAmelCase )
_A = tokenizer.decode(_UpperCAmelCase )
_A = tokenizer.decode(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
@slow
def lowerCAmelCase_ ( self : int ):
_A = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
# Testing tokenization
_A = 'こんにちは、世界。'
_A = 'こんばんは、㔺界。😀'
_A = len(tokenizer.encode(_UpperCAmelCase ) ) - 2
_A = len(tokenizer.encode(_UpperCAmelCase ) ) - 2
_A = [1] + [0] * (len_prefix + len_text + 1)
_A = [1] * (len_prefix + len_text + 1) + [0]
_A = [1] + [1] * (len_prefix) + [0] * (len_text + 1)
_A = tokenizer(prefix_text + input_text ).token_type_ids
_A = tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids
_A = tokenizer(_UpperCAmelCase , prefix_text=_UpperCAmelCase ).token_type_ids
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
@slow
def lowerCAmelCase_ ( self : List[Any] ):
_A = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
_A = tokenizer.encode('あンいワ' )
_A = tokenizer.encode('' , prefix_text='あンいワ' )
_A = tokenizer.encode('いワ' , prefix_text='あン' )
self.assertEqual(tokenizer.decode(_UpperCAmelCase ) , tokenizer.decode(_UpperCAmelCase ) )
self.assertEqual(tokenizer.decode(_UpperCAmelCase ) , tokenizer.decode(_UpperCAmelCase ) )
self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token
self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token
@slow
def lowerCAmelCase_ ( self : int ):
_A = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
_A = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']]
_A = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase )
_A = tokenizer.batch_encode_plus(_UpperCAmelCase , padding=_UpperCAmelCase )
# fmt: off
_A = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]]
_A = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]]
_A = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]]
# fmt: on
self.assertListEqual(x_token.input_ids , _UpperCAmelCase )
self.assertListEqual(x_token.token_type_ids , _UpperCAmelCase )
self.assertListEqual(x_token.attention_mask , _UpperCAmelCase )
self.assertListEqual(x_token_a.input_ids , _UpperCAmelCase )
self.assertListEqual(x_token_a.token_type_ids , _UpperCAmelCase )
self.assertListEqual(x_token_a.attention_mask , _UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[Any] ):
# Intentionally convert some words to accommodate character fluctuations unique to Japanese
pass
def lowerCAmelCase_ ( self : Tuple ):
# tokenizer has no padding token
pass
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''vit_mae'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int]=768 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Optional[int]=3_072 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : Optional[Any]=224 , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=512 , _UpperCAmelCase : int=8 , _UpperCAmelCase : List[Any]=2_048 , _UpperCAmelCase : Optional[Any]=0.75 , _UpperCAmelCase : List[str]=False , **_UpperCAmelCase : Union[str, Any] , ):
super().__init__(**_UpperCAmelCase )
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = intermediate_size
_A = hidden_act
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = initializer_range
_A = layer_norm_eps
_A = image_size
_A = patch_size
_A = num_channels
_A = qkv_bias
_A = decoder_num_attention_heads
_A = decoder_hidden_size
_A = decoder_num_hidden_layers
_A = decoder_intermediate_size
_A = mask_ratio
_A = norm_pix_loss
| 7 | 1 |
"""simple docstring"""
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class lowercase_ :
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int]=100 , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : str=2 , _UpperCAmelCase : int=3 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : Union[str, Any]=32 , _UpperCAmelCase : str=4 , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : str=37 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Union[str, Any]=10 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : int=None , _UpperCAmelCase : Union[str, Any]=[0, 1, 2, 3] , ):
_A = parent
_A = 100
_A = batch_size
_A = image_size
_A = patch_size
_A = num_channels
_A = is_training
_A = use_labels
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = intermediate_size
_A = hidden_act
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = type_sequence_label_size
_A = initializer_range
_A = scope
_A = out_indices
_A = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
_A = (image_size // patch_size) ** 2
_A = num_patches + 1
def lowerCAmelCase_ ( self : Dict ):
_A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A = None
_A = None
if self.use_labels:
_A = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
_A = self.get_config()
return config, pixel_values, labels, pixel_labels
def lowerCAmelCase_ ( self : Tuple ):
return BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , )
def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ):
_A = BeitModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] ):
_A = BeitForMaskedImageModeling(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Any ):
_A = self.type_sequence_label_size
_A = BeitForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_A = 1
_A = BeitForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_A = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict ):
_A = self.num_labels
_A = BeitForSemanticSegmentation(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
_A = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def lowerCAmelCase_ ( self : Tuple ):
_A = self.prepare_config_and_inputs()
_A , _A , _A , _A = config_and_inputs
_A = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
UpperCAmelCase : Union[str, Any] = (
{
'''feature-extraction''': BeitModel,
'''image-classification''': BeitForImageClassification,
'''image-segmentation''': BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
UpperCAmelCase : Any = False
UpperCAmelCase : Any = False
UpperCAmelCase : List[str] = False
def lowerCAmelCase_ ( self : List[str] ):
_A = BeitModelTester(self )
_A = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 )
def lowerCAmelCase_ ( self : Any ):
self.config_tester.run_common_tests()
@unittest.skip(reason='BEiT does not use inputs_embeds' )
def lowerCAmelCase_ ( self : str ):
pass
@require_torch_multi_gpu
@unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def lowerCAmelCase_ ( self : Dict ):
pass
def lowerCAmelCase_ ( self : List[str] ):
_A , _A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A = model_class(_UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_A = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A , _A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A = model_class(_UpperCAmelCase )
_A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A = [*signature.parameters.keys()]
_A = ['pixel_values']
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def lowerCAmelCase_ ( self : List[str] ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : Any ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : Tuple ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : Any ):
if not self.model_tester.is_training:
return
_A , _A = self.model_tester.prepare_config_and_inputs_for_common()
_A = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(_UpperCAmelCase ), BeitForMaskedImageModeling]:
continue
_A = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.train()
_A = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase )
_A = model(**_UpperCAmelCase ).loss
loss.backward()
def lowerCAmelCase_ ( self : Optional[int] ):
_A , _A = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
_A = False
_A = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(_UpperCAmelCase ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
_A = model_class(_UpperCAmelCase )
model.gradient_checkpointing_enable()
model.to(_UpperCAmelCase )
model.train()
_A = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase )
_A = model(**_UpperCAmelCase ).loss
loss.backward()
def lowerCAmelCase_ ( self : Any ):
_A , _A = self.model_tester.prepare_config_and_inputs_for_common()
_A = _config_zero_init(_UpperCAmelCase )
for model_class in self.all_model_classes:
_A = model_class(config=_UpperCAmelCase )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@slow
def lowerCAmelCase_ ( self : Optional[Any] ):
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A = BeitModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def _snake_case ( ) -> int:
'''simple docstring'''
_A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowerCAmelCase_ ( self : Optional[Any] ):
return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None
@slow
def lowerCAmelCase_ ( self : Any ):
_A = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(_UpperCAmelCase )
_A = self.default_image_processor
_A = prepare_img()
_A = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).pixel_values.to(_UpperCAmelCase )
# prepare bool_masked_pos
_A = torch.ones((1, 196) , dtype=torch.bool ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
_A = model(pixel_values=_UpperCAmelCase , bool_masked_pos=_UpperCAmelCase )
_A = outputs.logits
# verify the logits
_A = torch.Size((1, 196, 8_192) )
self.assertEqual(logits.shape , _UpperCAmelCase )
_A = torch.tensor(
[[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _UpperCAmelCase , atol=1E-2 ) )
@slow
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(_UpperCAmelCase )
_A = self.default_image_processor
_A = prepare_img()
_A = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
_A = model(**_UpperCAmelCase )
_A = outputs.logits
# verify the logits
_A = torch.Size((1, 1_000) )
self.assertEqual(logits.shape , _UpperCAmelCase )
_A = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
_A = 281
self.assertEqual(logits.argmax(-1 ).item() , _UpperCAmelCase )
@slow
def lowerCAmelCase_ ( self : Dict ):
_A = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to(
_UpperCAmelCase )
_A = self.default_image_processor
_A = prepare_img()
_A = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
_A = model(**_UpperCAmelCase )
_A = outputs.logits
# verify the logits
_A = torch.Size((1, 21_841) )
self.assertEqual(logits.shape , _UpperCAmelCase )
_A = torch.tensor([1.6881, -0.2787, 0.5901] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
_A = 2_396
self.assertEqual(logits.argmax(-1 ).item() , _UpperCAmelCase )
@slow
def lowerCAmelCase_ ( self : Dict ):
_A = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
_A = model.to(_UpperCAmelCase )
_A = BeitImageProcessor(do_resize=_UpperCAmelCase , size=640 , do_center_crop=_UpperCAmelCase )
_A = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' )
_A = Image.open(ds[0]['file'] )
_A = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
_A = model(**_UpperCAmelCase )
_A = outputs.logits
# verify the logits
_A = torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape , _UpperCAmelCase )
_A = version.parse(PIL.__version__ ) < version.parse('9.0.0' )
if is_pillow_less_than_a:
_A = torch.tensor(
[
[[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]],
[[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]],
[[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]],
] , device=_UpperCAmelCase , )
else:
_A = torch.tensor(
[
[[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]],
[[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]],
[[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]],
] , device=_UpperCAmelCase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
@slow
def lowerCAmelCase_ ( self : List[Any] ):
_A = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
_A = model.to(_UpperCAmelCase )
_A = BeitImageProcessor(do_resize=_UpperCAmelCase , size=640 , do_center_crop=_UpperCAmelCase )
_A = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' )
_A = Image.open(ds[0]['file'] )
_A = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
_A = model(**_UpperCAmelCase )
_A = outputs.logits.detach().cpu()
_A = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(500, 300)] )
_A = torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
_A = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase )
_A = torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
| 7 |
"""simple docstring"""
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
a = logging.get_logger(__name__)
a = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
a = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def _snake_case ( _snake_case : Optional[Any] ) -> str:
'''simple docstring'''
_A = torch.load(_snake_case , map_location='cpu' )
return sd
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : str , _snake_case : Tuple=rename_keys_prefix ) -> List[str]:
'''simple docstring'''
_A = OrderedDict()
_A = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
_A = key
for name_pair in rename_keys_prefix:
_A = new_key.replace(name_pair[0] , name_pair[1] )
_A = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
_A = new_d['cls.predictions.bias']
return new_d
@torch.no_grad()
def _snake_case ( _snake_case : List[str] , _snake_case : Dict ) -> Dict:
'''simple docstring'''
assert (
checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS
), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'''
# Get Config
if "pre" in checkpoint_path:
_A = 'pretraining'
if "vcr" in checkpoint_path:
_A = {'visual_embedding_dim': 5_12}
elif "vqa_advanced" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
elif "vqa" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
elif "nlvr" in checkpoint_path:
_A = {'visual_embedding_dim': 10_24}
else:
raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' )
else:
if "vcr" in checkpoint_path:
_A = {'visual_embedding_dim': 5_12}
_A = 'multichoice'
elif "vqa_advanced" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
_A = 'vqa_advanced'
elif "vqa" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48, 'num_labels': 31_29}
_A = 'vqa'
elif "nlvr" in checkpoint_path:
_A = {
'visual_embedding_dim': 10_24,
'num_labels': 2,
}
_A = 'nlvr'
_A = VisualBertConfig(**_snake_case )
# Load State Dict
_A = load_state_dict(_snake_case )
_A = get_new_dict(_snake_case , _snake_case )
if model_type == "pretraining":
_A = VisualBertForPreTraining(_snake_case )
elif model_type == "vqa":
_A = VisualBertForQuestionAnswering(_snake_case )
elif model_type == "nlvr":
_A = VisualBertForVisualReasoning(_snake_case )
elif model_type == "multichoice":
_A = VisualBertForMultipleChoice(_snake_case )
model.load_state_dict(_snake_case )
# Save Checkpoints
Path(_snake_case ).mkdir(exist_ok=_snake_case )
model.save_pretrained(_snake_case )
if __name__ == "__main__":
a = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
a = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 7 | 1 |
"""simple docstring"""
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
a = '''\
@inproceedings{pillutla-etal:mauve:neurips2021,
title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},
author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},
booktitle = {NeurIPS},
year = {2021}
}
'''
a = '''\
MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.
MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.
For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).
This metrics is a wrapper around the official implementation of MAUVE:
https://github.com/krishnap25/mauve
'''
a = '''
Calculates MAUVE scores between two lists of generated text and reference text.
Args:
predictions: list of generated text to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Optional Args:
num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer
pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1
kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9
kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5
kmeans_max_iter: maximum number of k-means iterations. Default 500
featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].
device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU
max_text_length: maximum number of tokens to consider. Default 1024
divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25
mauve_scaling_factor: "c" from the paper. Default 5.
verbose: If True (default), print running time updates
seed: random seed to initialize k-means cluster assignments.
Returns:
mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,
frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,
divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,
p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,
q_hist: same as above, but with q_text.
Examples:
>>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest
>>> import datasets
>>> mauve = datasets.load_metric(\'mauve\')
>>> predictions = ["hello there", "general kenobi"]
>>> references = ["hello there", "general kenobi"]
>>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP
>>> print(out.mauve) # doctest: +SKIP
1.0
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase_ ( datasets.Metric ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Optional[Any] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Value('string' , id='sequence' ),
} ) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[
'https://arxiv.org/abs/2102.01454',
'https://github.com/krishnap25/mauve',
] , )
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Optional[int]="auto" , _UpperCAmelCase : Optional[int]=-1 , _UpperCAmelCase : Optional[int]=0.9 , _UpperCAmelCase : int=5 , _UpperCAmelCase : int=500 , _UpperCAmelCase : int="gpt2-large" , _UpperCAmelCase : Any=-1 , _UpperCAmelCase : int=1_024 , _UpperCAmelCase : Tuple=25 , _UpperCAmelCase : str=5 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Any=25 , ):
_A = compute_mauve(
p_text=_UpperCAmelCase , q_text=_UpperCAmelCase , p_features=_UpperCAmelCase , q_features=_UpperCAmelCase , p_tokens=_UpperCAmelCase , q_tokens=_UpperCAmelCase , num_buckets=_UpperCAmelCase , pca_max_data=_UpperCAmelCase , kmeans_explained_var=_UpperCAmelCase , kmeans_num_redo=_UpperCAmelCase , kmeans_max_iter=_UpperCAmelCase , featurize_model_name=_UpperCAmelCase , device_id=_UpperCAmelCase , max_text_length=_UpperCAmelCase , divergence_curve_discretization_size=_UpperCAmelCase , mauve_scaling_factor=_UpperCAmelCase , verbose=_UpperCAmelCase , seed=_UpperCAmelCase , )
return out
| 7 |
"""simple docstring"""
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def _snake_case ( _snake_case : Dict ) -> Optional[Any]:
'''simple docstring'''
for param in module.parameters():
_A = False
def _snake_case ( ) -> Tuple:
'''simple docstring'''
_A = 'cuda' if torch.cuda.is_available() else 'cpu'
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
_A = 'mps'
if device == "mps":
print(
'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch'
' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues'
' with generations.' )
return device
def _snake_case ( _snake_case : Dict ) -> Optional[Any]:
'''simple docstring'''
_A = plt.imshow(_snake_case )
fig.axes.get_xaxis().set_visible(_snake_case )
fig.axes.get_yaxis().set_visible(_snake_case )
plt.show()
def _snake_case ( ) -> Optional[Any]:
'''simple docstring'''
_A = datetime.now()
_A = current_time.strftime('%H:%M:%S' )
return timestamp
| 7 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a = {
'''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
'''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TimesformerModel''',
'''TimesformerForVideoClassification''',
'''TimesformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_timesformer import (
TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimesformerForVideoClassification,
TimesformerModel,
TimesformerPreTrainedModel,
)
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 7 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Any = ['''image_processor''', '''tokenizer''']
UpperCAmelCase : Optional[int] = '''ViTImageProcessor'''
UpperCAmelCase : int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''')
def __init__( self : Tuple , _UpperCAmelCase : int=None , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : Dict ):
_A = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _UpperCAmelCase , )
_A = kwargs.pop('feature_extractor' )
_A = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __call__( self : Optional[Any] , _UpperCAmelCase : int=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Union[str, Any] ):
if text is None and visual_prompt is None and images is None:
raise ValueError('You have to specify either text, visual prompt or images.' )
if text is not None and visual_prompt is not None:
raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' )
if text is not None:
_A = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if visual_prompt is not None:
_A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if images is not None:
_A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if visual_prompt is not None and images is not None:
_A = {
'pixel_values': image_features.pixel_values,
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
elif text is not None and images is not None:
_A = image_features.pixel_values
return encoding
elif text is not None:
return encoding
elif visual_prompt is not None:
_A = {
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
else:
return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase )
def lowerCAmelCase_ ( self : str , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Union[str, Any] ):
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def lowerCAmelCase_ ( self : Union[str, Any] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ):
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
def lowerCAmelCase_ ( self : Dict ):
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , )
return self.image_processor_class
@property
def lowerCAmelCase_ ( self : Tuple ):
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , )
return self.image_processor
| 7 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''',
# See all PEGASUS models at https://huggingface.co/models?filter=pegasus
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Dict = '''pegasus'''
UpperCAmelCase : Any = ['''past_key_values''']
UpperCAmelCase : Tuple = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self : Optional[Any] , _UpperCAmelCase : List[Any]=50_265 , _UpperCAmelCase : Optional[int]=1_024 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Optional[Any]=4_096 , _UpperCAmelCase : str=16 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : List[str]=4_096 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : Any=1_024 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : List[Any]=0.0 , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : Any=1 , _UpperCAmelCase : Tuple=1 , **_UpperCAmelCase : str , ):
_A = vocab_size
_A = max_position_embeddings
_A = d_model
_A = encoder_ffn_dim
_A = encoder_layers
_A = encoder_attention_heads
_A = decoder_ffn_dim
_A = decoder_layers
_A = decoder_attention_heads
_A = dropout
_A = attention_dropout
_A = activation_dropout
_A = activation_function
_A = init_std
_A = encoder_layerdrop
_A = decoder_layerdrop
_A = use_cache
_A = encoder_layers
_A = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , forced_eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
@property
def lowerCAmelCase_ ( self : Optional[int] ):
return self.encoder_attention_heads
@property
def lowerCAmelCase_ ( self : Optional[int] ):
return self.d_model
| 7 |
"""simple docstring"""
import math
from datetime import datetime, timedelta
def _snake_case ( _snake_case : int ) -> datetime:
'''simple docstring'''
_A = year % 19
_A = year % 4
_A = year % 7
_A = math.floor(year / 1_00 )
_A = math.floor((13 + 8 * leap_day_inhibits) / 25 )
_A = leap_day_inhibits / 4
_A = (
15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 30
_A = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
_A = (19 * metonic_cycle + secular_moon_shift) % 30
# PHM -> Paschal Full Moon
_A = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 29 and days_from_phm_to_sunday == 6:
return datetime(_snake_case , 4 , 19 )
elif days_to_add == 28 and days_from_phm_to_sunday == 6:
return datetime(_snake_case , 4 , 18 )
else:
return datetime(_snake_case , 3 , 22 ) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday ) )
if __name__ == "__main__":
for year in (1_994, 2_000, 2_010, 2_021, 2_023):
a = '''will be''' if year > datetime.now().year else '''was'''
print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
| 7 | 1 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( _snake_case : float , _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
if days_between_payments <= 0:
raise ValueError('days_between_payments must be > 0' )
if daily_interest_rate < 0:
raise ValueError('daily_interest_rate must be >= 0' )
if principal <= 0:
raise ValueError('principal must be > 0' )
return principal * daily_interest_rate * days_between_payments
def _snake_case ( _snake_case : float , _snake_case : float , _snake_case : float , ) -> float:
'''simple docstring'''
if number_of_compounding_periods <= 0:
raise ValueError('number_of_compounding_periods must be > 0' )
if nominal_annual_interest_rate_percentage < 0:
raise ValueError('nominal_annual_interest_rate_percentage must be >= 0' )
if principal <= 0:
raise ValueError('principal must be > 0' )
return principal * (
(1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods
- 1
)
def _snake_case ( _snake_case : float , _snake_case : float , _snake_case : float , ) -> float:
'''simple docstring'''
if number_of_years <= 0:
raise ValueError('number_of_years must be > 0' )
if nominal_annual_percentage_rate < 0:
raise ValueError('nominal_annual_percentage_rate must be >= 0' )
if principal <= 0:
raise ValueError('principal must be > 0' )
return compound_interest(
_snake_case , nominal_annual_percentage_rate / 3_65 , number_of_years * 3_65 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''gpt_bigcode'''
UpperCAmelCase : str = ['''past_key_values''']
UpperCAmelCase : Dict = {
'''hidden_size''': '''n_embd''',
'''max_position_embeddings''': '''n_positions''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Tuple , _UpperCAmelCase : Dict=50_257 , _UpperCAmelCase : List[Any]=1_024 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : str="gelu_pytorch_tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[Any]=50_256 , _UpperCAmelCase : Dict=50_256 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Any=True , **_UpperCAmelCase : Any , ):
_A = vocab_size
_A = n_positions
_A = n_embd
_A = n_layer
_A = n_head
_A = n_inner
_A = activation_function
_A = resid_pdrop
_A = embd_pdrop
_A = attn_pdrop
_A = layer_norm_epsilon
_A = initializer_range
_A = scale_attn_weights
_A = use_cache
_A = attention_softmax_in_fpaa
_A = scale_attention_softmax_in_fpaa
_A = multi_query
_A = bos_token_id
_A = eos_token_id
super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
| 7 | 1 |
"""simple docstring"""
def _snake_case ( _snake_case : list ) -> list:
'''simple docstring'''
_A = False
while is_sorted is False: # Until all the indices are traversed keep looping
_A = True
for i in range(0 , len(_snake_case ) - 1 , 2 ): # iterating over all even indices
if input_list[i] > input_list[i + 1]:
_A , _A = input_list[i + 1], input_list[i]
# swapping if elements not in order
_A = False
for i in range(1 , len(_snake_case ) - 1 , 2 ): # iterating over all odd indices
if input_list[i] > input_list[i + 1]:
_A , _A = input_list[i + 1], input_list[i]
# swapping if elements not in order
_A = False
return input_list
if __name__ == "__main__":
print('''Enter list to be sorted''')
a = [int(x) for x in input().split()]
# inputing elements of the list in one line
a = odd_even_sort(input_list)
print('''The sorted list is''')
print(sorted_list)
| 7 |
"""simple docstring"""
def _snake_case ( _snake_case : str ) -> str:
'''simple docstring'''
return " ".join(
''.join(word[::-1] ) if len(_snake_case ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words('''Hey wollef sroirraw'''))
| 7 | 1 |
"""simple docstring"""
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Dict ):
_A = SMALL_MODEL_IDENTIFIER
_A = 'pt'
_A = 'tf'
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Tuple ):
_A = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : int ):
_A = TFAutoModel.from_pretrained(self.test_model , from_pt=_UpperCAmelCase )
model_tf.save_pretrained(_UpperCAmelCase )
def lowerCAmelCase_ ( self : Tuple ):
_A = 'mock_framework'
# Framework provided - return whatever the user provides
_A = FeaturesManager.determine_framework(self.test_model , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(_UpperCAmelCase )
_A = FeaturesManager.determine_framework(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(_UpperCAmelCase )
_A = FeaturesManager.determine_framework(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
def lowerCAmelCase_ ( self : Union[str, Any] ):
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(_UpperCAmelCase )
_A = FeaturesManager.determine_framework(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(_UpperCAmelCase )
_A = FeaturesManager.determine_framework(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(_UpperCAmelCase ):
_A = FeaturesManager.determine_framework(_UpperCAmelCase )
def lowerCAmelCase_ ( self : Tuple ):
_A = MagicMock(return_value=_UpperCAmelCase )
with patch('transformers.onnx.features.is_tf_available' , _UpperCAmelCase ):
_A = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(_UpperCAmelCase , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
_A = MagicMock(return_value=_UpperCAmelCase )
with patch('transformers.onnx.features.is_torch_available' , _UpperCAmelCase ):
_A = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(_UpperCAmelCase , self.framework_tf )
# Both in environment -> use PyTorch
_A = MagicMock(return_value=_UpperCAmelCase )
_A = MagicMock(return_value=_UpperCAmelCase )
with patch('transformers.onnx.features.is_tf_available' , _UpperCAmelCase ), patch(
'transformers.onnx.features.is_torch_available' , _UpperCAmelCase ):
_A = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(_UpperCAmelCase , self.framework_pt )
# Both not in environment -> raise error
_A = MagicMock(return_value=_UpperCAmelCase )
_A = MagicMock(return_value=_UpperCAmelCase )
with patch('transformers.onnx.features.is_tf_available' , _UpperCAmelCase ), patch(
'transformers.onnx.features.is_torch_available' , _UpperCAmelCase ):
with self.assertRaises(_UpperCAmelCase ):
_A = FeaturesManager.determine_framework(self.test_model )
| 7 |
"""simple docstring"""
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[int] = (KDPMaDiscreteScheduler,)
UpperCAmelCase : Any = 10
def lowerCAmelCase_ ( self : Dict , **_UpperCAmelCase : Optional[Any] ):
_A = {
'num_train_timesteps': 1_100,
'beta_start': 0.0001,
'beta_end': 0.02,
'beta_schedule': 'linear',
}
config.update(**_UpperCAmelCase )
return config
def lowerCAmelCase_ ( self : Any ):
for timesteps in [10, 50, 100, 1_000]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict ):
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Tuple ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[int] ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config(prediction_type='v_prediction' )
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
_A = self.dummy_model()
_A = self.dummy_sample_deter * scheduler.init_noise_sigma
_A = sample.to(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = output.prev_sample
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.6_9_3_4E-0_7 ) < 1E-2
assert abs(result_mean.item() - 6.1_1_1_2E-1_0 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2E-0_7 ) < 1E-2
assert abs(result_mean.item() - 0.0002 ) < 1E-3
def lowerCAmelCase_ ( self : Optional[Any] ):
if torch_device == "mps":
return
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config()
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
_A = self.dummy_model()
_A = self.dummy_sample_deter * scheduler.init_noise_sigma
_A = sample.to(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = output.prev_sample
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
def lowerCAmelCase_ ( self : Any ):
if torch_device == "mps":
return
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config()
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase )
_A = self.dummy_model()
_A = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
_A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = output.prev_sample
_A = torch.sum(torch.abs(_UpperCAmelCase ) )
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
if str(_UpperCAmelCase ).startswith('cpu' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
| 7 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import _LazyModule
a = {'''processing_wav2vec2_with_lm''': ['''Wav2Vec2ProcessorWithLM''']}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 7 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any]=10 ) -> Optional[int]:
'''simple docstring'''
_A = []
for _ in range(_snake_case ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def _snake_case ( _snake_case : Optional[Any] , _snake_case : Union[str, Any]=10 ) -> List[str]:
'''simple docstring'''
_A = []
for step in range(_snake_case ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
_A = os.path.join(_snake_case , 'schedule.bin' )
torch.save(scheduler.state_dict() , _snake_case )
_A = torch.load(_snake_case )
scheduler.load_state_dict(_snake_case )
return lrs
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ):
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Any ):
_A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase )
_A = torch.tensor([0.4, 0.2, -0.5] )
_A = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_A = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
_A = criterion(_UpperCAmelCase , _UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def lowerCAmelCase_ ( self : int ):
_A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase )
_A = torch.tensor([0.4, 0.2, -0.5] )
_A = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_A = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-3_0, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_UpperCAmelCase , weight_decay=0.0 , relative_step=_UpperCAmelCase , scale_parameter=_UpperCAmelCase , warmup_init=_UpperCAmelCase , )
for _ in range(1_000 ):
_A = criterion(_UpperCAmelCase , _UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = nn.Linear(50 , 50 ) if is_torch_available() else None
UpperCAmelCase : Tuple = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None
UpperCAmelCase : Dict = 10
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]=None ):
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase , msg=_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] ):
_A = {'num_warmup_steps': 2, 'num_training_steps': 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
_A = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{'num_warmup_steps': 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, 'num_cycles': 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, 'power': 2.0, 'lr_end': 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{'num_warmup_steps': 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
_A , _A = data
_A = scheduler_func(self.optimizer , **_UpperCAmelCase )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
_A = unwrap_schedule(_UpperCAmelCase , self.num_steps )
self.assertListAlmostEqual(
_UpperCAmelCase , _UpperCAmelCase , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , )
_A = scheduler_func(self.optimizer , **_UpperCAmelCase )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(_UpperCAmelCase ) # wrap to test picklability of the schedule
_A = unwrap_and_save_reload_schedule(_UpperCAmelCase , self.num_steps )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase , msg=F'''failed for {scheduler_func} in save and reload''' )
class lowercase_ :
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int] ):
_A = fn
def __call__( self : Tuple , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : List[str] ):
return self.fn(*_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Any ):
_A = list(map(self , scheduler.lr_lambdas ) )
| 7 | 1 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Any = ['''image_processor''', '''tokenizer''']
UpperCAmelCase : Optional[int] = '''ViTImageProcessor'''
UpperCAmelCase : int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''')
def __init__( self : Tuple , _UpperCAmelCase : int=None , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : Dict ):
_A = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _UpperCAmelCase , )
_A = kwargs.pop('feature_extractor' )
_A = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __call__( self : Optional[Any] , _UpperCAmelCase : int=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Union[str, Any] ):
if text is None and visual_prompt is None and images is None:
raise ValueError('You have to specify either text, visual prompt or images.' )
if text is not None and visual_prompt is not None:
raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' )
if text is not None:
_A = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if visual_prompt is not None:
_A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if images is not None:
_A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if visual_prompt is not None and images is not None:
_A = {
'pixel_values': image_features.pixel_values,
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
elif text is not None and images is not None:
_A = image_features.pixel_values
return encoding
elif text is not None:
return encoding
elif visual_prompt is not None:
_A = {
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
else:
return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase )
def lowerCAmelCase_ ( self : str , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Union[str, Any] ):
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def lowerCAmelCase_ ( self : Union[str, Any] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ):
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
def lowerCAmelCase_ ( self : Dict ):
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , )
return self.image_processor_class
@property
def lowerCAmelCase_ ( self : Tuple ):
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , )
return self.image_processor
| 7 |
"""simple docstring"""
import math
def _snake_case ( _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
if (
not isinstance(_snake_case , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('power_factor must be a valid float value between -1 and 1.' )
return apparent_power * power_factor
def _snake_case ( _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
if (
not isinstance(_snake_case , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('power_factor must be a valid float value between -1 and 1.' )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7 | 1 |
"""simple docstring"""
def _snake_case ( _snake_case : int = 10 ) -> str:
'''simple docstring'''
if not isinstance(_snake_case , _snake_case ) or n < 0:
raise ValueError('Invalid input' )
_A = 10**n
_A = 2_84_33 * (pow(2 , 7_83_04_57 , _snake_case )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(F'''{solution(10) = }''')
| 7 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''',
'''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''',
'''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''',
'''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''',
'''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''',
'''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''',
'''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''',
'''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''',
'''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = '''xmod'''
def __init__( self : str , _UpperCAmelCase : Optional[Any]=30_522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Dict=3_072 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Any=1E-1_2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Tuple=("en_XX",) , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Optional[Any] , ):
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
_A = vocab_size
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = hidden_act
_A = intermediate_size
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = type_vocab_size
_A = initializer_range
_A = layer_norm_eps
_A = position_embedding_type
_A = use_cache
_A = classifier_dropout
_A = pre_norm
_A = adapter_reduction_factor
_A = adapter_layer_norm
_A = adapter_reuse_layer_norm
_A = ln_before_adapter
_A = list(_UpperCAmelCase )
_A = default_language
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
@property
def lowerCAmelCase_ ( self : Dict ):
if self.task == "multiple-choice":
_A = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_A = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 7 | 1 |
"""simple docstring"""
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
'files' , [
['full:README.md', 'dataset_infos.json'],
['empty:README.md', 'dataset_infos.json'],
['dataset_infos.json'],
['full:README.md'],
] , )
def _snake_case ( _snake_case : List[Any] , _snake_case : Tuple ) -> Tuple:
'''simple docstring'''
_A = tmp_path_factory.mktemp('dset_infos_dir' )
if "full:README.md" in files:
with open(dataset_infos_dir / 'README.md' , 'w' ) as f:
f.write('---\ndataset_info:\n dataset_size: 42\n---' )
if "empty:README.md" in files:
with open(dataset_infos_dir / 'README.md' , 'w' ) as f:
f.write('' )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f:
f.write('{"default": {"dataset_size": 42}}' )
_A = DatasetInfosDict.from_directory(_snake_case )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 42
@pytest.mark.parametrize(
'dataset_info' , [
DatasetInfo(),
DatasetInfo(
description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ),
] , )
def _snake_case ( _snake_case : Optional[Any] , _snake_case : DatasetInfo ) -> Optional[Any]:
'''simple docstring'''
_A = str(_snake_case )
dataset_info.write_to_directory(_snake_case )
_A = DatasetInfo.from_directory(_snake_case )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(_snake_case , 'dataset_info.json' ) )
def _snake_case ( ) -> Dict:
'''simple docstring'''
_A = DatasetInfo(
description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , )
_A = dataset_info._to_yaml_dict()
assert sorted(_snake_case ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) )
_A = yaml.safe_dump(_snake_case )
_A = yaml.safe_load(_snake_case )
assert dataset_info_yaml_dict == reloaded
def _snake_case ( ) -> str:
'''simple docstring'''
_A = DatasetInfo()
_A = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
'dataset_infos_dict' , [
DatasetInfosDict(),
DatasetInfosDict({'default': DatasetInfo()} ),
DatasetInfosDict({'my_config_name': DatasetInfo()} ),
DatasetInfosDict(
{
'default': DatasetInfo(
description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , )
} ),
DatasetInfosDict(
{
'v1': DatasetInfo(dataset_size=42 ),
'v2': DatasetInfo(dataset_size=13_37 ),
} ),
] , )
def _snake_case ( _snake_case : Dict , _snake_case : DatasetInfosDict ) -> Union[str, Any]:
'''simple docstring'''
_A = str(_snake_case )
dataset_infos_dict.write_to_directory(_snake_case )
_A = DatasetInfosDict.from_directory(_snake_case )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
_A = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
_A = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(_snake_case , 'README.md' ) )
| 7 |
"""simple docstring"""
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
a = logging.get_logger(__name__)
a = {
'''tensor(bool)''': np.bool_,
'''tensor(int8)''': np.inta,
'''tensor(uint8)''': np.uinta,
'''tensor(int16)''': np.intaa,
'''tensor(uint16)''': np.uintaa,
'''tensor(int32)''': np.intaa,
'''tensor(uint32)''': np.uintaa,
'''tensor(int64)''': np.intaa,
'''tensor(uint64)''': np.uintaa,
'''tensor(float16)''': np.floataa,
'''tensor(float)''': np.floataa,
'''tensor(double)''': np.floataa,
}
class lowercase_ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : Optional[Any] ):
logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' )
_A = model
_A = kwargs.get('model_save_dir' , _UpperCAmelCase )
_A = kwargs.get('latest_model_name' , _UpperCAmelCase )
def __call__( self : Dict , **_UpperCAmelCase : List[Any] ):
_A = {k: np.array(_UpperCAmelCase ) for k, v in kwargs.items()}
return self.model.run(_UpperCAmelCase , _UpperCAmelCase )
@staticmethod
def lowerCAmelCase_ ( _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=None ):
if provider is None:
logger.info('No onnxruntime provider specified, using CPUExecutionProvider' )
_A = 'CPUExecutionProvider'
return ort.InferenceSession(_UpperCAmelCase , providers=[provider] , sess_options=_UpperCAmelCase )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : List[Any] ):
_A = file_name if file_name is not None else ONNX_WEIGHTS_NAME
_A = self.model_save_dir.joinpath(self.latest_model_name )
_A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase )
try:
shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase )
except shutil.SameFileError:
pass
# copy external weights (for models >2GB)
_A = self.model_save_dir.joinpath(_UpperCAmelCase )
if src_path.exists():
_A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase )
try:
shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase )
except shutil.SameFileError:
pass
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] , ):
if os.path.isfile(_UpperCAmelCase ):
logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' )
return
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase )
# saving model weights/files
self._save_pretrained(_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( cls : Tuple , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[Union[bool, str, None]] = None , _UpperCAmelCase : Optional[Union[str, None]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional["ort.SessionOptions"] = None , **_UpperCAmelCase : Union[str, Any] , ):
_A = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(_UpperCAmelCase ):
_A = OnnxRuntimeModel.load_model(
os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase )
_A = Path(_UpperCAmelCase )
# load model from hub
else:
# download model
_A = hf_hub_download(
repo_id=_UpperCAmelCase , filename=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , )
_A = Path(_UpperCAmelCase ).parent
_A = Path(_UpperCAmelCase ).name
_A = OnnxRuntimeModel.load_model(_UpperCAmelCase , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase )
return cls(model=_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( cls : List[Any] , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : Tuple , ):
_A = None
if len(str(_UpperCAmelCase ).split('@' ) ) == 2:
_A , _A = model_id.split('@' )
return cls._from_pretrained(
model_id=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , **_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a = {
'''configuration_trajectory_transformer''': [
'''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''TrajectoryTransformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
'''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TrajectoryTransformerModel''',
'''TrajectoryTransformerPreTrainedModel''',
'''load_tf_weights_in_trajectory_transformer''',
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json'''
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : str = '''speech_to_text'''
UpperCAmelCase : List[Any] = ['''past_key_values''']
UpperCAmelCase : Tuple = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self : int , _UpperCAmelCase : Union[str, Any]=10_000 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2_048 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Tuple=2_048 , _UpperCAmelCase : str=4 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]="relu" , _UpperCAmelCase : List[Any]=256 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : List[str]=6_000 , _UpperCAmelCase : Optional[Any]=1_024 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Any=(5, 5) , _UpperCAmelCase : int=1_024 , _UpperCAmelCase : str=80 , _UpperCAmelCase : Any=1 , **_UpperCAmelCase : Tuple , ):
_A = vocab_size
_A = d_model
_A = encoder_ffn_dim
_A = encoder_layers
_A = encoder_attention_heads
_A = decoder_ffn_dim
_A = decoder_layers
_A = decoder_attention_heads
_A = dropout
_A = attention_dropout
_A = activation_dropout
_A = activation_function
_A = init_std
_A = encoder_layerdrop
_A = decoder_layerdrop
_A = use_cache
_A = encoder_layers
_A = scale_embedding # scale factor will be sqrt(d_model) if True
_A = max_source_positions
_A = max_target_positions
_A = num_conv_layers
_A = list(_UpperCAmelCase )
_A = conv_channels
_A = input_feat_per_channel
_A = input_channels
if len(self.conv_kernel_sizes ) != self.num_conv_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` '
F'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, '''
F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
AutoConfig,
AutoFeatureExtractor,
WavaVecaConfig,
WavaVecaFeatureExtractor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils'''))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
a = get_tests_dir('''fixtures''')
a = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''')
a = get_tests_dir('''fixtures/dummy-config.json''')
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = 0
def lowerCAmelCase_ ( self : Any ):
_A = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
def lowerCAmelCase_ ( self : int ):
_A = AutoFeatureExtractor.from_pretrained(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
def lowerCAmelCase_ ( self : Tuple ):
with tempfile.TemporaryDirectory() as tmpdirname:
_A = WavaVecaConfig()
# remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally
_A = AutoFeatureExtractor.from_pretrained(_UpperCAmelCase ).to_dict()
config_dict.pop('feature_extractor_type' )
_A = WavaVecaFeatureExtractor(**_UpperCAmelCase )
# save in new folder
model_config.save_pretrained(_UpperCAmelCase )
config.save_pretrained(_UpperCAmelCase )
_A = AutoFeatureExtractor.from_pretrained(_UpperCAmelCase )
# make sure private variable is not incorrectly saved
_A = json.loads(config.to_json_string() )
self.assertTrue('_processor_class' not in dict_as_saved )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = AutoFeatureExtractor.from_pretrained(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
def lowerCAmelCase_ ( self : int ):
with self.assertRaisesRegex(
_UpperCAmelCase , 'bert-base is not a local folder and is not a valid model identifier' ):
_A = AutoFeatureExtractor.from_pretrained('bert-base' )
def lowerCAmelCase_ ( self : List[str] ):
with self.assertRaisesRegex(
_UpperCAmelCase , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ):
_A = AutoFeatureExtractor.from_pretrained(_UpperCAmelCase , revision='aaaaaa' )
def lowerCAmelCase_ ( self : str ):
with self.assertRaisesRegex(
_UpperCAmelCase , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ):
_A = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' )
def lowerCAmelCase_ ( self : Any ):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(_UpperCAmelCase ):
_A = AutoFeatureExtractor.from_pretrained(
'hf-internal-testing/test_dynamic_feature_extractor' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(_UpperCAmelCase ):
_A = AutoFeatureExtractor.from_pretrained(
'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_UpperCAmelCase )
_A = AutoFeatureExtractor.from_pretrained(
'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_UpperCAmelCase )
self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' )
# Test feature extractor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(_UpperCAmelCase )
_A = AutoFeatureExtractor.from_pretrained(_UpperCAmelCase , trust_remote_code=_UpperCAmelCase )
self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' )
def lowerCAmelCase_ ( self : List[Any] ):
try:
AutoConfig.register('custom' , _UpperCAmelCase )
AutoFeatureExtractor.register(_UpperCAmelCase , _UpperCAmelCase )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(_UpperCAmelCase ):
AutoFeatureExtractor.register(_UpperCAmelCase , _UpperCAmelCase )
# Now that the config is registered, it can be used as any other config with the auto-API
_A = CustomFeatureExtractor.from_pretrained(_UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(_UpperCAmelCase )
_A = AutoFeatureExtractor.from_pretrained(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
def lowerCAmelCase_ ( self : Optional[Any] ):
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = True
try:
AutoConfig.register('custom' , _UpperCAmelCase )
AutoFeatureExtractor.register(_UpperCAmelCase , _UpperCAmelCase )
# If remote code is not set, the default is to use local
_A = AutoFeatureExtractor.from_pretrained(
'hf-internal-testing/test_dynamic_feature_extractor' )
self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' )
self.assertTrue(feature_extractor.is_local )
# If remote code is disabled, we load the local one.
_A = AutoFeatureExtractor.from_pretrained(
'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_UpperCAmelCase )
self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' )
self.assertTrue(feature_extractor.is_local )
# If remote is enabled, we load from the Hub
_A = AutoFeatureExtractor.from_pretrained(
'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_UpperCAmelCase )
self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' )
self.assertTrue(not hasattr(_UpperCAmelCase , 'is_local' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
| 7 |
"""simple docstring"""
from manim import *
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = Rectangle(height=0.5 , width=0.5 )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_A = Rectangle(height=0.25 , width=0.25 )
_A = [mem.copy() for i in range(6 )]
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('CPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(4 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('GPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
gpu.move_to([-1, -1, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Model' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
model.move_to([3, -1.0, 0] )
self.add(_UpperCAmelCase )
_A = []
_A = []
for i, rect in enumerate(_UpperCAmelCase ):
_A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 )
target.move_to(_UpperCAmelCase )
model_arr.append(_UpperCAmelCase )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(_UpperCAmelCase )
self.add(*_UpperCAmelCase , *_UpperCAmelCase )
_A = [meta_mem.copy() for i in range(6 )]
_A = [meta_mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Disk' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
disk.move_to([-4, -1.25, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_A = MarkupText(
F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = MarkupText(
F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , )
blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(_UpperCAmelCase )
_A = MarkupText(
F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase ) )
_A = Square(0.3 )
input.set_fill(_UpperCAmelCase , opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 )
self.play(Write(_UpperCAmelCase ) )
input.generate_target()
input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 )
self.play(MoveToTarget(_UpperCAmelCase ) )
self.play(FadeOut(_UpperCAmelCase ) )
_A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 )
a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
_A = MarkupText(
F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) )
_A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02}
self.play(
Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[0] ) )
_A = a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
_A = AnimationGroup(
FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 )
self.play(_UpperCAmelCase )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
_A = 0.7
self.play(
Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , )
else:
self.play(
MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , )
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 )
self.play(
Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[i] ) )
_A = a_c
_A = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 )
self.play(
FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , )
_A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) )
self.wait()
| 7 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available
a = {'''tokenization_herbert''': ['''HerbertTokenizer''']}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ['''HerbertTokenizerFast''']
if TYPE_CHECKING:
from .tokenization_herbert import HerbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_herbert_fast import HerbertTokenizerFast
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 7 |
"""simple docstring"""
def _snake_case ( _snake_case : int , _snake_case : int ) -> int:
'''simple docstring'''
return int((input_a, input_a).count(1 ) != 0 )
def _snake_case ( ) -> None:
'''simple docstring'''
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 7 | 1 |
"""simple docstring"""
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
a = logging.get_logger(__name__)
a = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
a = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def _snake_case ( _snake_case : Optional[Any] ) -> str:
'''simple docstring'''
_A = torch.load(_snake_case , map_location='cpu' )
return sd
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : str , _snake_case : Tuple=rename_keys_prefix ) -> List[str]:
'''simple docstring'''
_A = OrderedDict()
_A = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
_A = key
for name_pair in rename_keys_prefix:
_A = new_key.replace(name_pair[0] , name_pair[1] )
_A = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
_A = new_d['cls.predictions.bias']
return new_d
@torch.no_grad()
def _snake_case ( _snake_case : List[str] , _snake_case : Dict ) -> Dict:
'''simple docstring'''
assert (
checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS
), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'''
# Get Config
if "pre" in checkpoint_path:
_A = 'pretraining'
if "vcr" in checkpoint_path:
_A = {'visual_embedding_dim': 5_12}
elif "vqa_advanced" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
elif "vqa" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
elif "nlvr" in checkpoint_path:
_A = {'visual_embedding_dim': 10_24}
else:
raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' )
else:
if "vcr" in checkpoint_path:
_A = {'visual_embedding_dim': 5_12}
_A = 'multichoice'
elif "vqa_advanced" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
_A = 'vqa_advanced'
elif "vqa" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48, 'num_labels': 31_29}
_A = 'vqa'
elif "nlvr" in checkpoint_path:
_A = {
'visual_embedding_dim': 10_24,
'num_labels': 2,
}
_A = 'nlvr'
_A = VisualBertConfig(**_snake_case )
# Load State Dict
_A = load_state_dict(_snake_case )
_A = get_new_dict(_snake_case , _snake_case )
if model_type == "pretraining":
_A = VisualBertForPreTraining(_snake_case )
elif model_type == "vqa":
_A = VisualBertForQuestionAnswering(_snake_case )
elif model_type == "nlvr":
_A = VisualBertForVisualReasoning(_snake_case )
elif model_type == "multichoice":
_A = VisualBertForMultipleChoice(_snake_case )
model.load_state_dict(_snake_case )
# Save Checkpoints
Path(_snake_case ).mkdir(exist_ok=_snake_case )
model.save_pretrained(_snake_case )
if __name__ == "__main__":
a = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
a = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 7 |
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
a = logging.getLogger(__name__)
@dataclass
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Optional[float] = field(
default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} )
UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''Whether to SortishSamler or not.'''} )
UpperCAmelCase : bool = field(
default=__lowerCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} )
UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''whether to use adafactor'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(default=__lowerCAmelCase , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[float] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} )
UpperCAmelCase : Optional[str] = field(
default='''linear''' , metadata={'''help''': f'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
| 7 | 1 |
"""simple docstring"""
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import evaluate
import numpy as np
import torch
from datasets import load_dataset
from PIL import Image
from torchvision.transforms import (
CenterCrop,
Compose,
Normalize,
RandomHorizontalFlip,
RandomResizedCrop,
Resize,
ToTensor,
)
import transformers
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
AutoConfig,
AutoImageProcessor,
AutoModelForImageClassification,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
a = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-classification/requirements.txt''')
a = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys())
a = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
def _snake_case ( _snake_case : str ) -> List[Any]:
'''simple docstring'''
with open(_snake_case , 'rb' ) as f:
_A = Image.open(_snake_case )
return im.convert('RGB' )
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={
'''help''': '''Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).'''
} , )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} )
UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the training data.'''} )
UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the validation data.'''} )
UpperCAmelCase : Optional[float] = field(
default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} )
UpperCAmelCase : Optional[int] = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
UpperCAmelCase : Optional[int] = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
def lowerCAmelCase_ ( self : Dict ):
if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None):
raise ValueError(
'You must specify either a dataset name from the hub or a train and/or validation directory.' )
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : str = field(
default='''google/vit-base-patch16-224-in21k''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(__lowerCAmelCase )} , )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} )
UpperCAmelCase : str = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
UpperCAmelCase : str = field(default=__lowerCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} )
UpperCAmelCase : bool = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
UpperCAmelCase : bool = field(
default=__lowerCAmelCase , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , )
def _snake_case ( _snake_case : str ) -> Union[str, Any]:
'''simple docstring'''
_A = torch.stack([example['pixel_values'] for example in examples] )
_A = torch.tensor([example['labels'] for example in examples] )
return {"pixel_values": pixel_values, "labels": labels}
def _snake_case ( ) -> str:
'''simple docstring'''
_A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_A , _A , _A = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('run_image_classification' , _snake_case , _snake_case )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_A = training_args.get_process_log_level()
logger.setLevel(_snake_case )
transformers.utils.logging.set_verbosity(_snake_case )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(F'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
_A = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_A = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Initialize our dataset and prepare it for the 'image-classification' task.
if data_args.dataset_name is not None:
_A = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='image-classification' , use_auth_token=True if model_args.use_auth_token else None , )
else:
_A = {}
if data_args.train_dir is not None:
_A = os.path.join(data_args.train_dir , '**' )
if data_args.validation_dir is not None:
_A = os.path.join(data_args.validation_dir , '**' )
_A = load_dataset(
'imagefolder' , data_files=_snake_case , cache_dir=model_args.cache_dir , task='image-classification' , )
# If we don't have a validation split, split off a percentage of train as validation.
_A = None if 'validation' in dataset.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split , _snake_case ) and data_args.train_val_split > 0.0:
_A = dataset['train'].train_test_split(data_args.train_val_split )
_A = split['train']
_A = split['test']
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
_A = dataset['train'].features['labels'].names
_A , _A = {}, {}
for i, label in enumerate(_snake_case ):
_A = str(_snake_case )
_A = label
# Load the accuracy metric from the datasets package
_A = evaluate.load('accuracy' )
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(_snake_case : Optional[Any] ):
return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids )
_A = AutoConfig.from_pretrained(
model_args.config_name or model_args.model_name_or_path , num_labels=len(_snake_case ) , labelaid=_snake_case , idalabel=_snake_case , finetuning_task='image-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
_A = AutoModelForImageClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
_A = AutoImageProcessor.from_pretrained(
model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Define torchvision transforms to be applied to each image.
if "shortest_edge" in image_processor.size:
_A = image_processor.size['shortest_edge']
else:
_A = (image_processor.size['height'], image_processor.size['width'])
_A = Normalize(mean=image_processor.image_mean , std=image_processor.image_std )
_A = Compose(
[
RandomResizedCrop(_snake_case ),
RandomHorizontalFlip(),
ToTensor(),
normalize,
] )
_A = Compose(
[
Resize(_snake_case ),
CenterCrop(_snake_case ),
ToTensor(),
normalize,
] )
def train_transforms(_snake_case : Optional[int] ):
_A = [
_train_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image']
]
return example_batch
def val_transforms(_snake_case : List[str] ):
_A = [_val_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image']]
return example_batch
if training_args.do_train:
if "train" not in dataset:
raise ValueError('--do_train requires a train dataset' )
if data_args.max_train_samples is not None:
_A = (
dataset['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
)
# Set the training transforms
dataset["train"].set_transform(_snake_case )
if training_args.do_eval:
if "validation" not in dataset:
raise ValueError('--do_eval requires a validation dataset' )
if data_args.max_eval_samples is not None:
_A = (
dataset['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
dataset["validation"].set_transform(_snake_case )
# Initalize our trainer
_A = Trainer(
model=_snake_case , args=_snake_case , train_dataset=dataset['train'] if training_args.do_train else None , eval_dataset=dataset['validation'] if training_args.do_eval else None , compute_metrics=_snake_case , tokenizer=_snake_case , data_collator=_snake_case , )
# Training
if training_args.do_train:
_A = None
if training_args.resume_from_checkpoint is not None:
_A = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_A = last_checkpoint
_A = trainer.train(resume_from_checkpoint=_snake_case )
trainer.save_model()
trainer.log_metrics('train' , train_result.metrics )
trainer.save_metrics('train' , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
_A = trainer.evaluate()
trainer.log_metrics('eval' , _snake_case )
trainer.save_metrics('eval' , _snake_case )
# Write model card and (optionally) push to hub
_A = {
'finetuned_from': model_args.model_name_or_path,
'tasks': 'image-classification',
'dataset': data_args.dataset_name,
'tags': ['image-classification', 'vision'],
}
if training_args.push_to_hub:
trainer.push_to_hub(**_snake_case )
else:
trainer.create_model_card(**_snake_case )
if __name__ == "__main__":
main()
| 7 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ..utils import _LazyModule
a = {
'''config''': [
'''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''',
'''OnnxConfig''',
'''OnnxConfigWithPast''',
'''OnnxSeq2SeqConfigWithPast''',
'''PatchingSpec''',
],
'''convert''': ['''export''', '''validate_model_outputs'''],
'''features''': ['''FeaturesManager'''],
'''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 7 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''vit_mae'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int]=768 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Optional[int]=3_072 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : Optional[Any]=224 , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=512 , _UpperCAmelCase : int=8 , _UpperCAmelCase : List[Any]=2_048 , _UpperCAmelCase : Optional[Any]=0.75 , _UpperCAmelCase : List[str]=False , **_UpperCAmelCase : Union[str, Any] , ):
super().__init__(**_UpperCAmelCase )
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = intermediate_size
_A = hidden_act
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = initializer_range
_A = layer_norm_eps
_A = image_size
_A = patch_size
_A = num_channels
_A = qkv_bias
_A = decoder_num_attention_heads
_A = decoder_hidden_size
_A = decoder_num_hidden_layers
_A = decoder_intermediate_size
_A = mask_ratio
_A = norm_pix_loss
| 7 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import KarrasVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : UNetaDModel
UpperCAmelCase : KarrasVeScheduler
def __init__( self : Any , _UpperCAmelCase : UNetaDModel , _UpperCAmelCase : KarrasVeScheduler ):
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase )
@torch.no_grad()
def __call__( self : Optional[int] , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Optional[Any] , ):
_A = self.unet.config.sample_size
_A = (batch_size, 3, img_size, img_size)
_A = self.unet
# sample x_0 ~ N(0, sigma_0^2 * I)
_A = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device ) * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(_UpperCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# here sigma_t == t_i from the paper
_A = self.scheduler.schedule[t]
_A = self.scheduler.schedule[t - 1] if t > 0 else 0
# 1. Select temporarily increased noise level sigma_hat
# 2. Add new noise to move from sample_i to sample_hat
_A , _A = self.scheduler.add_noise_to_input(_UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase )
# 3. Predict the noise residual given the noise magnitude `sigma_hat`
# The model inputs and output are adjusted by following eq. (213) in [1].
_A = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample
# 4. Evaluate dx/dt at sigma_hat
# 5. Take Euler step from sigma to sigma_prev
_A = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if sigma_prev != 0:
# 6. Apply 2nd order correction
# The model inputs and output are adjusted by following eq. (213) in [1].
_A = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample
_A = self.scheduler.step_correct(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , step_output.prev_sample , step_output['derivative'] , )
_A = step_output.prev_sample
_A = (sample / 2 + 0.5).clamp(0 , 1 )
_A = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_A = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_UpperCAmelCase )
| 7 | 1 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
BertTokenizer,
ViltConfig,
ViltForImageAndTextRetrieval,
ViltForImagesAndTextClassification,
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltImageProcessor,
ViltProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
a = logging.get_logger(__name__)
def _snake_case ( _snake_case : List[Any] , _snake_case : Dict=False , _snake_case : Optional[int]=False , _snake_case : str=False ) -> Optional[Any]:
'''simple docstring'''
_A = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''transformer.blocks.{i}.norm1.weight''', F'''vilt.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''transformer.blocks.{i}.norm1.bias''', F'''vilt.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(F'''transformer.blocks.{i}.attn.proj.weight''', F'''vilt.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(F'''transformer.blocks.{i}.attn.proj.bias''', F'''vilt.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''transformer.blocks.{i}.norm2.weight''', F'''vilt.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''transformer.blocks.{i}.norm2.bias''', F'''vilt.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append(
(F'''transformer.blocks.{i}.mlp.fc1.weight''', F'''vilt.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''transformer.blocks.{i}.mlp.fc1.bias''', F'''vilt.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.weight''', F'''vilt.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.bias''', F'''vilt.encoder.layer.{i}.output.dense.bias''') )
# embeddings
rename_keys.extend(
[
# text embeddings
('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'),
(
'text_embeddings.position_embeddings.weight',
'vilt.embeddings.text_embeddings.position_embeddings.weight',
),
('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'),
(
'text_embeddings.token_type_embeddings.weight',
'vilt.embeddings.text_embeddings.token_type_embeddings.weight',
),
('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'),
('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'),
# patch embeddings
('transformer.cls_token', 'vilt.embeddings.cls_token'),
('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'),
('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'),
('transformer.pos_embed', 'vilt.embeddings.position_embeddings'),
# token type embeddings
('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'),
] )
# final layernorm + pooler
rename_keys.extend(
[
('transformer.norm.weight', 'vilt.layernorm.weight'),
('transformer.norm.bias', 'vilt.layernorm.bias'),
('pooler.dense.weight', 'vilt.pooler.dense.weight'),
('pooler.dense.bias', 'vilt.pooler.dense.bias'),
] )
# classifier head(s)
if vqa_model:
# classification head
rename_keys.extend(
[
('vqa_classifier.0.weight', 'classifier.0.weight'),
('vqa_classifier.0.bias', 'classifier.0.bias'),
('vqa_classifier.1.weight', 'classifier.1.weight'),
('vqa_classifier.1.bias', 'classifier.1.bias'),
('vqa_classifier.3.weight', 'classifier.3.weight'),
('vqa_classifier.3.bias', 'classifier.3.bias'),
] )
elif nlvr_model:
# classification head
rename_keys.extend(
[
('nlvr2_classifier.0.weight', 'classifier.0.weight'),
('nlvr2_classifier.0.bias', 'classifier.0.bias'),
('nlvr2_classifier.1.weight', 'classifier.1.weight'),
('nlvr2_classifier.1.bias', 'classifier.1.bias'),
('nlvr2_classifier.3.weight', 'classifier.3.weight'),
('nlvr2_classifier.3.bias', 'classifier.3.bias'),
] )
else:
pass
return rename_keys
def _snake_case ( _snake_case : int , _snake_case : int ) -> Any:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
_A = 'vilt.'
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_A = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.weight''' )
_A = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
_A = in_proj_weight[
: config.hidden_size, :
]
_A = in_proj_bias[: config.hidden_size]
_A = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_A = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_A = in_proj_weight[
-config.hidden_size :, :
]
_A = in_proj_bias[-config.hidden_size :]
def _snake_case ( _snake_case : Tuple ) -> str:
'''simple docstring'''
_A = ['head.weight', 'head.bias']
for k in ignore_keys:
state_dict.pop(_snake_case , _snake_case )
def _snake_case ( _snake_case : Dict , _snake_case : str , _snake_case : Tuple ) -> str:
'''simple docstring'''
_A = dct.pop(_snake_case )
_A = val
@torch.no_grad()
def _snake_case ( _snake_case : List[str] , _snake_case : Dict ) -> List[str]:
'''simple docstring'''
_A = ViltConfig(image_size=3_84 , patch_size=32 , tie_word_embeddings=_snake_case )
_A = False
_A = False
_A = False
_A = False
if "vqa" in checkpoint_url:
_A = True
_A = 31_29
_A = 'huggingface/label-files'
_A = 'vqa2-id2label.json'
_A = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='dataset' ) , 'r' ) )
_A = {int(_snake_case ): v for k, v in idalabel.items()}
_A = idalabel
_A = {v: k for k, v in idalabel.items()}
_A = ViltForQuestionAnswering(_snake_case )
elif "nlvr" in checkpoint_url:
_A = True
_A = 2
_A = {0: 'False', 1: 'True'}
_A = {v: k for k, v in config.idalabel.items()}
_A = 3
_A = ViltForImagesAndTextClassification(_snake_case )
elif "irtr" in checkpoint_url:
_A = True
_A = ViltForImageAndTextRetrieval(_snake_case )
elif "mlm_itm" in checkpoint_url:
_A = True
_A = ViltForMaskedLM(_snake_case )
else:
raise ValueError('Unknown model type' )
# load state_dict of original model, remove and rename some keys
_A = torch.hub.load_state_dict_from_url(_snake_case , map_location='cpu' )['state_dict']
_A = create_rename_keys(_snake_case , _snake_case , _snake_case , _snake_case )
for src, dest in rename_keys:
rename_key(_snake_case , _snake_case , _snake_case )
read_in_q_k_v(_snake_case , _snake_case )
if mlm_model or irtr_model:
_A = ['itm_score.fc.weight', 'itm_score.fc.bias']
for k in ignore_keys:
state_dict.pop(_snake_case , _snake_case )
# load state dict into HuggingFace model
model.eval()
if mlm_model:
_A , _A = model.load_state_dict(_snake_case , strict=_snake_case )
assert missing_keys == ["mlm_score.decoder.bias"]
else:
model.load_state_dict(_snake_case )
# Define processor
_A = ViltImageProcessor(size=3_84 )
_A = BertTokenizer.from_pretrained('bert-base-uncased' )
_A = ViltProcessor(_snake_case , _snake_case )
# Forward pass on example inputs (image + text)
if nlvr_model:
_A = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=_snake_case ).raw )
_A = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=_snake_case ).raw )
_A = (
'The left image contains twice the number of dogs as the right image, and at least two dogs in total are'
' standing.'
)
_A = processor(_snake_case , _snake_case , return_tensors='pt' )
_A = processor(_snake_case , _snake_case , return_tensors='pt' )
_A = model(
input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , )
else:
_A = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=_snake_case ).raw )
if mlm_model:
_A = 'a bunch of [MASK] laying on a [MASK].'
else:
_A = 'How many cats are there?'
_A = processor(_snake_case , _snake_case , return_tensors='pt' )
_A = model(**_snake_case )
# Verify outputs
if mlm_model:
_A = torch.Size([1, 11, 3_05_22] )
_A = torch.tensor([-12.5061, -12.5123, -12.5174] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , _snake_case , atol=1E-4 )
# verify masked token prediction equals "cats"
_A = outputs.logits[0, 4, :].argmax(-1 ).item()
assert tokenizer.decode([predicted_id] ) == "cats"
elif vqa_model:
_A = torch.Size([1, 31_29] )
_A = torch.tensor([-15.9495, -18.1472, -10.3041] )
assert torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1E-4 )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , _snake_case , atol=1E-4 )
# verify vqa prediction equals "2"
_A = outputs.logits.argmax(-1 ).item()
assert model.config.idalabel[predicted_idx] == "2"
elif nlvr_model:
_A = torch.Size([1, 2] )
_A = torch.tensor([-2.8721, 2.1291] )
assert torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1E-4 )
assert outputs.logits.shape == expected_shape
Path(_snake_case ).mkdir(exist_ok=_snake_case )
print(F'''Saving model and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(_snake_case )
processor.save_pretrained(_snake_case )
if __name__ == "__main__":
a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
a = parser.parse_args()
convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 7 |
"""simple docstring"""
class lowercase_ :
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ):
_A = None
_A = None
_A = graph
self._normalize_graph(_UpperCAmelCase , _UpperCAmelCase )
_A = len(_UpperCAmelCase )
_A = None
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ):
if sources is int:
_A = [sources]
if sinks is int:
_A = [sinks]
if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) == 0:
return
_A = sources[0]
_A = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(_UpperCAmelCase ) > 1 or len(_UpperCAmelCase ) > 1:
_A = 0
for i in sources:
max_input_flow += sum(self.graph[i] )
_A = len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
_A = max_input_flow
_A = 0
_A = len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
_A = max_input_flow
_A = size - 1
def lowerCAmelCase_ ( self : Optional[Any] ):
if self.maximum_flow_algorithm is None:
raise Exception('You need to set maximum flow algorithm before.' )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Union[str, Any] ):
_A = algorithm(self )
class lowercase_ :
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : Union[str, Any] ):
_A = flow_network
_A = flow_network.verticesCount
_A = flow_network.sourceIndex
_A = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
_A = flow_network.graph
_A = False
def lowerCAmelCase_ ( self : Optional[Any] ):
if not self.executed:
self._algorithm()
_A = True
def lowerCAmelCase_ ( self : int ):
pass
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : int , _UpperCAmelCase : Any ):
super().__init__(_UpperCAmelCase )
# use this to save your result
_A = -1
def lowerCAmelCase_ ( self : Optional[Any] ):
if not self.executed:
raise Exception('You should execute algorithm before using its result!' )
return self.maximum_flow
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : List[Any] ):
super().__init__(_UpperCAmelCase )
_A = [[0] * self.verticies_count for i in range(self.verticies_count )]
_A = [0] * self.verticies_count
_A = [0] * self.verticies_count
def lowerCAmelCase_ ( self : Dict ):
_A = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
_A = [
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
_A = 0
while i < len(_UpperCAmelCase ):
_A = vertices_list[i]
_A = self.heights[vertex_index]
self.process_vertex(_UpperCAmelCase )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(_UpperCAmelCase ) )
_A = 0
else:
i += 1
_A = sum(self.preflow[self.source_index] )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Any ):
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(_UpperCAmelCase , _UpperCAmelCase )
self.relabel(_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ):
_A = min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : int ):
_A = None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
_A = self.heights[to_index]
if min_height is not None:
_A = min_height + 1
if __name__ == "__main__":
a = [0]
a = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
a = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
a = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
a = flow_network.find_maximum_flow()
print(F'''maximum flow is {maximum_flow}''')
| 7 | 1 |
"""simple docstring"""
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class lowercase_ ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Tuple , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int = None , _UpperCAmelCase : int = None ):
super().__init__()
_A = pad_token_id
_A = max_length
_A = vocab
_A = merges
_A = BytePairTokenizer(_UpperCAmelCase , _UpperCAmelCase , sequence_length=_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( cls : Optional[Any] , _UpperCAmelCase : GPTaTokenizer , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Dict ):
_A = [' '.join(_UpperCAmelCase ) for m in tokenizer.bpe_ranks.keys()]
_A = tokenizer.get_vocab()
return cls(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( cls : str , _UpperCAmelCase : Union[str, os.PathLike] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : int ):
_A = GPTaTokenizer.from_pretrained(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase )
return cls.from_tokenizer(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowerCAmelCase_ ( cls : Any , _UpperCAmelCase : int ):
return cls(**_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[int] ):
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : int = None ):
_A = self.tf_tokenizer(_UpperCAmelCase )
_A = tf.ones_like(_UpperCAmelCase )
if self.pad_token_id is not None:
# pad the tokens up to max length
_A = max_length if max_length is not None else self.max_length
if max_length is not None:
_A , _A = pad_model_inputs(
_UpperCAmelCase , max_seq_length=_UpperCAmelCase , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 7 |
"""simple docstring"""
import unittest
from transformers import SPIECE_UNDERLINE
from transformers.models.speechta import SpeechTaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.tokenization_utils import AddedToken
from ...test_tokenization_common import TokenizerTesterMixin
a = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''')
@require_sentencepiece
@require_tokenizers
class lowercase_ ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = SpeechTaTokenizer
UpperCAmelCase : Tuple = False
UpperCAmelCase : Optional[int] = True
def lowerCAmelCase_ ( self : Tuple ):
super().setUp()
# We have a SentencePiece fixture for testing
_A = SpeechTaTokenizer(_UpperCAmelCase )
_A = AddedToken('<mask>' , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase )
_A = mask_token
tokenizer.add_special_tokens({'mask_token': mask_token} )
tokenizer.add_tokens(['<ctc_blank>'] )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Tuple ):
_A = 'this is a test'
_A = 'this is a test'
return input_text, output_text
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict=20 , _UpperCAmelCase : str=5 ):
_A , _A = self.get_input_output_texts(_UpperCAmelCase )
_A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
_A = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase )
return text, ids
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = '<pad>'
_A = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-4] , 'œ' )
self.assertEqual(vocab_keys[-2] , '<mask>' )
self.assertEqual(vocab_keys[-1] , '<ctc_blank>' )
self.assertEqual(len(_UpperCAmelCase ) , 81 )
def lowerCAmelCase_ ( self : Optional[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 79 )
def lowerCAmelCase_ ( self : Any ):
_A = self.get_tokenizers(do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
_A = ['aaaaa bbbbbb', 'cccccccccdddddddd']
_A = tokenizer.add_tokens(_UpperCAmelCase )
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) )
self.assertEqual(_UpperCAmelCase , all_size + len(_UpperCAmelCase ) )
_A = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=_UpperCAmelCase )
self.assertGreaterEqual(len(_UpperCAmelCase ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
_A = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'}
_A = tokenizer.add_special_tokens(_UpperCAmelCase )
_A = tokenizer.vocab_size
_A = len(_UpperCAmelCase )
self.assertNotEqual(_UpperCAmelCase , 0 )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) )
self.assertEqual(_UpperCAmelCase , all_size_a + len(_UpperCAmelCase ) )
_A = tokenizer.encode(
'>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=_UpperCAmelCase )
self.assertGreaterEqual(len(_UpperCAmelCase ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
def lowerCAmelCase_ ( self : str ):
pass
def lowerCAmelCase_ ( self : Any ):
pass
def lowerCAmelCase_ ( self : Dict ):
_A = self.get_tokenizer()
_A = tokenizer.tokenize('This is a test' )
# fmt: off
self.assertListEqual(_UpperCAmelCase , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] )
# fmt: on
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , )
_A = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
_A = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
# fmt: off
self.assertListEqual(_UpperCAmelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] )
# fmt: on
_A = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] )
@slow
def lowerCAmelCase_ ( self : List[Any] ):
# Use custom sequence because this tokenizer does not handle numbers.
_A = [
'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides '
'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural '
'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained '
'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.',
'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly '
'conditioning on both left and right context in all layers.',
'The quick brown fox jumps over the lazy dog.',
]
# fmt: off
_A = {
'input_ids': [
[4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2],
[4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
],
'attention_mask': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=_UpperCAmelCase , )
| 7 | 1 |
"""simple docstring"""
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class lowercase_ :
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any]=13 , _UpperCAmelCase : int=7 , _UpperCAmelCase : Any=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=99 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Optional[int]=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : List[str]=37 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Dict=None , ):
_A = parent
_A = batch_size
_A = seq_length
_A = is_training
_A = use_input_mask
_A = use_token_type_ids
_A = use_labels
_A = vocab_size
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = intermediate_size
_A = hidden_act
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = type_vocab_size
_A = type_sequence_label_size
_A = initializer_range
_A = num_labels
_A = num_choices
_A = scope
def lowerCAmelCase_ ( self : Any ):
_A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_A = None
if self.use_input_mask:
_A = random_attention_mask([self.batch_size, self.seq_length] )
_A = None
if self.use_token_type_ids:
_A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_A = None
_A = None
_A = None
if self.use_labels:
_A = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_A = ids_tensor([self.batch_size] , self.num_choices )
_A = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase_ ( self : str ):
return OpenLlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , use_stable_embedding=_UpperCAmelCase , )
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ):
_A = OpenLlamaModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )
_A = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , ):
_A = True
_A = OpenLlamaModel(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , )
_A = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , )
_A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , ):
_A = OpenLlamaForCausalLM(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , ):
_A = True
_A = True
_A = OpenLlamaForCausalLM(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
# first forward pass
_A = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase , )
_A = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
_A = ids_tensor((self.batch_size, 3) , config.vocab_size )
_A = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
_A = torch.cat([input_ids, next_tokens] , dim=-1 )
_A = torch.cat([input_mask, next_mask] , dim=-1 )
_A = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , )['hidden_states'][0]
_A = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , )['hidden_states'][0]
# select random slice
_A = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_A = output_from_no_past[:, -3:, random_slice_idx].detach()
_A = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) )
def lowerCAmelCase_ ( self : List[str] ):
_A = self.prepare_config_and_inputs()
(
(
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) ,
) = config_and_inputs
_A = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
UpperCAmelCase : List[str] = (OpenLlamaForCausalLM,) if is_torch_available() else ()
UpperCAmelCase : str = (
{
'''feature-extraction''': OpenLlamaModel,
'''text-classification''': OpenLlamaForSequenceClassification,
'''text-generation''': OpenLlamaForCausalLM,
'''zero-shot''': OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCAmelCase : Any = False
UpperCAmelCase : Any = False
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = OpenLlamaModelTester(self )
_A = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def lowerCAmelCase_ ( self : List[Any] ):
self.config_tester.run_common_tests()
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : Tuple ):
_A = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_A = type
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] ):
_A , _A = self.model_tester.prepare_config_and_inputs_for_common()
_A = 3
_A = input_dict['input_ids']
_A = input_ids.ne(1 ).to(_UpperCAmelCase )
_A = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
_A = OpenLlamaForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def lowerCAmelCase_ ( self : Dict ):
_A , _A = self.model_tester.prepare_config_and_inputs_for_common()
_A = 3
_A = 'single_label_classification'
_A = input_dict['input_ids']
_A = input_ids.ne(1 ).to(_UpperCAmelCase )
_A = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
_A = OpenLlamaForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A , _A = self.model_tester.prepare_config_and_inputs_for_common()
_A = 3
_A = 'multi_label_classification'
_A = input_dict['input_ids']
_A = input_ids.ne(1 ).to(_UpperCAmelCase )
_A = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
_A = OpenLlamaForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' )
def lowerCAmelCase_ ( self : List[str] ):
pass
@parameterized.expand([('linear',), ('dynamic',)] )
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] ):
_A , _A = self.model_tester.prepare_config_and_inputs_for_common()
_A = ids_tensor([1, 10] , config.vocab_size )
_A = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
_A = OpenLlamaModel(_UpperCAmelCase )
original_model.to(_UpperCAmelCase )
original_model.eval()
_A = original_model(_UpperCAmelCase ).last_hidden_state
_A = original_model(_UpperCAmelCase ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
_A = {'type': scaling_type, 'factor': 10.0}
_A = OpenLlamaModel(_UpperCAmelCase )
scaled_model.to(_UpperCAmelCase )
scaled_model.eval()
_A = scaled_model(_UpperCAmelCase ).last_hidden_state
_A = scaled_model(_UpperCAmelCase ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-5 ) )
| 7 |
"""simple docstring"""
from .configuration_bert_masked import MaskedBertConfig
from .modeling_bert_masked import (
MaskedBertForMultipleChoice,
MaskedBertForQuestionAnswering,
MaskedBertForSequenceClassification,
MaskedBertForTokenClassification,
MaskedBertModel,
)
from .modules import *
| 7 | 1 |
"""simple docstring"""
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Tuple ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def lowerCAmelCase_ ( self : Tuple ):
_A = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-inpaint/init_image.png' )
_A = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' )
_A = 'xvjiarui/stable-diffusion-2-inpainting'
_A , _A = FlaxStableDiffusionInpaintPipeline.from_pretrained(_UpperCAmelCase , safety_checker=_UpperCAmelCase )
_A = 'Face of a yellow cat, high resolution, sitting on a park bench'
_A = jax.random.PRNGKey(0 )
_A = 50
_A = jax.device_count()
_A = num_samples * [prompt]
_A = num_samples * [init_image]
_A = num_samples * [mask_image]
_A , _A , _A = pipeline.prepare_inputs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# shard inputs and rng
_A = replicate(_UpperCAmelCase )
_A = jax.random.split(_UpperCAmelCase , jax.device_count() )
_A = shard(_UpperCAmelCase )
_A = shard(_UpperCAmelCase )
_A = shard(_UpperCAmelCase )
_A = pipeline(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase )
_A = output.images.reshape(_UpperCAmelCase , 512 , 512 , 3 )
_A = images[0, 253:256, 253:256, -1]
_A = jnp.asarray(jax.device_get(image_slice.flatten() ) )
_A = jnp.array(
[0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] )
print(F'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
| 7 |
"""simple docstring"""
import argparse
a = '''docs/source/_static/js/custom.js'''
def _snake_case ( _snake_case : Dict ) -> Any:
'''simple docstring'''
with open(_snake_case , encoding='utf-8' , newline='\n' ) as f:
_A = f.readlines()
_A = 0
# First let's put the right version
while not lines[index].startswith('const stableVersion =' ):
index += 1
_A = F'''const stableVersion = "v{version}"\n'''
# Then update the dictionary
while not lines[index].startswith('const versionMapping = {' ):
index += 1
# We go until the end
while not lines[index].startswith('}' ):
index += 1
# We add the new version at the end
lines[index - 1] += F''' "v{version}": "v{version}",\n'''
with open(_snake_case , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(_snake_case )
if __name__ == "__main__":
a = argparse.ArgumentParser()
parser.add_argument('''--version''', help='''Release version.''')
a = parser.parse_args()
update_custom_js(args.version)
| 7 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
a = {
'''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig''']
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ['''ConvNextFeatureExtractor''']
a = ['''ConvNextImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
'''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ConvNextForImageClassification''',
'''ConvNextModel''',
'''ConvNextPreTrainedModel''',
'''ConvNextBackbone''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
'''TFConvNextForImageClassification''',
'''TFConvNextModel''',
'''TFConvNextPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_convnext import ConvNextFeatureExtractor
from .image_processing_convnext import ConvNextImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convnext import (
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvNextBackbone,
ConvNextForImageClassification,
ConvNextModel,
ConvNextPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 7 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''vit_mae'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int]=768 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Optional[int]=3_072 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : Optional[Any]=224 , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=512 , _UpperCAmelCase : int=8 , _UpperCAmelCase : List[Any]=2_048 , _UpperCAmelCase : Optional[Any]=0.75 , _UpperCAmelCase : List[str]=False , **_UpperCAmelCase : Union[str, Any] , ):
super().__init__(**_UpperCAmelCase )
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = intermediate_size
_A = hidden_act
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = initializer_range
_A = layer_norm_eps
_A = image_size
_A = patch_size
_A = num_channels
_A = qkv_bias
_A = decoder_num_attention_heads
_A = decoder_hidden_size
_A = decoder_num_hidden_layers
_A = decoder_intermediate_size
_A = mask_ratio
_A = norm_pix_loss
| 7 | 1 |
"""simple docstring"""
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
a = logging.getLogger(__name__)
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : str = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''Whether tp freeze the encoder.'''} )
UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''Whether to freeze the embeddings.'''} )
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : str = field(
metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} )
UpperCAmelCase : Optional[str] = field(
default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , )
UpperCAmelCase : Optional[int] = field(
default=1024 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
UpperCAmelCase : Optional[int] = field(
default=128 , metadata={
'''help''': (
'''The maximum total sequence length for target text after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
UpperCAmelCase : Optional[int] = field(
default=142 , metadata={
'''help''': (
'''The maximum total sequence length for validation target text after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded. '''
'''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used '''
'''during ``evaluate`` and ``predict``.'''
)
} , )
UpperCAmelCase : Optional[int] = field(
default=142 , metadata={
'''help''': (
'''The maximum total sequence length for test target text after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
UpperCAmelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} )
UpperCAmelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} )
UpperCAmelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} )
UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''Source language id for translation.'''} )
UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''Target language id for translation.'''} )
UpperCAmelCase : Optional[int] = field(default=__lowerCAmelCase , metadata={'''help''': '''# num_beams to use for evaluation.'''} )
UpperCAmelCase : bool = field(
default=__lowerCAmelCase , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , )
def _snake_case ( _snake_case : Optional[Any] , _snake_case : int , _snake_case : Optional[Any] ) -> str:
'''simple docstring'''
logger.info(F'''***** {split} metrics *****''' )
for key in sorted(metrics.keys() ):
logger.info(F''' {key} = {metrics[key]}''' )
save_json(_snake_case , os.path.join(_snake_case , F'''{split}_results.json''' ) )
def _snake_case ( ) -> Tuple:
'''simple docstring'''
_A = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_A , _A , _A = parser.parse_args_into_dataclasses()
check_output_dir(_snake_case )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('Training/evaluation parameters %s' , _snake_case )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_A = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
_A = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout')
for p in extra_model_params:
if getattr(_snake_case , _snake_case , _snake_case ):
assert hasattr(_snake_case , _snake_case ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute'''
setattr(_snake_case , _snake_case , getattr(_snake_case , _snake_case ) )
_A = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
_A = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=_snake_case , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(_snake_case , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
_A = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(_snake_case , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(_snake_case , _snake_case ):
_A = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
_A = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(_snake_case )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
_A = SeqaSeqDataset
# Get datasets
_A = (
dataset_class(
_snake_case , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , )
if training_args.do_train
else None
)
_A = (
dataset_class(
_snake_case , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
_A = (
dataset_class(
_snake_case , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , )
if training_args.do_predict
else None
)
# Initialize our Trainer
_A = (
build_compute_metrics_fn(data_args.task , _snake_case ) if training_args.predict_with_generate else None
)
_A = SeqaSeqTrainer(
model=_snake_case , args=_snake_case , data_args=_snake_case , train_dataset=_snake_case , eval_dataset=_snake_case , data_collator=SeqaSeqDataCollator(
_snake_case , _snake_case , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_snake_case , tokenizer=_snake_case , )
_A = {}
# Training
if training_args.do_train:
logger.info('*** Train ***' )
_A = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
_A = train_result.metrics
_A = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics('train' , _snake_case , training_args.output_dir )
all_metrics.update(_snake_case )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info('*** Evaluate ***' )
_A = trainer.evaluate(metric_key_prefix='val' )
_A = data_args.n_val
_A = round(metrics['val_loss'] , 4 )
if trainer.is_world_process_zero():
handle_metrics('val' , _snake_case , training_args.output_dir )
all_metrics.update(_snake_case )
if training_args.do_predict:
logger.info('*** Predict ***' )
_A = trainer.predict(test_dataset=_snake_case , metric_key_prefix='test' )
_A = test_output.metrics
_A = data_args.n_test
if trainer.is_world_process_zero():
_A = round(metrics['test_loss'] , 4 )
handle_metrics('test' , _snake_case , training_args.output_dir )
all_metrics.update(_snake_case )
if training_args.predict_with_generate:
_A = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case )
_A = lmap(str.strip , _snake_case )
write_txt_file(_snake_case , os.path.join(training_args.output_dir , 'test_generations.txt' ) )
if trainer.is_world_process_zero():
save_json(_snake_case , os.path.join(training_args.output_dir , 'all_results.json' ) )
return all_metrics
def _snake_case ( _snake_case : List[Any] ) -> int:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 7 |
"""simple docstring"""
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
a = logging.get_logger(__name__)
a = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
a = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def _snake_case ( _snake_case : Optional[Any] ) -> str:
'''simple docstring'''
_A = torch.load(_snake_case , map_location='cpu' )
return sd
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : str , _snake_case : Tuple=rename_keys_prefix ) -> List[str]:
'''simple docstring'''
_A = OrderedDict()
_A = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
_A = key
for name_pair in rename_keys_prefix:
_A = new_key.replace(name_pair[0] , name_pair[1] )
_A = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
_A = new_d['cls.predictions.bias']
return new_d
@torch.no_grad()
def _snake_case ( _snake_case : List[str] , _snake_case : Dict ) -> Dict:
'''simple docstring'''
assert (
checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS
), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'''
# Get Config
if "pre" in checkpoint_path:
_A = 'pretraining'
if "vcr" in checkpoint_path:
_A = {'visual_embedding_dim': 5_12}
elif "vqa_advanced" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
elif "vqa" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
elif "nlvr" in checkpoint_path:
_A = {'visual_embedding_dim': 10_24}
else:
raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' )
else:
if "vcr" in checkpoint_path:
_A = {'visual_embedding_dim': 5_12}
_A = 'multichoice'
elif "vqa_advanced" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48}
_A = 'vqa_advanced'
elif "vqa" in checkpoint_path:
_A = {'visual_embedding_dim': 20_48, 'num_labels': 31_29}
_A = 'vqa'
elif "nlvr" in checkpoint_path:
_A = {
'visual_embedding_dim': 10_24,
'num_labels': 2,
}
_A = 'nlvr'
_A = VisualBertConfig(**_snake_case )
# Load State Dict
_A = load_state_dict(_snake_case )
_A = get_new_dict(_snake_case , _snake_case )
if model_type == "pretraining":
_A = VisualBertForPreTraining(_snake_case )
elif model_type == "vqa":
_A = VisualBertForQuestionAnswering(_snake_case )
elif model_type == "nlvr":
_A = VisualBertForVisualReasoning(_snake_case )
elif model_type == "multichoice":
_A = VisualBertForMultipleChoice(_snake_case )
model.load_state_dict(_snake_case )
# Save Checkpoints
Path(_snake_case ).mkdir(exist_ok=_snake_case )
model.save_pretrained(_snake_case )
if __name__ == "__main__":
a = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
a = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 7 | 1 |
"""simple docstring"""
class lowercase_ :
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ):
_A = None
_A = None
_A = graph
self._normalize_graph(_UpperCAmelCase , _UpperCAmelCase )
_A = len(_UpperCAmelCase )
_A = None
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ):
if sources is int:
_A = [sources]
if sinks is int:
_A = [sinks]
if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) == 0:
return
_A = sources[0]
_A = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(_UpperCAmelCase ) > 1 or len(_UpperCAmelCase ) > 1:
_A = 0
for i in sources:
max_input_flow += sum(self.graph[i] )
_A = len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
_A = max_input_flow
_A = 0
_A = len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
_A = max_input_flow
_A = size - 1
def lowerCAmelCase_ ( self : Optional[Any] ):
if self.maximum_flow_algorithm is None:
raise Exception('You need to set maximum flow algorithm before.' )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Union[str, Any] ):
_A = algorithm(self )
class lowercase_ :
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : Union[str, Any] ):
_A = flow_network
_A = flow_network.verticesCount
_A = flow_network.sourceIndex
_A = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
_A = flow_network.graph
_A = False
def lowerCAmelCase_ ( self : Optional[Any] ):
if not self.executed:
self._algorithm()
_A = True
def lowerCAmelCase_ ( self : int ):
pass
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : int , _UpperCAmelCase : Any ):
super().__init__(_UpperCAmelCase )
# use this to save your result
_A = -1
def lowerCAmelCase_ ( self : Optional[Any] ):
if not self.executed:
raise Exception('You should execute algorithm before using its result!' )
return self.maximum_flow
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : List[Any] ):
super().__init__(_UpperCAmelCase )
_A = [[0] * self.verticies_count for i in range(self.verticies_count )]
_A = [0] * self.verticies_count
_A = [0] * self.verticies_count
def lowerCAmelCase_ ( self : Dict ):
_A = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
_A = [
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
_A = 0
while i < len(_UpperCAmelCase ):
_A = vertices_list[i]
_A = self.heights[vertex_index]
self.process_vertex(_UpperCAmelCase )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(_UpperCAmelCase ) )
_A = 0
else:
i += 1
_A = sum(self.preflow[self.source_index] )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Any ):
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(_UpperCAmelCase , _UpperCAmelCase )
self.relabel(_UpperCAmelCase )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ):
_A = min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : int ):
_A = None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
_A = self.heights[to_index]
if min_height is not None:
_A = min_height + 1
if __name__ == "__main__":
a = [0]
a = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
a = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
a = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
a = flow_network.find_maximum_flow()
print(F'''maximum flow is {maximum_flow}''')
| 7 |
"""simple docstring"""
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def _snake_case ( _snake_case : Dict ) -> Optional[Any]:
'''simple docstring'''
for param in module.parameters():
_A = False
def _snake_case ( ) -> Tuple:
'''simple docstring'''
_A = 'cuda' if torch.cuda.is_available() else 'cpu'
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
_A = 'mps'
if device == "mps":
print(
'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch'
' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues'
' with generations.' )
return device
def _snake_case ( _snake_case : Dict ) -> Optional[Any]:
'''simple docstring'''
_A = plt.imshow(_snake_case )
fig.axes.get_xaxis().set_visible(_snake_case )
fig.axes.get_yaxis().set_visible(_snake_case )
plt.show()
def _snake_case ( ) -> Optional[Any]:
'''simple docstring'''
_A = datetime.now()
_A = current_time.strftime('%H:%M:%S' )
return timestamp
| 7 | 1 |
"""simple docstring"""
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, reduce
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
a = 8
def _snake_case ( _snake_case : Optional[Any] , _snake_case : int=BITS ) -> int:
'''simple docstring'''
_A = x.device
_A = (x * 2_55).int().clamp(0 , 2_55 )
_A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_snake_case )
_A = rearrange(_snake_case , 'd -> d 1 1' )
_A = rearrange(_snake_case , 'b c h w -> b c 1 h w' )
_A = ((x & mask) != 0).float()
_A = rearrange(_snake_case , 'b c d h w -> b (c d) h w' )
_A = bits * 2 - 1
return bits
def _snake_case ( _snake_case : Tuple , _snake_case : int=BITS ) -> List[Any]:
'''simple docstring'''
_A = x.device
_A = (x > 0).int()
_A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_snake_case , dtype=torch.intaa )
_A = rearrange(_snake_case , 'd -> d 1 1' )
_A = rearrange(_snake_case , 'b (c d) h w -> b c d h w' , d=8 )
_A = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' )
return (dec / 2_55).clamp(0.0 , 1.0 )
def _snake_case ( self : Dict , _snake_case : torch.FloatTensor , _snake_case : int , _snake_case : torch.FloatTensor , _snake_case : float = 0.0 , _snake_case : bool = True , _snake_case : str=None , _snake_case : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]:
'''simple docstring'''
if self.num_inference_steps is None:
raise ValueError(
'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' )
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
_A = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
_A = self.alphas_cumprod[timestep]
_A = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
_A = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
# 4. Clip "predicted x_0"
_A = self.bit_scale
if self.config.clip_sample:
_A = torch.clamp(_snake_case , -scale , _snake_case )
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
_A = self._get_variance(_snake_case , _snake_case )
_A = eta * variance ** 0.5
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
_A = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_A = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_A = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
_A = model_output.device if torch.is_tensor(_snake_case ) else 'cpu'
_A = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_snake_case ).to(_snake_case )
_A = self._get_variance(_snake_case , _snake_case ) ** 0.5 * eta * noise
_A = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=_snake_case , pred_original_sample=_snake_case )
def _snake_case ( self : Tuple , _snake_case : torch.FloatTensor , _snake_case : int , _snake_case : torch.FloatTensor , _snake_case : Optional[int]="epsilon" , _snake_case : List[Any]=None , _snake_case : bool = True , ) -> Union[DDPMSchedulerOutput, Tuple]:
'''simple docstring'''
_A = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
_A , _A = torch.split(_snake_case , sample.shape[1] , dim=1 )
else:
_A = None
# 1. compute alphas, betas
_A = self.alphas_cumprod[t]
_A = self.alphas_cumprod[t - 1] if t > 0 else self.one
_A = 1 - alpha_prod_t
_A = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if prediction_type == "epsilon":
_A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif prediction_type == "sample":
_A = model_output
else:
raise ValueError(F'''Unsupported prediction_type {prediction_type}.''' )
# 3. Clip "predicted x_0"
_A = self.bit_scale
if self.config.clip_sample:
_A = torch.clamp(_snake_case , -scale , _snake_case )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_A = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t
_A = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_A = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
_A = 0
if t > 0:
_A = torch.randn(
model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_snake_case ).to(model_output.device )
_A = (self._get_variance(_snake_case , predicted_variance=_snake_case ) ** 0.5) * noise
_A = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=_snake_case , pred_original_sample=_snake_case )
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Optional[int] , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Union[DDIMScheduler, DDPMScheduler] , _UpperCAmelCase : Optional[float] = 1.0 , ):
super().__init__()
_A = bit_scale
_A = (
ddim_bit_scheduler_step if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else ddpm_bit_scheduler_step
)
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase )
@torch.no_grad()
def __call__( self : List[str] , _UpperCAmelCase : Optional[int] = 256 , _UpperCAmelCase : Optional[int] = 256 , _UpperCAmelCase : Optional[int] = 50 , _UpperCAmelCase : Optional[torch.Generator] = None , _UpperCAmelCase : Optional[int] = 1 , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Union[str, Any] , ):
_A = torch.randn(
(batch_size, self.unet.config.in_channels, height, width) , generator=_UpperCAmelCase , )
_A = decimal_to_bits(_UpperCAmelCase ) * self.bit_scale
_A = latents.to(self.device )
self.scheduler.set_timesteps(_UpperCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# predict the noise residual
_A = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample
# compute the previous noisy sample x_t -> x_t-1
_A = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
_A = bits_to_decimal(_UpperCAmelCase )
if output_type == "pil":
_A = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_UpperCAmelCase )
| 7 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Any = ['''image_processor''', '''tokenizer''']
UpperCAmelCase : Optional[int] = '''ViTImageProcessor'''
UpperCAmelCase : int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''')
def __init__( self : Tuple , _UpperCAmelCase : int=None , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : Dict ):
_A = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _UpperCAmelCase , )
_A = kwargs.pop('feature_extractor' )
_A = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __call__( self : Optional[Any] , _UpperCAmelCase : int=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Union[str, Any] ):
if text is None and visual_prompt is None and images is None:
raise ValueError('You have to specify either text, visual prompt or images.' )
if text is not None and visual_prompt is not None:
raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' )
if text is not None:
_A = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if visual_prompt is not None:
_A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if images is not None:
_A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if visual_prompt is not None and images is not None:
_A = {
'pixel_values': image_features.pixel_values,
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
elif text is not None and images is not None:
_A = image_features.pixel_values
return encoding
elif text is not None:
return encoding
elif visual_prompt is not None:
_A = {
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
else:
return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase )
def lowerCAmelCase_ ( self : str , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Union[str, Any] ):
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def lowerCAmelCase_ ( self : Union[str, Any] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ):
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
def lowerCAmelCase_ ( self : Dict ):
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , )
return self.image_processor_class
@property
def lowerCAmelCase_ ( self : Tuple ):
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , )
return self.image_processor
| 7 | 1 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
a = {
'''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ['''VivitImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
'''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''VivitModel''',
'''VivitPreTrainedModel''',
'''VivitForVideoClassification''',
]
if TYPE_CHECKING:
from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_vivit import VivitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vivit import (
VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
VivitForVideoClassification,
VivitModel,
VivitPreTrainedModel,
)
else:
import sys
a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 7 |
"""simple docstring"""
import math
from datetime import datetime, timedelta
def _snake_case ( _snake_case : int ) -> datetime:
'''simple docstring'''
_A = year % 19
_A = year % 4
_A = year % 7
_A = math.floor(year / 1_00 )
_A = math.floor((13 + 8 * leap_day_inhibits) / 25 )
_A = leap_day_inhibits / 4
_A = (
15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 30
_A = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
_A = (19 * metonic_cycle + secular_moon_shift) % 30
# PHM -> Paschal Full Moon
_A = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 29 and days_from_phm_to_sunday == 6:
return datetime(_snake_case , 4 , 19 )
elif days_to_add == 28 and days_from_phm_to_sunday == 6:
return datetime(_snake_case , 4 , 18 )
else:
return datetime(_snake_case , 3 , 22 ) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday ) )
if __name__ == "__main__":
for year in (1_994, 2_000, 2_010, 2_021, 2_023):
a = '''will be''' if year > datetime.now().year else '''was'''
print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
| 7 | 1 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.