code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
# flake8: noqa # Lint as: python3 lowerCAmelCase__ : Optional[Any] =[ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
101
lowerCamelCase__ : dict[tuple[int, int, int], int] = {} def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on lowercase__ : Tuple = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one lowercase__ : Union[str, Any] = _calculate(days - 1 , lowercase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 lowercase__ : List[str] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter lowercase__ : Dict = _calculate(days - 1 , lowercase_ , 0 ) lowercase__ : List[str] = state_late + state_absent + state_ontime lowercase__ : List[Any] = prizestrings return prizestrings def UpperCamelCase ( lowercase_ = 30 ) -> int: '''simple docstring''' return _calculate(lowercase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
12
0
"""simple docstring""" from collections import deque class lowercase__ : """simple docstring""" def __init__( self , _A , _A , _A ): '''simple docstring''' UpperCamelCase : int = process_name # process name UpperCamelCase : int = arrival_time # arrival time of the process # completion time of finished process or last interrupted time UpperCamelCase : str = arrival_time UpperCamelCase : Optional[Any] = burst_time # remaining burst time UpperCamelCase : Any = 0 # total time of the process wait in ready queue UpperCamelCase : List[str] = 0 # time from arrival time to completion time class lowercase__ : """simple docstring""" def __init__( self , _A , _A , _A , _A , ): '''simple docstring''' UpperCamelCase : List[Any] = number_of_queues # time slice of queues that round robin algorithm applied UpperCamelCase : Optional[Any] = time_slices # unfinished process is in this ready_queue UpperCamelCase : List[Any] = queue # current time UpperCamelCase : List[Any] = current_time # finished process is in this sequence queue UpperCamelCase : deque[Process] = deque() def _a ( self ): '''simple docstring''' UpperCamelCase : List[str] = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def _a ( self , _A ): '''simple docstring''' UpperCamelCase : Any = [] for i in range(len(_A ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def _a ( self , _A ): '''simple docstring''' UpperCamelCase : List[Any] = [] for i in range(len(_A ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def _a ( self , _A ): '''simple docstring''' UpperCamelCase : Dict = [] for i in range(len(_A ) ): completion_times.append(queue[i].stop_time ) return completion_times def _a ( self , _A ): '''simple docstring''' return [q.burst_time for q in queue] def _a ( self , _A ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def _a ( self , _A ): '''simple docstring''' UpperCamelCase : deque[Process] = deque() # sequence deque of finished process while len(_A ) != 0: UpperCamelCase : int = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_A ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 UpperCamelCase : List[Any] = 0 # set the process's turnaround time because it is finished UpperCamelCase : Optional[Any] = self.current_time - cp.arrival_time # set the completion time UpperCamelCase : Tuple = self.current_time # add the process to queue that has finished queue finished.append(_A ) self.finish_queue.extend(_A ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def _a ( self , _A , _A ): '''simple docstring''' UpperCamelCase : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_A ) ): UpperCamelCase : Optional[int] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_A ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time UpperCamelCase : List[str] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_A ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished UpperCamelCase : Tuple = 0 # set the finish time UpperCamelCase : List[str] = self.current_time # update the process' turnaround time because it is finished UpperCamelCase : Any = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_A ) self.finish_queue.extend(_A ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def _a ( self ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): UpperCamelCase , UpperCamelCase : Tuple = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest __magic_name__ : Dict = Process("""P1""", 0, 5_3) __magic_name__ : Union[str, Any] = Process("""P2""", 0, 1_7) __magic_name__ : int = Process("""P3""", 0, 6_8) __magic_name__ : Any = Process("""P4""", 0, 2_4) __magic_name__ : List[str] = 3 __magic_name__ : List[Any] = [1_7, 2_5] __magic_name__ : Union[str, Any] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"""queue""": deque([Pa, Pa, Pa, Pa])}) __magic_name__ : Dict = Process("""P1""", 0, 5_3) __magic_name__ : Tuple = Process("""P2""", 0, 1_7) __magic_name__ : Union[str, Any] = Process("""P3""", 0, 6_8) __magic_name__ : Any = Process("""P4""", 0, 2_4) __magic_name__ : int = 3 __magic_name__ : List[str] = [1_7, 2_5] __magic_name__ : Any = deque([Pa, Pa, Pa, Pa]) __magic_name__ : List[str] = MLFQ(number_of_queues, time_slices, queue, 0) __magic_name__ : List[Any] = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( f'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( f'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( f'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
102
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCamelCase ( ) -> List[Any]: '''simple docstring''' raise RuntimeError("""CUDA out of memory.""" ) class _snake_case ( nn.Module ): def __init__( self): '''simple docstring''' super().__init__() lowercase__ : Optional[Any] = nn.Linear(3 , 4) lowercase__ : Union[str, Any] = nn.BatchNormad(4) lowercase__ : str = nn.Linear(4 , 5) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE_))) class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = [] @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8]) def lowercase__ ( self): '''simple docstring''' lowercase__ : int = [] @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga lowercase__ , lowercase__ : int = mock_training_loop_function("""hello""") self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8]) self.assertListEqual([bs, arga] , [8, """hello"""]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): pass with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function(1_28 , """hello""" , """world""") self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0]) self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): raise ValueError("""Oops, we had an error!""") with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0]) @require_cuda def lowercase__ ( self): '''simple docstring''' lowercase__ : str = torch.cuda.memory_allocated() lowercase__ : str = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = release_memory(SCREAMING_SNAKE_CASE_) self.assertEqual(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
12
0
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase ( __SCREAMING_SNAKE_CASE,unittest.TestCase ): A__ : Optional[int] = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : Dict=0 ): """simple docstring""" _snake_case = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(__lowerCamelCase ) ) _snake_case = np.random.RandomState(__lowerCamelCase ) _snake_case = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.7_5, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def __UpperCAmelCase ( self : str ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def __UpperCAmelCase ( self : Tuple ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _snake_case = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) # warmup pass to apply optimizations _snake_case = pipe(**self.get_dummy_inputs() ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __UpperCAmelCase ( self : int ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _snake_case = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _snake_case = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): @property def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _snake_case = ort.SessionOptions() _snake_case = False return options def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _snake_case = init_image.resize((7_6_8, 5_1_2) ) # using the PNDM scheduler by default _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = '''A fantasy landscape, trending on artstation''' _snake_case = np.random.RandomState(0 ) _snake_case = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=1_0 , generator=__lowerCamelCase , output_type='''np''' , ) _snake_case = output.images _snake_case = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) _snake_case = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _snake_case = init_image.resize((7_6_8, 5_1_2) ) _snake_case = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = '''A fantasy landscape, trending on artstation''' _snake_case = np.random.RandomState(0 ) _snake_case = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=2_0 , generator=__lowerCamelCase , output_type='''np''' , ) _snake_case = output.images _snake_case = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) _snake_case = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
103
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' lowercase__ : Optional[Any] = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ : List[str] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowercase__ : Optional[int] = 4 lowercase__ : Optional[Any] = 48 lowercase__ : int = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ : List[str] = [6, 6, 6, 6] lowercase__ : Any = 60 lowercase__ : Tuple = [6, 6, 6, 6] lowercase__ : Dict = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ : Tuple = 4 lowercase__ : Any = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowercase__ : str = 1 lowercase__ : Optional[int] = 1 lowercase__ : Optional[int] = 1_26 lowercase__ : Any = 7 lowercase__ : int = 255.0 lowercase__ : List[Any] = """""" return config def UpperCamelCase ( lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: lowercase__ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase__ : Dict = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: lowercase__ : List[str] = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: lowercase__ : Optional[int] = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: lowercase__ : int = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase__ : Tuple = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ : int = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: lowercase__ : Any = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: lowercase__ : Optional[Any] = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: lowercase__ : Dict = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: lowercase__ : Union[str, Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: lowercase__ : List[Any] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": lowercase__ : Union[str, Any] = """layernorm.weight""" if name == "norm.bias": lowercase__ : List[str] = """layernorm.bias""" if "conv_first" in name: lowercase__ : Union[str, Any] = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowercase__ : List[Any] = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowercase__ : Optional[int] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: lowercase__ : Dict = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: lowercase__ : Optional[Any] = name.replace("""upsample.2""" , """upsample.convolution_1""" ) lowercase__ : List[str] = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": lowercase__ : Optional[Any] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) lowercase__ : int = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: lowercase__ : str = """swin2sr.""" + name return name def UpperCamelCase ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase__ : str = orig_state_dict.pop(lowercase_ ) if "qkv" in key: lowercase__ : Any = key.split(""".""" ) lowercase__ : List[Any] = int(key_split[1] ) lowercase__ : Dict = int(key_split[4] ) lowercase__ : Optional[Any] = config.embed_dim if "weight" in key: lowercase__ : List[str] = val[:dim, :] lowercase__ : List[str] = val[dim : dim * 2, :] lowercase__ : Optional[Any] = val[-dim:, :] else: lowercase__ : Optional[Any] = val[:dim] lowercase__ : List[Any] = val[dim : dim * 2] lowercase__ : Optional[int] = val[-dim:] pass else: lowercase__ : Optional[Any] = val return orig_state_dict def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Dict = get_config(lowercase_ ) lowercase__ : Any = SwinaSRForImageSuperResolution(lowercase_ ) model.eval() lowercase__ : List[str] = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" ) lowercase__ : Union[str, Any] = convert_state_dict(lowercase_ , lowercase_ ) lowercase__ , lowercase__ : Dict = model.load_state_dict(lowercase_ , strict=lowercase_ ) if len(lowercase_ ) > 0: raise ValueError("""Missing keys when converting: {}""".format(lowercase_ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowercase__ : Any = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" lowercase__ : Any = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert("""RGB""" ) lowercase__ : Any = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowercase__ : Optional[int] = 1_26 if """Jpeg""" in checkpoint_url else 2_56 lowercase__ : Union[str, Any] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowercase__ : Dict = transforms(lowercase_ ).unsqueeze(0 ) if config.num_channels == 1: lowercase__ : Any = pixel_values[:, 0, :, :].unsqueeze(1 ) lowercase__ : Union[str, Any] = model(lowercase_ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowercase__ : Optional[Any] = torch.Size([1, 3, 5_12, 5_12] ) lowercase__ : Optional[Any] = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ : List[str] = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowercase__ : Optional[Any] = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ : Tuple = torch.Size([1, 3, 5_12, 5_12] ) lowercase__ : int = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ : Tuple = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase_ , atol=1E-3 ) print("""Looks ok!""" ) lowercase__ : str = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } lowercase__ : str = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": lowerCamelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""", type=str, help="""URL of the original Swin2SR checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""") lowerCamelCase__ : Any = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
12
0
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping UpperCamelCase = tuple[int, int] class UpperCamelCase__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> None: A__ = vertices A__ = { (min(SCREAMING_SNAKE_CASE__ ), max(SCREAMING_SNAKE_CASE__ )): weight for edge, weight in edges.items() } def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) A__ = weight def snake_case__ ( self ) -> Graph: A__ = Graph({min(self.vertices )} , {} ) A__ = 42 A__ = 42 A__ = 42 A__ = 42 while len(subgraph.vertices ) < len(self.vertices ): A__ = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: A__ = edge A__ = weight subgraph.add_edge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return subgraph def _lowerCamelCase ( UpperCAmelCase_ : str = "p107_network.txt" ) -> int: """simple docstring""" A__ = os.path.abspath(os.path.dirname(UpperCAmelCase_ ) ) A__ = os.path.join(UpperCAmelCase_, UpperCAmelCase_ ) A__ = {} A__ = 42 A__ = 42 A__ = 42 with open(UpperCAmelCase_ ) as f: A__ = f.read().strip().split("\n" ) A__ = [line.split("," ) for line in data] for edgea in range(1, len(UpperCAmelCase_ ) ): for edgea in range(UpperCAmelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": A__ = int(adjaceny_matrix[edgea][edgea] ) A__ = Graph(set(range(len(UpperCAmelCase_ ) ) ), UpperCAmelCase_ ) A__ = graph.prims_algorithm() A__ = sum(graph.edges.values() ) A__ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'{solution() = }')
104
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : BigBirdConfig __lowerCAmelCase : jnp.dtype = jnp.floataa __lowerCAmelCase : bool = True def lowercase__ ( self): '''simple docstring''' super().setup() lowercase__ : Dict = nn.Dense(5 , dtype=self.dtype) def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[str] = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Optional[int] = FlaxBigBirdForNaturalQuestionsModule def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' def cross_entropy(lowercase_ , lowercase_ , lowercase_=None ): lowercase__ : int = logits.shape[-1] lowercase__ : List[str] = (labels[..., None] == jnp.arange(lowercase_ )[None]).astype("""f4""" ) lowercase__ : int = jax.nn.log_softmax(lowercase_ , axis=-1 ) lowercase__ : Any = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase__ : Optional[int] = reduction(lowercase_ ) return loss lowercase__ : int = partial(lowercase_ , reduction=jnp.mean ) lowercase__ : Tuple = cross_entropy(lowercase_ , lowercase_ ) lowercase__ : List[Any] = cross_entropy(lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = cross_entropy(lowercase_ , lowercase_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class _snake_case : __lowerCAmelCase : str = "google/bigbird-roberta-base" __lowerCAmelCase : int = 3_000 __lowerCAmelCase : int = 10_500 __lowerCAmelCase : int = 128 __lowerCAmelCase : int = 3 __lowerCAmelCase : int = 1 __lowerCAmelCase : int = 5 # tx_args __lowerCAmelCase : float = 3e-5 __lowerCAmelCase : float = 0.0 __lowerCAmelCase : int = 20_000 __lowerCAmelCase : float = 0.0_095 __lowerCAmelCase : str = "bigbird-roberta-natural-questions" __lowerCAmelCase : str = "training-expt" __lowerCAmelCase : str = "data/nq-training.jsonl" __lowerCAmelCase : str = "data/nq-validation.jsonl" def lowercase__ ( self): '''simple docstring''' os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE_) lowercase__ : Any = os.path.join(self.base_dir , self.save_dir) lowercase__ : str = self.batch_size_per_device * jax.device_count() @dataclass class _snake_case : __lowerCAmelCase : int __lowerCAmelCase : int = 4_096 # no dynamic padding on TPUs def __call__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = self.collate_fn(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) return batch def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ , lowercase__ : str = self.fetch_inputs(features["""input_ids"""]) lowercase__ : str = { """input_ids""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa), """attention_mask""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa), } return batch def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[Any] = [self._fetch_inputs(SCREAMING_SNAKE_CASE_) for ids in input_ids] return zip(*SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = [1 for _ in range(len(SCREAMING_SNAKE_CASE_))] while len(SCREAMING_SNAKE_CASE_) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> Optional[Any]: '''simple docstring''' if seed is not None: lowercase__ : Any = dataset.shuffle(seed=lowercase_ ) for i in range(len(lowercase_ ) // batch_size ): lowercase__ : List[str] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowercase_ ) @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase ( lowercase_ , lowercase_ , **lowercase_ ) -> int: '''simple docstring''' def loss_fn(lowercase_ ): lowercase__ : Dict = model_inputs.pop("""start_labels""" ) lowercase__ : List[Any] = model_inputs.pop("""end_labels""" ) lowercase__ : List[Any] = model_inputs.pop("""pooled_labels""" ) lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=lowercase_ , dropout_rng=lowercase_ , train=lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Any = outputs return state.loss_fn( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) lowercase__ , lowercase__ : Optional[int] = jax.random.split(lowercase_ ) lowercase__ : Tuple = jax.value_and_grad(lowercase_ ) lowercase__ , lowercase__ : Optional[int] = grad_fn(state.params ) lowercase__ : Tuple = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) lowercase__ : Any = jax.lax.pmean(lowercase_ , """batch""" ) lowercase__ : str = state.apply_gradients(grads=lowercase_ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase ( lowercase_ , **lowercase_ ) -> str: '''simple docstring''' lowercase__ : Tuple = model_inputs.pop("""start_labels""" ) lowercase__ : List[str] = model_inputs.pop("""end_labels""" ) lowercase__ : int = model_inputs.pop("""pooled_labels""" ) lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=state.params , train=lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Optional[int] = outputs lowercase__ : Optional[Any] = state.loss_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : List[str] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class _snake_case ( train_state.TrainState ): __lowerCAmelCase : Callable = struct.field(pytree_node=UpperCAmelCase_ ) @dataclass class _snake_case : __lowerCAmelCase : Args __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : wandb __lowerCAmelCase : Callable = None def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : List[str] = model.params lowercase__ : Dict = TrainState.create( apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , loss_fn=SCREAMING_SNAKE_CASE_ , ) if ckpt_dir is not None: lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = restore_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } lowercase__ , lowercase__ : Any = build_tx(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = train_state.TrainState( step=SCREAMING_SNAKE_CASE_ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , opt_state=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Optional[Any] = args lowercase__ : Union[str, Any] = data_collator lowercase__ : str = lr lowercase__ : Union[str, Any] = params lowercase__ : Dict = jax_utils.replicate(SCREAMING_SNAKE_CASE_) return state def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = self.args lowercase__ : List[str] = len(SCREAMING_SNAKE_CASE_) // args.batch_size lowercase__ : int = jax.random.PRNGKey(0) lowercase__ : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count()) for epoch in range(args.max_epochs): lowercase__ : Tuple = jnp.array(0 , dtype=jnp.floataa) lowercase__ : List[str] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , args.batch_size , seed=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc=f'Running EPOCH-{epoch}'): lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_) lowercase__ , lowercase__ , lowercase__ : List[Any] = self.train_step_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 if i % args.logging_steps == 0: lowercase__ : List[str] = jax_utils.unreplicate(state.step) lowercase__ : str = running_loss.item() / i lowercase__ : Tuple = self.scheduler_fn(state_step - 1) lowercase__ : Tuple = self.evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(SCREAMING_SNAKE_CASE_)) self.logger.log(SCREAMING_SNAKE_CASE_ , commit=SCREAMING_SNAKE_CASE_) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = get_batched_dataset(SCREAMING_SNAKE_CASE_ , self.args.batch_size) lowercase__ : Tuple = len(SCREAMING_SNAKE_CASE_) // self.args.batch_size lowercase__ : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa) lowercase__ : Optional[Any] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc="""Evaluating ... """): lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = self.val_step_fn(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 return running_loss / i def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = jax_utils.unreplicate(SCREAMING_SNAKE_CASE_) print(f'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """) self.model_save_fn(SCREAMING_SNAKE_CASE_ , params=state.params) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """opt_state.msgpack""") , """wb""") as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE_ , """args.joblib""")) joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE_ , """data_collator.joblib""")) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """training_state.json""") , """w""") as f: json.dump({"""step""": state.step.item()} , SCREAMING_SNAKE_CASE_) print("""DONE""") def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ ) with open(os.path.join(lowercase_ , """flax_model.msgpack""" ) , """rb""" ) as f: lowercase__ : Optional[Any] = from_bytes(state.params , f.read() ) with open(os.path.join(lowercase_ , """opt_state.msgpack""" ) , """rb""" ) as f: lowercase__ : Dict = from_bytes(state.opt_state , f.read() ) lowercase__ : Any = joblib.load(os.path.join(lowercase_ , """args.joblib""" ) ) lowercase__ : Optional[int] = joblib.load(os.path.join(lowercase_ , """data_collator.joblib""" ) ) with open(os.path.join(lowercase_ , """training_state.json""" ) , """r""" ) as f: lowercase__ : int = json.load(lowercase_ ) lowercase__ : Optional[Any] = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Optional[int] = num_train_steps - warmup_steps lowercase__ : int = optax.linear_schedule(init_value=lowercase_ , end_value=lowercase_ , transition_steps=lowercase_ ) lowercase__ : Optional[int] = optax.linear_schedule(init_value=lowercase_ , end_value=1E-7 , transition_steps=lowercase_ ) lowercase__ : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' def weight_decay_mask(lowercase_ ): lowercase__ : Dict = traverse_util.flatten_dict(lowercase_ ) lowercase__ : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(lowercase_ ) lowercase__ : Optional[int] = scheduler_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : int = optax.adamw(learning_rate=lowercase_ , weight_decay=lowercase_ , mask=lowercase_ ) return tx, lr
12
0
import argparse import json from tqdm import tqdm def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=lowerCamelCase_ , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=lowerCamelCase_ , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=lowerCamelCase_ , help='where to store parsed gold_data_path file' , ) SCREAMING_SNAKE_CASE_ : List[str] = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: SCREAMING_SNAKE_CASE_ : Union[str, Any] = json.load(lowerCamelCase_ ) for dpr_record in tqdm(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = dpr_record['question'] SCREAMING_SNAKE_CASE_ : List[Any] = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(lowerCamelCase_ ) + '\n' ) if __name__ == "__main__": main()
105
lowerCamelCase__ : List[str] = """ # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase__ : List[Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase__ : int = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
12
0
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class lowerCAmelCase__ : A_ : str = field( metadata={'help': 'The output directory where the model will be written.'} , ) A_ : str = field( metadata={ 'help': ( 'The encoder model checkpoint for weights initialization.' 'Don\'t set if you want to train an encoder model from scratch.' ) } , ) A_ : str = field( metadata={ 'help': ( 'The decoder model checkpoint for weights initialization.' 'Don\'t set if you want to train a decoder model from scratch.' ) } , ) A_ : Optional[str] = field( default=_lowerCamelCase , metadata={'help': 'Pretrained encoder config name or path if not the same as encoder_model_name'} ) A_ : Optional[str] = field( default=_lowerCamelCase , metadata={'help': 'Pretrained decoder config name or path if not the same as decoder_model_name'} ) def lowerCamelCase_ ( ) -> Optional[Any]: '''simple docstring''' A = HfArgumentParser((ModelArguments,) ) ((A) , ) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: A = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: A = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: A = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: A = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed A = True A = True A = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=lowerCAmelCase__ , decoder_config=lowerCAmelCase__ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens A = decoder_config.decoder_start_token_id A = decoder_config.pad_token_id if decoder_start_token_id is None: A = decoder_config.bos_token_id if pad_token_id is None: A = decoder_config.eos_token_id # This is necessary to make Flax's generate() work A = decoder_config.eos_token_id A = decoder_start_token_id A = pad_token_id A = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) A = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) A = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
106
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ): '''simple docstring''' lowercase__ : str = parent lowercase__ : Optional[int] = batch_size lowercase__ : Optional[int] = seq_length lowercase__ : Union[str, Any] = is_training lowercase__ : Any = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : Optional[Any] = use_labels lowercase__ : Optional[int] = vocab_size lowercase__ : Optional[Any] = hidden_size lowercase__ : Any = rotary_dim lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Tuple = num_attention_heads lowercase__ : Tuple = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : Optional[Any] = hidden_dropout_prob lowercase__ : int = attention_probs_dropout_prob lowercase__ : Any = max_position_embeddings lowercase__ : Optional[int] = initializer_range lowercase__ : Optional[int] = None lowercase__ : str = vocab_size - 1 lowercase__ : Any = vocab_size - 1 lowercase__ : Dict = vocab_size - 1 def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ : Any = None if self.use_input_mask: lowercase__ : Dict = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ : List[Any] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Optional[Any] = config_and_inputs lowercase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = 20 lowercase__ : int = model_class_name(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_) lowercase__ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase__ : Tuple = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) lowercase__ : List[str] = model( input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase__ : str = model( input_ids[:, -1:] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE_) lowercase__ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}') def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Union[str, Any] = 20 lowercase__ : List[Any] = model_class_name(SCREAMING_SNAKE_CASE_) lowercase__ : Dict = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , ) lowercase__ : Dict = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) lowercase__ : Any = model( input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : int = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase__ : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_) lowercase__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}') @require_flax class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Dict = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowerCAmelCase : str = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = FlaxGPTJModelTester(self) def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ , lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ , lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @tooslow def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""") lowercase__ : List[str] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""") lowercase__ : Optional[Any] = False lowercase__ : List[str] = model.config.eos_token_id lowercase__ : List[Any] = jax.jit(model.generate) lowercase__ : Tuple = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id).sequences lowercase__ : List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @is_pt_flax_cross_test def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs lowercase__ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Any = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase__ : str = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ , lowercase__ : Dict = pt_inputs["""input_ids"""].shape lowercase__ : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : str = 0 lowercase__ : List[Any] = 1 lowercase__ : Dict = 0 lowercase__ : Any = 1 lowercase__ : List[Any] = pt_model_class(SCREAMING_SNAKE_CASE_).eval() lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa) lowercase__ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = fx_state with torch.no_grad(): lowercase__ : Optional[int] = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple() lowercase__ : Dict = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_pt=SCREAMING_SNAKE_CASE_) lowercase__ : str = fx_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output_loaded, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2) @is_pt_flax_cross_test def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs lowercase__ : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = pt_model_class(SCREAMING_SNAKE_CASE_).eval() lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa) lowercase__ : Optional[int] = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , fx_model.params) lowercase__ , lowercase__ : str = pt_inputs["""input_ids"""].shape lowercase__ : List[Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Tuple = 0 lowercase__ : int = 1 lowercase__ : str = 0 lowercase__ : str = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowercase__ : Dict = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple() lowercase__ : Optional[Any] = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = pt_model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_flax=SCREAMING_SNAKE_CASE_) with torch.no_grad(): lowercase__ : Tuple = pt_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) @tooslow def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ : Any = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""") lowercase__ : int = model(np.ones((1, 1))) self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
12
0
'''simple docstring''' import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger _UpperCAmelCase : Union[str, Any] = get_logger(__name__) class lowercase_ ( enum.Enum ): """simple docstring""" __lowerCAmelCase = "all_checks" __lowerCAmelCase = "basic_checks" __lowerCAmelCase = "no_checks" class lowercase_ ( _UpperCamelCase ): """simple docstring""" class lowercase_ ( _UpperCamelCase ): """simple docstring""" class lowercase_ ( _UpperCamelCase ): """simple docstring""" class lowercase_ ( _UpperCamelCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[dict] , __snake_case : dict , __snake_case : str=None ): if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(__snake_case ) - set(__snake_case ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__snake_case ) - set(__snake_case ) ) ) if len(set(__snake_case ) - set(__snake_case ) ) > 0: raise UnexpectedDownloadedFile(str(set(__snake_case ) - set(__snake_case ) ) ) _A = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] _A = ' for ' + verification_name if verification_name is not None else '' if len(__snake_case ) > 0: raise NonMatchingChecksumError( F'Checksums didn\'t match{for_verification_name}:\n' F'{bad_urls}\n' 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class lowercase_ ( _UpperCamelCase ): """simple docstring""" class lowercase_ ( _UpperCamelCase ): """simple docstring""" class lowercase_ ( _UpperCamelCase ): """simple docstring""" class lowercase_ ( _UpperCamelCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[dict] , __snake_case : dict ): if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(__snake_case ) - set(__snake_case ) ) > 0: raise ExpectedMoreSplits(str(set(__snake_case ) - set(__snake_case ) ) ) if len(set(__snake_case ) - set(__snake_case ) ) > 0: raise UnexpectedSplits(str(set(__snake_case ) - set(__snake_case ) ) ) _A = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__snake_case ) > 0: raise NonMatchingSplitsSizesError(str(__snake_case ) ) logger.info('All the splits matched successfully.' ) def _SCREAMING_SNAKE_CASE ( __snake_case : str , __snake_case : bool = True ): if record_checksum: _A = shaaaa() with open(__snake_case , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 2_0 ) , B'' ): m.update(__snake_case ) _A = m.hexdigest() else: _A = None return {"num_bytes": os.path.getsize(__snake_case ), "checksum": checksum} def _SCREAMING_SNAKE_CASE ( __snake_case : int ): if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
107
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Any = ['image_processor', 'tokenizer'] __lowerCAmelCase : Union[str, Any] = 'AutoImageProcessor' __lowerCAmelCase : int = 'AutoTokenizer' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = self.image_processor def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""") if text is not None: lowercase__ : List[str] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) if images is not None: lowercase__ : Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) if text is not None and images is not None: lowercase__ : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_) , tensor_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) @property def lowercase__ ( self): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
12
0
__a: List[Any] = [0, 2, 4, 6, 8] __a: Union[str, Any] = [1, 3, 5, 7, 9] def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case , __snake_case ) -> int: if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 1_0 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 _UpperCAmelCase = 0 for digit in range(1_0 ): _UpperCAmelCase = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 1_0 , __snake_case , __snake_case ) return result _UpperCAmelCase = 0 for digita in range(1_0 ): _UpperCAmelCase = digita if (remainder + digita) % 2 == 0: _UpperCAmelCase = ODD_DIGITS else: _UpperCAmelCase = EVEN_DIGITS for digita in other_parity_digits: _UpperCAmelCase = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 1_0 , __snake_case , __snake_case , ) return result def _SCREAMING_SNAKE_CASE ( __snake_case = 9 ) -> int: _UpperCAmelCase = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(__snake_case , 0 , [0] * length , __snake_case ) return result if __name__ == "__main__": print(F"{solution() = }")
108
def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' if n == 1 or not isinstance(lowercase_ , lowercase_ ): return 0 elif n == 2: return 1 else: lowercase__ : List[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' lowercase__ : Optional[Any] = 0 lowercase__ : Dict = 2 while digits < n: index += 1 lowercase__ : str = len(str(fibonacci(lowercase_ ) ) ) return index def UpperCamelCase ( lowercase_ = 10_00 ) -> int: '''simple docstring''' return fibonacci_digits_index(lowercase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
12
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = (boundary[1] - boundary[0]) / steps __SCREAMING_SNAKE_CASE = boundary[0] __SCREAMING_SNAKE_CASE = boundary[1] __SCREAMING_SNAKE_CASE = make_points(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = 0.0 y += (h / 2.0) * f(__UpperCAmelCase ) for i in x_i: # print(i) y += h * f(__UpperCAmelCase ) y += (h / 2.0) * f(__UpperCAmelCase ) return y def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = a + h while x < (b - h): yield x __SCREAMING_SNAKE_CASE = x + h def __magic_name__ ( __UpperCAmelCase ) -> int: # enter your function here '''simple docstring''' __SCREAMING_SNAKE_CASE = (x - 0) * (x - 0) return y def __magic_name__ ( ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = 0.0 # Lower bound of integration __SCREAMING_SNAKE_CASE = 1.0 # Upper bound of integration __SCREAMING_SNAKE_CASE = 1_0.0 # define number of steps or resolution __SCREAMING_SNAKE_CASE = [a, b] # define boundary of integration __SCREAMING_SNAKE_CASE = method_a(__UpperCAmelCase , __UpperCAmelCase ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
109
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowerCamelCase__ : Any = """Create a default config file for Accelerate with only a few flags set.""" def UpperCamelCase ( lowercase_="no" , lowercase_ = default_json_config_file , lowercase_ = False ) -> Any: '''simple docstring''' lowercase__ : Any = Path(lowercase_ ) path.parent.mkdir(parents=lowercase_ , exist_ok=lowercase_ ) if path.exists(): print( F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' ) return False lowercase__ : int = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' ) lowercase__ : Dict = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): lowercase__ : Any = torch.cuda.device_count() lowercase__ : Any = num_gpus lowercase__ : Optional[int] = False if num_gpus > 1: lowercase__ : Tuple = """MULTI_GPU""" else: lowercase__ : Optional[Any] = """NO""" elif is_xpu_available() and use_xpu: lowercase__ : Union[str, Any] = torch.xpu.device_count() lowercase__ : str = num_xpus lowercase__ : List[Any] = False if num_xpus > 1: lowercase__ : str = """MULTI_XPU""" else: lowercase__ : Optional[Any] = """NO""" elif is_npu_available(): lowercase__ : Tuple = torch.npu.device_count() lowercase__ : Union[str, Any] = num_npus lowercase__ : Union[str, Any] = False if num_npus > 1: lowercase__ : List[Any] = """MULTI_NPU""" else: lowercase__ : int = """NO""" else: lowercase__ : Union[str, Any] = 0 lowercase__ : str = True lowercase__ : Union[str, Any] = 1 lowercase__ : int = """NO""" lowercase__ : Tuple = ClusterConfig(**lowercase_ ) config.to_json_file(lowercase_ ) return path def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' lowercase__ : List[str] = parser.add_parser("""default""" , parents=lowercase_ , help=lowercase_ , formatter_class=lowercase_ ) parser.add_argument( """--config_file""" , default=lowercase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , dest="""save_location""" , ) parser.add_argument( """--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=lowercase_ , help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , ) parser.set_defaults(func=lowercase_ ) return parser def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' lowercase__ : Optional[Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'accelerate configuration saved at {config_file}' )
12
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
110
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Union[str, Any] = 'convbert' def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowercase__ : Dict = vocab_size lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : List[str] = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : Tuple = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : Tuple = max_position_embeddings lowercase__ : Dict = type_vocab_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Dict = layer_norm_eps lowercase__ : Tuple = embedding_size lowercase__ : List[str] = head_ratio lowercase__ : Dict = conv_kernel_size lowercase__ : Dict = num_groups lowercase__ : int = classifier_dropout class _snake_case ( UpperCAmelCase_ ): @property def lowercase__ ( self): '''simple docstring''' if self.task == "multiple-choice": lowercase__ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ : str = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ])
12
0
"""simple docstring""" def a_ ( lowercase__ :str, lowercase__ :List[Any], lowercase__ :Union[str, Any], lowercase__ :Any, lowercase__ :List[Any], lowercase__ :List[Any] ): if index == r: for j in range(lowercase_ ): print(data[j], end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __lowerCamelCase = arr[i] combination_util(lowercase_, lowercase_, lowercase_, index + 1, lowercase_, i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def a_ ( lowercase__ :str, lowercase__ :Tuple, lowercase__ :List[Any] ): __lowerCamelCase = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowercase_, lowercase_, lowercase_, 0, lowercase_, 0 ) if __name__ == "__main__": # Driver code to check the function above __magic_name__ : Any = [1_0, 2_0, 3_0, 4_0, 5_0] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
281
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCamelCase__ : Any = datasets.utils.logging.get_logger(__name__) class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ): __lowerCAmelCase : bool = None __lowerCAmelCase : bool = None class _snake_case ( folder_based_builder.FolderBasedBuilder ): __lowerCAmelCase : Optional[Any] = datasets.Audio() __lowerCAmelCase : Union[str, Any] = 'audio' __lowerCAmelCase : str = AudioFolderConfig __lowerCAmelCase : List[str] # definition at the bottom of the script __lowerCAmelCase : Optional[int] = AudioClassification(audio_column='audio' , label_column='label' ) lowerCamelCase__ : int = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] lowerCamelCase__ : int = AUDIO_EXTENSIONS
12
0
'''simple docstring''' import argparse import collections import json import os import re import string import sys import numpy as np _a : Any = re.compile(R'\b(a|an|the)\b', re.UNICODE) _a : Optional[int] = None def lowerCamelCase__ ( ): UpperCAmelCase = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' ) parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' ) parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' ) parser.add_argument( '--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' ) parser.add_argument( '--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' ) parser.add_argument( '--na-prob-thresh' , '-t' , type=lowercase_ , default=1.0 , help='Predict \"\" if no-answer probability exceeds this (default = 1.0).' , ) parser.add_argument( '--out-image-dir' , '-p' , metavar='out_images' , default=lowercase_ , help='Save precision-recall curves to directory.' ) parser.add_argument('--verbose' , '-v' , action='store_true' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Optional[int] ): UpperCAmelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCAmelCase = bool(qa['answers']['text'] ) return qid_to_has_ans def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any] ): def remove_articles(SCREAMING_SNAKE_CASE : List[str] ): return ARTICLES_REGEX.sub(' ' , lowercase_ ) def white_space_fix(SCREAMING_SNAKE_CASE : Any ): return " ".join(text.split() ) def remove_punc(SCREAMING_SNAKE_CASE : Tuple ): UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(SCREAMING_SNAKE_CASE : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowercase_ ) ) ) ) def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): if not s: return [] return normalize_answer(lowercase_ ).split() def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] ): return int(normalize_answer(lowercase_ ) == normalize_answer(lowercase_ ) ) def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str ): UpperCAmelCase = get_tokens(lowercase_ ) UpperCAmelCase = get_tokens(lowercase_ ) UpperCAmelCase = collections.Counter(lowercase_ ) & collections.Counter(lowercase_ ) UpperCAmelCase = sum(common.values() ) if len(lowercase_ ) == 0 or len(lowercase_ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 UpperCAmelCase = 1.0 * num_same / len(lowercase_ ) UpperCAmelCase = 1.0 * num_same / len(lowercase_ ) UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] ): UpperCAmelCase = {} UpperCAmelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCAmelCase = qa["""id"""] UpperCAmelCase = [t for t in qa["""answers"""]["""text"""] if normalize_answer(lowercase_ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string UpperCAmelCase = [""""""] if qid not in preds: print(f'''Missing prediction for {qid}''' ) continue UpperCAmelCase = preds[qid] # Take max over all gold answers UpperCAmelCase = max(compute_exact(lowercase_ , lowercase_ ) for a in gold_answers ) UpperCAmelCase = max(compute_fa(lowercase_ , lowercase_ ) for a in gold_answers ) return exact_scores, fa_scores def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] ): UpperCAmelCase = {} for qid, s in scores.items(): UpperCAmelCase = na_probs[qid] > na_prob_thresh if pred_na: UpperCAmelCase = float(not qid_to_has_ans[qid] ) else: UpperCAmelCase = s return new_scores def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int=None ): if not qid_list: UpperCAmelCase = len(lowercase_ ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores.values() ) / total), ('f1', 100.0 * sum(fa_scores.values() ) / total), ('total', total), ] ) else: UpperCAmelCase = len(lowercase_ ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('f1', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('total', total), ] ) def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] ): for k in new_eval: UpperCAmelCase = new_eval[k] def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str ): plt.step(lowercase_ , lowercase_ , color='b' , alpha=0.2 , where='post' ) plt.fill_between(lowercase_ , lowercase_ , step='post' , alpha=0.2 , color='b' ) plt.xlabel('Recall' ) plt.ylabel('Precision' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(lowercase_ ) plt.savefig(lowercase_ ) plt.clf() def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Tuple=None ): UpperCAmelCase = sorted(lowercase_ , key=lambda SCREAMING_SNAKE_CASE : na_probs[k] ) UpperCAmelCase = 0.0 UpperCAmelCase = 1.0 UpperCAmelCase = 0.0 UpperCAmelCase = [1.0] UpperCAmelCase = [0.0] UpperCAmelCase = 0.0 for i, qid in enumerate(lowercase_ ): if qid_to_has_ans[qid]: true_pos += scores[qid] UpperCAmelCase = true_pos / float(i + 1 ) UpperCAmelCase = true_pos / float(lowercase_ ) if i == len(lowercase_ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(lowercase_ ) recalls.append(lowercase_ ) if out_image: plot_pr_curve(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return {"ap": 100.0 * avg_prec} def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict ): if out_image_dir and not os.path.exists(lowercase_ ): os.makedirs(lowercase_ ) UpperCAmelCase = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return UpperCAmelCase = make_precision_recall_eval( lowercase_ , lowercase_ , lowercase_ , lowercase_ , out_image=os.path.join(lowercase_ , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , ) UpperCAmelCase = make_precision_recall_eval( lowercase_ , lowercase_ , lowercase_ , lowercase_ , out_image=os.path.join(lowercase_ , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , ) UpperCAmelCase = {k: float(lowercase_ ) for k, v in qid_to_has_ans.items()} UpperCAmelCase = make_precision_recall_eval( lowercase_ , lowercase_ , lowercase_ , lowercase_ , out_image=os.path.join(lowercase_ , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , ) merge_eval(lowercase_ , lowercase_ , 'pr_exact' ) merge_eval(lowercase_ , lowercase_ , 'pr_f1' ) merge_eval(lowercase_ , lowercase_ , 'pr_oracle' ) def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict ): if not qid_list: return UpperCAmelCase = [na_probs[k] for k in qid_list] UpperCAmelCase = np.ones_like(lowercase_ ) / float(len(lowercase_ ) ) plt.hist(lowercase_ , weights=lowercase_ , bins=20 , range=(0.0, 1.0) ) plt.xlabel('Model probability of no-answer' ) plt.ylabel('Proportion of dataset' ) plt.title(f'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(lowercase_ , f'''na_prob_hist_{name}.png''' ) ) plt.clf() def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] ): UpperCAmelCase = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) UpperCAmelCase = num_no_ans UpperCAmelCase = cur_score UpperCAmelCase = 0.0 UpperCAmelCase = sorted(lowercase_ , key=lambda SCREAMING_SNAKE_CASE : na_probs[k] ) for i, qid in enumerate(lowercase_ ): if qid not in scores: continue if qid_to_has_ans[qid]: UpperCAmelCase = scores[qid] else: if preds[qid]: UpperCAmelCase = -1 else: UpperCAmelCase = 0 cur_score += diff if cur_score > best_score: UpperCAmelCase = cur_score UpperCAmelCase = na_probs[qid] return 100.0 * best_score / len(lowercase_ ), best_thresh def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict ): UpperCAmelCase = find_best_thresh(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase = find_best_thresh(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase = best_exact UpperCAmelCase = exact_thresh UpperCAmelCase = best_fa UpperCAmelCase = fa_thresh def lowerCamelCase__ ( ): with open(OPTS.data_file ) as f: UpperCAmelCase = json.load(lowercase_ ) UpperCAmelCase = dataset_json["""data"""] with open(OPTS.pred_file ) as f: UpperCAmelCase = json.load(lowercase_ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: UpperCAmelCase = json.load(lowercase_ ) else: UpperCAmelCase = {k: 0.0 for k in preds} UpperCAmelCase = make_qid_to_has_ans(lowercase_ ) # maps qid to True/False UpperCAmelCase = [k for k, v in qid_to_has_ans.items() if v] UpperCAmelCase = [k for k, v in qid_to_has_ans.items() if not v] UpperCAmelCase = get_raw_scores(lowercase_ , lowercase_ ) UpperCAmelCase = apply_no_ans_threshold(lowercase_ , lowercase_ , lowercase_ , OPTS.na_prob_thresh ) UpperCAmelCase = apply_no_ans_threshold(lowercase_ , lowercase_ , lowercase_ , OPTS.na_prob_thresh ) UpperCAmelCase = make_eval_dict(lowercase_ , lowercase_ ) if has_ans_qids: UpperCAmelCase = make_eval_dict(lowercase_ , lowercase_ , qid_list=lowercase_ ) merge_eval(lowercase_ , lowercase_ , 'HasAns' ) if no_ans_qids: UpperCAmelCase = make_eval_dict(lowercase_ , lowercase_ , qid_list=lowercase_ ) merge_eval(lowercase_ , lowercase_ , 'NoAns' ) if OPTS.na_prob_file: find_all_best_thresh(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , OPTS.out_image_dir ) histogram_na_prob(lowercase_ , lowercase_ , OPTS.out_image_dir , 'hasAns' ) histogram_na_prob(lowercase_ , lowercase_ , OPTS.out_image_dir , 'noAns' ) if OPTS.out_file: with open(OPTS.out_file , 'w' ) as f: json.dump(lowercase_ , lowercase_ ) else: print(json.dumps(lowercase_ , indent=2 ) ) if __name__ == "__main__": _a : List[str] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
447
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : int = (DDPMScheduler,) def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = { """num_train_timesteps""": 10_00, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**SCREAMING_SNAKE_CASE_) return config def lowercase__ ( self): '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2]): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , ) def lowercase__ ( self): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : Union[str, Any] = self.get_scheduler_config() lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0_9_7_9)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.0_2)) < 1E-5 def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.scheduler_classes[0] lowercase__ : str = self.get_scheduler_config() lowercase__ : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = len(SCREAMING_SNAKE_CASE_) lowercase__ : Any = self.dummy_model() lowercase__ : List[Any] = self.dummy_sample_deter lowercase__ : str = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : List[str] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : str = pred_prev_sample lowercase__ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_5_8.9_6_0_6) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = self.scheduler_classes[0] lowercase__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""") lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : Dict = len(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = self.dummy_model() lowercase__ : Union[str, Any] = self.dummy_sample_deter lowercase__ : int = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : Tuple = pred_prev_sample lowercase__ : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_0_2.0_2_9_6) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : str = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : str = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = scheduler.timesteps for i, timestep in enumerate(SCREAMING_SNAKE_CASE_): if i == len(SCREAMING_SNAKE_CASE_) - 1: lowercase__ : Optional[int] = -1 else: lowercase__ : Tuple = timesteps[i + 1] lowercase__ : Any = scheduler.previous_timestep(SCREAMING_SNAKE_CASE_) lowercase__ : int = prev_t.item() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = [1_00, 87, 50, 51, 0] with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`custom_timesteps` must be in descending order."""): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = [1_00, 87, 50, 1, 0] lowercase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_) with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`."""): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : str = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
12
0
"""simple docstring""" def _lowerCamelCase ( UpperCAmelCase__ ) -> List[Any]: '''simple docstring''' a__ = len(lowercase_ ) for i in range(length - 1 ): a__ = i for k in range(i + 1,lowercase_ ): if collection[k] < collection[least]: a__ = k if least != i: a__ = (collection[i], collection[least]) return collection if __name__ == "__main__": __magic_name__ = input("Enter numbers separated by a comma:\n").strip() __magic_name__ = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
232
def UpperCamelCase ( lowercase_ ) -> float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) lowercase__ : int = sum(lowercase_ ) / len(lowercase_ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
12
0
"""simple docstring""" def __lowerCAmelCase ( lowercase : Union[str, Any] , lowercase : Tuple ) -> int: """simple docstring""" return abs(lowercase_ ) if a == 0 else greatest_common_divisor(b % a , lowercase_ ) def __lowerCAmelCase ( lowercase : Dict , lowercase : str ) -> int: """simple docstring""" while y: # --> when y=0 then loop will terminate and return x as final GCD. snake_case : Tuple = y, x % y return abs(lowercase_ ) def __lowerCAmelCase ( ) -> Optional[Any]: """simple docstring""" try: snake_case : Dict = input("Enter two integers separated by comma (,): " ).split("," ) snake_case : str = int(nums[0] ) snake_case : Dict = int(nums[1] ) print( F'greatest_common_divisor({num_a}, {num_a}) = ' F'{greatest_common_divisor(lowercase_ , lowercase_ )}' ) print(F'By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(lowercase_ , lowercase_ )}' ) except (IndexError, UnboundLocalError, ValueError): print("Wrong input" ) if __name__ == "__main__": main()
178
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Any = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 8 , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = do_rescale lowercase__ : List[Any] = rescale_factor lowercase__ : Tuple = do_pad lowercase__ : Optional[Any] = pad_size def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None): '''simple docstring''' lowercase__ , lowercase__ : Optional[int] = get_image_size(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = (old_height // size + 1) * size - old_height lowercase__ : str = (old_width // size + 1) * size - old_width return pad(SCREAMING_SNAKE_CASE_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = do_pad if do_pad is not None else self.do_pad lowercase__ : Optional[Any] = pad_size if pad_size is not None else self.pad_size lowercase__ : str = make_list_of_images(SCREAMING_SNAKE_CASE_) if not valid_images(SCREAMING_SNAKE_CASE_): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") # All transformations expect numpy arrays. lowercase__ : List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_) for image in images] if do_rescale: lowercase__ : str = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_) for image in images] if do_pad: lowercase__ : List[str] = [self.pad(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_) for image in images] lowercase__ : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for image in images] lowercase__ : Dict = {"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_)
12
0
'''simple docstring''' UpperCamelCase__: int = [ (1000, """M"""), (900, """CM"""), (500, """D"""), (400, """CD"""), (100, """C"""), (90, """XC"""), (50, """L"""), (40, """XL"""), (10, """X"""), (9, """IX"""), (5, """V"""), (4, """IV"""), (1, """I"""), ] def snake_case_ ( _lowerCAmelCase : Union[str, Any] ) -> int: UpperCAmelCase : List[str] = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000} UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Any = 0 while place < len(lowercase_ ): if (place + 1 < len(lowercase_ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def snake_case_ ( _lowerCAmelCase : str ) -> str: UpperCAmelCase : List[str] = [] for arabic, roman in ROMAN: (UpperCAmelCase) : Tuple = divmod(lowercase_ , lowercase_ ) result.append(roman * factor ) if number == 0: break return "".join(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
127
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowerCamelCase__ : Optional[int] = [ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[Any]: '''simple docstring''' lowercase__ : List[Any] = True while ask_again: lowercase__ : Tuple = input(lowercase_ ) try: if default is not None and len(lowercase_ ) == 0: return default return convert_value(lowercase_ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowercase_ ) def UpperCamelCase ( lowercase_ , lowercase_=[] , lowercase_=None , lowercase_=0 ) -> Union[str, Any]: '''simple docstring''' lowercase__ : List[Any] = BulletMenu(lowercase_ , lowercase_ ) lowercase__ : Any = menu.run(default_choice=lowercase_ ) return convert_value(lowercase_ ) if convert_value is not None else result def UpperCamelCase ( lowercase_ ) -> str: '''simple docstring''' lowercase__ : Union[str, Any] = int(lowercase_ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' lowercase__ : List[str] = int(lowercase_ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def UpperCamelCase ( lowercase_ ) -> str: '''simple docstring''' lowercase__ : str = int(lowercase_ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def UpperCamelCase ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowercase__ : List[Any] = int(lowercase_ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' lowercase__ : List[Any] = int(lowercase_ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _snake_case ( argparse.RawDescriptionHelpFormatter ): def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : int = super()._format_usage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = usage.replace("""<command> [<args>] """ , """""") return usage
12
0
"""simple docstring""" lowerCamelCase__ = { """Pillow""": """Pillow""", """accelerate""": """accelerate>=0.11.0""", """compel""": """compel==0.1.8""", """black""": """black~=23.1""", """datasets""": """datasets""", """filelock""": """filelock""", """flax""": """flax>=0.4.1""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.13.2""", """requests-mock""": """requests-mock==1.10.0""", """importlib_metadata""": """importlib_metadata""", """invisible-watermark""": """invisible-watermark""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2""", """jaxlib""": """jaxlib>=0.1.65""", """Jinja2""": """Jinja2""", """k-diffusion""": """k-diffusion>=0.0.12""", """torchsde""": """torchsde""", """note_seq""": """note_seq""", """librosa""": """librosa""", """numpy""": """numpy""", """omegaconf""": """omegaconf""", """parameterized""": """parameterized""", """protobuf""": """protobuf>=3.20.3,<4""", """pytest""": """pytest""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """ruff""": """ruff>=0.0.241""", """safetensors""": """safetensors""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """scipy""": """scipy""", """onnx""": """onnx""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """tensorboard""": """tensorboard""", """torch""": """torch>=1.4""", """torchvision""": """torchvision""", """transformers""": """transformers>=4.25.1""", """urllib3""": """urllib3<=2.0.0""", }
624
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Tuple = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig class lowerCamelCase__ ( UpperCAmelCase_ ): """simple docstring""" UpperCamelCase__ = 'bert-generation' def __init__( self : Any ,a__ : List[str]=5_03_58 ,a__ : List[Any]=10_24 ,a__ : Tuple=24 ,a__ : List[Any]=16 ,a__ : Optional[int]=40_96 ,a__ : Dict="gelu" ,a__ : Union[str, Any]=0.1 ,a__ : Optional[Any]=0.1 ,a__ : Dict=5_12 ,a__ : str=0.02 ,a__ : Tuple=1e-12 ,a__ : Optional[Any]=0 ,a__ : Dict=2 ,a__ : Any=1 ,a__ : Dict="absolute" ,a__ : Optional[Any]=True ,**a__ : int ,): super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ ,bos_token_id=SCREAMING_SNAKE_CASE_ ,eos_token_id=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = hidden_act a__ = intermediate_size a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = initializer_range a__ = layer_norm_eps a__ = position_embedding_type a__ = use_cache
331
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class _snake_case ( UpperCAmelCase_ ): def __init__( self): '''simple docstring''' lowercase__ : List[Any] = [] def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_init_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_train_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_train_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_epoch_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_epoch_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_step_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_step_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_evaluate""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_predict""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_save""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_log""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_prediction_step""") @require_torch class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = tempfile.mkdtemp() def lowercase__ ( self): '''simple docstring''' shutil.rmtree(self.output_dir) def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Any = RegressionDataset(length=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = RegressionDataset(length=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = RegressionModelConfig(a=SCREAMING_SNAKE_CASE_ , b=SCREAMING_SNAKE_CASE_) lowercase__ : Any = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE_) lowercase__ : Any = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE_ , report_to=[] , **SCREAMING_SNAKE_CASE_) return Trainer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , callbacks=SCREAMING_SNAKE_CASE_ , ) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_)) # Order doesn't matter lowercase__ : str = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__) lowercase__ : Tuple = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__) for cba, cba in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(SCREAMING_SNAKE_CASE_ , cba.__class__) elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE_) else: self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : int = ["""on_init_end""", """on_train_begin"""] lowercase__ : Union[str, Any] = 0 lowercase__ : Union[str, Any] = len(trainer.get_eval_dataloader()) lowercase__ : Dict = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader()) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs): expected_events.append("""on_epoch_begin""") for _ in range(SCREAMING_SNAKE_CASE_): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""") if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""") expected_events.append("""on_epoch_end""") if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def lowercase__ ( self): '''simple docstring''' lowercase__ : int = self.get_trainer() lowercase__ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # Callbacks passed at init are added to the default callbacks lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback]) expected_callbacks.append(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : Any = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : Tuple = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.remove(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_) self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) trainer.add_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # We can also add, pop, or remove by instance lowercase__ : Union[str, Any] = self.get_trainer() lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0] trainer.remove_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.remove(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) lowercase__ : str = self.get_trainer() lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) trainer.add_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback]) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # Independent log/save/eval lowercase__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5) trainer.train() lowercase__ : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5) trainer.train() lowercase__ : Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""") trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""") trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""") as warn_mock: lowercase__ : Dict = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(SCREAMING_SNAKE_CASE_) in warn_mock.call_args[0][0]
12
0
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = multiprocessing.Manager() SCREAMING_SNAKE_CASE = manager.list() SCREAMING_SNAKE_CASE = multiprocessing.Process(target=lowercase_ , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('timed out' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] ) -> Tuple: '''simple docstring''' with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil SCREAMING_SNAKE_CASE = shutil.rmtree SCREAMING_SNAKE_CASE = os.rmdir SCREAMING_SNAKE_CASE = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: SCREAMING_SNAKE_CASE = {} with swallow_io(): with time_limit(lowercase_ ): exec(lowercase_ , lowercase_ ) result.append('passed' ) except TimeoutException: result.append('timed out' ) except BaseException as e: result.append(f"""failed: {e}""" ) # Needed for cleaning up. SCREAMING_SNAKE_CASE = rmtree SCREAMING_SNAKE_CASE = rmdir SCREAMING_SNAKE_CASE = chdir @contextlib.contextmanager def __lowerCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> str: '''simple docstring''' def signal_handler(_UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] ): raise TimeoutException('Timed out!' ) signal.setitimer(signal.ITIMER_REAL , lowercase_ ) signal.signal(signal.SIGALRM , lowercase_ ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def __lowerCAmelCase ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = WriteOnlyStringIO() with contextlib.redirect_stdout(lowercase_ ): with contextlib.redirect_stderr(lowercase_ ): with redirect_stdin(lowercase_ ): yield @contextlib.contextmanager def __lowerCAmelCase ( ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as dirname: with chdir(lowercase_ ): yield dirname class UpperCamelCase ( UpperCAmelCase_ ): pass class UpperCamelCase ( io.StringIO ): def UpperCamelCase ( self : Any , *snake_case__ : List[str] , **snake_case__ : List[Any] ): """simple docstring""" raise OSError def UpperCamelCase ( self : Dict , *snake_case__ : Optional[int] , **snake_case__ : List[Any] ): """simple docstring""" raise OSError def UpperCamelCase ( self : List[Any] , *snake_case__ : Any , **snake_case__ : Union[str, Any] ): """simple docstring""" raise OSError def UpperCamelCase ( self : Optional[int] , *snake_case__ : Optional[int] , **snake_case__ : Tuple ): """simple docstring""" return False class UpperCamelCase ( contextlib._RedirectStream ): # type: ignore __UpperCamelCase ='stdin' @contextlib.contextmanager def __lowerCAmelCase ( _UpperCamelCase : str ) -> Optional[int]: '''simple docstring''' if root == ".": yield return SCREAMING_SNAKE_CASE = os.getcwd() os.chdir(lowercase_ ) try: yield except BaseException as exc: raise exc finally: os.chdir(lowercase_ ) def __lowerCAmelCase ( _UpperCamelCase : Any=None ) -> Union[str, Any]: '''simple docstring''' if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None import os SCREAMING_SNAKE_CASE = """1""" SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None import shutil SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None import subprocess SCREAMING_SNAKE_CASE = None # type: ignore SCREAMING_SNAKE_CASE = None import sys SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None
439
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = RoCBertTokenizer __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : str = False __lowerCAmelCase : List[Any] = True __lowerCAmelCase : Optional[int] = filter_non_english def lowercase__ ( self): '''simple docstring''' super().setUp() lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] lowercase__ : Dict = {} lowercase__ : Tuple = {} for i, value in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Tuple = i lowercase__ : Any = i lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""]) lowercase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) with open(self.word_shape_file , """w""" , encoding="""utf-8""") as word_shape_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_) with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""") as word_pronunciation_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) lowercase__ : Optional[int] = tokenizer.tokenize("""你好[SEP]你是谁""") self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) def lowercase__ ( self): '''simple docstring''' lowercase__ : int = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""") , ["""ah""", """\u535A""", """\u63A8""", """zz"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""h\u00E9llo"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=["""[UNK]"""]) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""") , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] lowercase__ : Optional[int] = {} for i, token in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = i lowercase__ : Union[str, Any] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""unwanted running""") , ["""un""", """##want""", """##ed""", """runn""", """##ing"""]) self.assertListEqual(tokenizer.tokenize("""unwantedX running""") , ["""[UNK]""", """runn""", """##ing"""]) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_whitespace(""" """)) self.assertTrue(_is_whitespace("""\t""")) self.assertTrue(_is_whitespace("""\r""")) self.assertTrue(_is_whitespace("""\n""")) self.assertTrue(_is_whitespace("""\u00A0""")) self.assertFalse(_is_whitespace("""A""")) self.assertFalse(_is_whitespace("""-""")) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_control("""\u0005""")) self.assertFalse(_is_control("""A""")) self.assertFalse(_is_control(""" """)) self.assertFalse(_is_control("""\t""")) self.assertFalse(_is_control("""\r""")) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_punctuation("""-""")) self.assertTrue(_is_punctuation("""$""")) self.assertTrue(_is_punctuation("""`""")) self.assertTrue(_is_punctuation(""".""")) self.assertFalse(_is_punctuation("""A""")) self.assertFalse(_is_punctuation(""" """)) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) if self.test_rust_tokenizer: lowercase__ : int = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) def lowercase__ ( self): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase__ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' lowercase__ : List[str] = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , ) lowercase__ : str = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , """do_lower_case""") else False lowercase__ : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""])) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = ["""的""", """人""", """有"""] lowercase__ : List[str] = """""".join(SCREAMING_SNAKE_CASE_) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase__ : Union[str, Any] = True lowercase__ : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : str = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Any = False lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) # it is expected that only the first Chinese character is not preceded by "##". lowercase__ : Any = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_) ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @slow def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) lowercase__ : Optional[Any] = tokenizer.encode("""你好""" , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Any = tokenizer.encode("""你是谁""" , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}'): lowercase__ : Optional[int] = """你好,你是谁""" lowercase__ : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) lowercase__ : Any = tokenizer.prepare_for_model( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
12
0
'''simple docstring''' def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: Dict ) -> bool: """simple docstring""" return credit_card_number.startswith(('34', '35', '37', '4', '5', '6') ) def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: Any ) -> bool: """simple docstring""" __a = credit_card_number __a = 0 __a = len(lowercase_ ) - 2 for i in range(lowercase_, -1, -2 ): # double the value of every second digit __a = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 __a = cc_number[:i] + str(lowercase_ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(lowercase_ ) - 1, -1, -2 ): total += int(cc_number[i] ) return total % 10 == 0 def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: Tuple ) -> bool: """simple docstring""" __a = f"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(f"""{error_message} it has nonnumerical characters.""" ) return False if not 13 <= len(lowercase_ ) <= 16: print(f"""{error_message} of its length.""" ) return False if not validate_initial_digits(lowercase_ ): print(f"""{error_message} of its first two digits.""" ) return False if not luhn_validation(lowercase_ ): print(f"""{error_message} it fails the Luhn check.""" ) return False print(f"""{credit_card_number} is a valid credit card number.""" ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
448
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class _snake_case ( UpperCAmelCase_ ): def __init__( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.') requires_backends(self , """vision""") self.check_model_type(SCREAMING_SNAKE_CASE_) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' if "text_queries" in kwargs: lowercase__ : Any = kwargs.pop("""text_queries""") if isinstance(SCREAMING_SNAKE_CASE_ , (str, Image.Image)): lowercase__ : Optional[Any] = {"""image""": image, """candidate_labels""": candidate_labels} else: lowercase__ : int = image lowercase__ : List[str] = super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) return results def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = {} if "threshold" in kwargs: lowercase__ : List[Any] = kwargs["""threshold"""] if "top_k" in kwargs: lowercase__ : int = kwargs["""top_k"""] return {}, {}, postprocess_params def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = load_image(inputs["""image"""]) lowercase__ : Any = inputs["""candidate_labels"""] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): lowercase__ : List[str] = candidate_labels.split(""",""") lowercase__ : Tuple = torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) lowercase__ : Union[str, Any] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) yield { "is_last": i == len(SCREAMING_SNAKE_CASE_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = model_inputs.pop("""target_size""") lowercase__ : Optional[int] = model_inputs.pop("""candidate_label""") lowercase__ : Dict = model_inputs.pop("""is_last""") lowercase__ : Union[str, Any] = self.model(**SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : Union[str, Any] = [] for model_output in model_outputs: lowercase__ : Optional[int] = model_output["""candidate_label"""] lowercase__ : Tuple = BaseModelOutput(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.image_processor.post_process_object_detection( outputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ , target_sizes=model_output["""target_size"""])[0] for index in outputs["scores"].nonzero(): lowercase__ : Optional[Any] = outputs["""scores"""][index].item() lowercase__ : Optional[Any] = self._get_bounding_box(outputs["""boxes"""][index][0]) lowercase__ : Tuple = {"""score""": score, """label""": label, """box""": box} results.append(SCREAMING_SNAKE_CASE_) lowercase__ : int = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: x["score"] , reverse=SCREAMING_SNAKE_CASE_) if top_k: lowercase__ : Any = results[:top_k] return results def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""") lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = box.int().tolist() lowercase__ : Optional[int] = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
12
0
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) a_ = { """sample_size""": 32, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1000, """block_out_channels""": [32, 64], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a_ = { """sample_size""": 64, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1000, """block_out_channels""": [192, 192 * 2, 192 * 3, 192 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a_ = { """sample_size""": 256, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } a_ = { """num_train_timesteps""": 40, """sigma_min""": 0.002, """sigma_max""": 80.0, } a_ = { """num_train_timesteps""": 201, """sigma_min""": 0.002, """sigma_max""": 80.0, } a_ = { """num_train_timesteps""": 151, """sigma_min""": 0.002, """sigma_max""": 80.0, } def lowerCamelCase__ ( _a): if isinstance(lowercase_ , lowercase_): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("boolean value expected") def lowerCamelCase__ ( _a , _a , _a , _a , _a=False): SCREAMING_SNAKE_CASE : List[str] = checkpoint[f"{old_prefix}.in_layers.0.weight"] SCREAMING_SNAKE_CASE : Tuple = checkpoint[f"{old_prefix}.in_layers.0.bias"] SCREAMING_SNAKE_CASE : Any = checkpoint[f"{old_prefix}.in_layers.2.weight"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"{old_prefix}.in_layers.2.bias"] SCREAMING_SNAKE_CASE : Optional[int] = checkpoint[f"{old_prefix}.emb_layers.1.weight"] SCREAMING_SNAKE_CASE : List[Any] = checkpoint[f"{old_prefix}.emb_layers.1.bias"] SCREAMING_SNAKE_CASE : List[Any] = checkpoint[f"{old_prefix}.out_layers.0.weight"] SCREAMING_SNAKE_CASE : Optional[int] = checkpoint[f"{old_prefix}.out_layers.0.bias"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"{old_prefix}.out_layers.3.weight"] SCREAMING_SNAKE_CASE : Tuple = checkpoint[f"{old_prefix}.out_layers.3.bias"] if has_skip: SCREAMING_SNAKE_CASE : Any = checkpoint[f"{old_prefix}.skip_connection.weight"] SCREAMING_SNAKE_CASE : Any = checkpoint[f"{old_prefix}.skip_connection.bias"] return new_checkpoint def lowerCamelCase__ ( _a , _a , _a , _a , _a=None): SCREAMING_SNAKE_CASE : str = checkpoint[f"{old_prefix}.qkv.weight"].chunk(3 , dim=0) SCREAMING_SNAKE_CASE : Any = checkpoint[f"{old_prefix}.qkv.bias"].chunk(3 , dim=0) SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint[f"{old_prefix}.norm.weight"] SCREAMING_SNAKE_CASE : Tuple = checkpoint[f"{old_prefix}.norm.bias"] SCREAMING_SNAKE_CASE : int = weight_q.squeeze(-1).squeeze(-1) SCREAMING_SNAKE_CASE : int = bias_q.squeeze(-1).squeeze(-1) SCREAMING_SNAKE_CASE : str = weight_k.squeeze(-1).squeeze(-1) SCREAMING_SNAKE_CASE : Dict = bias_k.squeeze(-1).squeeze(-1) SCREAMING_SNAKE_CASE : List[Any] = weight_v.squeeze(-1).squeeze(-1) SCREAMING_SNAKE_CASE : Dict = bias_v.squeeze(-1).squeeze(-1) SCREAMING_SNAKE_CASE : List[Any] = ( checkpoint[f"{old_prefix}.proj_out.weight"].squeeze(-1).squeeze(-1) ) SCREAMING_SNAKE_CASE : List[str] = checkpoint[f"{old_prefix}.proj_out.bias"].squeeze(-1).squeeze(-1) return new_checkpoint def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : List[Any] = torch.load(lowercase_ , map_location="cpu") SCREAMING_SNAKE_CASE : Optional[Any] = {} SCREAMING_SNAKE_CASE : Tuple = checkpoint["""time_embed.0.weight"""] SCREAMING_SNAKE_CASE : Any = checkpoint["""time_embed.0.bias"""] SCREAMING_SNAKE_CASE : Dict = checkpoint["""time_embed.2.weight"""] SCREAMING_SNAKE_CASE : str = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: SCREAMING_SNAKE_CASE : int = checkpoint["""label_emb.weight"""] SCREAMING_SNAKE_CASE : Optional[int] = checkpoint["""input_blocks.0.0.weight"""] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint["""input_blocks.0.0.bias"""] SCREAMING_SNAKE_CASE : Union[str, Any] = unet_config["""down_block_types"""] SCREAMING_SNAKE_CASE : str = unet_config["""layers_per_block"""] SCREAMING_SNAKE_CASE : Optional[int] = unet_config["""attention_head_dim"""] SCREAMING_SNAKE_CASE : Optional[Any] = unet_config["""block_out_channels"""] SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Optional[int] = channels_list[0] for i, layer_type in enumerate(lowercase_): SCREAMING_SNAKE_CASE : Any = channels_list[i] SCREAMING_SNAKE_CASE : List[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(lowercase_): SCREAMING_SNAKE_CASE : Any = f"down_blocks.{i}.resnets.{j}" SCREAMING_SNAKE_CASE : int = f"input_blocks.{current_layer}.0" SCREAMING_SNAKE_CASE : Tuple = True if j == 0 and downsample_block_has_skip else False SCREAMING_SNAKE_CASE : Tuple = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ , has_skip=lowercase_) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(lowercase_): SCREAMING_SNAKE_CASE : Optional[Any] = f"down_blocks.{i}.resnets.{j}" SCREAMING_SNAKE_CASE : Union[str, Any] = f"input_blocks.{current_layer}.0" SCREAMING_SNAKE_CASE : Any = True if j == 0 and downsample_block_has_skip else False SCREAMING_SNAKE_CASE : Optional[int] = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ , has_skip=lowercase_) SCREAMING_SNAKE_CASE : Optional[int] = f"down_blocks.{i}.attentions.{j}" SCREAMING_SNAKE_CASE : int = f"input_blocks.{current_layer}.1" SCREAMING_SNAKE_CASE : str = convert_attention( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) current_layer += 1 if i != len(lowercase_) - 1: SCREAMING_SNAKE_CASE : Dict = f"down_blocks.{i}.downsamplers.0" SCREAMING_SNAKE_CASE : Union[str, Any] = f"input_blocks.{current_layer}.0" SCREAMING_SNAKE_CASE : List[str] = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_) current_layer += 1 SCREAMING_SNAKE_CASE : Optional[Any] = current_channels # hardcoded the mid-block for now SCREAMING_SNAKE_CASE : Any = """mid_block.resnets.0""" SCREAMING_SNAKE_CASE : List[Any] = """middle_block.0""" SCREAMING_SNAKE_CASE : Tuple = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_) SCREAMING_SNAKE_CASE : str = """mid_block.attentions.0""" SCREAMING_SNAKE_CASE : Union[str, Any] = """middle_block.1""" SCREAMING_SNAKE_CASE : Tuple = convert_attention(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) SCREAMING_SNAKE_CASE : Dict = """mid_block.resnets.1""" SCREAMING_SNAKE_CASE : List[Any] = """middle_block.2""" SCREAMING_SNAKE_CASE : int = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_) SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = unet_config["""up_block_types"""] for i, layer_type in enumerate(lowercase_): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1): SCREAMING_SNAKE_CASE : List[str] = f"up_blocks.{i}.resnets.{j}" SCREAMING_SNAKE_CASE : Dict = f"output_blocks.{current_layer}.0" SCREAMING_SNAKE_CASE : str = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ , has_skip=lowercase_) current_layer += 1 if i != len(lowercase_) - 1: SCREAMING_SNAKE_CASE : List[Any] = f"up_blocks.{i}.upsamplers.0" SCREAMING_SNAKE_CASE : Any = f"output_blocks.{current_layer-1}.1" SCREAMING_SNAKE_CASE : List[str] = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1): SCREAMING_SNAKE_CASE : Dict = f"up_blocks.{i}.resnets.{j}" SCREAMING_SNAKE_CASE : Any = f"output_blocks.{current_layer}.0" SCREAMING_SNAKE_CASE : List[str] = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ , has_skip=lowercase_) SCREAMING_SNAKE_CASE : Tuple = f"up_blocks.{i}.attentions.{j}" SCREAMING_SNAKE_CASE : Optional[Any] = f"output_blocks.{current_layer}.1" SCREAMING_SNAKE_CASE : Any = convert_attention( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) current_layer += 1 if i != len(lowercase_) - 1: SCREAMING_SNAKE_CASE : Any = f"up_blocks.{i}.upsamplers.0" SCREAMING_SNAKE_CASE : Optional[int] = f"output_blocks.{current_layer-1}.2" SCREAMING_SNAKE_CASE : int = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_) SCREAMING_SNAKE_CASE : str = checkpoint["""out.0.weight"""] SCREAMING_SNAKE_CASE : Any = checkpoint["""out.0.bias"""] SCREAMING_SNAKE_CASE : Any = checkpoint["""out.2.weight"""] SCREAMING_SNAKE_CASE : Any = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--unet_path', default=None, type=str, required=True, help='Path to the unet.pt to convert.') parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output the converted UNet model.' ) parser.add_argument('--class_cond', default=True, type=str, help='Whether the model is class-conditional.') a_ = parser.parse_args() a_ = strabool(args.class_cond) a_ = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: a_ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a_ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: a_ = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: a_ = None a_ = con_pt_to_diffuser(args.unet_path, unet_config) a_ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: a_ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: a_ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a_ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') a_ = CMStochasticIterativeScheduler(**scheduler_config) a_ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
25
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowercase__ : str = mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) else: lowercase__ : List[str] = max( mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) , mf_knapsack(i - 1 , lowercase_ , lowercase_ , j - wt[i - 1] ) + val[i - 1] , ) lowercase__ : List[Any] = val return f[i][j] def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowercase__ : Any = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowercase__ : List[Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowercase__ : Tuple = dp[i - 1][w_] return dp[n][w_], dp def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' if not (isinstance(lowercase_ , (list, tuple) ) and isinstance(lowercase_ , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) lowercase__ : str = len(lowercase_ ) if num_items != len(lowercase_ ): lowercase__ : Optional[int] = ( """The number of weights must be the same as the number of values.\n""" F'But got {num_items} weights and {len(lowercase_ )} values' ) raise ValueError(lowercase_ ) for i in range(lowercase_ ): if not isinstance(wt[i] , lowercase_ ): lowercase__ : int = ( """All weights must be integers but got weight of """ F'type {type(wt[i] )} at index {i}' ) raise TypeError(lowercase_ ) lowercase__ , lowercase__ : Tuple = knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : set = set() _construct_solution(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return optimal_val, example_optional_set def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(lowercase_ , lowercase_ , i - 1 , lowercase_ , lowercase_ ) else: optimal_set.add(lowercase_ ) _construct_solution(lowercase_ , lowercase_ , i - 1 , j - wt[i - 1] , lowercase_ ) if __name__ == "__main__": lowerCamelCase__ : Dict = [3, 2, 4, 4] lowerCamelCase__ : List[Any] = [4, 3, 2, 3] lowerCamelCase__ : Optional[int] = 4 lowerCamelCase__ : Dict = 6 lowerCamelCase__ : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowerCamelCase__ , lowerCamelCase__ : int = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowerCamelCase__ , lowerCamelCase__ : Optional[int] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
12
0
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase_ : '''simple docstring''' def __init__( self :List[str] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=13 , lowerCAmelCase__ :List[str]=30 , lowerCAmelCase__ :List[str]=2 , lowerCAmelCase__ :List[str]=3 , lowerCAmelCase__ :str=True , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :Union[str, Any]=32 , lowerCAmelCase__ :int=2 , lowerCAmelCase__ :List[str]=4 , lowerCAmelCase__ :Any=37 , lowerCAmelCase__ :Union[str, Any]="gelu" , lowerCAmelCase__ :List[Any]=0.1 , lowerCAmelCase__ :Tuple=0.1 , lowerCAmelCase__ :int=10 , lowerCAmelCase__ :Union[str, Any]=0.02 , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :int=None , ) ->Union[str, Any]: lowercase = parent lowercase = batch_size lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = is_training lowercase = use_labels lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = type_sequence_label_size lowercase = initializer_range lowercase = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase = (image_size // patch_size) ** 2 lowercase = num_patches + 1 def SCREAMING_SNAKE_CASE( self :Optional[Any] ) ->Tuple: lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE( self :str ) ->List[Any]: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE( self :List[str] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :str ) ->Dict: lowercase = TFViTModel(config=SCREAMING_SNAKE_CASE_ ) lowercase = model(SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. lowercase = self.image_size // 2 lowercase = pixel_values[:, :, :image_size, :image_size] lowercase = model(SCREAMING_SNAKE_CASE_ , interpolate_pos_encoding=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) lowercase = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE( self :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Dict ) ->Any: lowercase = self.type_sequence_label_size lowercase = TFViTForImageClassification(SCREAMING_SNAKE_CASE_ ) lowercase = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. lowercase = self.image_size // 2 lowercase = pixel_values[:, :, :image_size, :image_size] lowercase = model(SCREAMING_SNAKE_CASE_ , interpolate_pos_encoding=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase = 1 lowercase = TFViTForImageClassification(SCREAMING_SNAKE_CASE_ ) lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE( self :List[Any] ) ->Dict: lowercase = self.prepare_config_and_inputs() lowercase = config_and_inputs lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase : Dict = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () UpperCamelCase : Dict = ( {'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification} if is_tf_available() else {} ) UpperCamelCase : Tuple = False UpperCamelCase : List[str] = False UpperCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE( self :Union[str, Any] ) ->Optional[Any]: lowercase = TFViTModelTester(self ) lowercase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE( self :str ) ->Dict: self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE( self :Optional[int] ) ->int: pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE( self :Dict ) ->Union[str, Any]: pass def SCREAMING_SNAKE_CASE( self :Any ) ->Union[str, Any]: lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , tf.keras.layers.Layer ) ) def SCREAMING_SNAKE_CASE( self :Any ) ->Optional[int]: lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(SCREAMING_SNAKE_CASE_ ) lowercase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE( self :int ) ->Dict: lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE( self :str ) ->Dict: lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def SCREAMING_SNAKE_CASE( self :Tuple ) ->Union[str, Any]: lowercase = TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def __snake_case ( ): '''simple docstring''' lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE( self :List[str] ) ->Dict: return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE( self :Any ) ->Dict: lowercase = TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="tf" ) # forward pass lowercase = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) lowercase = tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 )
441
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def UpperCamelCase ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def UpperCamelCase ( lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' lowercase__ : int = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowercase__ : Optional[Any] = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" ) lowercase__ : Tuple = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" ) lowercase__ : Optional[int] = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" ) lowercase__ : List[Any] = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" ) lowercase__ : int = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" ) lowercase__ : Optional[Any] = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" ) lowercase__ : Optional[Any] = key.replace("""image_encoder.module""" , """flava.image_model""" ) lowercase__ : Any = key.replace("""text_encoder.module""" , """flava.text_model""" ) lowercase__ : Optional[Any] = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" ) lowercase__ : Tuple = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" ) lowercase__ : Any = key.replace("""text_projection""" , """flava.text_projection""" ) lowercase__ : List[Any] = key.replace("""image_projection""" , """flava.image_projection""" ) lowercase__ : str = value.float() for key, value in codebook_state_dict.items(): lowercase__ : Any = value return upgrade @torch.no_grad() def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: lowercase__ : int = FlavaConfig.from_pretrained(lowercase_ ) else: lowercase__ : Optional[int] = FlavaConfig() lowercase__ : List[Any] = FlavaForPreTraining(lowercase_ ).eval() lowercase__ : Dict = convert_dalle_checkpoint(lowercase_ , lowercase_ , save_checkpoint=lowercase_ ) if os.path.exists(lowercase_ ): lowercase__ : Dict = torch.load(lowercase_ , map_location="""cpu""" ) else: lowercase__ : Dict = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" ) lowercase__ : int = upgrade_state_dict(lowercase_ , lowercase_ ) hf_model.load_state_dict(lowercase_ ) lowercase__ : Optional[int] = hf_model.state_dict() lowercase__ : Optional[int] = count_parameters(lowercase_ ) lowercase__ : Any = count_parameters(lowercase_ ) + count_parameters(lowercase_ ) assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) hf_model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCamelCase__ : List[str] = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
12
0
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __snake_case (UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __a = StableDiffusionDiffEditPipeline __a = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} __a = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} __a = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __a = frozenset([] ) def __a ( self: Dict ): torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_zero=SCREAMING_SNAKE_CASE_ , ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) __lowerCamelCase = CLIPTextModel(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCamelCase = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __a ( self: Optional[int] , A_: List[str] , A_: Union[str, Any]=0 ): __lowerCamelCase = floats_tensor((1, 16, 16) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __a ( self: str , A_: Optional[int] , A_: Optional[Any]=0 ): __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_ ) ).convert("""RGB""" ) if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __a ( self: Tuple , A_: Union[str, Any] , A_: Any=0 ): __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_ ) ).convert("""RGB""" ) if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __lowerCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def __a ( self: Union[str, Any] ): if not hasattr(self.pipeline_class , """_optional_components""" ): return __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) __lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = pipe(**SCREAMING_SNAKE_CASE_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = self.pipeline_class.from_pretrained(SCREAMING_SNAKE_CASE_ ) pipe_loaded.to(SCREAMING_SNAKE_CASE_ ) pipe_loaded.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is None , f'`{optional_component}` did not stay set to None after loading.' , ) __lowerCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = pipe_loaded(**SCREAMING_SNAKE_CASE_ )[0] __lowerCamelCase = np.abs(output - output_loaded ).max() self.assertLess(SCREAMING_SNAKE_CASE_ , 1E-4 ) def __a ( self: Optional[int] ): __lowerCamelCase = """cpu""" __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = self.get_dummy_mask_inputs(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = pipe.generate_mask(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) __lowerCamelCase = np.array([0] * 9 ) __lowerCamelCase = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def __a ( self: Dict ): __lowerCamelCase = """cpu""" __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = self.get_dummy_inversion_inputs(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = pipe.invert(**SCREAMING_SNAKE_CASE_ ).images __lowerCamelCase = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __lowerCamelCase = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) __lowerCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1E-3 ) def __a ( self: Any ): super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def __a ( self: Any ): __lowerCamelCase = """cpu""" __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = {"""beta_start""": 0.00_085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} __lowerCamelCase = DPMSolverMultistepScheduler(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = DPMSolverMultistepInverseScheduler(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = self.get_dummy_inversion_inputs(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = pipe.invert(**SCREAMING_SNAKE_CASE_ ).images __lowerCamelCase = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __lowerCamelCase = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) __lowerCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1E-3 ) @require_torch_gpu @slow class __snake_case (unittest.TestCase ): def __a ( self: Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def __a ( cls: Optional[int] ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) __lowerCamelCase = raw_image.convert("""RGB""" ).resize((7_68, 7_68) ) __lowerCamelCase = raw_image def __a ( self: str ): __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=SCREAMING_SNAKE_CASE_ , torch_dtype=torch.floataa ) __lowerCamelCase = DDIMScheduler.from_config(pipe.scheduler.config ) __lowerCamelCase = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = """a bowl of fruit""" __lowerCamelCase = """a bowl of pears""" __lowerCamelCase = pipe.generate_mask( image=self.raw_image , source_prompt=SCREAMING_SNAKE_CASE_ , target_prompt=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase = pipe.invert( prompt=SCREAMING_SNAKE_CASE_ , image=self.raw_image , inpaint_strength=0.7 , generator=SCREAMING_SNAKE_CASE_ ).latents __lowerCamelCase = pipe( prompt=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , image_latents=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] __lowerCamelCase = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5E-1 def __a ( self: int ): __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=SCREAMING_SNAKE_CASE_ , torch_dtype=torch.floataa ) __lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowerCamelCase = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = """a bowl of fruit""" __lowerCamelCase = """a bowl of pears""" __lowerCamelCase = pipe.generate_mask( image=self.raw_image , source_prompt=SCREAMING_SNAKE_CASE_ , target_prompt=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase = pipe.invert( prompt=SCREAMING_SNAKE_CASE_ , image=self.raw_image , inpaint_strength=0.7 , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=25 , ).latents __lowerCamelCase = pipe( prompt=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , image_latents=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] __lowerCamelCase = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5E-1
281
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , ): '''simple docstring''' lowercase__ : List[str] = size if size is not None else {"""height""": 18, """width""": 18} lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : List[str] = num_channels lowercase__ : str = image_size lowercase__ : int = min_resolution lowercase__ : Dict = max_resolution lowercase__ : Tuple = do_resize lowercase__ : Union[str, Any] = size lowercase__ : Any = do_normalize lowercase__ : Tuple = image_mean lowercase__ : str = image_std def lowercase__ ( self): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Optional[Any] = ViTImageProcessor if is_vision_available() else None def lowercase__ ( self): '''simple docstring''' lowercase__ : str = EfficientFormerImageProcessorTester(self) @property def lowercase__ ( self): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_mean""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_std""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size""")) def lowercase__ ( self): '''simple docstring''' pass def lowercase__ ( self): '''simple docstring''' lowercase__ : str = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowercase__ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image) # Test not batched input lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : str = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowercase__ : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray) # Test not batched input lowercase__ : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : Dict = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowercase__ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor) # Test not batched input lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : Any = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
12
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : int ): if not nums: raise ValueError('List is empty' ) return sum(lowercase_ ) / len(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
447
lowerCamelCase__ : dict[tuple[int, int, int], int] = {} def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on lowercase__ : Tuple = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one lowercase__ : Union[str, Any] = _calculate(days - 1 , lowercase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 lowercase__ : List[str] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter lowercase__ : Dict = _calculate(days - 1 , lowercase_ , 0 ) lowercase__ : List[str] = state_late + state_absent + state_ontime lowercase__ : List[Any] = prizestrings return prizestrings def UpperCamelCase ( lowercase_ = 30 ) -> int: '''simple docstring''' return _calculate(lowercase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
12
0
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a_ : List[Any] =ReformerTokenizer a_ : str =ReformerTokenizerFast a_ : List[Any] =True a_ : Dict =False a_ : Tuple =True def _lowerCAmelCase ( self : Tuple ) -> str: '''simple docstring''' super().setUp() a__ = ReformerTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self : Dict ) -> List[str]: '''simple docstring''' a__ = """<s>""" a__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' a__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 1000 ) def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowerCAmelCase ( self : Dict ) -> List[str]: '''simple docstring''' if not self.test_rust_tokenizer: return a__ = self.get_tokenizer() a__ = self.get_rust_tokenizer() a__ = """I was born in 92000, and this is falsé.""" a__ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) a__ = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) a__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) a__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) a__ = self.get_rust_tokenizer() a__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) a__ = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowerCAmelCase ( self : Dict , _snake_case : Optional[Any]=15 ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a__ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # Simple input a__ = """This is a simple input""" a__ = ["""This is a simple input 1""", """This is a simple input 2"""] a__ = ("""This is a simple input""", """This is a pair""") a__ = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='max_length' ) # Simple input self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='max_length' ) # Simple input self.assertRaises( SCREAMING_SNAKE_CASE_ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='max_length' , ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='max_length' ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='max_length' ) # Pair input self.assertRaises( SCREAMING_SNAKE_CASE_ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='max_length' , ) def _lowerCAmelCase ( self : Any ) -> int: '''simple docstring''' pass def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: '''simple docstring''' a__ = ReformerTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) a__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [285, 46, 10, 170, 382] , ) a__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) a__ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) a__ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def _lowerCAmelCase ( self : List[str] ) -> Dict: '''simple docstring''' return ReformerTokenizer.from_pretrained('google/reformer-crime-and-punishment' ) @slow def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: '''simple docstring''' a__ = """Hello World!""" a__ = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(SCREAMING_SNAKE_CASE_ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) @slow def _lowerCAmelCase ( self : str ) -> Any: '''simple docstring''' a__ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) a__ = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) @require_torch @slow def _lowerCAmelCase ( self : Tuple ) -> str: '''simple docstring''' import torch from transformers import ReformerConfig, ReformerModel # Build sequence a__ = list(self.big_tokenizer.get_vocab().keys() )[:10] a__ = """ """.join(SCREAMING_SNAKE_CASE_ ) a__ = self.big_tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) a__ = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='pt' ) a__ = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) a__ = encoded_sequence["""input_ids"""].shape a__ = ReformerModel(SCREAMING_SNAKE_CASE_ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**SCREAMING_SNAKE_CASE_ ) model(**SCREAMING_SNAKE_CASE_ ) @slow def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' a__ = {"""input_ids""": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 a__ = [ """This is a very simple sentence.""", """The quick brown fox jumps over the lazy dog.""", ] self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='google/reformer-crime-and-punishment' , revision='0e6c3decb8211d49bf881013425dc8b0448b3f5a' , padding=SCREAMING_SNAKE_CASE_ , sequences=SCREAMING_SNAKE_CASE_ , )
232
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCamelCase ( ) -> List[Any]: '''simple docstring''' raise RuntimeError("""CUDA out of memory.""" ) class _snake_case ( nn.Module ): def __init__( self): '''simple docstring''' super().__init__() lowercase__ : Optional[Any] = nn.Linear(3 , 4) lowercase__ : Union[str, Any] = nn.BatchNormad(4) lowercase__ : str = nn.Linear(4 , 5) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE_))) class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = [] @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8]) def lowercase__ ( self): '''simple docstring''' lowercase__ : int = [] @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga lowercase__ , lowercase__ : int = mock_training_loop_function("""hello""") self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8]) self.assertListEqual([bs, arga] , [8, """hello"""]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): pass with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function(1_28 , """hello""" , """world""") self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0]) self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): raise ValueError("""Oops, we had an error!""") with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0]) @require_cuda def lowercase__ ( self): '''simple docstring''' lowercase__ : str = torch.cuda.memory_allocated() lowercase__ : str = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = release_memory(SCREAMING_SNAKE_CASE_) self.assertEqual(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
12
0
"""simple docstring""" def __lowerCAmelCase ( lowercase : List[str] ) -> int: """simple docstring""" if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowercase_ , lowercase_ ): raise TypeError("Input value must be a 'int' type" ) return bin(lowercase_ ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
178
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' lowercase__ : Optional[Any] = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ : List[str] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowercase__ : Optional[int] = 4 lowercase__ : Optional[Any] = 48 lowercase__ : int = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ : List[str] = [6, 6, 6, 6] lowercase__ : Any = 60 lowercase__ : Tuple = [6, 6, 6, 6] lowercase__ : Dict = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ : Tuple = 4 lowercase__ : Any = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowercase__ : str = 1 lowercase__ : Optional[int] = 1 lowercase__ : Optional[int] = 1_26 lowercase__ : Any = 7 lowercase__ : int = 255.0 lowercase__ : List[Any] = """""" return config def UpperCamelCase ( lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: lowercase__ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase__ : Dict = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: lowercase__ : List[str] = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: lowercase__ : Optional[int] = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: lowercase__ : int = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase__ : Tuple = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ : int = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: lowercase__ : Any = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: lowercase__ : Optional[Any] = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: lowercase__ : Dict = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: lowercase__ : Union[str, Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: lowercase__ : List[Any] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": lowercase__ : Union[str, Any] = """layernorm.weight""" if name == "norm.bias": lowercase__ : List[str] = """layernorm.bias""" if "conv_first" in name: lowercase__ : Union[str, Any] = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowercase__ : List[Any] = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowercase__ : Optional[int] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: lowercase__ : Dict = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: lowercase__ : Optional[Any] = name.replace("""upsample.2""" , """upsample.convolution_1""" ) lowercase__ : List[str] = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": lowercase__ : Optional[Any] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) lowercase__ : int = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: lowercase__ : str = """swin2sr.""" + name return name def UpperCamelCase ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase__ : str = orig_state_dict.pop(lowercase_ ) if "qkv" in key: lowercase__ : Any = key.split(""".""" ) lowercase__ : List[Any] = int(key_split[1] ) lowercase__ : Dict = int(key_split[4] ) lowercase__ : Optional[Any] = config.embed_dim if "weight" in key: lowercase__ : List[str] = val[:dim, :] lowercase__ : List[str] = val[dim : dim * 2, :] lowercase__ : Optional[Any] = val[-dim:, :] else: lowercase__ : Optional[Any] = val[:dim] lowercase__ : List[Any] = val[dim : dim * 2] lowercase__ : Optional[int] = val[-dim:] pass else: lowercase__ : Optional[Any] = val return orig_state_dict def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Dict = get_config(lowercase_ ) lowercase__ : Any = SwinaSRForImageSuperResolution(lowercase_ ) model.eval() lowercase__ : List[str] = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" ) lowercase__ : Union[str, Any] = convert_state_dict(lowercase_ , lowercase_ ) lowercase__ , lowercase__ : Dict = model.load_state_dict(lowercase_ , strict=lowercase_ ) if len(lowercase_ ) > 0: raise ValueError("""Missing keys when converting: {}""".format(lowercase_ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowercase__ : Any = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" lowercase__ : Any = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert("""RGB""" ) lowercase__ : Any = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowercase__ : Optional[int] = 1_26 if """Jpeg""" in checkpoint_url else 2_56 lowercase__ : Union[str, Any] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowercase__ : Dict = transforms(lowercase_ ).unsqueeze(0 ) if config.num_channels == 1: lowercase__ : Any = pixel_values[:, 0, :, :].unsqueeze(1 ) lowercase__ : Union[str, Any] = model(lowercase_ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowercase__ : Optional[Any] = torch.Size([1, 3, 5_12, 5_12] ) lowercase__ : Optional[Any] = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ : List[str] = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowercase__ : Optional[Any] = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ : Tuple = torch.Size([1, 3, 5_12, 5_12] ) lowercase__ : int = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ : Tuple = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase_ , atol=1E-3 ) print("""Looks ok!""" ) lowercase__ : str = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } lowercase__ : str = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": lowerCamelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""", type=str, help="""URL of the original Swin2SR checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""") lowerCamelCase__ : Any = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
12
0
'''simple docstring''' from __future__ import annotations UpperCamelCase__: Optional[int] = list[list[int]] # assigning initial values to the grid UpperCamelCase__: Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCamelCase__: Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def snake_case_ ( _lowerCAmelCase : Any ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def snake_case_ ( _lowerCAmelCase : Optional[int] ) -> Matrix | None: if location := find_empty_location(lowercase_ ): UpperCAmelCase : Tuple = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(lowercase_ , lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase : Optional[Any] = digit if sudoku(lowercase_ ) is not None: return grid UpperCAmelCase : List[Any] = 0 return None def snake_case_ ( _lowerCAmelCase : List[str] ) -> None: for row in grid: for cell in row: print(lowercase_ , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") UpperCamelCase__: Tuple = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
127
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : BigBirdConfig __lowerCAmelCase : jnp.dtype = jnp.floataa __lowerCAmelCase : bool = True def lowercase__ ( self): '''simple docstring''' super().setup() lowercase__ : Dict = nn.Dense(5 , dtype=self.dtype) def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[str] = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Optional[int] = FlaxBigBirdForNaturalQuestionsModule def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' def cross_entropy(lowercase_ , lowercase_ , lowercase_=None ): lowercase__ : int = logits.shape[-1] lowercase__ : List[str] = (labels[..., None] == jnp.arange(lowercase_ )[None]).astype("""f4""" ) lowercase__ : int = jax.nn.log_softmax(lowercase_ , axis=-1 ) lowercase__ : Any = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase__ : Optional[int] = reduction(lowercase_ ) return loss lowercase__ : int = partial(lowercase_ , reduction=jnp.mean ) lowercase__ : Tuple = cross_entropy(lowercase_ , lowercase_ ) lowercase__ : List[Any] = cross_entropy(lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = cross_entropy(lowercase_ , lowercase_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class _snake_case : __lowerCAmelCase : str = "google/bigbird-roberta-base" __lowerCAmelCase : int = 3_000 __lowerCAmelCase : int = 10_500 __lowerCAmelCase : int = 128 __lowerCAmelCase : int = 3 __lowerCAmelCase : int = 1 __lowerCAmelCase : int = 5 # tx_args __lowerCAmelCase : float = 3e-5 __lowerCAmelCase : float = 0.0 __lowerCAmelCase : int = 20_000 __lowerCAmelCase : float = 0.0_095 __lowerCAmelCase : str = "bigbird-roberta-natural-questions" __lowerCAmelCase : str = "training-expt" __lowerCAmelCase : str = "data/nq-training.jsonl" __lowerCAmelCase : str = "data/nq-validation.jsonl" def lowercase__ ( self): '''simple docstring''' os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE_) lowercase__ : Any = os.path.join(self.base_dir , self.save_dir) lowercase__ : str = self.batch_size_per_device * jax.device_count() @dataclass class _snake_case : __lowerCAmelCase : int __lowerCAmelCase : int = 4_096 # no dynamic padding on TPUs def __call__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = self.collate_fn(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) return batch def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ , lowercase__ : str = self.fetch_inputs(features["""input_ids"""]) lowercase__ : str = { """input_ids""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa), """attention_mask""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa), } return batch def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[Any] = [self._fetch_inputs(SCREAMING_SNAKE_CASE_) for ids in input_ids] return zip(*SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = [1 for _ in range(len(SCREAMING_SNAKE_CASE_))] while len(SCREAMING_SNAKE_CASE_) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> Optional[Any]: '''simple docstring''' if seed is not None: lowercase__ : Any = dataset.shuffle(seed=lowercase_ ) for i in range(len(lowercase_ ) // batch_size ): lowercase__ : List[str] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowercase_ ) @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase ( lowercase_ , lowercase_ , **lowercase_ ) -> int: '''simple docstring''' def loss_fn(lowercase_ ): lowercase__ : Dict = model_inputs.pop("""start_labels""" ) lowercase__ : List[Any] = model_inputs.pop("""end_labels""" ) lowercase__ : List[Any] = model_inputs.pop("""pooled_labels""" ) lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=lowercase_ , dropout_rng=lowercase_ , train=lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Any = outputs return state.loss_fn( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) lowercase__ , lowercase__ : Optional[int] = jax.random.split(lowercase_ ) lowercase__ : Tuple = jax.value_and_grad(lowercase_ ) lowercase__ , lowercase__ : Optional[int] = grad_fn(state.params ) lowercase__ : Tuple = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) lowercase__ : Any = jax.lax.pmean(lowercase_ , """batch""" ) lowercase__ : str = state.apply_gradients(grads=lowercase_ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase ( lowercase_ , **lowercase_ ) -> str: '''simple docstring''' lowercase__ : Tuple = model_inputs.pop("""start_labels""" ) lowercase__ : List[str] = model_inputs.pop("""end_labels""" ) lowercase__ : int = model_inputs.pop("""pooled_labels""" ) lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=state.params , train=lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Optional[int] = outputs lowercase__ : Optional[Any] = state.loss_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : List[str] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class _snake_case ( train_state.TrainState ): __lowerCAmelCase : Callable = struct.field(pytree_node=UpperCAmelCase_ ) @dataclass class _snake_case : __lowerCAmelCase : Args __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : wandb __lowerCAmelCase : Callable = None def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : List[str] = model.params lowercase__ : Dict = TrainState.create( apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , loss_fn=SCREAMING_SNAKE_CASE_ , ) if ckpt_dir is not None: lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = restore_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } lowercase__ , lowercase__ : Any = build_tx(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = train_state.TrainState( step=SCREAMING_SNAKE_CASE_ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , opt_state=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Optional[Any] = args lowercase__ : Union[str, Any] = data_collator lowercase__ : str = lr lowercase__ : Union[str, Any] = params lowercase__ : Dict = jax_utils.replicate(SCREAMING_SNAKE_CASE_) return state def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = self.args lowercase__ : List[str] = len(SCREAMING_SNAKE_CASE_) // args.batch_size lowercase__ : int = jax.random.PRNGKey(0) lowercase__ : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count()) for epoch in range(args.max_epochs): lowercase__ : Tuple = jnp.array(0 , dtype=jnp.floataa) lowercase__ : List[str] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , args.batch_size , seed=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc=f'Running EPOCH-{epoch}'): lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_) lowercase__ , lowercase__ , lowercase__ : List[Any] = self.train_step_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 if i % args.logging_steps == 0: lowercase__ : List[str] = jax_utils.unreplicate(state.step) lowercase__ : str = running_loss.item() / i lowercase__ : Tuple = self.scheduler_fn(state_step - 1) lowercase__ : Tuple = self.evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(SCREAMING_SNAKE_CASE_)) self.logger.log(SCREAMING_SNAKE_CASE_ , commit=SCREAMING_SNAKE_CASE_) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = get_batched_dataset(SCREAMING_SNAKE_CASE_ , self.args.batch_size) lowercase__ : Tuple = len(SCREAMING_SNAKE_CASE_) // self.args.batch_size lowercase__ : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa) lowercase__ : Optional[Any] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc="""Evaluating ... """): lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = self.val_step_fn(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 return running_loss / i def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = jax_utils.unreplicate(SCREAMING_SNAKE_CASE_) print(f'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """) self.model_save_fn(SCREAMING_SNAKE_CASE_ , params=state.params) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """opt_state.msgpack""") , """wb""") as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE_ , """args.joblib""")) joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE_ , """data_collator.joblib""")) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """training_state.json""") , """w""") as f: json.dump({"""step""": state.step.item()} , SCREAMING_SNAKE_CASE_) print("""DONE""") def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ ) with open(os.path.join(lowercase_ , """flax_model.msgpack""" ) , """rb""" ) as f: lowercase__ : Optional[Any] = from_bytes(state.params , f.read() ) with open(os.path.join(lowercase_ , """opt_state.msgpack""" ) , """rb""" ) as f: lowercase__ : Dict = from_bytes(state.opt_state , f.read() ) lowercase__ : Any = joblib.load(os.path.join(lowercase_ , """args.joblib""" ) ) lowercase__ : Optional[int] = joblib.load(os.path.join(lowercase_ , """data_collator.joblib""" ) ) with open(os.path.join(lowercase_ , """training_state.json""" ) , """r""" ) as f: lowercase__ : int = json.load(lowercase_ ) lowercase__ : Optional[Any] = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Optional[int] = num_train_steps - warmup_steps lowercase__ : int = optax.linear_schedule(init_value=lowercase_ , end_value=lowercase_ , transition_steps=lowercase_ ) lowercase__ : Optional[int] = optax.linear_schedule(init_value=lowercase_ , end_value=1E-7 , transition_steps=lowercase_ ) lowercase__ : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' def weight_decay_mask(lowercase_ ): lowercase__ : Dict = traverse_util.flatten_dict(lowercase_ ) lowercase__ : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(lowercase_ ) lowercase__ : Optional[int] = scheduler_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : int = optax.adamw(learning_rate=lowercase_ , weight_decay=lowercase_ , mask=lowercase_ ) return tx, lr
12
0
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: _UpperCamelCase : str = inspect.getfile(accelerate.test_utils ) _UpperCamelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) _UpperCamelCase : Optional[Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) _UpperCamelCase : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: print(F'''Found {torch.cuda.device_count()} devices.''' ) _UpperCamelCase : Any = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) @require_multi_gpu def __SCREAMING_SNAKE_CASE ( self : int ) -> Any: print(F'''Found {torch.cuda.device_count()} devices.''' ) _UpperCamelCase : Tuple = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(F'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) @require_multi_gpu def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: _UpperCamelCase : Any = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) @require_multi_gpu def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) _UpperCamelCase : Optional[Any] = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if __name__ == "__main__": lowerCamelCase__ = Accelerator() lowerCamelCase__ = (accelerator.state.process_index + 2, 10) lowerCamelCase__ = torch.randint(0, 10, shape).to(accelerator.device) lowerCamelCase__ = """""" lowerCamelCase__ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." lowerCamelCase__ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." lowerCamelCase__ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
624
lowerCamelCase__ : List[str] = """ # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase__ : List[Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase__ : int = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
12
0
'''simple docstring''' import unittest import numpy as np def _lowerCAmelCase (_lowercase , _lowercase , _lowercase , _lowercase = None , ): """simple docstring""" a__ = np.shape(lowercase_ ) a__ = np.shape(lowercase_ ) a__ = np.shape(lowercase_ ) if shape_a[0] != shape_b[0]: a__ = ( """Expected the same number of rows for A and B. """ F'Instead found A of size {shape_a} and B of size {shape_b}' ) raise ValueError(lowercase_ ) if shape_b[1] != shape_c[1]: a__ = ( """Expected the same number of columns for B and C. """ F'Instead found B of size {shape_b} and C of size {shape_c}' ) raise ValueError(lowercase_ ) a__ = pseudo_inv if a_inv is None: try: a__ = np.linalg.inv(lowercase_ ) except np.linalg.LinAlgError: raise ValueError( "Input matrix A is not invertible. Cannot compute Schur complement." ) return mat_c - mat_b.T @ a_inv @ mat_b class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase_ ( self : Optional[Any] ): a__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) a__ = np.array([[0, 3], [3, 0], [2, 3]] ) a__ = np.array([[2, 1], [6, 3]] ) a__ = schur_complement(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) a__ = np.block([[a, b], [b.T, c]] ) a__ = np.linalg.det(SCREAMING_SNAKE_CASE_ ) a__ = np.linalg.det(SCREAMING_SNAKE_CASE_ ) a__ = np.linalg.det(SCREAMING_SNAKE_CASE_ ) self.assertAlmostEqual(SCREAMING_SNAKE_CASE_ ,det_a * det_s ) def lowerCAmelCase_ ( self : str ): a__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) a__ = np.array([[0, 3], [3, 0], [2, 3]] ) a__ = np.array([[2, 1], [6, 3]] ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): schur_complement(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( self : Optional[int] ): a__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) a__ = np.array([[0, 3], [3, 0], [2, 3]] ) a__ = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): schur_complement(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
331
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ): '''simple docstring''' lowercase__ : str = parent lowercase__ : Optional[int] = batch_size lowercase__ : Optional[int] = seq_length lowercase__ : Union[str, Any] = is_training lowercase__ : Any = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : Optional[Any] = use_labels lowercase__ : Optional[int] = vocab_size lowercase__ : Optional[Any] = hidden_size lowercase__ : Any = rotary_dim lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Tuple = num_attention_heads lowercase__ : Tuple = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : Optional[Any] = hidden_dropout_prob lowercase__ : int = attention_probs_dropout_prob lowercase__ : Any = max_position_embeddings lowercase__ : Optional[int] = initializer_range lowercase__ : Optional[int] = None lowercase__ : str = vocab_size - 1 lowercase__ : Any = vocab_size - 1 lowercase__ : Dict = vocab_size - 1 def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ : Any = None if self.use_input_mask: lowercase__ : Dict = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ : List[Any] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Optional[Any] = config_and_inputs lowercase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = 20 lowercase__ : int = model_class_name(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_) lowercase__ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase__ : Tuple = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) lowercase__ : List[str] = model( input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase__ : str = model( input_ids[:, -1:] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE_) lowercase__ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}') def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Union[str, Any] = 20 lowercase__ : List[Any] = model_class_name(SCREAMING_SNAKE_CASE_) lowercase__ : Dict = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , ) lowercase__ : Dict = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) lowercase__ : Any = model( input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : int = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase__ : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_) lowercase__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}') @require_flax class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Dict = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowerCAmelCase : str = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = FlaxGPTJModelTester(self) def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ , lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ , lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @tooslow def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""") lowercase__ : List[str] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""") lowercase__ : Optional[Any] = False lowercase__ : List[str] = model.config.eos_token_id lowercase__ : List[Any] = jax.jit(model.generate) lowercase__ : Tuple = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id).sequences lowercase__ : List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @is_pt_flax_cross_test def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs lowercase__ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Any = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase__ : str = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ , lowercase__ : Dict = pt_inputs["""input_ids"""].shape lowercase__ : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : str = 0 lowercase__ : List[Any] = 1 lowercase__ : Dict = 0 lowercase__ : Any = 1 lowercase__ : List[Any] = pt_model_class(SCREAMING_SNAKE_CASE_).eval() lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa) lowercase__ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = fx_state with torch.no_grad(): lowercase__ : Optional[int] = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple() lowercase__ : Dict = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_pt=SCREAMING_SNAKE_CASE_) lowercase__ : str = fx_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output_loaded, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2) @is_pt_flax_cross_test def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs lowercase__ : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = pt_model_class(SCREAMING_SNAKE_CASE_).eval() lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa) lowercase__ : Optional[int] = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , fx_model.params) lowercase__ , lowercase__ : str = pt_inputs["""input_ids"""].shape lowercase__ : List[Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Tuple = 0 lowercase__ : int = 1 lowercase__ : str = 0 lowercase__ : str = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowercase__ : Dict = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple() lowercase__ : Optional[Any] = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = pt_model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_flax=SCREAMING_SNAKE_CASE_) with torch.no_grad(): lowercase__ : Tuple = pt_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) @tooslow def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ : Any = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""") lowercase__ : int = model(np.ones((1, 1))) self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
12
0
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase ( UpperCAmelCase_ , unittest.TestCase ): __UpperCamelCase =RobertaTokenizer __UpperCamelCase =RobertaTokenizerFast __UpperCamelCase =True __UpperCamelCase ={'cls_token': '<s>'} def UpperCamelCase ( self : Tuple ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] SCREAMING_SNAKE_CASE = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) SCREAMING_SNAKE_CASE = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] SCREAMING_SNAKE_CASE = {"""unk_token""": """<unk>"""} SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE_ ) ) def UpperCamelCase ( self : Tuple , **snake_case__ : List[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( self : List[Any] , **snake_case__ : List[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( self : Any , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = """lower newer""" SCREAMING_SNAKE_CASE = """lower newer""" return input_text, output_text def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE = """lower newer""" SCREAMING_SNAKE_CASE = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] SCREAMING_SNAKE_CASE = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) # , add_prefix_space=True) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained('roberta-base' ) SCREAMING_SNAKE_CASE = tokenizer.encode('sequence builders' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = tokenizer.encode('multi-sequence build' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = tokenizer.encode( 'sequence builders' , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = """Encode this sequence.""" SCREAMING_SNAKE_CASE = tokenizer.byte_encoder[""" """.encode('utf-8' )[0]] # Testing encoder arguments SCREAMING_SNAKE_CASE = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) SCREAMING_SNAKE_CASE = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing spaces after special tokens SCREAMING_SNAKE_CASE = """<mask>""" tokenizer.add_special_tokens( {'mask_token': AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ )} ) # mask token has a left space SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = """Encode <mask> sequence""" SCREAMING_SNAKE_CASE = """Encode <mask>sequence""" SCREAMING_SNAKE_CASE = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = encoded.index(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = encoded.index(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" pass def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = """A, <mask> AllenNLP sentence.""" SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = tokenizer_p.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def UpperCamelCase ( self : Tuple ): """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) SCREAMING_SNAKE_CASE = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , SCREAMING_SNAKE_CASE_ ) self.assertEqual(post_processor_state['add_prefix_space'] , SCREAMING_SNAKE_CASE_ ) self.assertEqual(post_processor_state['trim_offsets'] , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( self : Dict ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE = F"""{text_of_1_token} {text_of_1_token}""" SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE_ ) + 1, len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE_ ) + 1, len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE_ ), len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE_ ), len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , ) SCREAMING_SNAKE_CASE = F""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(SCREAMING_SNAKE_CASE_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE_ ) + 1, 1 + len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(SCREAMING_SNAKE_CASE_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE_ ), 1 + len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(SCREAMING_SNAKE_CASE_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE_ ), 1 + len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , )
439
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Any = ['image_processor', 'tokenizer'] __lowerCAmelCase : Union[str, Any] = 'AutoImageProcessor' __lowerCAmelCase : int = 'AutoTokenizer' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = self.image_processor def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""") if text is not None: lowercase__ : List[str] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) if images is not None: lowercase__ : Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) if text is not None and images is not None: lowercase__ : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_) , tensor_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) @property def lowercase__ ( self): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
12
0
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=4 , ) ->Tuple: '''simple docstring''' __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_attention_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_choices def __UpperCamelCase ( self ) ->Union[str, Any]: '''simple docstring''' __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_attention_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCamelCase ( self ) ->Tuple: '''simple docstring''' __a = self.prepare_config_and_inputs() __a = config_and_inputs __a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __SCREAMING_SNAKE_CASE ( UpperCAmelCase_ , unittest.TestCase ): __a =True __a =( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCamelCase ( self ) ->List[str]: '''simple docstring''' __a = FlaxRoFormerModelTester(self ) @slow def __UpperCamelCase ( self ) ->Optional[Any]: '''simple docstring''' for model_class_name in self.all_model_classes: __a = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=SCREAMING_SNAKE_CASE_ ) __a = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def __UpperCamelCase ( self ) ->str: '''simple docstring''' __a = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) __a = jnp.array([[0, 1, 2, 3, 4, 5]] ) __a = model(SCREAMING_SNAKE_CASE_ )[0] __a = 5_0000 __a = (1, 6, vocab_size) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) __a = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
448
def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' if n == 1 or not isinstance(lowercase_ , lowercase_ ): return 0 elif n == 2: return 1 else: lowercase__ : List[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' lowercase__ : Optional[Any] = 0 lowercase__ : Dict = 2 while digits < n: index += 1 lowercase__ : str = len(str(fibonacci(lowercase_ ) ) ) return index def UpperCamelCase ( lowercase_ = 10_00 ) -> int: '''simple docstring''' return fibonacci_digits_index(lowercase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
12
0
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch a_ = True except ImportError: a_ = False try: from torch.hub import _get_torch_home a_ = _get_torch_home() except ImportError: a_ = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) a_ = os.path.join(torch_cache_home, 'transformers') a_ = """https://cdn.huggingface.co""" a_ = """https://s3.amazonaws.com/models.huggingface.co/bert""" a_ = """/""".join(str(Path(__file__).resolve()).split('/')[:-1]) a_ = os.path.join(PATH, 'config.yaml') a_ = os.path.join(PATH, 'attributes.txt') a_ = os.path.join(PATH, 'objects.txt') a_ = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) a_ = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) a_ = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) a_ = """pytorch_model.bin""" a_ = """config.yaml""" def lowerCamelCase__ ( _a=OBJECTS , _a=ATTRIBUTES): SCREAMING_SNAKE_CASE : List[Any] = [] with open(lowercase_) as f: for object in f.readlines(): vg_classes.append(object.split(",")[0].lower().strip()) SCREAMING_SNAKE_CASE : List[str] = [] with open(lowercase_) as f: for object in f.readlines(): vg_attrs.append(object.split(",")[0].lower().strip()) return vg_classes, vg_attrs def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : List[Any] = OrderedDict() with open(lowercase_ , "rb") as f: SCREAMING_SNAKE_CASE : int = pkl.load(lowercase_)["""model"""] for k in copy.deepcopy(list(ckp.keys())): SCREAMING_SNAKE_CASE : List[Any] = ckp.pop(lowercase_) if isinstance(lowercase_ , np.ndarray): SCREAMING_SNAKE_CASE : List[str] = torch.tensor(lowercase_) else: assert isinstance(lowercase_ , torch.tensor), type(lowercase_) SCREAMING_SNAKE_CASE : Tuple = v return r class _UpperCamelCase : '''simple docstring''' lowerCamelCase__ ={} def __init__( self : Optional[Any] , a : Optional[Any] , a : List[Any] = "root" , a : Union[str, Any]=0 ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = name SCREAMING_SNAKE_CASE : List[Any] = level SCREAMING_SNAKE_CASE : Tuple = {} for k, v in dictionary.items(): if v is None: raise ValueError() SCREAMING_SNAKE_CASE : Optional[int] = copy.deepcopy(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : str = copy.deepcopy(SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE : Any = Config(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ , level=level + 1 ) SCREAMING_SNAKE_CASE : Tuple = v setattr(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : Dict = d def __repr__( self : Tuple ) -> Dict: """simple docstring""" return str(list((self._pointer.keys()) ) ) def __setattr__( self : Tuple , a : str , a : str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = val SCREAMING_SNAKE_CASE : Optional[Any] = val SCREAMING_SNAKE_CASE : Union[str, Any] = key.split("." ) SCREAMING_SNAKE_CASE : Dict = len(SCREAMING_SNAKE_CASE_ ) - 1 SCREAMING_SNAKE_CASE : Tuple = self._pointer if len(SCREAMING_SNAKE_CASE_ ) > 1: for i, l in enumerate(SCREAMING_SNAKE_CASE_ ): if hasattr(self , SCREAMING_SNAKE_CASE_ ) and isinstance(getattr(self , SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): setattr(getattr(self , SCREAMING_SNAKE_CASE_ ) , ".".join(levels[i:] ) , SCREAMING_SNAKE_CASE_ ) if l == last_level: SCREAMING_SNAKE_CASE : Dict = val else: SCREAMING_SNAKE_CASE : List[str] = pointer[l] def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" return self._pointer def __UpperCamelCase ( self : str , a : Any , a : List[Any] ) -> Optional[Any]: """simple docstring""" with open(F"{file_name}" , "w" ) as stream: dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __UpperCamelCase ( self : int , a : Any , a : Optional[int] ) -> int: """simple docstring""" with open(F"{file_name}" , "w" ) as stream: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @staticmethod def __UpperCamelCase ( a : Tuple ) -> int: """simple docstring""" with open(SCREAMING_SNAKE_CASE_ ) as stream: SCREAMING_SNAKE_CASE : int = load(SCREAMING_SNAKE_CASE_ , Loader=SCREAMING_SNAKE_CASE_ ) return data def __str__( self : int ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : str = """ """ if self._name != "root": SCREAMING_SNAKE_CASE : List[Any] = F"{t * (self._level-1)}{self._name}:\n" else: SCREAMING_SNAKE_CASE : Dict = """""" SCREAMING_SNAKE_CASE : Optional[int] = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): r += F"{t * (self._level)}{v}\n" self._level += 1 else: r += F"{t * (self._level)}{k}: {v} ({type(SCREAMING_SNAKE_CASE_ ).__name__})\n" SCREAMING_SNAKE_CASE : Dict = level return r[:-1] @classmethod def __UpperCamelCase ( cls : List[str] , a : List[str] , **a : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return cls(SCREAMING_SNAKE_CASE_ ) @classmethod def __UpperCamelCase ( cls : List[str] , a : Tuple , **a : Optional[int] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = kwargs.pop("cache_dir" , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : Any = kwargs.pop("force_download" , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : List[str] = kwargs.pop("resume_download" , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : List[str] = kwargs.pop("proxies" , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : Dict = kwargs.pop("local_files_only" , SCREAMING_SNAKE_CASE_ ) if os.path.isdir(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE : Tuple = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif os.path.isfile(SCREAMING_SNAKE_CASE_ ) or is_remote_url(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE : Optional[int] = pretrained_model_name_or_path else: SCREAMING_SNAKE_CASE : int = hf_bucket_url(SCREAMING_SNAKE_CASE_ , filename=SCREAMING_SNAKE_CASE_ , use_cdn=SCREAMING_SNAKE_CASE_ ) try: # Load from URL or cache if already cached SCREAMING_SNAKE_CASE : Optional[int] = cached_path( SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , force_download=SCREAMING_SNAKE_CASE_ , proxies=SCREAMING_SNAKE_CASE_ , resume_download=SCREAMING_SNAKE_CASE_ , local_files_only=SCREAMING_SNAKE_CASE_ , ) # Load config dict if resolved_config_file is None: raise EnvironmentError SCREAMING_SNAKE_CASE : Union[str, Any] = Config.load_yaml(SCREAMING_SNAKE_CASE_ ) except EnvironmentError: SCREAMING_SNAKE_CASE : Optional[Any] = """Can't load config for""" raise EnvironmentError(SCREAMING_SNAKE_CASE_ ) if resolved_config_file == config_file: print("loading configuration file from path" ) else: print("loading configuration file cache" ) return Config.load_yaml(SCREAMING_SNAKE_CASE_ ), kwargs def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : str = torch.load("dump.pt" , map_location=in_tensor.device) SCREAMING_SNAKE_CASE : int = in_tensor.numpy() SCREAMING_SNAKE_CASE : Optional[Any] = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5]) print(na.shape , na[0, 0, :5]) assert np.allclose(lowercase_ , lowercase_ , rtol=0.01 , atol=0.1), ( f"{sum([1 for x in np.isclose(lowercase_ , lowercase_ , rtol=0.01 , atol=0.1).flatten() if x is False])/len(na.flatten())*100:.4f} %" " element-wise mismatch" ) raise Exception("tensors are all good") # Hugging face functions below def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Any = urlparse(lowercase_) return parsed.scheme in ("http", "https") def lowerCamelCase__ ( _a , _a , _a=True): SCREAMING_SNAKE_CASE : Optional[Any] = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX SCREAMING_SNAKE_CASE : Dict = """/""" not in model_id if legacy_format: return f"{endpoint}/{model_id}-{filename}" else: return f"{endpoint}/{model_id}/{filename}" def lowerCamelCase__ ( _a , _a , _a=None , _a=0 , _a=None , ): SCREAMING_SNAKE_CASE : Dict = """python/{}""".format(sys.version.split()[0]) if _torch_available: ua += "; torch/{}".format(torch.__version__) if isinstance(lowercase_ , lowercase_): ua += "; " + "; ".join("{}/{}".format(lowercase_ , lowercase_) for k, v in user_agent.items()) elif isinstance(lowercase_ , lowercase_): ua += "; " + user_agent SCREAMING_SNAKE_CASE : Any = {"""user-agent""": ua} if resume_size > 0: SCREAMING_SNAKE_CASE : Tuple = """bytes=%d-""" % (resume_size,) SCREAMING_SNAKE_CASE : Union[str, Any] = requests.get(lowercase_ , stream=lowercase_ , proxies=lowercase_ , headers=lowercase_) if response.status_code == 416: # Range not satisfiable return SCREAMING_SNAKE_CASE : Tuple = response.headers.get("Content-Length") SCREAMING_SNAKE_CASE : Optional[int] = resume_size + int(lowercase_) if content_length is not None else None SCREAMING_SNAKE_CASE : Dict = tqdm( unit="B" , unit_scale=lowercase_ , total=lowercase_ , initial=lowercase_ , desc="Downloading" , ) for chunk in response.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks progress.update(len(lowercase_)) temp_file.write(lowercase_) progress.close() def lowerCamelCase__ ( _a , _a=None , _a=False , _a=None , _a=10 , _a=False , _a=None , _a=False , ): if cache_dir is None: SCREAMING_SNAKE_CASE : int = TRANSFORMERS_CACHE if isinstance(lowercase_ , lowercase_): SCREAMING_SNAKE_CASE : str = str(lowercase_) os.makedirs(lowercase_ , exist_ok=lowercase_) SCREAMING_SNAKE_CASE : Optional[int] = None if not local_files_only: try: SCREAMING_SNAKE_CASE : List[Any] = requests.head(lowercase_ , allow_redirects=lowercase_ , proxies=lowercase_ , timeout=lowercase_) if response.status_code == 200: SCREAMING_SNAKE_CASE : List[Any] = response.headers.get("ETag") except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass SCREAMING_SNAKE_CASE : List[Any] = url_to_filename(lowercase_ , lowercase_) # get cache path to put the file SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(lowercase_ , lowercase_) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowercase_): return cache_path else: SCREAMING_SNAKE_CASE : Tuple = [ file for file in fnmatch.filter(os.listdir(lowercase_) , filename + ".*") if not file.endswith(".json") and not file.endswith(".lock") ] if len(lowercase_) > 0: return os.path.join(lowercase_ , matching_files[-1]) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False.") return None # From now on, etag is not None. if os.path.exists(lowercase_) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. SCREAMING_SNAKE_CASE : int = cache_path + """.lock""" with FileLock(lowercase_): # If the download just completed while the lock was activated. if os.path.exists(lowercase_) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: SCREAMING_SNAKE_CASE : Any = cache_path + """.incomplete""" @contextmanager def _resumable_file_manager(): with open(lowercase_ , "a+b") as f: yield f SCREAMING_SNAKE_CASE : List[Any] = _resumable_file_manager if os.path.exists(lowercase_): SCREAMING_SNAKE_CASE : str = os.stat(lowercase_).st_size else: SCREAMING_SNAKE_CASE : Union[str, Any] = 0 else: SCREAMING_SNAKE_CASE : int = partial(tempfile.NamedTemporaryFile , dir=lowercase_ , delete=lowercase_) SCREAMING_SNAKE_CASE : Dict = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" , lowercase_ , temp_file.name , ) http_get( lowercase_ , lowercase_ , proxies=lowercase_ , resume_size=lowercase_ , user_agent=lowercase_ , ) os.replace(temp_file.name , lowercase_) SCREAMING_SNAKE_CASE : Any = {"""url""": url, """etag""": etag} SCREAMING_SNAKE_CASE : List[Any] = cache_path + """.json""" with open(lowercase_ , "w") as meta_file: json.dump(lowercase_ , lowercase_) return cache_path def lowerCamelCase__ ( _a , _a=None): SCREAMING_SNAKE_CASE : Optional[Any] = url.encode("utf-8") SCREAMING_SNAKE_CASE : Optional[int] = shaaaa(lowercase_) SCREAMING_SNAKE_CASE : int = url_hash.hexdigest() if etag: SCREAMING_SNAKE_CASE : Any = etag.encode("utf-8") SCREAMING_SNAKE_CASE : Any = shaaaa(lowercase_) filename += "." + etag_hash.hexdigest() if url.endswith(".h5"): filename += ".h5" return filename def lowerCamelCase__ ( _a , _a=None , _a=False , _a=None , _a=False , _a=None , _a=False , _a=False , _a=False , ): if cache_dir is None: SCREAMING_SNAKE_CASE : Union[str, Any] = TRANSFORMERS_CACHE if isinstance(lowercase_ , lowercase_): SCREAMING_SNAKE_CASE : int = str(lowercase_) if isinstance(lowercase_ , lowercase_): SCREAMING_SNAKE_CASE : int = str(lowercase_) if is_remote_url(lowercase_): # URL, so get it from the cache (downloading if necessary) SCREAMING_SNAKE_CASE : Union[str, Any] = get_from_cache( lowercase_ , cache_dir=lowercase_ , force_download=lowercase_ , proxies=lowercase_ , resume_download=lowercase_ , user_agent=lowercase_ , local_files_only=lowercase_ , ) elif os.path.exists(lowercase_): # File, and it exists. SCREAMING_SNAKE_CASE : Optional[int] = url_or_filename elif urlparse(lowercase_).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(lowercase_)) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(lowercase_)) if extract_compressed_file: if not is_zipfile(lowercase_) and not tarfile.is_tarfile(lowercase_): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" SCREAMING_SNAKE_CASE : int = os.path.split(lowercase_) SCREAMING_SNAKE_CASE : Optional[int] = output_file.replace("." , "-") + """-extracted""" SCREAMING_SNAKE_CASE : Dict = os.path.join(lowercase_ , lowercase_) if os.path.isdir(lowercase_) and os.listdir(lowercase_) and not force_extract: return output_path_extracted # Prevent parallel extractions SCREAMING_SNAKE_CASE : Optional[int] = output_path + """.lock""" with FileLock(lowercase_): shutil.rmtree(lowercase_ , ignore_errors=lowercase_) os.makedirs(lowercase_) if is_zipfile(lowercase_): with ZipFile(lowercase_ , "r") as zip_file: zip_file.extractall(lowercase_) zip_file.close() elif tarfile.is_tarfile(lowercase_): SCREAMING_SNAKE_CASE : Tuple = tarfile.open(lowercase_) tar_file.extractall(lowercase_) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(lowercase_)) return output_path_extracted return output_path def lowerCamelCase__ ( _a , _a=","): assert isinstance(lowercase_ , lowercase_) if os.path.isfile(lowercase_): with open(lowercase_) as f: SCREAMING_SNAKE_CASE : List[Any] = eval(f.read()) else: SCREAMING_SNAKE_CASE : Union[str, Any] = requests.get(lowercase_) try: SCREAMING_SNAKE_CASE : List[str] = requests.json() except Exception: SCREAMING_SNAKE_CASE : List[Any] = req.content.decode() assert data is not None, "could not connect" try: SCREAMING_SNAKE_CASE : Optional[Any] = eval(lowercase_) except Exception: SCREAMING_SNAKE_CASE : Optional[int] = data.split("\n") req.close() return data def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : str = requests.get(lowercase_) SCREAMING_SNAKE_CASE : List[Any] = np.array(Image.open(BytesIO(response.content))) return img def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Union[str, Any] = url.split("/")[-1] if fn not in os.listdir(os.getcwd()): wget.download(lowercase_) with open(lowercase_ , "rb") as stream: SCREAMING_SNAKE_CASE : Union[str, Any] = pkl.load(lowercase_) SCREAMING_SNAKE_CASE : Tuple = weights.pop("model") SCREAMING_SNAKE_CASE : int = {} for k, v in model.items(): SCREAMING_SNAKE_CASE : int = torch.from_numpy(lowercase_) if "running_var" in k: SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([0]) SCREAMING_SNAKE_CASE : Optional[int] = k.replace("running_var" , "num_batches_tracked") SCREAMING_SNAKE_CASE : List[Any] = zero return new def lowerCamelCase__ ( ): print(f"{os.path.abspath(os.path.join(lowercase_ , os.pardir))}/demo.ipynb") def lowerCamelCase__ ( _a , _a="RGB"): assert isinstance(lowercase_ , lowercase_) if os.path.isfile(lowercase_): SCREAMING_SNAKE_CASE : Optional[Any] = cva.imread(lowercase_) else: SCREAMING_SNAKE_CASE : str = get_image_from_url(lowercase_) assert img is not None, f"could not connect to: {im}" SCREAMING_SNAKE_CASE : Union[str, Any] = cva.cvtColor(lowercase_ , cva.COLOR_BGR2RGB) if input_format == "RGB": SCREAMING_SNAKE_CASE : List[Any] = img[:, :, ::-1] return img def lowerCamelCase__ ( _a , _a=1): return (images[i : i + batch] for i in range(0 , len(lowercase_) , lowercase_))
25
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowerCamelCase__ : Any = """Create a default config file for Accelerate with only a few flags set.""" def UpperCamelCase ( lowercase_="no" , lowercase_ = default_json_config_file , lowercase_ = False ) -> Any: '''simple docstring''' lowercase__ : Any = Path(lowercase_ ) path.parent.mkdir(parents=lowercase_ , exist_ok=lowercase_ ) if path.exists(): print( F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' ) return False lowercase__ : int = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' ) lowercase__ : Dict = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): lowercase__ : Any = torch.cuda.device_count() lowercase__ : Any = num_gpus lowercase__ : Optional[int] = False if num_gpus > 1: lowercase__ : Tuple = """MULTI_GPU""" else: lowercase__ : Optional[Any] = """NO""" elif is_xpu_available() and use_xpu: lowercase__ : Union[str, Any] = torch.xpu.device_count() lowercase__ : str = num_xpus lowercase__ : List[Any] = False if num_xpus > 1: lowercase__ : str = """MULTI_XPU""" else: lowercase__ : Optional[Any] = """NO""" elif is_npu_available(): lowercase__ : Tuple = torch.npu.device_count() lowercase__ : Union[str, Any] = num_npus lowercase__ : Union[str, Any] = False if num_npus > 1: lowercase__ : List[Any] = """MULTI_NPU""" else: lowercase__ : int = """NO""" else: lowercase__ : Union[str, Any] = 0 lowercase__ : str = True lowercase__ : Union[str, Any] = 1 lowercase__ : int = """NO""" lowercase__ : Tuple = ClusterConfig(**lowercase_ ) config.to_json_file(lowercase_ ) return path def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' lowercase__ : List[str] = parser.add_parser("""default""" , parents=lowercase_ , help=lowercase_ , formatter_class=lowercase_ ) parser.add_argument( """--config_file""" , default=lowercase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , dest="""save_location""" , ) parser.add_argument( """--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=lowercase_ , help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , ) parser.set_defaults(func=lowercase_ ) return parser def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' lowercase__ : Optional[Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'accelerate configuration saved at {config_file}' )
12
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self :Optional[int] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :str=13 , lowerCAmelCase__ :Any=3 , lowerCAmelCase__ :List[str]=224 , lowerCAmelCase__ :Tuple=30 , lowerCAmelCase__ :Any=400 , lowerCAmelCase__ :Optional[int]=True , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :int=True , lowerCAmelCase__ :Optional[int]=[0.5, 0.5, 0.5] , lowerCAmelCase__ :Union[str, Any]=[0.5, 0.5, 0.5] , ) ->Union[str, Any]: lowercase = size if size is not None else {"""height""": 18, """width""": 18} lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = image_size lowercase = min_resolution lowercase = max_resolution lowercase = do_resize lowercase = size lowercase = do_normalize lowercase = image_mean lowercase = image_std def SCREAMING_SNAKE_CASE( self :Optional[int] ) ->Dict: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCamelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase : Optional[Any] = ViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE( self :Tuple ) ->List[Any]: lowercase = EfficientFormerImageProcessorTester(self ) @property def SCREAMING_SNAKE_CASE( self :List[Any] ) ->Optional[int]: return self.image_proc_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE( self :int ) ->Optional[int]: lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , "image_mean" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , "image_std" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , "do_normalize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , "do_resize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , "size" ) ) def SCREAMING_SNAKE_CASE( self :List[Any] ) ->Union[str, Any]: pass def SCREAMING_SNAKE_CASE( self :Union[str, Any] ) ->int: lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image ) # Test not batched input lowercase = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched lowercase = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def SCREAMING_SNAKE_CASE( self :Dict ) ->int: lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) # Test not batched input lowercase = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched lowercase = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def SCREAMING_SNAKE_CASE( self :str ) ->Optional[Any]: lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) # Test not batched input lowercase = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched lowercase = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , )
441
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Union[str, Any] = 'convbert' def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowercase__ : Dict = vocab_size lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : List[str] = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : Tuple = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : Tuple = max_position_embeddings lowercase__ : Dict = type_vocab_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Dict = layer_norm_eps lowercase__ : Tuple = embedding_size lowercase__ : List[str] = head_ratio lowercase__ : Dict = conv_kernel_size lowercase__ : Dict = num_groups lowercase__ : int = classifier_dropout class _snake_case ( UpperCAmelCase_ ): @property def lowercase__ ( self): '''simple docstring''' if self.task == "multiple-choice": lowercase__ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ : str = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ])
12
0
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') __magic_name__ : str = logging.getLogger(__name__) @dataclass class __snake_case : __a = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __a = field( default=UpperCAmelCase_ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) __a = field( default=UpperCAmelCase_ , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) __a = field( default=UpperCAmelCase_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __a = field( default=UpperCAmelCase_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) __a = field( default=UpperCAmelCase_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) @dataclass class __snake_case : __a = field( default=UpperCAmelCase_ , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __a = field( default=UpperCAmelCase_ , metadata={'''help''': '''Evaluation language. Also train language if `train_language` is set to None.'''} ) __a = field( default=UpperCAmelCase_ , metadata={'''help''': '''Train language if it is different from the evaluation language.'''} ) __a = field( default=UpperCAmelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __a = field( default=UpperCAmelCase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __a = field( default=UpperCAmelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __a = field( default=UpperCAmelCase_ , metadata={'''help''': '''arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'''} , ) __a = field( default=UpperCAmelCase_ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) __a = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __a = field( default=UpperCAmelCase_ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) __a = field( default=UpperCAmelCase_ , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def a_ ( ): __lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowerCamelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_xnli""", lowercase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowerCamelCase = training_args.get_process_log_level() logger.setLevel(lowercase_ ) datasets.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __lowerCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: __lowerCamelCase = load_dataset( """xnli""", model_args.language, split="""train""", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: __lowerCamelCase = load_dataset( """xnli""", model_args.train_language, split="""train""", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) __lowerCamelCase = train_dataset.features["""label"""].names if training_args.do_eval: __lowerCamelCase = load_dataset( """xnli""", model_args.language, split="""validation""", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) __lowerCamelCase = eval_dataset.features["""label"""].names if training_args.do_predict: __lowerCamelCase = load_dataset( """xnli""", model_args.language, split="""test""", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) __lowerCamelCase = predict_dataset.features["""label"""].names # Labels __lowerCamelCase = len(lowercase_ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=lowercase_, idalabel={str(lowercase_ ): label for i, label in enumerate(lowercase_ )}, labelaid={label: i for i, label in enumerate(lowercase_ )}, finetuning_task="""xnli""", cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) __lowerCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, do_lower_case=model_args.do_lower_case, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(""".ckpt""" in model_args.model_name_or_path ), config=lowercase_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: __lowerCamelCase = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __lowerCamelCase = False def preprocess_function(lowercase__ :Dict ): # Tokenize the texts return tokenizer( examples["""premise"""], examples["""hypothesis"""], padding=lowercase_, max_length=data_args.max_seq_length, truncation=lowercase_, ) if training_args.do_train: if data_args.max_train_samples is not None: __lowerCamelCase = min(len(lowercase_ ), data_args.max_train_samples ) __lowerCamelCase = train_dataset.select(range(lowercase_ ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): __lowerCamelCase = train_dataset.map( lowercase_, batched=lowercase_, load_from_cache_file=not data_args.overwrite_cache, desc="""Running tokenizer on train dataset""", ) # Log a few random samples from the training set: for index in random.sample(range(len(lowercase_ ) ), 3 ): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' ) if training_args.do_eval: if data_args.max_eval_samples is not None: __lowerCamelCase = min(len(lowercase_ ), data_args.max_eval_samples ) __lowerCamelCase = eval_dataset.select(range(lowercase_ ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): __lowerCamelCase = eval_dataset.map( lowercase_, batched=lowercase_, load_from_cache_file=not data_args.overwrite_cache, desc="""Running tokenizer on validation dataset""", ) if training_args.do_predict: if data_args.max_predict_samples is not None: __lowerCamelCase = min(len(lowercase_ ), data_args.max_predict_samples ) __lowerCamelCase = predict_dataset.select(range(lowercase_ ) ) with training_args.main_process_first(desc="""prediction dataset map pre-processing""" ): __lowerCamelCase = predict_dataset.map( lowercase_, batched=lowercase_, load_from_cache_file=not data_args.overwrite_cache, desc="""Running tokenizer on prediction dataset""", ) # Get the metric function __lowerCamelCase = evaluate.load("""xnli""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase__ :Any ): __lowerCamelCase = p.predictions[0] if isinstance(p.predictions, lowercase_ ) else p.predictions __lowerCamelCase = np.argmax(lowercase_, axis=1 ) return metric.compute(predictions=lowercase_, references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __lowerCamelCase = default_data_collator elif training_args.fpaa: __lowerCamelCase = DataCollatorWithPadding(lowercase_, pad_to_multiple_of=8 ) else: __lowerCamelCase = None # Initialize our Trainer __lowerCamelCase = Trainer( model=lowercase_, args=lowercase_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, compute_metrics=lowercase_, tokenizer=lowercase_, data_collator=lowercase_, ) # Training if training_args.do_train: __lowerCamelCase = None if training_args.resume_from_checkpoint is not None: __lowerCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCamelCase = last_checkpoint __lowerCamelCase = trainer.train(resume_from_checkpoint=lowercase_ ) __lowerCamelCase = train_result.metrics __lowerCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase_ ) ) __lowerCamelCase = min(lowercase_, len(lowercase_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""", lowercase_ ) trainer.save_metrics("""train""", lowercase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCamelCase = trainer.evaluate(eval_dataset=lowercase_ ) __lowerCamelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase_ ) __lowerCamelCase = min(lowercase_, len(lowercase_ ) ) trainer.log_metrics("""eval""", lowercase_ ) trainer.save_metrics("""eval""", lowercase_ ) # Prediction if training_args.do_predict: logger.info("""*** Predict ***""" ) __lowerCamelCase = trainer.predict(lowercase_, metric_key_prefix="""predict""" ) __lowerCamelCase = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(lowercase_ ) ) __lowerCamelCase = min(lowercase_, len(lowercase_ ) ) trainer.log_metrics("""predict""", lowercase_ ) trainer.save_metrics("""predict""", lowercase_ ) __lowerCamelCase = np.argmax(lowercase_, axis=1 ) __lowerCamelCase = os.path.join(training_args.output_dir, """predictions.txt""" ) if trainer.is_world_process_zero(): with open(lowercase_, """w""" ) as writer: writer.write("""index\tprediction\n""" ) for index, item in enumerate(lowercase_ ): __lowerCamelCase = label_list[item] writer.write(f'{index}\t{item}\n' ) if __name__ == "__main__": main()
281
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCamelCase__ : Any = datasets.utils.logging.get_logger(__name__) class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ): __lowerCAmelCase : bool = None __lowerCAmelCase : bool = None class _snake_case ( folder_based_builder.FolderBasedBuilder ): __lowerCAmelCase : Optional[Any] = datasets.Audio() __lowerCAmelCase : Union[str, Any] = 'audio' __lowerCAmelCase : str = AudioFolderConfig __lowerCAmelCase : List[str] # definition at the bottom of the script __lowerCAmelCase : Optional[int] = AudioClassification(audio_column='audio' , label_column='label' ) lowerCamelCase__ : int = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] lowerCamelCase__ : int = AUDIO_EXTENSIONS
12
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Optional[int] = logging.get_logger(__name__) _a : List[str] = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class lowercase_ ( UpperCAmelCase_ ): '''simple docstring''' __lowerCAmelCase : int = 'ctrl' __lowerCAmelCase : Optional[int] = ['past_key_values'] __lowerCAmelCase : Optional[Any] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , a_=2_4_6_5_3_4 , a_=2_5_6 , a_=1_2_8_0 , a_=8_1_9_2 , a_=4_8 , a_=1_6 , a_=0.1 , a_=0.1 , a_=1E-6 , a_=0.02 , a_=True , **a_ , ) -> List[Any]: """simple docstring""" UpperCAmelCase = vocab_size UpperCAmelCase = n_positions UpperCAmelCase = n_embd UpperCAmelCase = n_layer UpperCAmelCase = n_head UpperCAmelCase = dff UpperCAmelCase = resid_pdrop UpperCAmelCase = embd_pdrop UpperCAmelCase = layer_norm_epsilon UpperCAmelCase = initializer_range UpperCAmelCase = use_cache super().__init__(**SCREAMING_SNAKE_CASE_ )
447
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : int = (DDPMScheduler,) def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = { """num_train_timesteps""": 10_00, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**SCREAMING_SNAKE_CASE_) return config def lowercase__ ( self): '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2]): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , ) def lowercase__ ( self): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : Union[str, Any] = self.get_scheduler_config() lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0_9_7_9)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.0_2)) < 1E-5 def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.scheduler_classes[0] lowercase__ : str = self.get_scheduler_config() lowercase__ : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = len(SCREAMING_SNAKE_CASE_) lowercase__ : Any = self.dummy_model() lowercase__ : List[Any] = self.dummy_sample_deter lowercase__ : str = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : List[str] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : str = pred_prev_sample lowercase__ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_5_8.9_6_0_6) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = self.scheduler_classes[0] lowercase__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""") lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : Dict = len(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = self.dummy_model() lowercase__ : Union[str, Any] = self.dummy_sample_deter lowercase__ : int = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : Tuple = pred_prev_sample lowercase__ : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_0_2.0_2_9_6) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : str = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : str = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = scheduler.timesteps for i, timestep in enumerate(SCREAMING_SNAKE_CASE_): if i == len(SCREAMING_SNAKE_CASE_) - 1: lowercase__ : Optional[int] = -1 else: lowercase__ : Tuple = timesteps[i + 1] lowercase__ : Any = scheduler.previous_timestep(SCREAMING_SNAKE_CASE_) lowercase__ : int = prev_t.item() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = [1_00, 87, 50, 51, 0] with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`custom_timesteps` must be in descending order."""): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = [1_00, 87, 50, 1, 0] lowercase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_) with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`."""): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : str = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
12
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __magic_name__ = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
232
def UpperCamelCase ( lowercase_ ) -> float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) lowercase__ : int = sum(lowercase_ ) / len(lowercase_ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
12
0
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( UpperCAmelCase_ ): __UpperCAmelCase : Any = ['image_processor', 'tokenizer'] __UpperCAmelCase : Union[str, Any] = 'AutoImageProcessor' __UpperCAmelCase : int = 'AutoTokenizer' def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) snake_case : Union[str, Any] = self.image_processor def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: snake_case : List[str] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if images is not None: snake_case : Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if text is not None and images is not None: snake_case : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_ ) , tensor_type=SCREAMING_SNAKE_CASE_ ) def lowerCamelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowerCamelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
178
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Any = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 8 , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = do_rescale lowercase__ : List[Any] = rescale_factor lowercase__ : Tuple = do_pad lowercase__ : Optional[Any] = pad_size def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None): '''simple docstring''' lowercase__ , lowercase__ : Optional[int] = get_image_size(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = (old_height // size + 1) * size - old_height lowercase__ : str = (old_width // size + 1) * size - old_width return pad(SCREAMING_SNAKE_CASE_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = do_pad if do_pad is not None else self.do_pad lowercase__ : Optional[Any] = pad_size if pad_size is not None else self.pad_size lowercase__ : str = make_list_of_images(SCREAMING_SNAKE_CASE_) if not valid_images(SCREAMING_SNAKE_CASE_): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") # All transformations expect numpy arrays. lowercase__ : List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_) for image in images] if do_rescale: lowercase__ : str = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_) for image in images] if do_pad: lowercase__ : List[str] = [self.pad(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_) for image in images] lowercase__ : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for image in images] lowercase__ : Dict = {"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_)
12
0
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. UpperCamelCase__: Dict = 10 def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str ) -> int: for i in range(lowercase_ , lowercase_ ): if array[i] == target: return i return -1 def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ) -> int: UpperCAmelCase : Any = 0 UpperCAmelCase : List[Any] = len(lowercase_ ) while left <= right: if right - left < precision: return lin_search(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Dict = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : Dict = one_third + 1 UpperCAmelCase : Union[str, Any] = two_third - 1 else: return -1 def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] ) -> int: if left < right: if right - left < precision: return lin_search(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(lowercase_ , one_third - 1 , lowercase_ , lowercase_ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , lowercase_ , lowercase_ , lowercase_ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , lowercase_ , lowercase_ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__: str = input("Enter numbers separated by comma:\n").strip() UpperCamelCase__: Dict = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." UpperCamelCase__: List[Any] = int(input("Enter the number to be found in the list:\n").strip()) UpperCamelCase__: Union[str, Any] = ite_ternary_search(collection, target) UpperCamelCase__: Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"Iterative search: {target} found at positions: {resulta}") print(F"Recursive search: {target} found at positions: {resulta}") else: print("Not found")
127
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowerCamelCase__ : Optional[int] = [ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[Any]: '''simple docstring''' lowercase__ : List[Any] = True while ask_again: lowercase__ : Tuple = input(lowercase_ ) try: if default is not None and len(lowercase_ ) == 0: return default return convert_value(lowercase_ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowercase_ ) def UpperCamelCase ( lowercase_ , lowercase_=[] , lowercase_=None , lowercase_=0 ) -> Union[str, Any]: '''simple docstring''' lowercase__ : List[Any] = BulletMenu(lowercase_ , lowercase_ ) lowercase__ : Any = menu.run(default_choice=lowercase_ ) return convert_value(lowercase_ ) if convert_value is not None else result def UpperCamelCase ( lowercase_ ) -> str: '''simple docstring''' lowercase__ : Union[str, Any] = int(lowercase_ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' lowercase__ : List[str] = int(lowercase_ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def UpperCamelCase ( lowercase_ ) -> str: '''simple docstring''' lowercase__ : str = int(lowercase_ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def UpperCamelCase ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowercase__ : List[Any] = int(lowercase_ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' lowercase__ : List[Any] = int(lowercase_ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _snake_case ( argparse.RawDescriptionHelpFormatter ): def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : int = super()._format_usage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = usage.replace("""<command> [<args>] """ , """""") return usage
12
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCamelCase__ = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", } } lowerCamelCase__ = { """camembert-base""": 512, } lowerCamelCase__ = """▁""" class __SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ :Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ :str = ['input_ids', 'attention_mask'] def __init__( self : int , __a : int , __a : Tuple="<s>" , __a : List[str]="</s>" , __a : int="</s>" , __a : Any="<s>" , __a : Union[str, Any]="<unk>" , __a : List[Any]="<pad>" , __a : Optional[Any]="<mask>" , __a : Any=["<s>NOTUSED", "</s>NOTUSED"] , __a : Any = None , **__a : Any , ) -> Dict: _UpperCamelCase : Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token _UpperCamelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , ) _UpperCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) ) _UpperCamelCase : Optional[Any] = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> _UpperCamelCase : int = {"""<s>NOTUSED""": 0, """<pad>""": 1, """</s>NOTUSED""": 2, """<unk>""": 3} _UpperCamelCase : Union[str, Any] = len(self.fairseq_tokens_to_ids ) _UpperCamelCase : Any = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) _UpperCamelCase : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __SCREAMING_SNAKE_CASE ( self : str , __a : Any , __a : Tuple = None ) -> Dict: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase : Tuple = [self.cls_token_id] _UpperCamelCase : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __SCREAMING_SNAKE_CASE ( self : str , __a : Union[str, Any] , __a : List[Any] = None , __a : Optional[int] = False ) -> Optional[Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def __SCREAMING_SNAKE_CASE ( self : Any , __a : Dict , __a : Any = None ) -> Dict: _UpperCamelCase : List[Any] = [self.sep_token_id] _UpperCamelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: _UpperCamelCase : Any = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Optional[int] ) -> Optional[Any]: return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Any ) -> Tuple: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) def __SCREAMING_SNAKE_CASE ( self : Any , __a : Union[str, Any] ) -> Any: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Optional[int] ) -> Any: _UpperCamelCase : Tuple = [] _UpperCamelCase : Optional[Any] = """""" _UpperCamelCase : List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) + token _UpperCamelCase : List[str] = True _UpperCamelCase : List[Any] = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE_ ) _UpperCamelCase : Optional[int] = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) return out_string.strip() def __getstate__( self : Optional[Any] ) -> Any: _UpperCamelCase : List[str] = self.__dict__.copy() _UpperCamelCase : int = None return state def __setstate__( self : Tuple , __a : Union[str, Any] ) -> Optional[int]: _UpperCamelCase : Optional[int] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCamelCase : Union[str, Any] = {} _UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __SCREAMING_SNAKE_CASE ( self : str , __a : List[str] , __a : Tuple = None ) -> List[Any]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCamelCase : Optional[int] = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_ , "wb" ) as fi: _UpperCamelCase : Tuple = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
624
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Tuple = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
0
'''simple docstring''' import argparse UpperCamelCase_ : int = """docs/source/_static/js/custom.js""" def _lowerCAmelCase (_lowercase ): """simple docstring""" with open(lowercase_ , encoding="utf-8" , newline="\n" ) as f: a__ = f.readlines() a__ = 0 # First let's put the right version while not lines[index].startswith("const stableVersion =" ): index += 1 a__ = F'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith("const versionMapping = {" ): index += 1 # We go until the end while not lines[index].startswith("}" ): index += 1 # We add the new version at the end lines[index - 1] += F' "v{version}": "v{version}",\n' with open(lowercase_ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lowercase_ ) if __name__ == "__main__": UpperCamelCase_ : int = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") UpperCamelCase_ : Any = parser.parse_args() update_custom_js(args.version)
331
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class _snake_case ( UpperCAmelCase_ ): def __init__( self): '''simple docstring''' lowercase__ : List[Any] = [] def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_init_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_train_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_train_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_epoch_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_epoch_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_step_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_step_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_evaluate""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_predict""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_save""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_log""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_prediction_step""") @require_torch class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = tempfile.mkdtemp() def lowercase__ ( self): '''simple docstring''' shutil.rmtree(self.output_dir) def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Any = RegressionDataset(length=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = RegressionDataset(length=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = RegressionModelConfig(a=SCREAMING_SNAKE_CASE_ , b=SCREAMING_SNAKE_CASE_) lowercase__ : Any = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE_) lowercase__ : Any = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE_ , report_to=[] , **SCREAMING_SNAKE_CASE_) return Trainer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , callbacks=SCREAMING_SNAKE_CASE_ , ) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_)) # Order doesn't matter lowercase__ : str = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__) lowercase__ : Tuple = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__) for cba, cba in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(SCREAMING_SNAKE_CASE_ , cba.__class__) elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE_) else: self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : int = ["""on_init_end""", """on_train_begin"""] lowercase__ : Union[str, Any] = 0 lowercase__ : Union[str, Any] = len(trainer.get_eval_dataloader()) lowercase__ : Dict = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader()) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs): expected_events.append("""on_epoch_begin""") for _ in range(SCREAMING_SNAKE_CASE_): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""") if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""") expected_events.append("""on_epoch_end""") if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def lowercase__ ( self): '''simple docstring''' lowercase__ : int = self.get_trainer() lowercase__ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # Callbacks passed at init are added to the default callbacks lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback]) expected_callbacks.append(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : Any = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : Tuple = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.remove(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_) self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) trainer.add_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # We can also add, pop, or remove by instance lowercase__ : Union[str, Any] = self.get_trainer() lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0] trainer.remove_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.remove(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) lowercase__ : str = self.get_trainer() lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) trainer.add_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback]) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # Independent log/save/eval lowercase__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5) trainer.train() lowercase__ : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5) trainer.train() lowercase__ : Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""") trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""") trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""") as warn_mock: lowercase__ : Dict = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(SCREAMING_SNAKE_CASE_) in warn_mock.call_args[0][0]
12
0
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a_ : Any = logging.get_logger(__name__) class UpperCamelCase ( UpperCAmelCase_ ): def __init__( self : Union[str, Any] , *snake_case__ : Union[str, Any] , **snake_case__ : Any ): """simple docstring""" warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
439
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = RoCBertTokenizer __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : str = False __lowerCAmelCase : List[Any] = True __lowerCAmelCase : Optional[int] = filter_non_english def lowercase__ ( self): '''simple docstring''' super().setUp() lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] lowercase__ : Dict = {} lowercase__ : Tuple = {} for i, value in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Tuple = i lowercase__ : Any = i lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""]) lowercase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) with open(self.word_shape_file , """w""" , encoding="""utf-8""") as word_shape_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_) with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""") as word_pronunciation_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) lowercase__ : Optional[int] = tokenizer.tokenize("""你好[SEP]你是谁""") self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) def lowercase__ ( self): '''simple docstring''' lowercase__ : int = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""") , ["""ah""", """\u535A""", """\u63A8""", """zz"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""h\u00E9llo"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=["""[UNK]"""]) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""") , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] lowercase__ : Optional[int] = {} for i, token in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = i lowercase__ : Union[str, Any] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""unwanted running""") , ["""un""", """##want""", """##ed""", """runn""", """##ing"""]) self.assertListEqual(tokenizer.tokenize("""unwantedX running""") , ["""[UNK]""", """runn""", """##ing"""]) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_whitespace(""" """)) self.assertTrue(_is_whitespace("""\t""")) self.assertTrue(_is_whitespace("""\r""")) self.assertTrue(_is_whitespace("""\n""")) self.assertTrue(_is_whitespace("""\u00A0""")) self.assertFalse(_is_whitespace("""A""")) self.assertFalse(_is_whitespace("""-""")) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_control("""\u0005""")) self.assertFalse(_is_control("""A""")) self.assertFalse(_is_control(""" """)) self.assertFalse(_is_control("""\t""")) self.assertFalse(_is_control("""\r""")) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_punctuation("""-""")) self.assertTrue(_is_punctuation("""$""")) self.assertTrue(_is_punctuation("""`""")) self.assertTrue(_is_punctuation(""".""")) self.assertFalse(_is_punctuation("""A""")) self.assertFalse(_is_punctuation(""" """)) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) if self.test_rust_tokenizer: lowercase__ : int = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) def lowercase__ ( self): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase__ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' lowercase__ : List[str] = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , ) lowercase__ : str = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , """do_lower_case""") else False lowercase__ : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""])) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = ["""的""", """人""", """有"""] lowercase__ : List[str] = """""".join(SCREAMING_SNAKE_CASE_) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase__ : Union[str, Any] = True lowercase__ : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : str = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Any = False lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) # it is expected that only the first Chinese character is not preceded by "##". lowercase__ : Any = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_) ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @slow def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) lowercase__ : Optional[Any] = tokenizer.encode("""你好""" , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Any = tokenizer.encode("""你是谁""" , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}'): lowercase__ : Optional[int] = """你好,你是谁""" lowercase__ : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) lowercase__ : Any = tokenizer.prepare_for_model( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
12
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : str = { """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class __SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): __a ='xmod' def __init__( self , lowerCamelCase=3_0522 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=1e-12 , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=2 , lowerCamelCase="absolute" , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=False , lowerCamelCase=2 , lowerCamelCase=False , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=("en_XX",) , lowerCamelCase=None , **lowerCamelCase , ) ->int: '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = use_cache __a = classifier_dropout __a = pre_norm __a = adapter_reduction_factor __a = adapter_layer_norm __a = adapter_reuse_layer_norm __a = ln_before_adapter __a = list(SCREAMING_SNAKE_CASE_ ) __a = default_language class __SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): @property def __UpperCamelCase ( self ) ->List[str]: '''simple docstring''' if self.task == "multiple-choice": __a = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __a = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
448
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class _snake_case ( UpperCAmelCase_ ): def __init__( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.') requires_backends(self , """vision""") self.check_model_type(SCREAMING_SNAKE_CASE_) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' if "text_queries" in kwargs: lowercase__ : Any = kwargs.pop("""text_queries""") if isinstance(SCREAMING_SNAKE_CASE_ , (str, Image.Image)): lowercase__ : Optional[Any] = {"""image""": image, """candidate_labels""": candidate_labels} else: lowercase__ : int = image lowercase__ : List[str] = super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) return results def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = {} if "threshold" in kwargs: lowercase__ : List[Any] = kwargs["""threshold"""] if "top_k" in kwargs: lowercase__ : int = kwargs["""top_k"""] return {}, {}, postprocess_params def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = load_image(inputs["""image"""]) lowercase__ : Any = inputs["""candidate_labels"""] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): lowercase__ : List[str] = candidate_labels.split(""",""") lowercase__ : Tuple = torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) lowercase__ : Union[str, Any] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) yield { "is_last": i == len(SCREAMING_SNAKE_CASE_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = model_inputs.pop("""target_size""") lowercase__ : Optional[int] = model_inputs.pop("""candidate_label""") lowercase__ : Dict = model_inputs.pop("""is_last""") lowercase__ : Union[str, Any] = self.model(**SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : Union[str, Any] = [] for model_output in model_outputs: lowercase__ : Optional[int] = model_output["""candidate_label"""] lowercase__ : Tuple = BaseModelOutput(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.image_processor.post_process_object_detection( outputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ , target_sizes=model_output["""target_size"""])[0] for index in outputs["scores"].nonzero(): lowercase__ : Optional[Any] = outputs["""scores"""][index].item() lowercase__ : Optional[Any] = self._get_bounding_box(outputs["""boxes"""][index][0]) lowercase__ : Tuple = {"""score""": score, """label""": label, """box""": box} results.append(SCREAMING_SNAKE_CASE_) lowercase__ : int = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: x["score"] , reverse=SCREAMING_SNAKE_CASE_) if top_k: lowercase__ : Any = results[:top_k] return results def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""") lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = box.int().tolist() lowercase__ : Optional[int] = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
12
0
from __future__ import annotations def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : List[Any] = len(lowercase_) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: SCREAMING_SNAKE_CASE : Optional[Any] = i + 1 else: SCREAMING_SNAKE_CASE : int = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'''{two_pointer([2, 7, 11, 15], 9) = }''')
25
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowercase__ : str = mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) else: lowercase__ : List[str] = max( mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) , mf_knapsack(i - 1 , lowercase_ , lowercase_ , j - wt[i - 1] ) + val[i - 1] , ) lowercase__ : List[Any] = val return f[i][j] def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowercase__ : Any = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowercase__ : List[Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowercase__ : Tuple = dp[i - 1][w_] return dp[n][w_], dp def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' if not (isinstance(lowercase_ , (list, tuple) ) and isinstance(lowercase_ , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) lowercase__ : str = len(lowercase_ ) if num_items != len(lowercase_ ): lowercase__ : Optional[int] = ( """The number of weights must be the same as the number of values.\n""" F'But got {num_items} weights and {len(lowercase_ )} values' ) raise ValueError(lowercase_ ) for i in range(lowercase_ ): if not isinstance(wt[i] , lowercase_ ): lowercase__ : int = ( """All weights must be integers but got weight of """ F'type {type(wt[i] )} at index {i}' ) raise TypeError(lowercase_ ) lowercase__ , lowercase__ : Tuple = knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : set = set() _construct_solution(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return optimal_val, example_optional_set def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(lowercase_ , lowercase_ , i - 1 , lowercase_ , lowercase_ ) else: optimal_set.add(lowercase_ ) _construct_solution(lowercase_ , lowercase_ , i - 1 , j - wt[i - 1] , lowercase_ ) if __name__ == "__main__": lowerCamelCase__ : Dict = [3, 2, 4, 4] lowerCamelCase__ : List[Any] = [4, 3, 2, 3] lowerCamelCase__ : Optional[int] = 4 lowerCamelCase__ : Dict = 6 lowerCamelCase__ : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowerCamelCase__ , lowerCamelCase__ : int = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowerCamelCase__ , lowerCamelCase__ : Optional[int] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
12
0
from math import factorial _snake_case : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)} def __snake_case ( __magic_name__ ): '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ): raise TypeError("Parameter number must be int" ) if number < 0: raise ValueError("Parameter number must be greater than or equal to 0" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(lowercase_ ) ) def __snake_case ( __magic_name__ = 60 , __magic_name__ = 1000000 ): '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ) or not isinstance(lowercase_ , lowercase_ ): raise TypeError("Parameters chain_length and number_limit must be int" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( "Parameters chain_length and number_limit must be greater than 0" ) # the counter for the chains with the exact desired length lowercase = 0 # the cached sizes of the previous chains lowercase = {} for start_chain_element in range(1 , lowercase_ ): # The temporary set will contain the elements of the chain lowercase = set() lowercase = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. lowercase = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(lowercase_ ) chain_set_length += 1 lowercase = digit_factorial_sum(lowercase_ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] lowercase = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F"{solution()}")
441
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def UpperCamelCase ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def UpperCamelCase ( lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' lowercase__ : int = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowercase__ : Optional[Any] = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" ) lowercase__ : Tuple = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" ) lowercase__ : Optional[int] = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" ) lowercase__ : List[Any] = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" ) lowercase__ : int = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" ) lowercase__ : Optional[Any] = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" ) lowercase__ : Optional[Any] = key.replace("""image_encoder.module""" , """flava.image_model""" ) lowercase__ : Any = key.replace("""text_encoder.module""" , """flava.text_model""" ) lowercase__ : Optional[Any] = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" ) lowercase__ : Tuple = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" ) lowercase__ : Any = key.replace("""text_projection""" , """flava.text_projection""" ) lowercase__ : List[Any] = key.replace("""image_projection""" , """flava.image_projection""" ) lowercase__ : str = value.float() for key, value in codebook_state_dict.items(): lowercase__ : Any = value return upgrade @torch.no_grad() def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: lowercase__ : int = FlavaConfig.from_pretrained(lowercase_ ) else: lowercase__ : Optional[int] = FlavaConfig() lowercase__ : List[Any] = FlavaForPreTraining(lowercase_ ).eval() lowercase__ : Dict = convert_dalle_checkpoint(lowercase_ , lowercase_ , save_checkpoint=lowercase_ ) if os.path.exists(lowercase_ ): lowercase__ : Dict = torch.load(lowercase_ , map_location="""cpu""" ) else: lowercase__ : Dict = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" ) lowercase__ : int = upgrade_state_dict(lowercase_ , lowercase_ ) hf_model.load_state_dict(lowercase_ ) lowercase__ : Optional[int] = hf_model.state_dict() lowercase__ : Optional[int] = count_parameters(lowercase_ ) lowercase__ : Any = count_parameters(lowercase_ ) + count_parameters(lowercase_ ) assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) hf_model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCamelCase__ : List[str] = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
12
0
"""simple docstring""" def a_ ( lowercase__ :Any, lowercase__ :Optional[Any] ): __lowerCamelCase = int(lowercase_ ) # Initialize Result __lowerCamelCase = [] # Traverse through all denomination for denomination in reversed(lowercase_ ): # Find denominations while int(lowercase_ ) >= int(lowercase_ ): total_value -= int(lowercase_ ) answer.append(lowercase_ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __magic_name__ : List[str] = [] __magic_name__ : Union[str, Any] = """0""" if ( input('Do you want to enter your denominations ? (yY/n): ').strip().lower() == "y" ): __magic_name__ : List[Any] = int(input('Enter the number of denominations you want to add: ').strip()) for i in range(0, n): denominations.append(int(input(f"""Denomination {i}: """).strip())) __magic_name__ : Optional[int] = input('Enter the change you want to make in Indian Currency: ').strip() else: # All denominations of Indian Currency if user does not enter __magic_name__ : Union[str, Any] = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] __magic_name__ : Optional[int] = input('Enter the change you want to make: ').strip() if int(value) == 0 or int(value) < 0: print('The total value cannot be zero or negative.') else: print(f"""Following is minimal change for {value}: """) __magic_name__ : List[Any] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=' ')
281
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , ): '''simple docstring''' lowercase__ : List[str] = size if size is not None else {"""height""": 18, """width""": 18} lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : List[str] = num_channels lowercase__ : str = image_size lowercase__ : int = min_resolution lowercase__ : Dict = max_resolution lowercase__ : Tuple = do_resize lowercase__ : Union[str, Any] = size lowercase__ : Any = do_normalize lowercase__ : Tuple = image_mean lowercase__ : str = image_std def lowercase__ ( self): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Optional[Any] = ViTImageProcessor if is_vision_available() else None def lowercase__ ( self): '''simple docstring''' lowercase__ : str = EfficientFormerImageProcessorTester(self) @property def lowercase__ ( self): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_mean""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_std""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size""")) def lowercase__ ( self): '''simple docstring''' pass def lowercase__ ( self): '''simple docstring''' lowercase__ : str = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowercase__ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image) # Test not batched input lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : str = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowercase__ : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray) # Test not batched input lowercase__ : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : Dict = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowercase__ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor) # Test not batched input lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : Any = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
12
0
'''simple docstring''' from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging _a : Tuple = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class lowercase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self , a_ = 1_0_1 ) -> Any: """simple docstring""" UpperCAmelCase = length def __len__( self ) -> Optional[Any]: """simple docstring""" return self.length def __getitem__( self , a_ ) -> str: """simple docstring""" return i class lowercase_ : '''simple docstring''' def __call__( self , a_ ) -> List[str]: """simple docstring""" return {"input_ids": torch.tensor(SCREAMING_SNAKE_CASE_ ), "labels": torch.tensor(SCREAMING_SNAKE_CASE_ )} class lowercase_ ( nn.Module ): '''simple docstring''' def __init__( self ) -> Union[str, Any]: """simple docstring""" super().__init__() # Add some (unused) params otherwise DDP will complain. UpperCAmelCase = nn.Linear(1_2_0 , 8_0 ) def snake_case_ ( self , a_ , a_=None ) -> Optional[int]: """simple docstring""" if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class lowercase_ ( UpperCAmelCase_ ): '''simple docstring''' @require_torch_neuroncore def snake_case_ ( self ) -> str: """simple docstring""" UpperCAmelCase = F'''--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '''.split() UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = F'''--output_dir {output_dir}'''.split() UpperCAmelCase = ["""torchrun"""] + distributed_args + args execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class lowercase_ ( UpperCAmelCase_ ): '''simple docstring''' @require_torch_multi_gpu def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = F'''--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '''.split() UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = F'''--output_dir {output_dir}'''.split() UpperCAmelCase = ["""torchrun"""] + distributed_args + args execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py _a : List[Any] = HfArgumentParser((TrainingArguments,)) _a : Optional[Any] = parser.parse_args_into_dataclasses()[0] logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' F'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: _a : Tuple = DummyDataset(dataset_length) def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Tuple ): UpperCAmelCase = list(range(len(lowercase_ ) ) ) UpperCAmelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( 'Predictions and/or labels do not match expected results:\n - predictions: ' f'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''' ) return {"success": success} _a : Optional[int] = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) _a : List[Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) _a : str = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) _a : str = 2 _a : str = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) _a : Any = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) _a : List[Any] = None
447
lowerCamelCase__ : dict[tuple[int, int, int], int] = {} def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on lowercase__ : Tuple = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one lowercase__ : Union[str, Any] = _calculate(days - 1 , lowercase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 lowercase__ : List[str] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter lowercase__ : Dict = _calculate(days - 1 , lowercase_ , 0 ) lowercase__ : List[str] = state_late + state_absent + state_ontime lowercase__ : List[Any] = prizestrings return prizestrings def UpperCamelCase ( lowercase_ = 30 ) -> int: '''simple docstring''' return _calculate(lowercase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
12
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' a__ = TFCamembertModel.from_pretrained('jplu/tf-camembert-base' ) a__ = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" a__ = model(SCREAMING_SNAKE_CASE_ )["""last_hidden_state"""] a__ = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) # compare the actual values for a slice. a__ = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
232
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCamelCase ( ) -> List[Any]: '''simple docstring''' raise RuntimeError("""CUDA out of memory.""" ) class _snake_case ( nn.Module ): def __init__( self): '''simple docstring''' super().__init__() lowercase__ : Optional[Any] = nn.Linear(3 , 4) lowercase__ : Union[str, Any] = nn.BatchNormad(4) lowercase__ : str = nn.Linear(4 , 5) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE_))) class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = [] @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8]) def lowercase__ ( self): '''simple docstring''' lowercase__ : int = [] @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga lowercase__ , lowercase__ : int = mock_training_loop_function("""hello""") self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8]) self.assertListEqual([bs, arga] , [8, """hello"""]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): pass with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function(1_28 , """hello""" , """world""") self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0]) self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): raise ValueError("""Oops, we had an error!""") with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0]) @require_cuda def lowercase__ ( self): '''simple docstring''' lowercase__ : str = torch.cuda.memory_allocated() lowercase__ : str = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = release_memory(SCREAMING_SNAKE_CASE_) self.assertEqual(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
12
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __snake_case = logging.get_logger(__name__) class _lowerCAmelCase ( UpperCAmelCase_ ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
178
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' lowercase__ : Optional[Any] = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ : List[str] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowercase__ : Optional[int] = 4 lowercase__ : Optional[Any] = 48 lowercase__ : int = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ : List[str] = [6, 6, 6, 6] lowercase__ : Any = 60 lowercase__ : Tuple = [6, 6, 6, 6] lowercase__ : Dict = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ : Tuple = 4 lowercase__ : Any = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowercase__ : str = 1 lowercase__ : Optional[int] = 1 lowercase__ : Optional[int] = 1_26 lowercase__ : Any = 7 lowercase__ : int = 255.0 lowercase__ : List[Any] = """""" return config def UpperCamelCase ( lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: lowercase__ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase__ : Dict = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: lowercase__ : List[str] = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: lowercase__ : Optional[int] = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: lowercase__ : int = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase__ : Tuple = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ : int = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: lowercase__ : Any = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: lowercase__ : Optional[Any] = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: lowercase__ : Dict = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: lowercase__ : Union[str, Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: lowercase__ : List[Any] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": lowercase__ : Union[str, Any] = """layernorm.weight""" if name == "norm.bias": lowercase__ : List[str] = """layernorm.bias""" if "conv_first" in name: lowercase__ : Union[str, Any] = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowercase__ : List[Any] = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowercase__ : Optional[int] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: lowercase__ : Dict = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: lowercase__ : Optional[Any] = name.replace("""upsample.2""" , """upsample.convolution_1""" ) lowercase__ : List[str] = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": lowercase__ : Optional[Any] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) lowercase__ : int = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: lowercase__ : str = """swin2sr.""" + name return name def UpperCamelCase ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase__ : str = orig_state_dict.pop(lowercase_ ) if "qkv" in key: lowercase__ : Any = key.split(""".""" ) lowercase__ : List[Any] = int(key_split[1] ) lowercase__ : Dict = int(key_split[4] ) lowercase__ : Optional[Any] = config.embed_dim if "weight" in key: lowercase__ : List[str] = val[:dim, :] lowercase__ : List[str] = val[dim : dim * 2, :] lowercase__ : Optional[Any] = val[-dim:, :] else: lowercase__ : Optional[Any] = val[:dim] lowercase__ : List[Any] = val[dim : dim * 2] lowercase__ : Optional[int] = val[-dim:] pass else: lowercase__ : Optional[Any] = val return orig_state_dict def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Dict = get_config(lowercase_ ) lowercase__ : Any = SwinaSRForImageSuperResolution(lowercase_ ) model.eval() lowercase__ : List[str] = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" ) lowercase__ : Union[str, Any] = convert_state_dict(lowercase_ , lowercase_ ) lowercase__ , lowercase__ : Dict = model.load_state_dict(lowercase_ , strict=lowercase_ ) if len(lowercase_ ) > 0: raise ValueError("""Missing keys when converting: {}""".format(lowercase_ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowercase__ : Any = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" lowercase__ : Any = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert("""RGB""" ) lowercase__ : Any = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowercase__ : Optional[int] = 1_26 if """Jpeg""" in checkpoint_url else 2_56 lowercase__ : Union[str, Any] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowercase__ : Dict = transforms(lowercase_ ).unsqueeze(0 ) if config.num_channels == 1: lowercase__ : Any = pixel_values[:, 0, :, :].unsqueeze(1 ) lowercase__ : Union[str, Any] = model(lowercase_ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowercase__ : Optional[Any] = torch.Size([1, 3, 5_12, 5_12] ) lowercase__ : Optional[Any] = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ : List[str] = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowercase__ : Optional[Any] = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ : Tuple = torch.Size([1, 3, 5_12, 5_12] ) lowercase__ : int = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ : Tuple = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase_ , atol=1E-3 ) print("""Looks ok!""" ) lowercase__ : str = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } lowercase__ : str = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": lowerCamelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""", type=str, help="""URL of the original Swin2SR checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""") lowerCamelCase__ : Any = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
12
0
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class SCREAMING_SNAKE_CASE( UpperCAmelCase_ ): """simple docstring""" def A ( self : Dict ) -> Union[str, Any]: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def A ( self : str ) -> int: UpperCAmelCase : str = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(SCREAMING_SNAKE_CASE_ ) def A ( self : int ) -> int: UpperCAmelCase : List[Any] = self._create_example_records() UpperCAmelCase : Union[str, Any] = Dataset.from_list(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertDictEqual(SCREAMING_SNAKE_CASE_ , example_records[i] ) def A ( self : Optional[int] ) -> List[Any]: UpperCAmelCase : List[str] = self._create_example_records() UpperCAmelCase : Tuple = Dataset.from_list(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase : Dict = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def A ( self : Optional[Any] ) -> int: # checks what happens with missing columns UpperCAmelCase : Optional[int] = [{"""col_1""": 1}, {"""col_2""": """x"""}] UpperCAmelCase : Dict = Dataset.from_list(SCREAMING_SNAKE_CASE_ ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def A ( self : Any ) -> List[str]: # checks if the type can be inferred from the second record UpperCAmelCase : Union[str, Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] UpperCAmelCase : List[Any] = Dataset.from_list(SCREAMING_SNAKE_CASE_ ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def A ( self : Any ) -> Tuple: UpperCAmelCase : str = Dataset.from_list([] ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 0 ) self.assertListEqual(dset.column_names , [] )
127
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : BigBirdConfig __lowerCAmelCase : jnp.dtype = jnp.floataa __lowerCAmelCase : bool = True def lowercase__ ( self): '''simple docstring''' super().setup() lowercase__ : Dict = nn.Dense(5 , dtype=self.dtype) def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[str] = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Optional[int] = FlaxBigBirdForNaturalQuestionsModule def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' def cross_entropy(lowercase_ , lowercase_ , lowercase_=None ): lowercase__ : int = logits.shape[-1] lowercase__ : List[str] = (labels[..., None] == jnp.arange(lowercase_ )[None]).astype("""f4""" ) lowercase__ : int = jax.nn.log_softmax(lowercase_ , axis=-1 ) lowercase__ : Any = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase__ : Optional[int] = reduction(lowercase_ ) return loss lowercase__ : int = partial(lowercase_ , reduction=jnp.mean ) lowercase__ : Tuple = cross_entropy(lowercase_ , lowercase_ ) lowercase__ : List[Any] = cross_entropy(lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = cross_entropy(lowercase_ , lowercase_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class _snake_case : __lowerCAmelCase : str = "google/bigbird-roberta-base" __lowerCAmelCase : int = 3_000 __lowerCAmelCase : int = 10_500 __lowerCAmelCase : int = 128 __lowerCAmelCase : int = 3 __lowerCAmelCase : int = 1 __lowerCAmelCase : int = 5 # tx_args __lowerCAmelCase : float = 3e-5 __lowerCAmelCase : float = 0.0 __lowerCAmelCase : int = 20_000 __lowerCAmelCase : float = 0.0_095 __lowerCAmelCase : str = "bigbird-roberta-natural-questions" __lowerCAmelCase : str = "training-expt" __lowerCAmelCase : str = "data/nq-training.jsonl" __lowerCAmelCase : str = "data/nq-validation.jsonl" def lowercase__ ( self): '''simple docstring''' os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE_) lowercase__ : Any = os.path.join(self.base_dir , self.save_dir) lowercase__ : str = self.batch_size_per_device * jax.device_count() @dataclass class _snake_case : __lowerCAmelCase : int __lowerCAmelCase : int = 4_096 # no dynamic padding on TPUs def __call__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = self.collate_fn(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) return batch def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ , lowercase__ : str = self.fetch_inputs(features["""input_ids"""]) lowercase__ : str = { """input_ids""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa), """attention_mask""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa), } return batch def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[Any] = [self._fetch_inputs(SCREAMING_SNAKE_CASE_) for ids in input_ids] return zip(*SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = [1 for _ in range(len(SCREAMING_SNAKE_CASE_))] while len(SCREAMING_SNAKE_CASE_) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> Optional[Any]: '''simple docstring''' if seed is not None: lowercase__ : Any = dataset.shuffle(seed=lowercase_ ) for i in range(len(lowercase_ ) // batch_size ): lowercase__ : List[str] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowercase_ ) @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase ( lowercase_ , lowercase_ , **lowercase_ ) -> int: '''simple docstring''' def loss_fn(lowercase_ ): lowercase__ : Dict = model_inputs.pop("""start_labels""" ) lowercase__ : List[Any] = model_inputs.pop("""end_labels""" ) lowercase__ : List[Any] = model_inputs.pop("""pooled_labels""" ) lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=lowercase_ , dropout_rng=lowercase_ , train=lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Any = outputs return state.loss_fn( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) lowercase__ , lowercase__ : Optional[int] = jax.random.split(lowercase_ ) lowercase__ : Tuple = jax.value_and_grad(lowercase_ ) lowercase__ , lowercase__ : Optional[int] = grad_fn(state.params ) lowercase__ : Tuple = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) lowercase__ : Any = jax.lax.pmean(lowercase_ , """batch""" ) lowercase__ : str = state.apply_gradients(grads=lowercase_ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase ( lowercase_ , **lowercase_ ) -> str: '''simple docstring''' lowercase__ : Tuple = model_inputs.pop("""start_labels""" ) lowercase__ : List[str] = model_inputs.pop("""end_labels""" ) lowercase__ : int = model_inputs.pop("""pooled_labels""" ) lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=state.params , train=lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Optional[int] = outputs lowercase__ : Optional[Any] = state.loss_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : List[str] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class _snake_case ( train_state.TrainState ): __lowerCAmelCase : Callable = struct.field(pytree_node=UpperCAmelCase_ ) @dataclass class _snake_case : __lowerCAmelCase : Args __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : wandb __lowerCAmelCase : Callable = None def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : List[str] = model.params lowercase__ : Dict = TrainState.create( apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , loss_fn=SCREAMING_SNAKE_CASE_ , ) if ckpt_dir is not None: lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = restore_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } lowercase__ , lowercase__ : Any = build_tx(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = train_state.TrainState( step=SCREAMING_SNAKE_CASE_ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , opt_state=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Optional[Any] = args lowercase__ : Union[str, Any] = data_collator lowercase__ : str = lr lowercase__ : Union[str, Any] = params lowercase__ : Dict = jax_utils.replicate(SCREAMING_SNAKE_CASE_) return state def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = self.args lowercase__ : List[str] = len(SCREAMING_SNAKE_CASE_) // args.batch_size lowercase__ : int = jax.random.PRNGKey(0) lowercase__ : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count()) for epoch in range(args.max_epochs): lowercase__ : Tuple = jnp.array(0 , dtype=jnp.floataa) lowercase__ : List[str] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , args.batch_size , seed=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc=f'Running EPOCH-{epoch}'): lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_) lowercase__ , lowercase__ , lowercase__ : List[Any] = self.train_step_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 if i % args.logging_steps == 0: lowercase__ : List[str] = jax_utils.unreplicate(state.step) lowercase__ : str = running_loss.item() / i lowercase__ : Tuple = self.scheduler_fn(state_step - 1) lowercase__ : Tuple = self.evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(SCREAMING_SNAKE_CASE_)) self.logger.log(SCREAMING_SNAKE_CASE_ , commit=SCREAMING_SNAKE_CASE_) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = get_batched_dataset(SCREAMING_SNAKE_CASE_ , self.args.batch_size) lowercase__ : Tuple = len(SCREAMING_SNAKE_CASE_) // self.args.batch_size lowercase__ : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa) lowercase__ : Optional[Any] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc="""Evaluating ... """): lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = self.val_step_fn(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 return running_loss / i def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = jax_utils.unreplicate(SCREAMING_SNAKE_CASE_) print(f'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """) self.model_save_fn(SCREAMING_SNAKE_CASE_ , params=state.params) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """opt_state.msgpack""") , """wb""") as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE_ , """args.joblib""")) joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE_ , """data_collator.joblib""")) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """training_state.json""") , """w""") as f: json.dump({"""step""": state.step.item()} , SCREAMING_SNAKE_CASE_) print("""DONE""") def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ ) with open(os.path.join(lowercase_ , """flax_model.msgpack""" ) , """rb""" ) as f: lowercase__ : Optional[Any] = from_bytes(state.params , f.read() ) with open(os.path.join(lowercase_ , """opt_state.msgpack""" ) , """rb""" ) as f: lowercase__ : Dict = from_bytes(state.opt_state , f.read() ) lowercase__ : Any = joblib.load(os.path.join(lowercase_ , """args.joblib""" ) ) lowercase__ : Optional[int] = joblib.load(os.path.join(lowercase_ , """data_collator.joblib""" ) ) with open(os.path.join(lowercase_ , """training_state.json""" ) , """r""" ) as f: lowercase__ : int = json.load(lowercase_ ) lowercase__ : Optional[Any] = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Optional[int] = num_train_steps - warmup_steps lowercase__ : int = optax.linear_schedule(init_value=lowercase_ , end_value=lowercase_ , transition_steps=lowercase_ ) lowercase__ : Optional[int] = optax.linear_schedule(init_value=lowercase_ , end_value=1E-7 , transition_steps=lowercase_ ) lowercase__ : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' def weight_decay_mask(lowercase_ ): lowercase__ : Dict = traverse_util.flatten_dict(lowercase_ ) lowercase__ : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(lowercase_ ) lowercase__ : Optional[int] = scheduler_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : int = optax.adamw(learning_rate=lowercase_ , weight_decay=lowercase_ , mask=lowercase_ ) return tx, lr
12
0
"""simple docstring""" from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCamelCase__ = datasets.utils.logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :bool = None SCREAMING_SNAKE_CASE__ :bool = None class __SCREAMING_SNAKE_CASE ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = datasets.Audio() SCREAMING_SNAKE_CASE__ :Union[str, Any] = 'audio' SCREAMING_SNAKE_CASE__ :str = AudioFolderConfig SCREAMING_SNAKE_CASE__ :List[str] # definition at the bottom of the script SCREAMING_SNAKE_CASE__ :Optional[int] = AudioClassification(audio_column="audio" , label_column="label" ) lowerCamelCase__ = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] lowerCamelCase__ = AUDIO_EXTENSIONS
624
lowerCamelCase__ : List[str] = """ # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase__ : List[Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase__ : int = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
12
0
'''simple docstring''' import argparse import os import re UpperCamelCase_ : str = """src/diffusers""" # Pattern that looks at the indentation in a line. UpperCamelCase_ : str = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. UpperCamelCase_ : Optional[Any] = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. UpperCamelCase_ : str = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. UpperCamelCase_ : Any = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. UpperCamelCase_ : Union[str, Any] = re.compile(r"""\[([^\]]+)\]""") def _lowerCAmelCase (_lowercase ): """simple docstring""" a__ = _re_indent.search(lowercase_ ) return "" if search is None else search.groups()[0] def _lowerCAmelCase (_lowercase , _lowercase="" , _lowercase=None , _lowercase=None ): """simple docstring""" a__ = 0 a__ = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(lowercase_ ): index += 1 a__ = ["""\n""".join(lines[:index] )] else: a__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). a__ = [lines[index]] index += 1 while index < len(lowercase_ ) and (end_prompt is None or not lines[index].startswith(lowercase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowercase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(lowercase_ ) ) if index < len(lowercase_ ) - 1: a__ = [lines[index + 1]] index += 1 else: a__ = [] else: blocks.append("\n".join(lowercase_ ) ) a__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowercase_ ) > 0: blocks.append("\n".join(lowercase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowercase_ ): blocks.append("\n".join(lines[index:] ) ) return blocks def _lowerCAmelCase (_lowercase ): """simple docstring""" def _inner(_lowercase ): return key(lowercase_ ).lower().replace("_" , "" ) return _inner def _lowerCAmelCase (_lowercase , _lowercase=None ): """simple docstring""" def noop(_lowercase ): return x if key is None: a__ = noop # Constants are all uppercase, they go first. a__ = [obj for obj in objects if key(lowercase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. a__ = [obj for obj in objects if key(lowercase_ )[0].isupper() and not key(lowercase_ ).isupper()] # Functions begin with a lowercase, they go last. a__ = [obj for obj in objects if not key(lowercase_ )[0].isupper()] a__ = ignore_underscore(lowercase_ ) return sorted(lowercase_ , key=lowercase_ ) + sorted(lowercase_ , key=lowercase_ ) + sorted(lowercase_ , key=lowercase_ ) def _lowerCAmelCase (_lowercase ): """simple docstring""" def _replace(_lowercase ): a__ = match.groups()[0] if "," not in imports: return F'[{imports}]' a__ = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: a__ = keys[:-1] return "[" + ", ".join([F'"{k}"' for k in sort_objects(lowercase_ )] ) + "]" a__ = import_statement.split("\n" ) if len(lowercase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. a__ = 2 if lines[1].strip() == """[""" else 1 a__ = [(i, _re_strip_line.search(lowercase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] a__ = sort_objects(lowercase_ , key=lambda _lowercase : x[1] ) a__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowercase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: a__ = _re_bracket_content.sub(_replace , lines[1] ) else: a__ = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: a__ = keys[:-1] a__ = get_indent(lines[1] ) + """, """.join([F'"{k}"' for k in sort_objects(lowercase_ )] ) return "\n".join(lowercase_ ) else: # Finally we have to deal with imports fitting on one line a__ = _re_bracket_content.sub(_replace , lowercase_ ) return import_statement def _lowerCAmelCase (_lowercase , _lowercase=True ): """simple docstring""" with open(lowercase_ , "r" ) as f: a__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 a__ = split_code_in_indented_blocks( lowercase_ , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowercase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. a__ = main_blocks[block_idx] a__ = block.split("\n" ) # Get to the start of the imports. a__ = 0 while line_idx < len(lowercase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: a__ = len(lowercase_ ) else: line_idx += 1 if line_idx >= len(lowercase_ ): continue # Ignore beginning and last line: they don't contain anything. a__ = """\n""".join(block_lines[line_idx:-1] ) a__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. a__ = split_code_in_indented_blocks(lowercase_ , indent_level=lowercase_ ) # We have two categories of import key: list or _import_structure[key].append/extend a__ = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. a__ = [(pattern.search(lowercase_ ).groups()[0] if pattern.search(lowercase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. a__ = [(i, key) for i, key in enumerate(lowercase_ ) if key is not None] a__ = [x[0] for x in sorted(lowercase_ , key=lambda _lowercase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. a__ = 0 a__ = [] for i in range(len(lowercase_ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: a__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(lowercase_ ) count += 1 # And we put our main block back together with its first and last line. a__ = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(lowercase_ ): if check_only: return True else: print(F'Overwriting {file}.' ) with open(lowercase_ , "w" ) as f: f.write("\n".join(lowercase_ ) ) def _lowerCAmelCase (_lowercase=True ): """simple docstring""" a__ = [] for root, _, files in os.walk(lowercase_ ): if "__init__.py" in files: a__ = sort_imports(os.path.join(lowercase_ , "__init__.py" ) , check_only=lowercase_ ) if result: a__ = [os.path.join(lowercase_ , "__init__.py" )] if len(lowercase_ ) > 0: raise ValueError(F'Would overwrite {len(lowercase_ )} files, run `make style`.' ) if __name__ == "__main__": UpperCamelCase_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") UpperCamelCase_ : str = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
331
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ): '''simple docstring''' lowercase__ : str = parent lowercase__ : Optional[int] = batch_size lowercase__ : Optional[int] = seq_length lowercase__ : Union[str, Any] = is_training lowercase__ : Any = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : Optional[Any] = use_labels lowercase__ : Optional[int] = vocab_size lowercase__ : Optional[Any] = hidden_size lowercase__ : Any = rotary_dim lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Tuple = num_attention_heads lowercase__ : Tuple = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : Optional[Any] = hidden_dropout_prob lowercase__ : int = attention_probs_dropout_prob lowercase__ : Any = max_position_embeddings lowercase__ : Optional[int] = initializer_range lowercase__ : Optional[int] = None lowercase__ : str = vocab_size - 1 lowercase__ : Any = vocab_size - 1 lowercase__ : Dict = vocab_size - 1 def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ : Any = None if self.use_input_mask: lowercase__ : Dict = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ : List[Any] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Optional[Any] = config_and_inputs lowercase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = 20 lowercase__ : int = model_class_name(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_) lowercase__ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase__ : Tuple = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) lowercase__ : List[str] = model( input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase__ : str = model( input_ids[:, -1:] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE_) lowercase__ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}') def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Union[str, Any] = 20 lowercase__ : List[Any] = model_class_name(SCREAMING_SNAKE_CASE_) lowercase__ : Dict = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , ) lowercase__ : Dict = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) lowercase__ : Any = model( input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : int = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase__ : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_) lowercase__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}') @require_flax class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Dict = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowerCAmelCase : str = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = FlaxGPTJModelTester(self) def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ , lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ , lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @tooslow def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""") lowercase__ : List[str] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""") lowercase__ : Optional[Any] = False lowercase__ : List[str] = model.config.eos_token_id lowercase__ : List[Any] = jax.jit(model.generate) lowercase__ : Tuple = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id).sequences lowercase__ : List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @is_pt_flax_cross_test def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs lowercase__ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Any = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase__ : str = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ , lowercase__ : Dict = pt_inputs["""input_ids"""].shape lowercase__ : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : str = 0 lowercase__ : List[Any] = 1 lowercase__ : Dict = 0 lowercase__ : Any = 1 lowercase__ : List[Any] = pt_model_class(SCREAMING_SNAKE_CASE_).eval() lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa) lowercase__ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = fx_state with torch.no_grad(): lowercase__ : Optional[int] = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple() lowercase__ : Dict = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_pt=SCREAMING_SNAKE_CASE_) lowercase__ : str = fx_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output_loaded, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2) @is_pt_flax_cross_test def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs lowercase__ : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = pt_model_class(SCREAMING_SNAKE_CASE_).eval() lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa) lowercase__ : Optional[int] = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , fx_model.params) lowercase__ , lowercase__ : str = pt_inputs["""input_ids"""].shape lowercase__ : List[Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Tuple = 0 lowercase__ : int = 1 lowercase__ : str = 0 lowercase__ : str = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowercase__ : Dict = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple() lowercase__ : Optional[Any] = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = pt_model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_flax=SCREAMING_SNAKE_CASE_) with torch.no_grad(): lowercase__ : Tuple = pt_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) @tooslow def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ : Any = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""") lowercase__ : int = model(np.ones((1, 1))) self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
12
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a_ : Union[str, Any] = logging.get_logger(__name__) a_ : Optional[int] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} a_ : Union[str, Any] = { """tokenizer_file""": { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json""", }, } a_ : Optional[Any] = { """gpt-neox-20b""": 2048, } class UpperCamelCase ( UpperCAmelCase_ ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =['input_ids', 'attention_mask'] def __init__( self : Optional[int] , snake_case__ : List[Any]=None , snake_case__ : List[Any]=None , snake_case__ : Any=None , snake_case__ : str="<|endoftext|>" , snake_case__ : List[Any]="<|endoftext|>" , snake_case__ : int="<|endoftext|>" , snake_case__ : str=False , **snake_case__ : List[str] , ): """simple docstring""" super().__init__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , SCREAMING_SNAKE_CASE_ ) != add_prefix_space: SCREAMING_SNAKE_CASE = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = add_prefix_space def UpperCamelCase ( self : str , snake_case__ : Dict , snake_case__ : Tuple = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( self : Optional[int] , snake_case__ : int ): """simple docstring""" SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) + [self.eos_token_id] ) if len(SCREAMING_SNAKE_CASE_ ) > self.model_max_length: SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] return input_ids
439
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Any = ['image_processor', 'tokenizer'] __lowerCAmelCase : Union[str, Any] = 'AutoImageProcessor' __lowerCAmelCase : int = 'AutoTokenizer' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = self.image_processor def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""") if text is not None: lowercase__ : List[str] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) if images is not None: lowercase__ : Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) if text is not None and images is not None: lowercase__ : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_) , tensor_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) @property def lowercase__ ( self): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
12
0
'''simple docstring''' from __future__ import annotations import time __UpperCamelCase : List[str] = list[tuple[int, int]] __UpperCamelCase : str = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __UpperCamelCase : List[Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __SCREAMING_SNAKE_CASE : def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ->Any: '''simple docstring''' __a = pos_x __a = pos_y __a = (pos_y, pos_x) __a = goal_x __a = goal_y __a = parent class __SCREAMING_SNAKE_CASE : def __init__( self , lowerCamelCase , lowerCamelCase ) ->int: '''simple docstring''' __a = Node(start[1] , start[0] , goal[1] , goal[0] , SCREAMING_SNAKE_CASE_ ) __a = Node(goal[1] , goal[0] , goal[1] , goal[0] , SCREAMING_SNAKE_CASE_ ) __a = [self.start] __a = False def __UpperCamelCase ( self ) ->List[str]: '''simple docstring''' while self.node_queue: __a = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: __a = True return self.retrace_path(SCREAMING_SNAKE_CASE_ ) __a = self.get_successors(SCREAMING_SNAKE_CASE_ ) for node in successors: self.node_queue.append(SCREAMING_SNAKE_CASE_ ) if not self.reached: return [self.start.pos] return None def __UpperCamelCase ( self , lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' __a = [] for action in delta: __a = parent.pos_x + action[1] __a = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.target.pos_y , self.target.pos_x , SCREAMING_SNAKE_CASE_ ) ) return successors def __UpperCamelCase ( self , lowerCamelCase ) ->Any: '''simple docstring''' __a = node __a = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __a = current_node.parent path.reverse() return path class __SCREAMING_SNAKE_CASE : def __init__( self , lowerCamelCase , lowerCamelCase ) ->List[Any]: '''simple docstring''' __a = BreadthFirstSearch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __a = BreadthFirstSearch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __a = False def __UpperCamelCase ( self ) ->List[str]: '''simple docstring''' while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: __a = self.fwd_bfs.node_queue.pop(0 ) __a = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: __a = True return self.retrace_bidirectional_path( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __a = current_bwd_node __a = current_fwd_node __a = { self.fwd_bfs: self.fwd_bfs.get_successors(SCREAMING_SNAKE_CASE_ ), self.bwd_bfs: self.bwd_bfs.get_successors(SCREAMING_SNAKE_CASE_ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(SCREAMING_SNAKE_CASE_ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase ) ->Optional[Any]: '''simple docstring''' __a = self.fwd_bfs.retrace_path(SCREAMING_SNAKE_CASE_ ) __a = self.bwd_bfs.retrace_path(SCREAMING_SNAKE_CASE_ ) bwd_path.pop() bwd_path.reverse() __a = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __UpperCamelCase : Optional[Any] = (0, 0) __UpperCamelCase : Tuple = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __UpperCamelCase : Tuple = time.time() __UpperCamelCase : Union[str, Any] = BreadthFirstSearch(init, goal) __UpperCamelCase : List[Any] = bfs.search() __UpperCamelCase : str = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) __UpperCamelCase : Tuple = time.time() __UpperCamelCase : Union[str, Any] = BidirectionalBreadthFirstSearch(init, goal) __UpperCamelCase : Union[str, Any] = bd_bfs.search() __UpperCamelCase : Optional[Any] = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
448
def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' if n == 1 or not isinstance(lowercase_ , lowercase_ ): return 0 elif n == 2: return 1 else: lowercase__ : List[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' lowercase__ : Optional[Any] = 0 lowercase__ : Dict = 2 while digits < n: index += 1 lowercase__ : str = len(str(fibonacci(lowercase_ ) ) ) return index def UpperCamelCase ( lowercase_ = 10_00 ) -> int: '''simple docstring''' return fibonacci_digits_index(lowercase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
12
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Union[str, Any] = filter(lambda _a: p.requires_grad , model.parameters()) SCREAMING_SNAKE_CASE : List[Any] = sum([np.prod(p.size()) for p in model_parameters]) return params a_ = logging.getLogger(__name__) def lowerCamelCase__ ( _a , _a): if metric == "rouge2": SCREAMING_SNAKE_CASE : Union[str, Any] = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": SCREAMING_SNAKE_CASE : Tuple = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": SCREAMING_SNAKE_CASE : Tuple = """{val_avg_em:.4f}-{step_count}""" elif metric == "loss": SCREAMING_SNAKE_CASE : Any = """{val_avg_loss:.4f}-{step_count}""" else: raise NotImplementedError( f"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" " function.") SCREAMING_SNAKE_CASE : Dict = ModelCheckpoint( dirpath=lowercase_ , filename=lowercase_ , monitor=f"val_{metric}" , mode="max" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase__ ( _a , _a): return EarlyStopping( monitor=f"val_{metric}" , mode="min" if "loss" in metric else "max" , patience=lowercase_ , verbose=lowercase_ , ) class _UpperCamelCase ( pl.Callback ): '''simple docstring''' def __UpperCamelCase ( self : Optional[Any] , a : Optional[int] , a : Any ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = {F"lr_group_{i}": param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(SCREAMING_SNAKE_CASE_ ) @rank_zero_only def __UpperCamelCase ( self : Union[str, Any] , a : Union[str, Any] , a : str , a : Tuple , a : Union[str, Any]=True ) -> int: """simple docstring""" logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****" ) SCREAMING_SNAKE_CASE : int = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results SCREAMING_SNAKE_CASE : Union[str, Any] = Path(pl_module.hparams.output_dir ) if type_path == "test": SCREAMING_SNAKE_CASE : List[Any] = od / """test_results.txt""" SCREAMING_SNAKE_CASE : List[Any] = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. SCREAMING_SNAKE_CASE : Tuple = od / F"{type_path}_results/{trainer.global_step:05d}.txt" SCREAMING_SNAKE_CASE : Any = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) generations_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , "a+" ) as writer: for key in sorted(SCREAMING_SNAKE_CASE_ ): if key in ["log", "progress_bar", "preds"]: continue SCREAMING_SNAKE_CASE : Dict = metrics[key] if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): SCREAMING_SNAKE_CASE : Any = val.item() SCREAMING_SNAKE_CASE : Optional[int] = F"{key}: {val:.6f}\n" writer.write(SCREAMING_SNAKE_CASE_ ) if not save_generations: return if "preds" in metrics: SCREAMING_SNAKE_CASE : Dict = """\n""".join(metrics["preds"] ) generations_file.open("w+" ).write(SCREAMING_SNAKE_CASE_ ) @rank_zero_only def __UpperCamelCase ( self : int , a : List[Any] , a : List[Any] ) -> Union[str, Any]: """simple docstring""" try: SCREAMING_SNAKE_CASE : Tuple = pl_module.model.model.num_parameters() except AttributeError: SCREAMING_SNAKE_CASE : Optional[Any] = pl_module.model.num_parameters() SCREAMING_SNAKE_CASE : List[Any] = count_trainable_parameters(SCREAMING_SNAKE_CASE_ ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def __UpperCamelCase ( self : str , a : Tuple , a : Any ) -> Optional[int]: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , "test" ) @rank_zero_only def __UpperCamelCase ( self : Any , a : Tuple , a : int ) -> int: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
25
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowerCamelCase__ : Any = """Create a default config file for Accelerate with only a few flags set.""" def UpperCamelCase ( lowercase_="no" , lowercase_ = default_json_config_file , lowercase_ = False ) -> Any: '''simple docstring''' lowercase__ : Any = Path(lowercase_ ) path.parent.mkdir(parents=lowercase_ , exist_ok=lowercase_ ) if path.exists(): print( F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' ) return False lowercase__ : int = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' ) lowercase__ : Dict = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): lowercase__ : Any = torch.cuda.device_count() lowercase__ : Any = num_gpus lowercase__ : Optional[int] = False if num_gpus > 1: lowercase__ : Tuple = """MULTI_GPU""" else: lowercase__ : Optional[Any] = """NO""" elif is_xpu_available() and use_xpu: lowercase__ : Union[str, Any] = torch.xpu.device_count() lowercase__ : str = num_xpus lowercase__ : List[Any] = False if num_xpus > 1: lowercase__ : str = """MULTI_XPU""" else: lowercase__ : Optional[Any] = """NO""" elif is_npu_available(): lowercase__ : Tuple = torch.npu.device_count() lowercase__ : Union[str, Any] = num_npus lowercase__ : Union[str, Any] = False if num_npus > 1: lowercase__ : List[Any] = """MULTI_NPU""" else: lowercase__ : int = """NO""" else: lowercase__ : Union[str, Any] = 0 lowercase__ : str = True lowercase__ : Union[str, Any] = 1 lowercase__ : int = """NO""" lowercase__ : Tuple = ClusterConfig(**lowercase_ ) config.to_json_file(lowercase_ ) return path def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' lowercase__ : List[str] = parser.add_parser("""default""" , parents=lowercase_ , help=lowercase_ , formatter_class=lowercase_ ) parser.add_argument( """--config_file""" , default=lowercase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , dest="""save_location""" , ) parser.add_argument( """--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=lowercase_ , help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , ) parser.set_defaults(func=lowercase_ ) return parser def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' lowercase__ : Optional[Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'accelerate configuration saved at {config_file}' )
12
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : '''simple docstring''' def __init__( self :str , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any]=3 , lowerCAmelCase__ :Any=32 , lowerCAmelCase__ :Union[str, Any]=3 , lowerCAmelCase__ :List[str]=10 , lowerCAmelCase__ :Optional[int]=[10, 20, 30, 40] , lowerCAmelCase__ :int=[1, 1, 2, 1] , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :Tuple="relu" , lowerCAmelCase__ :Any=3 , lowerCAmelCase__ :List[Any]=None , ) ->str: lowercase = parent lowercase = batch_size lowercase = image_size lowercase = num_channels lowercase = embeddings_size lowercase = hidden_sizes lowercase = depths lowercase = is_training lowercase = use_labels lowercase = hidden_act lowercase = num_labels lowercase = scope lowercase = len(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE( self :List[str] ) ->Optional[Any]: lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.num_labels ) lowercase = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE( self :List[str] ) ->Optional[Any]: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def SCREAMING_SNAKE_CASE( self :Tuple , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int ) ->List[str]: lowercase = TFResNetModel(config=SCREAMING_SNAKE_CASE_ ) lowercase = model(SCREAMING_SNAKE_CASE_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE( self :Optional[Any] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int ) ->str: lowercase = self.num_labels lowercase = TFResNetForImageClassification(SCREAMING_SNAKE_CASE_ ) lowercase = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE( self :Union[str, Any] ) ->str: lowercase = self.prepare_config_and_inputs() lowercase = config_and_inputs lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase : Any = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () UpperCamelCase : Optional[Any] = ( {'feature-extraction': TFResNetModel, 'image-classification': TFResNetForImageClassification} if is_tf_available() else {} ) UpperCamelCase : Optional[Any] = False UpperCamelCase : Optional[Any] = False UpperCamelCase : List[str] = False UpperCamelCase : str = False UpperCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE( self :Any ) ->Optional[int]: lowercase = TFResNetModelTester(self ) lowercase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE( self :List[Any] ) ->int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE( self :Any ) ->Union[str, Any]: return @unittest.skip(reason="ResNet does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE( self :Union[str, Any] ) ->str: pass @unittest.skip(reason="ResNet does not support input and output embeddings" ) def SCREAMING_SNAKE_CASE( self :Tuple ) ->str: pass def SCREAMING_SNAKE_CASE( self :List[Any] ) ->List[Any]: lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(SCREAMING_SNAKE_CASE_ ) lowercase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE( self :Optional[int] ) ->Tuple: lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE( self :List[str] ) ->Tuple: def check_hidden_states_output(lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[int] ): lowercase = model_class(SCREAMING_SNAKE_CASE_ ) lowercase = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase = layer_type lowercase = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE( self :Optional[int] ) ->Any: lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def SCREAMING_SNAKE_CASE( self :int ) ->List[Any]: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = TFResNetModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def __snake_case ( ): '''simple docstring''' lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE( self :Dict ) ->Optional[Any]: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE( self :Union[str, Any] ) ->Tuple: lowercase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="tf" ) # forward pass lowercase = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) lowercase = tf.constant([-11.1069, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
441
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Union[str, Any] = 'convbert' def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowercase__ : Dict = vocab_size lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : List[str] = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : Tuple = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : Tuple = max_position_embeddings lowercase__ : Dict = type_vocab_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Dict = layer_norm_eps lowercase__ : Tuple = embedding_size lowercase__ : List[str] = head_ratio lowercase__ : Dict = conv_kernel_size lowercase__ : Dict = num_groups lowercase__ : int = classifier_dropout class _snake_case ( UpperCAmelCase_ ): @property def lowercase__ ( self): '''simple docstring''' if self.task == "multiple-choice": lowercase__ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ : str = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ])
12
0
"""simple docstring""" from __future__ import annotations def a_ ( lowercase__ :Tuple, lowercase__ :str ): __lowerCamelCase = set(lowercase_ ), [start] while stack: __lowerCamelCase = stack.pop() explored.add(lowercase_ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(lowercase_ ) return explored __magic_name__ : Optional[Any] = { """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
281
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCamelCase__ : Any = datasets.utils.logging.get_logger(__name__) class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ): __lowerCAmelCase : bool = None __lowerCAmelCase : bool = None class _snake_case ( folder_based_builder.FolderBasedBuilder ): __lowerCAmelCase : Optional[Any] = datasets.Audio() __lowerCAmelCase : Union[str, Any] = 'audio' __lowerCAmelCase : str = AudioFolderConfig __lowerCAmelCase : List[str] # definition at the bottom of the script __lowerCAmelCase : Optional[int] = AudioClassification(audio_column='audio' , label_column='label' ) lowerCamelCase__ : int = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] lowerCamelCase__ : int = AUDIO_EXTENSIONS
12
0
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _a : Tuple = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ _a : Union[str, Any] = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ _a : Optional[int] = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): '''simple docstring''' def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , ) def snake_case_ ( self , a_ , a_ , a_ = 1 , a_ = 4 , ) -> Optional[int]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=SCREAMING_SNAKE_CASE_ , hypotheses=SCREAMING_SNAKE_CASE_ , min_len=SCREAMING_SNAKE_CASE_ , max_len=SCREAMING_SNAKE_CASE_ ) }
447
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : int = (DDPMScheduler,) def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = { """num_train_timesteps""": 10_00, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**SCREAMING_SNAKE_CASE_) return config def lowercase__ ( self): '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2]): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , ) def lowercase__ ( self): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : Union[str, Any] = self.get_scheduler_config() lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0_9_7_9)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.0_2)) < 1E-5 def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.scheduler_classes[0] lowercase__ : str = self.get_scheduler_config() lowercase__ : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = len(SCREAMING_SNAKE_CASE_) lowercase__ : Any = self.dummy_model() lowercase__ : List[Any] = self.dummy_sample_deter lowercase__ : str = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : List[str] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : str = pred_prev_sample lowercase__ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_5_8.9_6_0_6) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = self.scheduler_classes[0] lowercase__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""") lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : Dict = len(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = self.dummy_model() lowercase__ : Union[str, Any] = self.dummy_sample_deter lowercase__ : int = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : Tuple = pred_prev_sample lowercase__ : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_0_2.0_2_9_6) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : str = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : str = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = scheduler.timesteps for i, timestep in enumerate(SCREAMING_SNAKE_CASE_): if i == len(SCREAMING_SNAKE_CASE_) - 1: lowercase__ : Optional[int] = -1 else: lowercase__ : Tuple = timesteps[i + 1] lowercase__ : Any = scheduler.previous_timestep(SCREAMING_SNAKE_CASE_) lowercase__ : int = prev_t.item() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = [1_00, 87, 50, 51, 0] with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`custom_timesteps` must be in descending order."""): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = [1_00, 87, 50, 1, 0] lowercase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_) with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`."""): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : str = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
12
0
"""simple docstring""" from manim import * class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : str ) -> Dict: '''simple docstring''' a__ = Rectangle(height=0.5 , width=0.5 ) a__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) a__ = [mem.copy() for i in range(6 )] a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) a__ = VGroup(*SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) a__ = VGroup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) a__ = Text('CPU' , font_size=24 ) a__ = Group(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(SCREAMING_SNAKE_CASE_ ) a__ = [mem.copy() for i in range(1 )] a__ = VGroup(*SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) a__ = Text('GPU' , font_size=24 ) a__ = Group(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE_ ) gpu.align_to(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(SCREAMING_SNAKE_CASE_ ) a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) a__ = Text('Model' , font_size=24 ) a__ = Group(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE_ ) model.move_to([3, -1.0, 0] ) self.play( Create(SCREAMING_SNAKE_CASE_ , run_time=1 ) , Create(SCREAMING_SNAKE_CASE_ , run_time=1 ) , Create(SCREAMING_SNAKE_CASE_ , run_time=1 ) , ) a__ = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) a__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a__ = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(SCREAMING_SNAKE_CASE_ , run_time=2.5 ) , Write(SCREAMING_SNAKE_CASE_ ) , Write(SCREAMING_SNAKE_CASE_ ) ) self.add(SCREAMING_SNAKE_CASE_ ) a__ = [] a__ = [] a__ = [] for i, rect in enumerate(SCREAMING_SNAKE_CASE_ ): a__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(SCREAMING_SNAKE_CASE_ , opacity=0.7 ) cpu_target.move_to(SCREAMING_SNAKE_CASE_ ) cpu_target.generate_target() a__ = 0.46 / 4 a__ = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=SCREAMING_SNAKE_CASE_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=SCREAMING_SNAKE_CASE_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=SCREAMING_SNAKE_CASE_ , buff=0.0 ) cpu_targs.append(SCREAMING_SNAKE_CASE_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(SCREAMING_SNAKE_CASE_ ) ) second_animations.append(MoveToTarget(SCREAMING_SNAKE_CASE_ , run_time=1.5 ) ) self.play(*SCREAMING_SNAKE_CASE_ ) self.play(*SCREAMING_SNAKE_CASE_ ) self.wait()
232
def UpperCamelCase ( lowercase_ ) -> float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) lowercase__ : int = sum(lowercase_ ) / len(lowercase_ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
12
0
"""simple docstring""" import math def __lowerCAmelCase ( lowercase : Optional[int] ) -> list[int]: """simple docstring""" snake_case : Union[str, Any] = [] snake_case : Any = 2 snake_case : Tuple = int(math.sqrt(lowercase_ ) ) # Size of every segment snake_case : Optional[Any] = [True] * (end + 1) snake_case : int = [] while start <= end: if temp[start] is True: in_prime.append(lowercase_ ) for i in range(start * start , end + 1 , lowercase_ ): snake_case : Optional[int] = False start += 1 prime += in_prime snake_case : str = end + 1 snake_case : Any = min(2 * end , lowercase_ ) while low <= n: snake_case : Dict = [True] * (high - low + 1) for each in in_prime: snake_case : Any = math.floor(low / each ) * each if t < low: t += each for j in range(lowercase_ , high + 1 , lowercase_ ): snake_case : Optional[int] = False for j in range(len(lowercase_ ) ): if temp[j] is True: prime.append(j + low ) snake_case : Dict = high + 1 snake_case : Optional[int] = min(high + end , lowercase_ ) return prime print(sieve(10**6))
178
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Any = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 8 , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = do_rescale lowercase__ : List[Any] = rescale_factor lowercase__ : Tuple = do_pad lowercase__ : Optional[Any] = pad_size def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None): '''simple docstring''' lowercase__ , lowercase__ : Optional[int] = get_image_size(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = (old_height // size + 1) * size - old_height lowercase__ : str = (old_width // size + 1) * size - old_width return pad(SCREAMING_SNAKE_CASE_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = do_pad if do_pad is not None else self.do_pad lowercase__ : Optional[Any] = pad_size if pad_size is not None else self.pad_size lowercase__ : str = make_list_of_images(SCREAMING_SNAKE_CASE_) if not valid_images(SCREAMING_SNAKE_CASE_): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") # All transformations expect numpy arrays. lowercase__ : List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_) for image in images] if do_rescale: lowercase__ : str = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_) for image in images] if do_pad: lowercase__ : List[str] = [self.pad(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_) for image in images] lowercase__ : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for image in images] lowercase__ : Dict = {"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_)
12
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__: Optional[int] = logging.get_logger(__name__) UpperCamelCase__: List[Any] = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class SCREAMING_SNAKE_CASE( UpperCAmelCase_ ): """simple docstring""" lowerCamelCase__ = 'mobilenet_v1' def __init__( self : List[Any] , __snake_case : Dict=3 , __snake_case : Optional[Any]=224 , __snake_case : Optional[int]=1.0 , __snake_case : Dict=8 , __snake_case : Optional[Any]="relu6" , __snake_case : Optional[Any]=True , __snake_case : Dict=0.9_99 , __snake_case : Dict=0.02 , __snake_case : Any=0.0_01 , **__snake_case : int , ) -> str: super().__init__(**SCREAMING_SNAKE_CASE_ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : Optional[Any] = image_size UpperCAmelCase : Union[str, Any] = depth_multiplier UpperCAmelCase : Optional[Any] = min_depth UpperCAmelCase : Tuple = hidden_act UpperCAmelCase : Any = tf_padding UpperCAmelCase : int = classifier_dropout_prob UpperCAmelCase : Optional[int] = initializer_range UpperCAmelCase : Tuple = layer_norm_eps class SCREAMING_SNAKE_CASE( UpperCAmelCase_ ): """simple docstring""" lowerCamelCase__ = version.parse("""1.11""" ) @property def A ( self : List[Any] ) -> Dict: return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def A ( self : List[Any] ) -> List[Any]: if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def A ( self : Tuple ) -> List[Any]: return 1E-4
127
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowerCamelCase__ : Optional[int] = [ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[Any]: '''simple docstring''' lowercase__ : List[Any] = True while ask_again: lowercase__ : Tuple = input(lowercase_ ) try: if default is not None and len(lowercase_ ) == 0: return default return convert_value(lowercase_ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowercase_ ) def UpperCamelCase ( lowercase_ , lowercase_=[] , lowercase_=None , lowercase_=0 ) -> Union[str, Any]: '''simple docstring''' lowercase__ : List[Any] = BulletMenu(lowercase_ , lowercase_ ) lowercase__ : Any = menu.run(default_choice=lowercase_ ) return convert_value(lowercase_ ) if convert_value is not None else result def UpperCamelCase ( lowercase_ ) -> str: '''simple docstring''' lowercase__ : Union[str, Any] = int(lowercase_ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' lowercase__ : List[str] = int(lowercase_ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def UpperCamelCase ( lowercase_ ) -> str: '''simple docstring''' lowercase__ : str = int(lowercase_ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def UpperCamelCase ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowercase__ : List[Any] = int(lowercase_ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' lowercase__ : List[Any] = int(lowercase_ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _snake_case ( argparse.RawDescriptionHelpFormatter ): def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : int = super()._format_usage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = usage.replace("""<command> [<args>] """ , """""") return usage
12
0
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests lowerCamelCase__ = open # noqa: we just need to have a builtin inside this module to test it properly
624
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Tuple = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
0
'''simple docstring''' def _lowerCAmelCase (_lowercase ): """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError("String must only contain alphabetic characters." ) a__ = sorted(string.lower() ) return len(lowercase_ ) == len(set(lowercase_ ) ) if __name__ == "__main__": UpperCamelCase_ : Optional[int] = input("""Enter a string """).strip() UpperCamelCase_ : Optional[Any] = is_isogram(input_str) print(F"{input_str} is {'an' if isogram else 'not an'} isogram.")
331
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class _snake_case ( UpperCAmelCase_ ): def __init__( self): '''simple docstring''' lowercase__ : List[Any] = [] def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_init_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_train_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_train_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_epoch_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_epoch_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_step_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_step_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_evaluate""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_predict""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_save""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_log""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_prediction_step""") @require_torch class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = tempfile.mkdtemp() def lowercase__ ( self): '''simple docstring''' shutil.rmtree(self.output_dir) def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Any = RegressionDataset(length=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = RegressionDataset(length=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = RegressionModelConfig(a=SCREAMING_SNAKE_CASE_ , b=SCREAMING_SNAKE_CASE_) lowercase__ : Any = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE_) lowercase__ : Any = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE_ , report_to=[] , **SCREAMING_SNAKE_CASE_) return Trainer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , callbacks=SCREAMING_SNAKE_CASE_ , ) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_)) # Order doesn't matter lowercase__ : str = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__) lowercase__ : Tuple = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__) for cba, cba in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(SCREAMING_SNAKE_CASE_ , cba.__class__) elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE_) else: self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : int = ["""on_init_end""", """on_train_begin"""] lowercase__ : Union[str, Any] = 0 lowercase__ : Union[str, Any] = len(trainer.get_eval_dataloader()) lowercase__ : Dict = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader()) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs): expected_events.append("""on_epoch_begin""") for _ in range(SCREAMING_SNAKE_CASE_): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""") if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""") expected_events.append("""on_epoch_end""") if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def lowercase__ ( self): '''simple docstring''' lowercase__ : int = self.get_trainer() lowercase__ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # Callbacks passed at init are added to the default callbacks lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback]) expected_callbacks.append(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : Any = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : Tuple = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.remove(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_) self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) trainer.add_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # We can also add, pop, or remove by instance lowercase__ : Union[str, Any] = self.get_trainer() lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0] trainer.remove_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.remove(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) lowercase__ : str = self.get_trainer() lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) trainer.add_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback]) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # Independent log/save/eval lowercase__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5) trainer.train() lowercase__ : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5) trainer.train() lowercase__ : Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""") trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""") trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""") as warn_mock: lowercase__ : Dict = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(SCREAMING_SNAKE_CASE_) in warn_mock.call_args[0][0]
12
0
import sys a_ : Any = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def __lowerCAmelCase ( _UpperCamelCase : Union[str, Any] = N ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = -sys.maxsize - 1 for i in range(len(lowercase_ ) - 12 ): SCREAMING_SNAKE_CASE = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: SCREAMING_SNAKE_CASE = product return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
439
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = RoCBertTokenizer __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : str = False __lowerCAmelCase : List[Any] = True __lowerCAmelCase : Optional[int] = filter_non_english def lowercase__ ( self): '''simple docstring''' super().setUp() lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] lowercase__ : Dict = {} lowercase__ : Tuple = {} for i, value in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Tuple = i lowercase__ : Any = i lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""]) lowercase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) with open(self.word_shape_file , """w""" , encoding="""utf-8""") as word_shape_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_) with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""") as word_pronunciation_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) lowercase__ : Optional[int] = tokenizer.tokenize("""你好[SEP]你是谁""") self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) def lowercase__ ( self): '''simple docstring''' lowercase__ : int = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""") , ["""ah""", """\u535A""", """\u63A8""", """zz"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""h\u00E9llo"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=["""[UNK]"""]) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""") , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] lowercase__ : Optional[int] = {} for i, token in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = i lowercase__ : Union[str, Any] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""unwanted running""") , ["""un""", """##want""", """##ed""", """runn""", """##ing"""]) self.assertListEqual(tokenizer.tokenize("""unwantedX running""") , ["""[UNK]""", """runn""", """##ing"""]) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_whitespace(""" """)) self.assertTrue(_is_whitespace("""\t""")) self.assertTrue(_is_whitespace("""\r""")) self.assertTrue(_is_whitespace("""\n""")) self.assertTrue(_is_whitespace("""\u00A0""")) self.assertFalse(_is_whitespace("""A""")) self.assertFalse(_is_whitespace("""-""")) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_control("""\u0005""")) self.assertFalse(_is_control("""A""")) self.assertFalse(_is_control(""" """)) self.assertFalse(_is_control("""\t""")) self.assertFalse(_is_control("""\r""")) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_punctuation("""-""")) self.assertTrue(_is_punctuation("""$""")) self.assertTrue(_is_punctuation("""`""")) self.assertTrue(_is_punctuation(""".""")) self.assertFalse(_is_punctuation("""A""")) self.assertFalse(_is_punctuation(""" """)) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) if self.test_rust_tokenizer: lowercase__ : int = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) def lowercase__ ( self): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase__ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' lowercase__ : List[str] = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , ) lowercase__ : str = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , """do_lower_case""") else False lowercase__ : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""])) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = ["""的""", """人""", """有"""] lowercase__ : List[str] = """""".join(SCREAMING_SNAKE_CASE_) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase__ : Union[str, Any] = True lowercase__ : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : str = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Any = False lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) # it is expected that only the first Chinese character is not preceded by "##". lowercase__ : Any = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_) ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @slow def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) lowercase__ : Optional[Any] = tokenizer.encode("""你好""" , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Any = tokenizer.encode("""你是谁""" , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}'): lowercase__ : Optional[int] = """你好,你是谁""" lowercase__ : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) lowercase__ : Any = tokenizer.prepare_for_model( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
12
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class __SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): __a ='convbert' def __init__( self , lowerCamelCase=3_0522 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=1e-12 , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=2 , lowerCamelCase=768 , lowerCamelCase=2 , lowerCamelCase=9 , lowerCamelCase=1 , lowerCamelCase=None , **lowerCamelCase , ) ->Optional[int]: '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = embedding_size __a = head_ratio __a = conv_kernel_size __a = num_groups __a = classifier_dropout class __SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): @property def __UpperCamelCase ( self ) ->Optional[Any]: '''simple docstring''' if self.task == "multiple-choice": __a = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __a = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
448
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class _snake_case ( UpperCAmelCase_ ): def __init__( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.') requires_backends(self , """vision""") self.check_model_type(SCREAMING_SNAKE_CASE_) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' if "text_queries" in kwargs: lowercase__ : Any = kwargs.pop("""text_queries""") if isinstance(SCREAMING_SNAKE_CASE_ , (str, Image.Image)): lowercase__ : Optional[Any] = {"""image""": image, """candidate_labels""": candidate_labels} else: lowercase__ : int = image lowercase__ : List[str] = super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) return results def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = {} if "threshold" in kwargs: lowercase__ : List[Any] = kwargs["""threshold"""] if "top_k" in kwargs: lowercase__ : int = kwargs["""top_k"""] return {}, {}, postprocess_params def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = load_image(inputs["""image"""]) lowercase__ : Any = inputs["""candidate_labels"""] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): lowercase__ : List[str] = candidate_labels.split(""",""") lowercase__ : Tuple = torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) lowercase__ : Union[str, Any] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) yield { "is_last": i == len(SCREAMING_SNAKE_CASE_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = model_inputs.pop("""target_size""") lowercase__ : Optional[int] = model_inputs.pop("""candidate_label""") lowercase__ : Dict = model_inputs.pop("""is_last""") lowercase__ : Union[str, Any] = self.model(**SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : Union[str, Any] = [] for model_output in model_outputs: lowercase__ : Optional[int] = model_output["""candidate_label"""] lowercase__ : Tuple = BaseModelOutput(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.image_processor.post_process_object_detection( outputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ , target_sizes=model_output["""target_size"""])[0] for index in outputs["scores"].nonzero(): lowercase__ : Optional[Any] = outputs["""scores"""][index].item() lowercase__ : Optional[Any] = self._get_bounding_box(outputs["""boxes"""][index][0]) lowercase__ : Tuple = {"""score""": score, """label""": label, """box""": box} results.append(SCREAMING_SNAKE_CASE_) lowercase__ : int = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: x["score"] , reverse=SCREAMING_SNAKE_CASE_) if top_k: lowercase__ : Any = results[:top_k] return results def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""") lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = box.int().tolist() lowercase__ : Optional[int] = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
12
0
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def lowerCamelCase__ ( _a , _a , _a , _a , ): SCREAMING_SNAKE_CASE : Optional[Any] = coefficient_matrix.shape SCREAMING_SNAKE_CASE : str = constant_matrix.shape if rowsa != colsa: SCREAMING_SNAKE_CASE : Optional[int] = f"Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}" raise ValueError(lowercase_) if colsa != 1: SCREAMING_SNAKE_CASE : List[str] = f"Constant matrix must be nx1 but received {rowsa}x{colsa}" raise ValueError(lowercase_) if rowsa != rowsa: SCREAMING_SNAKE_CASE : List[str] = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f"received {rowsa}x{colsa} and {rowsa}x{colsa}" ) raise ValueError(lowercase_) if len(lowercase_) != rowsa: SCREAMING_SNAKE_CASE : Dict = ( """Number of initial values must be equal to number of rows in coefficient """ f"matrix but received {len(lowercase_)} and {rowsa}" ) raise ValueError(lowercase_) if iterations <= 0: raise ValueError("Iterations must be at least 1") SCREAMING_SNAKE_CASE : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1) SCREAMING_SNAKE_CASE : Dict = table.shape strictly_diagonally_dominant(lowercase_) # Iterates the whole matrix for given number of times for _ in range(lowercase_): SCREAMING_SNAKE_CASE : List[Any] = [] for row in range(lowercase_): SCREAMING_SNAKE_CASE : Optional[int] = 0 for col in range(lowercase_): if col == row: SCREAMING_SNAKE_CASE : Optional[int] = table[row][col] elif col == cols - 1: SCREAMING_SNAKE_CASE : Optional[Any] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] SCREAMING_SNAKE_CASE : Dict = (temp + val) / denom new_val.append(lowercase_) SCREAMING_SNAKE_CASE : Any = new_val return [float(lowercase_) for i in new_val] def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Any = table.shape SCREAMING_SNAKE_CASE : str = True for i in range(0 , lowercase_): SCREAMING_SNAKE_CASE : List[Any] = 0 for j in range(0 , cols - 1): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant") return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
25
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowercase__ : str = mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) else: lowercase__ : List[str] = max( mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) , mf_knapsack(i - 1 , lowercase_ , lowercase_ , j - wt[i - 1] ) + val[i - 1] , ) lowercase__ : List[Any] = val return f[i][j] def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowercase__ : Any = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowercase__ : List[Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowercase__ : Tuple = dp[i - 1][w_] return dp[n][w_], dp def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' if not (isinstance(lowercase_ , (list, tuple) ) and isinstance(lowercase_ , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) lowercase__ : str = len(lowercase_ ) if num_items != len(lowercase_ ): lowercase__ : Optional[int] = ( """The number of weights must be the same as the number of values.\n""" F'But got {num_items} weights and {len(lowercase_ )} values' ) raise ValueError(lowercase_ ) for i in range(lowercase_ ): if not isinstance(wt[i] , lowercase_ ): lowercase__ : int = ( """All weights must be integers but got weight of """ F'type {type(wt[i] )} at index {i}' ) raise TypeError(lowercase_ ) lowercase__ , lowercase__ : Tuple = knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : set = set() _construct_solution(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return optimal_val, example_optional_set def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(lowercase_ , lowercase_ , i - 1 , lowercase_ , lowercase_ ) else: optimal_set.add(lowercase_ ) _construct_solution(lowercase_ , lowercase_ , i - 1 , j - wt[i - 1] , lowercase_ ) if __name__ == "__main__": lowerCamelCase__ : Dict = [3, 2, 4, 4] lowerCamelCase__ : List[Any] = [4, 3, 2, 3] lowerCamelCase__ : Optional[int] = 4 lowerCamelCase__ : Dict = 6 lowerCamelCase__ : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowerCamelCase__ , lowerCamelCase__ : int = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowerCamelCase__ , lowerCamelCase__ : Optional[int] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
12
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : Union[str, Any] = logging.get_logger(__name__) _snake_case : Optional[Any] = { """s-JoL/Open-Llama-V1""": """https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json""", } class UpperCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase : int = 'open-llama' def __init__( self :Dict , lowerCAmelCase__ :List[Any]=100000 , lowerCAmelCase__ :Union[str, Any]=4096 , lowerCAmelCase__ :Optional[int]=11008 , lowerCAmelCase__ :Optional[int]=32 , lowerCAmelCase__ :Union[str, Any]=32 , lowerCAmelCase__ :Union[str, Any]="silu" , lowerCAmelCase__ :Any=2048 , lowerCAmelCase__ :Tuple=0.02 , lowerCAmelCase__ :Optional[int]=1E-6 , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :Dict=0 , lowerCAmelCase__ :List[Any]=1 , lowerCAmelCase__ :str=2 , lowerCAmelCase__ :Union[str, Any]=False , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :Any=0.1 , lowerCAmelCase__ :int=0.1 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :Any=True , lowerCAmelCase__ :Union[str, Any]=None , **lowerCAmelCase__ :Dict , ) ->List[str]: lowercase = vocab_size lowercase = max_position_embeddings lowercase = hidden_size lowercase = intermediate_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = initializer_range lowercase = rms_norm_eps lowercase = use_cache lowercase = kwargs.pop( "use_memorry_efficient_attention" , SCREAMING_SNAKE_CASE_ ) lowercase = hidden_dropout_prob lowercase = attention_dropout_prob lowercase = use_stable_embedding lowercase = shared_input_output_embedding lowercase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , tie_word_embeddings=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def SCREAMING_SNAKE_CASE( self :Tuple ) ->int: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , SCREAMING_SNAKE_CASE_ ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F'''got {self.rope_scaling}''' ) lowercase = self.rope_scaling.get("type" , SCREAMING_SNAKE_CASE_ ) lowercase = self.rope_scaling.get("factor" , SCREAMING_SNAKE_CASE_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
441
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def UpperCamelCase ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def UpperCamelCase ( lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' lowercase__ : int = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowercase__ : Optional[Any] = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" ) lowercase__ : Tuple = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" ) lowercase__ : Optional[int] = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" ) lowercase__ : List[Any] = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" ) lowercase__ : int = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" ) lowercase__ : Optional[Any] = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" ) lowercase__ : Optional[Any] = key.replace("""image_encoder.module""" , """flava.image_model""" ) lowercase__ : Any = key.replace("""text_encoder.module""" , """flava.text_model""" ) lowercase__ : Optional[Any] = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" ) lowercase__ : Tuple = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" ) lowercase__ : Any = key.replace("""text_projection""" , """flava.text_projection""" ) lowercase__ : List[Any] = key.replace("""image_projection""" , """flava.image_projection""" ) lowercase__ : str = value.float() for key, value in codebook_state_dict.items(): lowercase__ : Any = value return upgrade @torch.no_grad() def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: lowercase__ : int = FlavaConfig.from_pretrained(lowercase_ ) else: lowercase__ : Optional[int] = FlavaConfig() lowercase__ : List[Any] = FlavaForPreTraining(lowercase_ ).eval() lowercase__ : Dict = convert_dalle_checkpoint(lowercase_ , lowercase_ , save_checkpoint=lowercase_ ) if os.path.exists(lowercase_ ): lowercase__ : Dict = torch.load(lowercase_ , map_location="""cpu""" ) else: lowercase__ : Dict = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" ) lowercase__ : int = upgrade_state_dict(lowercase_ , lowercase_ ) hf_model.load_state_dict(lowercase_ ) lowercase__ : Optional[int] = hf_model.state_dict() lowercase__ : Optional[int] = count_parameters(lowercase_ ) lowercase__ : Any = count_parameters(lowercase_ ) + count_parameters(lowercase_ ) assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) hf_model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCamelCase__ : List[str] = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
12
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
281
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , ): '''simple docstring''' lowercase__ : List[str] = size if size is not None else {"""height""": 18, """width""": 18} lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : List[str] = num_channels lowercase__ : str = image_size lowercase__ : int = min_resolution lowercase__ : Dict = max_resolution lowercase__ : Tuple = do_resize lowercase__ : Union[str, Any] = size lowercase__ : Any = do_normalize lowercase__ : Tuple = image_mean lowercase__ : str = image_std def lowercase__ ( self): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Optional[Any] = ViTImageProcessor if is_vision_available() else None def lowercase__ ( self): '''simple docstring''' lowercase__ : str = EfficientFormerImageProcessorTester(self) @property def lowercase__ ( self): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_mean""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_std""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size""")) def lowercase__ ( self): '''simple docstring''' pass def lowercase__ ( self): '''simple docstring''' lowercase__ : str = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowercase__ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image) # Test not batched input lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : str = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowercase__ : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray) # Test not batched input lowercase__ : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : Dict = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowercase__ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor) # Test not batched input lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : Any = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
12
0
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : '''simple docstring''' def __init__( self , a_ , a_=1_3 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=9_9 , a_=3_2 , a_=5 , a_=4 , a_=3_7 , a_="gelu" , a_=0.1 , a_=0.1 , a_=1_2_8 , a_=3_2 , a_=1_6 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ) -> List[str]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope def snake_case_ ( self ) -> int: """simple docstring""" UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) def snake_case_ ( self ) -> str: """simple docstring""" ( UpperCAmelCase ) = self.prepare_config_and_inputs() UpperCAmelCase = True UpperCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case_ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = NezhaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case_ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) -> Optional[int]: """simple docstring""" UpperCAmelCase = True UpperCAmelCase = NezhaModel(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=SCREAMING_SNAKE_CASE_ , ) UpperCAmelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , ) UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case_ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ) -> str: """simple docstring""" UpperCAmelCase = NezhaForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = NezhaForNextSentencePrediction(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def snake_case_ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ) -> int: """simple docstring""" UpperCAmelCase = NezhaForPreTraining(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , next_sentence_label=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def snake_case_ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ) -> int: """simple docstring""" UpperCAmelCase = NezhaForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ) -> Tuple: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = NezhaForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = NezhaForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ) -> str: """simple docstring""" UpperCAmelCase = self.num_choices UpperCAmelCase = NezhaForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() ( UpperCAmelCase ) = config_and_inputs UpperCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowercase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase : List[str] = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) __lowerCAmelCase : List[str] = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase : Optional[Any] = True def snake_case_ ( self , a_ , a_ , a_=False ) -> List[Any]: """simple docstring""" UpperCAmelCase = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE_ ): UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) return inputs_dict def snake_case_ ( self ) -> str: """simple docstring""" UpperCAmelCase = NezhaModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=3_7 ) def snake_case_ ( self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> List[Any]: """simple docstring""" ( UpperCAmelCase ) = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase = None self.model_tester.create_and_check_model_as_decoder( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) def snake_case_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> int: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ ) @slow def snake_case_ ( self ) -> List[Any]: """simple docstring""" for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = NezhaModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @slow @require_torch_gpu def snake_case_ ( self ) -> str: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return UpperCAmelCase = True UpperCAmelCase = model_class(config=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = torch.jit.trace( SCREAMING_SNAKE_CASE_ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , 'bert.pt' ) ) UpperCAmelCase = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE_ , 'bert.pt' ) , map_location=SCREAMING_SNAKE_CASE_ ) loaded(inputs_dict['input_ids'].to(SCREAMING_SNAKE_CASE_ ) , inputs_dict['attention_mask'].to(SCREAMING_SNAKE_CASE_ ) ) @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = NezhaModel.from_pretrained('sijunhe/nezha-cn-base' ) UpperCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] UpperCAmelCase = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) @slow def snake_case_ ( self ) -> str: """simple docstring""" UpperCAmelCase = NezhaForMaskedLM.from_pretrained('sijunhe/nezha-cn-base' ) UpperCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] UpperCAmelCase = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
447
lowerCamelCase__ : dict[tuple[int, int, int], int] = {} def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on lowercase__ : Tuple = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one lowercase__ : Union[str, Any] = _calculate(days - 1 , lowercase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 lowercase__ : List[str] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter lowercase__ : Dict = _calculate(days - 1 , lowercase_ , 0 ) lowercase__ : List[str] = state_late + state_absent + state_ontime lowercase__ : List[Any] = prizestrings return prizestrings def UpperCamelCase ( lowercase_ = 30 ) -> int: '''simple docstring''' return _calculate(lowercase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
12
0
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __magic_name__ = """\ Text data. Second line of data.""" __magic_name__ = """file""" @pytest.fixture(scope='session' ) def _lowerCamelCase ( UpperCAmelCase__ ) -> Dict: '''simple docstring''' a__ = tmp_path_factory.mktemp('data' ) / (FILE_PATH + """.zstd""") a__ = bytes(lowercase_,'utf-8' ) with zstd.open(lowercase_,'wb' ) as f: f.write(lowercase_ ) return path @pytest.fixture def _lowerCamelCase ( UpperCAmelCase__ ) -> str: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir,lowercase_ ),'w' ) as f: f.write(lowercase_ ) return FILE_PATH @pytest.mark.parametrize('compression_format',['gzip', 'xz', 'zstd'] ) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> Any: '''simple docstring''' a__ = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} a__ = input_paths[compression_format] a__ = tmp_path / """cache""" a__ = DownloadConfig(cache_dir=lowercase_,extract_compressed_file=lowercase_ ) a__ = cached_path(lowercase_,download_config=lowercase_ ) with open(lowercase_ ) as f: a__ = f.read() with open(lowercase_ ) as f: a__ = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted',[True, False] ) @pytest.mark.parametrize('default_cache_dir',[True, False] ) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> int: '''simple docstring''' a__ = """custom_cache""" a__ = """custom_extracted_dir""" a__ = tmp_path / """custom_extracted_path""" if default_extracted: a__ = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR',lowercase_ ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH',str(lowercase_ ) ) a__ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) a__ = xz_file a__ = ( DownloadConfig(extract_compressed_file=lowercase_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir,extract_compressed_file=lowercase_ ) ) a__ = cached_path(lowercase_,download_config=lowercase_ ) assert Path(lowercase_ ).parent.parts[-2:] == expected def _lowerCamelCase ( UpperCAmelCase__ ) -> Any: '''simple docstring''' a__ = str(Path(lowercase_ ).resolve() ) assert cached_path(lowercase_ ) == text_file # relative path a__ = str(Path(lowercase_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowercase_ ) == text_file def _lowerCamelCase ( UpperCAmelCase__ ) -> List[Any]: '''simple docstring''' a__ = str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(lowercase_ ): cached_path(lowercase_ ) # relative path a__ = """./__missing_file__.txt""" with pytest.raises(lowercase_ ): cached_path(lowercase_ ) def _lowerCamelCase ( UpperCAmelCase__ ) -> Any: '''simple docstring''' a__ = get_from_cache(f'''tmp://{tmpfs_file}''' ) with open(lowercase_ ) as f: a__ = f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE',lowercase_ ) def _lowerCamelCase ( ) -> Optional[Any]: '''simple docstring''' with pytest.raises(lowercase_ ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE',lowercase_ ) def _lowerCamelCase ( UpperCAmelCase__ ) -> List[Any]: '''simple docstring''' a__ = tmp_path_factory.mktemp('data' ) / """file.html""" with pytest.raises(lowercase_ ): http_get('https://huggingface.co',temp_file=lowercase_ ) with pytest.raises(lowercase_ ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE',lowercase_ ) def _lowerCamelCase ( UpperCAmelCase__ ) -> Optional[int]: '''simple docstring''' a__ = tmp_path_factory.mktemp('data' ) / """file.html""" with pytest.raises(lowercase_ ): ftp_get('ftp://huggingface.co',temp_file=lowercase_ ) with pytest.raises(lowercase_ ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE',lowercase_ ) def _lowerCamelCase ( UpperCAmelCase__ ) -> str: '''simple docstring''' a__ = tmp_path_factory.mktemp('data' ) / """file.html""" with pytest.raises(lowercase_ ): fsspec_get('s3://huggingface.co',temp_file=lowercase_ ) with pytest.raises(lowercase_ ): fsspec_head('s3://huggingface.co' )
232
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCamelCase ( ) -> List[Any]: '''simple docstring''' raise RuntimeError("""CUDA out of memory.""" ) class _snake_case ( nn.Module ): def __init__( self): '''simple docstring''' super().__init__() lowercase__ : Optional[Any] = nn.Linear(3 , 4) lowercase__ : Union[str, Any] = nn.BatchNormad(4) lowercase__ : str = nn.Linear(4 , 5) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE_))) class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = [] @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8]) def lowercase__ ( self): '''simple docstring''' lowercase__ : int = [] @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga lowercase__ , lowercase__ : int = mock_training_loop_function("""hello""") self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8]) self.assertListEqual([bs, arga] , [8, """hello"""]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): pass with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function(1_28 , """hello""" , """world""") self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0]) self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): raise ValueError("""Oops, we had an error!""") with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0]) @require_cuda def lowercase__ ( self): '''simple docstring''' lowercase__ : str = torch.cuda.memory_allocated() lowercase__ : str = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = release_memory(SCREAMING_SNAKE_CASE_) self.assertEqual(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
12
0
"""simple docstring""" def __lowerCAmelCase ( lowercase : Tuple ) -> int: """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 snake_case : Optional[int] = 1 snake_case : Dict = 1 while repunit: snake_case : List[Any] = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def __lowerCAmelCase ( lowercase : str = 100_0000 ) -> int: """simple docstring""" snake_case : Union[str, Any] = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(lowercase_ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F'''{solution() = }''')
178
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' lowercase__ : Optional[Any] = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ : List[str] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowercase__ : Optional[int] = 4 lowercase__ : Optional[Any] = 48 lowercase__ : int = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ : List[str] = [6, 6, 6, 6] lowercase__ : Any = 60 lowercase__ : Tuple = [6, 6, 6, 6] lowercase__ : Dict = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ : Tuple = 4 lowercase__ : Any = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowercase__ : str = 1 lowercase__ : Optional[int] = 1 lowercase__ : Optional[int] = 1_26 lowercase__ : Any = 7 lowercase__ : int = 255.0 lowercase__ : List[Any] = """""" return config def UpperCamelCase ( lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: lowercase__ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase__ : Dict = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: lowercase__ : List[str] = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: lowercase__ : Optional[int] = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: lowercase__ : int = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase__ : Tuple = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ : int = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: lowercase__ : Any = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: lowercase__ : Optional[Any] = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: lowercase__ : Dict = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: lowercase__ : Union[str, Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: lowercase__ : List[Any] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": lowercase__ : Union[str, Any] = """layernorm.weight""" if name == "norm.bias": lowercase__ : List[str] = """layernorm.bias""" if "conv_first" in name: lowercase__ : Union[str, Any] = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowercase__ : List[Any] = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowercase__ : Optional[int] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: lowercase__ : Dict = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: lowercase__ : Optional[Any] = name.replace("""upsample.2""" , """upsample.convolution_1""" ) lowercase__ : List[str] = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": lowercase__ : Optional[Any] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) lowercase__ : int = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: lowercase__ : str = """swin2sr.""" + name return name def UpperCamelCase ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase__ : str = orig_state_dict.pop(lowercase_ ) if "qkv" in key: lowercase__ : Any = key.split(""".""" ) lowercase__ : List[Any] = int(key_split[1] ) lowercase__ : Dict = int(key_split[4] ) lowercase__ : Optional[Any] = config.embed_dim if "weight" in key: lowercase__ : List[str] = val[:dim, :] lowercase__ : List[str] = val[dim : dim * 2, :] lowercase__ : Optional[Any] = val[-dim:, :] else: lowercase__ : Optional[Any] = val[:dim] lowercase__ : List[Any] = val[dim : dim * 2] lowercase__ : Optional[int] = val[-dim:] pass else: lowercase__ : Optional[Any] = val return orig_state_dict def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Dict = get_config(lowercase_ ) lowercase__ : Any = SwinaSRForImageSuperResolution(lowercase_ ) model.eval() lowercase__ : List[str] = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" ) lowercase__ : Union[str, Any] = convert_state_dict(lowercase_ , lowercase_ ) lowercase__ , lowercase__ : Dict = model.load_state_dict(lowercase_ , strict=lowercase_ ) if len(lowercase_ ) > 0: raise ValueError("""Missing keys when converting: {}""".format(lowercase_ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowercase__ : Any = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" lowercase__ : Any = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert("""RGB""" ) lowercase__ : Any = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowercase__ : Optional[int] = 1_26 if """Jpeg""" in checkpoint_url else 2_56 lowercase__ : Union[str, Any] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowercase__ : Dict = transforms(lowercase_ ).unsqueeze(0 ) if config.num_channels == 1: lowercase__ : Any = pixel_values[:, 0, :, :].unsqueeze(1 ) lowercase__ : Union[str, Any] = model(lowercase_ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowercase__ : Optional[Any] = torch.Size([1, 3, 5_12, 5_12] ) lowercase__ : Optional[Any] = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ : List[str] = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowercase__ : Optional[Any] = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ : Tuple = torch.Size([1, 3, 5_12, 5_12] ) lowercase__ : int = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ : Tuple = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase_ , atol=1E-3 ) print("""Looks ok!""" ) lowercase__ : str = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } lowercase__ : str = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": lowerCamelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""", type=str, help="""URL of the original Swin2SR checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""") lowerCamelCase__ : Any = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
12
0
'''simple docstring''' import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @property def A ( self : str ) -> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def A ( self : Any ) -> Optional[Any]: UpperCAmelCase : Any = ort.SessionOptions() UpperCAmelCase : Optional[Any] = False return options def A ( self : Union[str, Any] ) -> str: UpperCAmelCase : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) UpperCAmelCase : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) UpperCAmelCase : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase : Any = """A red cat sitting on a park bench""" UpperCAmelCase : List[str] = np.random.RandomState(0 ) UpperCAmelCase : Tuple = pipe( prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , guidance_scale=7.5 , num_inference_steps=10 , generator=SCREAMING_SNAKE_CASE_ , output_type='''np''' , ) UpperCAmelCase : Dict = output.images UpperCAmelCase : List[Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.25_14, 0.30_07, 0.35_17, 0.17_90, 0.23_82, 0.31_67, 0.19_44, 0.22_73, 0.24_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def A ( self : Tuple ) -> Optional[int]: UpperCAmelCase : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) UpperCAmelCase : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) UpperCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) UpperCAmelCase : Tuple = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase : str = """A red cat sitting on a park bench""" UpperCAmelCase : Optional[int] = np.random.RandomState(0 ) UpperCAmelCase : Optional[Any] = pipe( prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , guidance_scale=7.5 , num_inference_steps=20 , generator=SCREAMING_SNAKE_CASE_ , output_type='''np''' , ) UpperCAmelCase : Optional[int] = output.images UpperCAmelCase : Tuple = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase : Union[str, Any] = np.array([0.00_86, 0.00_77, 0.00_83, 0.00_93, 0.01_07, 0.01_39, 0.00_94, 0.00_97, 0.01_25] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
127
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : BigBirdConfig __lowerCAmelCase : jnp.dtype = jnp.floataa __lowerCAmelCase : bool = True def lowercase__ ( self): '''simple docstring''' super().setup() lowercase__ : Dict = nn.Dense(5 , dtype=self.dtype) def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[str] = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Optional[int] = FlaxBigBirdForNaturalQuestionsModule def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' def cross_entropy(lowercase_ , lowercase_ , lowercase_=None ): lowercase__ : int = logits.shape[-1] lowercase__ : List[str] = (labels[..., None] == jnp.arange(lowercase_ )[None]).astype("""f4""" ) lowercase__ : int = jax.nn.log_softmax(lowercase_ , axis=-1 ) lowercase__ : Any = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase__ : Optional[int] = reduction(lowercase_ ) return loss lowercase__ : int = partial(lowercase_ , reduction=jnp.mean ) lowercase__ : Tuple = cross_entropy(lowercase_ , lowercase_ ) lowercase__ : List[Any] = cross_entropy(lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = cross_entropy(lowercase_ , lowercase_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class _snake_case : __lowerCAmelCase : str = "google/bigbird-roberta-base" __lowerCAmelCase : int = 3_000 __lowerCAmelCase : int = 10_500 __lowerCAmelCase : int = 128 __lowerCAmelCase : int = 3 __lowerCAmelCase : int = 1 __lowerCAmelCase : int = 5 # tx_args __lowerCAmelCase : float = 3e-5 __lowerCAmelCase : float = 0.0 __lowerCAmelCase : int = 20_000 __lowerCAmelCase : float = 0.0_095 __lowerCAmelCase : str = "bigbird-roberta-natural-questions" __lowerCAmelCase : str = "training-expt" __lowerCAmelCase : str = "data/nq-training.jsonl" __lowerCAmelCase : str = "data/nq-validation.jsonl" def lowercase__ ( self): '''simple docstring''' os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE_) lowercase__ : Any = os.path.join(self.base_dir , self.save_dir) lowercase__ : str = self.batch_size_per_device * jax.device_count() @dataclass class _snake_case : __lowerCAmelCase : int __lowerCAmelCase : int = 4_096 # no dynamic padding on TPUs def __call__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = self.collate_fn(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) return batch def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ , lowercase__ : str = self.fetch_inputs(features["""input_ids"""]) lowercase__ : str = { """input_ids""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa), """attention_mask""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa), } return batch def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[Any] = [self._fetch_inputs(SCREAMING_SNAKE_CASE_) for ids in input_ids] return zip(*SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = [1 for _ in range(len(SCREAMING_SNAKE_CASE_))] while len(SCREAMING_SNAKE_CASE_) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> Optional[Any]: '''simple docstring''' if seed is not None: lowercase__ : Any = dataset.shuffle(seed=lowercase_ ) for i in range(len(lowercase_ ) // batch_size ): lowercase__ : List[str] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowercase_ ) @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase ( lowercase_ , lowercase_ , **lowercase_ ) -> int: '''simple docstring''' def loss_fn(lowercase_ ): lowercase__ : Dict = model_inputs.pop("""start_labels""" ) lowercase__ : List[Any] = model_inputs.pop("""end_labels""" ) lowercase__ : List[Any] = model_inputs.pop("""pooled_labels""" ) lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=lowercase_ , dropout_rng=lowercase_ , train=lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Any = outputs return state.loss_fn( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) lowercase__ , lowercase__ : Optional[int] = jax.random.split(lowercase_ ) lowercase__ : Tuple = jax.value_and_grad(lowercase_ ) lowercase__ , lowercase__ : Optional[int] = grad_fn(state.params ) lowercase__ : Tuple = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) lowercase__ : Any = jax.lax.pmean(lowercase_ , """batch""" ) lowercase__ : str = state.apply_gradients(grads=lowercase_ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase ( lowercase_ , **lowercase_ ) -> str: '''simple docstring''' lowercase__ : Tuple = model_inputs.pop("""start_labels""" ) lowercase__ : List[str] = model_inputs.pop("""end_labels""" ) lowercase__ : int = model_inputs.pop("""pooled_labels""" ) lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=state.params , train=lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Optional[int] = outputs lowercase__ : Optional[Any] = state.loss_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : List[str] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class _snake_case ( train_state.TrainState ): __lowerCAmelCase : Callable = struct.field(pytree_node=UpperCAmelCase_ ) @dataclass class _snake_case : __lowerCAmelCase : Args __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : wandb __lowerCAmelCase : Callable = None def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : List[str] = model.params lowercase__ : Dict = TrainState.create( apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , loss_fn=SCREAMING_SNAKE_CASE_ , ) if ckpt_dir is not None: lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = restore_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } lowercase__ , lowercase__ : Any = build_tx(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = train_state.TrainState( step=SCREAMING_SNAKE_CASE_ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , opt_state=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Optional[Any] = args lowercase__ : Union[str, Any] = data_collator lowercase__ : str = lr lowercase__ : Union[str, Any] = params lowercase__ : Dict = jax_utils.replicate(SCREAMING_SNAKE_CASE_) return state def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = self.args lowercase__ : List[str] = len(SCREAMING_SNAKE_CASE_) // args.batch_size lowercase__ : int = jax.random.PRNGKey(0) lowercase__ : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count()) for epoch in range(args.max_epochs): lowercase__ : Tuple = jnp.array(0 , dtype=jnp.floataa) lowercase__ : List[str] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , args.batch_size , seed=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc=f'Running EPOCH-{epoch}'): lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_) lowercase__ , lowercase__ , lowercase__ : List[Any] = self.train_step_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 if i % args.logging_steps == 0: lowercase__ : List[str] = jax_utils.unreplicate(state.step) lowercase__ : str = running_loss.item() / i lowercase__ : Tuple = self.scheduler_fn(state_step - 1) lowercase__ : Tuple = self.evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(SCREAMING_SNAKE_CASE_)) self.logger.log(SCREAMING_SNAKE_CASE_ , commit=SCREAMING_SNAKE_CASE_) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = get_batched_dataset(SCREAMING_SNAKE_CASE_ , self.args.batch_size) lowercase__ : Tuple = len(SCREAMING_SNAKE_CASE_) // self.args.batch_size lowercase__ : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa) lowercase__ : Optional[Any] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc="""Evaluating ... """): lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = self.val_step_fn(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 return running_loss / i def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = jax_utils.unreplicate(SCREAMING_SNAKE_CASE_) print(f'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """) self.model_save_fn(SCREAMING_SNAKE_CASE_ , params=state.params) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """opt_state.msgpack""") , """wb""") as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE_ , """args.joblib""")) joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE_ , """data_collator.joblib""")) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """training_state.json""") , """w""") as f: json.dump({"""step""": state.step.item()} , SCREAMING_SNAKE_CASE_) print("""DONE""") def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ ) with open(os.path.join(lowercase_ , """flax_model.msgpack""" ) , """rb""" ) as f: lowercase__ : Optional[Any] = from_bytes(state.params , f.read() ) with open(os.path.join(lowercase_ , """opt_state.msgpack""" ) , """rb""" ) as f: lowercase__ : Dict = from_bytes(state.opt_state , f.read() ) lowercase__ : Any = joblib.load(os.path.join(lowercase_ , """args.joblib""" ) ) lowercase__ : Optional[int] = joblib.load(os.path.join(lowercase_ , """data_collator.joblib""" ) ) with open(os.path.join(lowercase_ , """training_state.json""" ) , """r""" ) as f: lowercase__ : int = json.load(lowercase_ ) lowercase__ : Optional[Any] = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Optional[int] = num_train_steps - warmup_steps lowercase__ : int = optax.linear_schedule(init_value=lowercase_ , end_value=lowercase_ , transition_steps=lowercase_ ) lowercase__ : Optional[int] = optax.linear_schedule(init_value=lowercase_ , end_value=1E-7 , transition_steps=lowercase_ ) lowercase__ : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' def weight_decay_mask(lowercase_ ): lowercase__ : Dict = traverse_util.flatten_dict(lowercase_ ) lowercase__ : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(lowercase_ ) lowercase__ : Optional[int] = scheduler_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : int = optax.adamw(learning_rate=lowercase_ , weight_decay=lowercase_ , mask=lowercase_ ) return tx, lr
12
0
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :BigBirdConfig SCREAMING_SNAKE_CASE__ :jnp.dtype = jnp.floataa SCREAMING_SNAKE_CASE__ :bool = True def __SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: super().setup() _UpperCamelCase : Dict = nn.Dense(5 , dtype=self.dtype ) def __call__( self : Union[str, Any] , *__a : Tuple , **__a : Tuple ) -> Optional[int]: _UpperCamelCase : List[str] = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) _UpperCamelCase : List[str] = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[int] = FlaxBigBirdForNaturalQuestionsModule def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> int: """simple docstring""" def cross_entropy(lowercase_ ,lowercase_ ,lowercase_=None ): _UpperCamelCase : int = logits.shape[-1] _UpperCamelCase : List[str] = (labels[..., None] == jnp.arange(lowercase_ )[None]).astype("f4" ) _UpperCamelCase : int = jax.nn.log_softmax(lowercase_ ,axis=-1 ) _UpperCamelCase : Any = -jnp.sum(labels * logits ,axis=-1 ) if reduction is not None: _UpperCamelCase : Optional[int] = reduction(lowercase_ ) return loss _UpperCamelCase : int = partial(lowercase_ ,reduction=jnp.mean ) _UpperCamelCase : Tuple = cross_entropy(lowercase_ ,lowercase_ ) _UpperCamelCase : List[Any] = cross_entropy(lowercase_ ,lowercase_ ) _UpperCamelCase : Union[str, Any] = cross_entropy(lowercase_ ,lowercase_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = "google/bigbird-roberta-base" SCREAMING_SNAKE_CASE__ :int = 3_000 SCREAMING_SNAKE_CASE__ :int = 10_500 SCREAMING_SNAKE_CASE__ :int = 128 SCREAMING_SNAKE_CASE__ :int = 3 SCREAMING_SNAKE_CASE__ :int = 1 SCREAMING_SNAKE_CASE__ :int = 5 # tx_args SCREAMING_SNAKE_CASE__ :float = 3e-5 SCREAMING_SNAKE_CASE__ :float = 0.0 SCREAMING_SNAKE_CASE__ :int = 20_000 SCREAMING_SNAKE_CASE__ :float = 0.0_095 SCREAMING_SNAKE_CASE__ :str = "bigbird-roberta-natural-questions" SCREAMING_SNAKE_CASE__ :str = "training-expt" SCREAMING_SNAKE_CASE__ :str = "data/nq-training.jsonl" SCREAMING_SNAKE_CASE__ :str = "data/nq-validation.jsonl" def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE_ ) _UpperCamelCase : Any = os.path.join(self.base_dir , self.save_dir ) _UpperCamelCase : str = self.batch_size_per_device * jax.device_count() @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :int SCREAMING_SNAKE_CASE__ :int = 4_096 # no dynamic padding on TPUs def __call__( self : Any , __a : Union[str, Any] ) -> Optional[Any]: _UpperCamelCase : Dict = self.collate_fn(SCREAMING_SNAKE_CASE_ ) _UpperCamelCase : List[Any] = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return batch def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : List[Any] ) -> Optional[Any]: _UpperCamelCase : str = self.fetch_inputs(features["input_ids"] ) _UpperCamelCase : str = { """input_ids""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa ), """attention_mask""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa ), """start_labels""": jnp.array(features["start_token"] , dtype=jnp.intaa ), """end_labels""": jnp.array(features["end_token"] , dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["category"] , dtype=jnp.intaa ), } return batch def __SCREAMING_SNAKE_CASE ( self : Dict , __a : str ) -> Union[str, Any]: _UpperCamelCase : List[Any] = [self._fetch_inputs(SCREAMING_SNAKE_CASE_ ) for ids in input_ids] return zip(*SCREAMING_SNAKE_CASE_ ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Optional[int] ) -> List[str]: _UpperCamelCase : Tuple = [1 for _ in range(len(SCREAMING_SNAKE_CASE_ ) )] while len(SCREAMING_SNAKE_CASE_ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=None ) -> Optional[Any]: """simple docstring""" if seed is not None: _UpperCamelCase : Any = dataset.shuffle(seed=lowercase_ ) for i in range(len(lowercase_ ) // batch_size ): _UpperCamelCase : List[str] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowercase_ ) @partial(jax.pmap ,axis_name="batch" ) def lowercase__ ( lowercase_ ,lowercase_ ,**lowercase_ ) -> int: """simple docstring""" def loss_fn(lowercase_ ): _UpperCamelCase : Dict = model_inputs.pop("start_labels" ) _UpperCamelCase : List[Any] = model_inputs.pop("end_labels" ) _UpperCamelCase : List[Any] = model_inputs.pop("pooled_labels" ) _UpperCamelCase : List[Any] = state.apply_fn(**lowercase_ ,params=lowercase_ ,dropout_rng=lowercase_ ,train=lowercase_ ) _UpperCamelCase : Any = outputs return state.loss_fn( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,) _UpperCamelCase : Optional[int] = jax.random.split(lowercase_ ) _UpperCamelCase : Tuple = jax.value_and_grad(lowercase_ ) _UpperCamelCase : Optional[int] = grad_fn(state.params ) _UpperCamelCase : Tuple = jax.lax.pmean({"loss": loss} ,axis_name="batch" ) _UpperCamelCase : Any = jax.lax.pmean(lowercase_ ,"batch" ) _UpperCamelCase : str = state.apply_gradients(grads=lowercase_ ) return state, metrics, new_drp_rng @partial(jax.pmap ,axis_name="batch" ) def lowercase__ ( lowercase_ ,**lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : Tuple = model_inputs.pop("start_labels" ) _UpperCamelCase : List[str] = model_inputs.pop("end_labels" ) _UpperCamelCase : int = model_inputs.pop("pooled_labels" ) _UpperCamelCase : List[Any] = state.apply_fn(**lowercase_ ,params=state.params ,train=lowercase_ ) _UpperCamelCase : Optional[int] = outputs _UpperCamelCase : Optional[Any] = state.loss_fn(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) _UpperCamelCase : List[str] = jax.lax.pmean({"loss": loss} ,axis_name="batch" ) return metrics class __SCREAMING_SNAKE_CASE ( train_state.TrainState ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Callable = struct.field(pytree_node=UpperCAmelCase_ ) @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :Args SCREAMING_SNAKE_CASE__ :Callable SCREAMING_SNAKE_CASE__ :Callable SCREAMING_SNAKE_CASE__ :Callable SCREAMING_SNAKE_CASE__ :Callable SCREAMING_SNAKE_CASE__ :wandb SCREAMING_SNAKE_CASE__ :Callable = None def __SCREAMING_SNAKE_CASE ( self : Any , __a : List[str] , __a : Any , __a : Optional[Any] , __a : List[str]=None ) -> Optional[int]: _UpperCamelCase : List[str] = model.params _UpperCamelCase : Dict = TrainState.create( apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , loss_fn=SCREAMING_SNAKE_CASE_ , ) if ckpt_dir is not None: _UpperCamelCase : str = restore_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _UpperCamelCase : str = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } _UpperCamelCase : Any = build_tx(**SCREAMING_SNAKE_CASE_ ) _UpperCamelCase : List[str] = train_state.TrainState( step=SCREAMING_SNAKE_CASE_ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , opt_state=SCREAMING_SNAKE_CASE_ , ) _UpperCamelCase : Optional[Any] = args _UpperCamelCase : Union[str, Any] = data_collator _UpperCamelCase : str = lr _UpperCamelCase : Union[str, Any] = params _UpperCamelCase : Dict = jax_utils.replicate(SCREAMING_SNAKE_CASE_ ) return state def __SCREAMING_SNAKE_CASE ( self : int , __a : int , __a : str , __a : Optional[Any] ) -> Union[str, Any]: _UpperCamelCase : Tuple = self.args _UpperCamelCase : List[str] = len(SCREAMING_SNAKE_CASE_ ) // args.batch_size _UpperCamelCase : int = jax.random.PRNGKey(0 ) _UpperCamelCase : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count() ) for epoch in range(args.max_epochs ): _UpperCamelCase : Tuple = jnp.array(0 , dtype=jnp.floataa ) _UpperCamelCase : List[str] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , args.batch_size , seed=SCREAMING_SNAKE_CASE_ ) _UpperCamelCase : List[str] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc=F'''Running EPOCH-{epoch}''' ): _UpperCamelCase : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_ ) _UpperCamelCase : List[Any] = self.train_step_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 if i % args.logging_steps == 0: _UpperCamelCase : List[str] = jax_utils.unreplicate(state.step ) _UpperCamelCase : str = running_loss.item() / i _UpperCamelCase : Tuple = self.scheduler_fn(state_step - 1 ) _UpperCamelCase : Tuple = self.evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _UpperCamelCase : List[Any] = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(SCREAMING_SNAKE_CASE_ ) ) self.logger.log(SCREAMING_SNAKE_CASE_ , commit=SCREAMING_SNAKE_CASE_ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'''-e{epoch}-s{i}''' , state=SCREAMING_SNAKE_CASE_ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Dict , __a : Optional[int] ) -> Union[str, Any]: _UpperCamelCase : Dict = get_batched_dataset(SCREAMING_SNAKE_CASE_ , self.args.batch_size ) _UpperCamelCase : Tuple = len(SCREAMING_SNAKE_CASE_ ) // self.args.batch_size _UpperCamelCase : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa ) _UpperCamelCase : Optional[Any] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc="Evaluating ... " ): _UpperCamelCase : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_ ) _UpperCamelCase : List[Any] = self.val_step_fn(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 return running_loss / i def __SCREAMING_SNAKE_CASE ( self : str , __a : Tuple , __a : List[Any] ) -> Optional[Any]: _UpperCamelCase : Tuple = jax_utils.unreplicate(SCREAMING_SNAKE_CASE_ ) print(F'''SAVING CHECKPOINT IN {save_dir}''' , end=" ... " ) self.model_save_fn(SCREAMING_SNAKE_CASE_ , params=state.params ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , "opt_state.msgpack" ) , "wb" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE_ , "args.joblib" ) ) joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE_ , "data_collator.joblib" ) ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , "training_state.json" ) , "w" ) as f: json.dump({"step": state.step.item()} , SCREAMING_SNAKE_CASE_ ) print("DONE" ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" print(F'''RESTORING CHECKPOINT FROM {save_dir}''' ,end=" ... " ) with open(os.path.join(lowercase_ ,"flax_model.msgpack" ) ,"rb" ) as f: _UpperCamelCase : Optional[Any] = from_bytes(state.params ,f.read() ) with open(os.path.join(lowercase_ ,"opt_state.msgpack" ) ,"rb" ) as f: _UpperCamelCase : Dict = from_bytes(state.opt_state ,f.read() ) _UpperCamelCase : Any = joblib.load(os.path.join(lowercase_ ,"args.joblib" ) ) _UpperCamelCase : Optional[int] = joblib.load(os.path.join(lowercase_ ,"data_collator.joblib" ) ) with open(os.path.join(lowercase_ ,"training_state.json" ) ,"r" ) as f: _UpperCamelCase : int = json.load(lowercase_ ) _UpperCamelCase : Optional[Any] = training_state["""step"""] print("DONE" ) return params, opt_state, step, args, data_collator def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[int] = num_train_steps - warmup_steps _UpperCamelCase : int = optax.linear_schedule(init_value=lowercase_ ,end_value=lowercase_ ,transition_steps=lowercase_ ) _UpperCamelCase : Optional[int] = optax.linear_schedule(init_value=lowercase_ ,end_value=1e-7 ,transition_steps=lowercase_ ) _UpperCamelCase : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] ,boundaries=[warmup_steps] ) return lr def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" def weight_decay_mask(lowercase_ ): _UpperCamelCase : Dict = traverse_util.flatten_dict(lowercase_ ) _UpperCamelCase : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(lowercase_ ) _UpperCamelCase : Optional[int] = scheduler_fn(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) _UpperCamelCase : int = optax.adamw(learning_rate=lowercase_ ,weight_decay=lowercase_ ,mask=lowercase_ ) return tx, lr
624
lowerCamelCase__ : List[str] = """ # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase__ : List[Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase__ : int = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
12
0
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase_ ( self : List[Any] ): a__ = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) a__ = AutoTokenizer.from_pretrained("google/mt5-small" ) a__ = tokenizer("Hello there" ,return_tensors="np" ).input_ids a__ = tokenizer("Hi I am" ,return_tensors="np" ).input_ids a__ = shift_tokens_right(SCREAMING_SNAKE_CASE_ ,model.config.pad_token_id ,model.config.decoder_start_token_id ) a__ = model(SCREAMING_SNAKE_CASE_ ,decoder_input_ids=SCREAMING_SNAKE_CASE_ ).logits a__ = optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE_ ,onehot(SCREAMING_SNAKE_CASE_ ,logits.shape[-1] ) ).mean() a__ = -(labels.shape[-1] * loss.item()) a__ = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
331
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ): '''simple docstring''' lowercase__ : str = parent lowercase__ : Optional[int] = batch_size lowercase__ : Optional[int] = seq_length lowercase__ : Union[str, Any] = is_training lowercase__ : Any = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : Optional[Any] = use_labels lowercase__ : Optional[int] = vocab_size lowercase__ : Optional[Any] = hidden_size lowercase__ : Any = rotary_dim lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Tuple = num_attention_heads lowercase__ : Tuple = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : Optional[Any] = hidden_dropout_prob lowercase__ : int = attention_probs_dropout_prob lowercase__ : Any = max_position_embeddings lowercase__ : Optional[int] = initializer_range lowercase__ : Optional[int] = None lowercase__ : str = vocab_size - 1 lowercase__ : Any = vocab_size - 1 lowercase__ : Dict = vocab_size - 1 def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ : Any = None if self.use_input_mask: lowercase__ : Dict = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ : List[Any] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Optional[Any] = config_and_inputs lowercase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = 20 lowercase__ : int = model_class_name(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_) lowercase__ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase__ : Tuple = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) lowercase__ : List[str] = model( input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase__ : str = model( input_ids[:, -1:] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE_) lowercase__ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}') def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Union[str, Any] = 20 lowercase__ : List[Any] = model_class_name(SCREAMING_SNAKE_CASE_) lowercase__ : Dict = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , ) lowercase__ : Dict = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) lowercase__ : Any = model( input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : int = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase__ : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_) lowercase__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}') @require_flax class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Dict = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowerCAmelCase : str = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = FlaxGPTJModelTester(self) def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ , lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ , lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @tooslow def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""") lowercase__ : List[str] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""") lowercase__ : Optional[Any] = False lowercase__ : List[str] = model.config.eos_token_id lowercase__ : List[Any] = jax.jit(model.generate) lowercase__ : Tuple = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id).sequences lowercase__ : List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @is_pt_flax_cross_test def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs lowercase__ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Any = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase__ : str = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ , lowercase__ : Dict = pt_inputs["""input_ids"""].shape lowercase__ : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : str = 0 lowercase__ : List[Any] = 1 lowercase__ : Dict = 0 lowercase__ : Any = 1 lowercase__ : List[Any] = pt_model_class(SCREAMING_SNAKE_CASE_).eval() lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa) lowercase__ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = fx_state with torch.no_grad(): lowercase__ : Optional[int] = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple() lowercase__ : Dict = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_pt=SCREAMING_SNAKE_CASE_) lowercase__ : str = fx_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output_loaded, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2) @is_pt_flax_cross_test def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs lowercase__ : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = pt_model_class(SCREAMING_SNAKE_CASE_).eval() lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa) lowercase__ : Optional[int] = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , fx_model.params) lowercase__ , lowercase__ : str = pt_inputs["""input_ids"""].shape lowercase__ : List[Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Tuple = 0 lowercase__ : int = 1 lowercase__ : str = 0 lowercase__ : str = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowercase__ : Dict = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple() lowercase__ : Optional[Any] = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = pt_model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_flax=SCREAMING_SNAKE_CASE_) with torch.no_grad(): lowercase__ : Tuple = pt_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) @tooslow def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ : Any = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""") lowercase__ : int = model(np.ones((1, 1))) self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
12
0
from math import sqrt def __lowerCAmelCase ( _UpperCamelCase : Tuple ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowercase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] = 1_00_01 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 1 while count != nth and number < 3: number += 1 if is_prime(lowercase_ ): count += 1 while count != nth: number += 2 if is_prime(lowercase_ ): count += 1 return number if __name__ == "__main__": print(F"""{solution() = }""")
439
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Any = ['image_processor', 'tokenizer'] __lowerCAmelCase : Union[str, Any] = 'AutoImageProcessor' __lowerCAmelCase : int = 'AutoTokenizer' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = self.image_processor def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""") if text is not None: lowercase__ : List[str] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) if images is not None: lowercase__ : Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) if text is not None and images is not None: lowercase__ : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_) , tensor_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) @property def lowercase__ ( self): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
12
0
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __SCREAMING_SNAKE_CASE ( UpperCAmelCase_ , unittest.TestCase ): __a =RoCBertTokenizer __a =None __a =False __a =True __a =filter_non_english def __UpperCamelCase ( self ) ->Union[str, Any]: '''simple docstring''' super().setUp() __a = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] __a = {} __a = {} for i, value in enumerate(SCREAMING_SNAKE_CASE_ ): __a = i __a = i __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) def __UpperCamelCase ( self ) ->str: '''simple docstring''' __a = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __a = tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_ ) , [5, 6, 2, 5, 7, 8] ) def __UpperCamelCase ( self ) ->int: '''simple docstring''' __a = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def __UpperCamelCase ( self ) ->Optional[Any]: '''simple docstring''' __a = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __UpperCamelCase ( self ) ->Optional[Any]: '''simple docstring''' __a = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def __UpperCamelCase ( self ) ->int: '''simple docstring''' __a = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __UpperCamelCase ( self ) ->Optional[Any]: '''simple docstring''' __a = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __UpperCamelCase ( self ) ->int: '''simple docstring''' __a = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __UpperCamelCase ( self ) ->List[str]: '''simple docstring''' __a = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __UpperCamelCase ( self ) ->List[Any]: '''simple docstring''' __a = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __UpperCamelCase ( self ) ->str: '''simple docstring''' __a = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def __UpperCamelCase ( self ) ->Optional[int]: '''simple docstring''' __a = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] __a = {} for i, token in enumerate(SCREAMING_SNAKE_CASE_ ): __a = i __a = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def __UpperCamelCase ( self ) ->List[str]: '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def __UpperCamelCase ( self ) ->Union[str, Any]: '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def __UpperCamelCase ( self ) ->Tuple: '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def __UpperCamelCase ( self ) ->Optional[int]: '''simple docstring''' __a = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: __a = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def __UpperCamelCase ( self ) ->List[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __a = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __a = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" __a = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , ) __a = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , 'do_lower_case' ) else False __a = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def __UpperCamelCase ( self ) ->Any: '''simple docstring''' __a = ["""的""", """人""", """有"""] __a = """""".join(SCREAMING_SNAKE_CASE_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __a = True __a = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __a = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __a = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __a = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __a = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) __a = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __a = False __a = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __a = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __a = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __a = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __a = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) __a = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) # it is expected that only the first Chinese character is not preceded by "##". __a = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_ ) ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def __UpperCamelCase ( self ) ->Optional[int]: '''simple docstring''' __a = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __a = tokenizer.encode('你好' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __a = tokenizer.encode('你是谁' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __a = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) __a = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def __UpperCamelCase ( self ) ->Optional[Any]: '''simple docstring''' __a = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __a = """你好,你是谁""" __a = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) __a = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) __a = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_ ) __a = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_ ) __a = tokenizer.prepare_for_model( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __a = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
448
def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' if n == 1 or not isinstance(lowercase_ , lowercase_ ): return 0 elif n == 2: return 1 else: lowercase__ : List[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' lowercase__ : Optional[Any] = 0 lowercase__ : Dict = 2 while digits < n: index += 1 lowercase__ : str = len(str(fibonacci(lowercase_ ) ) ) return index def UpperCamelCase ( lowercase_ = 10_00 ) -> int: '''simple docstring''' return fibonacci_digits_index(lowercase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
12
0
from typing import TYPE_CHECKING from ...utils import _LazyModule a_ = {"""processing_wav2vec2_with_lm""": ["""Wav2Vec2ProcessorWithLM"""]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowerCamelCase__ : Any = """Create a default config file for Accelerate with only a few flags set.""" def UpperCamelCase ( lowercase_="no" , lowercase_ = default_json_config_file , lowercase_ = False ) -> Any: '''simple docstring''' lowercase__ : Any = Path(lowercase_ ) path.parent.mkdir(parents=lowercase_ , exist_ok=lowercase_ ) if path.exists(): print( F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' ) return False lowercase__ : int = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' ) lowercase__ : Dict = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): lowercase__ : Any = torch.cuda.device_count() lowercase__ : Any = num_gpus lowercase__ : Optional[int] = False if num_gpus > 1: lowercase__ : Tuple = """MULTI_GPU""" else: lowercase__ : Optional[Any] = """NO""" elif is_xpu_available() and use_xpu: lowercase__ : Union[str, Any] = torch.xpu.device_count() lowercase__ : str = num_xpus lowercase__ : List[Any] = False if num_xpus > 1: lowercase__ : str = """MULTI_XPU""" else: lowercase__ : Optional[Any] = """NO""" elif is_npu_available(): lowercase__ : Tuple = torch.npu.device_count() lowercase__ : Union[str, Any] = num_npus lowercase__ : Union[str, Any] = False if num_npus > 1: lowercase__ : List[Any] = """MULTI_NPU""" else: lowercase__ : int = """NO""" else: lowercase__ : Union[str, Any] = 0 lowercase__ : str = True lowercase__ : Union[str, Any] = 1 lowercase__ : int = """NO""" lowercase__ : Tuple = ClusterConfig(**lowercase_ ) config.to_json_file(lowercase_ ) return path def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' lowercase__ : List[str] = parser.add_parser("""default""" , parents=lowercase_ , help=lowercase_ , formatter_class=lowercase_ ) parser.add_argument( """--config_file""" , default=lowercase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , dest="""save_location""" , ) parser.add_argument( """--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=lowercase_ , help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , ) parser.set_defaults(func=lowercase_ ) return parser def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' lowercase__ : Optional[Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'accelerate configuration saved at {config_file}' )
12
0
import cmath import math def __snake_case ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' lowercase = math.radians(lowercase_ ) lowercase = math.radians(lowercase_ ) # Convert voltage and current to rectangular form lowercase = cmath.rect(lowercase_ , lowercase_ ) lowercase = cmath.rect(lowercase_ , lowercase_ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
441
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Union[str, Any] = 'convbert' def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowercase__ : Dict = vocab_size lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : List[str] = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : Tuple = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : Tuple = max_position_embeddings lowercase__ : Dict = type_vocab_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Dict = layer_norm_eps lowercase__ : Tuple = embedding_size lowercase__ : List[str] = head_ratio lowercase__ : Dict = conv_kernel_size lowercase__ : Dict = num_groups lowercase__ : int = classifier_dropout class _snake_case ( UpperCAmelCase_ ): @property def lowercase__ ( self): '''simple docstring''' if self.task == "multiple-choice": lowercase__ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ : str = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ])
12
0
"""simple docstring""" import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline __magic_name__ : Any = { """n_samples""": 6_4, """horizon""": 3_2, """num_inference_steps""": 2_0, """n_guide_steps""": 2, # can set to 0 for faster sampling, does not use value network """scale_grad_by_std""": True, """scale""": 0.1, """eta""": 0.0, """t_grad_cutoff""": 2, """device""": """cpu""", } if __name__ == "__main__": __magic_name__ : Any = """hopper-medium-v2""" __magic_name__ : Optional[Any] = gym.make(env_name) __magic_name__ : List[Any] = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) __magic_name__ : List[Any] = env.reset() __magic_name__ : Optional[Any] = 0 __magic_name__ : Optional[int] = 0 __magic_name__ : List[str] = 1_0_0_0 __magic_name__ : str = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy __magic_name__ : str = pipeline(obs, planning_horizon=3_2) # execute action in environment __magic_name__ : List[str] = env.step(denorm_actions) __magic_name__ : Union[str, Any] = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:""" f""" {total_score}""" ) # save observations for rendering rollout.append(next_observation.copy()) __magic_name__ : Tuple = next_observation except KeyboardInterrupt: pass print(f"""Total reward: {total_reward}""")
281
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCamelCase__ : Any = datasets.utils.logging.get_logger(__name__) class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ): __lowerCAmelCase : bool = None __lowerCAmelCase : bool = None class _snake_case ( folder_based_builder.FolderBasedBuilder ): __lowerCAmelCase : Optional[Any] = datasets.Audio() __lowerCAmelCase : Union[str, Any] = 'audio' __lowerCAmelCase : str = AudioFolderConfig __lowerCAmelCase : List[str] # definition at the bottom of the script __lowerCAmelCase : Optional[int] = AudioClassification(audio_column='audio' , label_column='label' ) lowerCamelCase__ : int = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] lowerCamelCase__ : int = AUDIO_EXTENSIONS
12
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Optional[int] ): return len(set(lowercase_ ) ) == len(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
447
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : int = (DDPMScheduler,) def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = { """num_train_timesteps""": 10_00, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**SCREAMING_SNAKE_CASE_) return config def lowercase__ ( self): '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2]): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , ) def lowercase__ ( self): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : Union[str, Any] = self.get_scheduler_config() lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0_9_7_9)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.0_2)) < 1E-5 def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.scheduler_classes[0] lowercase__ : str = self.get_scheduler_config() lowercase__ : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = len(SCREAMING_SNAKE_CASE_) lowercase__ : Any = self.dummy_model() lowercase__ : List[Any] = self.dummy_sample_deter lowercase__ : str = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : List[str] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : str = pred_prev_sample lowercase__ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_5_8.9_6_0_6) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = self.scheduler_classes[0] lowercase__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""") lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : Dict = len(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = self.dummy_model() lowercase__ : Union[str, Any] = self.dummy_sample_deter lowercase__ : int = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : Tuple = pred_prev_sample lowercase__ : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_0_2.0_2_9_6) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : str = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : str = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = scheduler.timesteps for i, timestep in enumerate(SCREAMING_SNAKE_CASE_): if i == len(SCREAMING_SNAKE_CASE_) - 1: lowercase__ : Optional[int] = -1 else: lowercase__ : Tuple = timesteps[i + 1] lowercase__ : Any = scheduler.previous_timestep(SCREAMING_SNAKE_CASE_) lowercase__ : int = prev_t.item() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = [1_00, 87, 50, 51, 0] with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`custom_timesteps` must be in descending order."""): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = [1_00, 87, 50, 1, 0] lowercase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_) with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`."""): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : str = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
12
0
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : List[str] ) -> int: '''simple docstring''' a__ = [] def _lowerCAmelCase ( self : List[str] , _snake_case : Dict , _snake_case : Tuple , _snake_case : Optional[Any] , **_snake_case : Any ) -> Optional[int]: '''simple docstring''' self.events.append('on_init_end' ) def _lowerCAmelCase ( self : List[str] , _snake_case : List[Any] , _snake_case : Any , _snake_case : str , **_snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' self.events.append('on_train_begin' ) def _lowerCAmelCase ( self : int , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : Any , **_snake_case : Optional[int] ) -> Tuple: '''simple docstring''' self.events.append('on_train_end' ) def _lowerCAmelCase ( self : List[Any] , _snake_case : int , _snake_case : Optional[int] , _snake_case : Dict , **_snake_case : List[Any] ) -> str: '''simple docstring''' self.events.append('on_epoch_begin' ) def _lowerCAmelCase ( self : List[str] , _snake_case : Tuple , _snake_case : Optional[Any] , _snake_case : List[Any] , **_snake_case : List[str] ) -> Optional[int]: '''simple docstring''' self.events.append('on_epoch_end' ) def _lowerCAmelCase ( self : List[str] , _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : Optional[int] , **_snake_case : Union[str, Any] ) -> List[Any]: '''simple docstring''' self.events.append('on_step_begin' ) def _lowerCAmelCase ( self : str , _snake_case : str , _snake_case : Tuple , _snake_case : Dict , **_snake_case : Union[str, Any] ) -> int: '''simple docstring''' self.events.append('on_step_end' ) def _lowerCAmelCase ( self : Any , _snake_case : Union[str, Any] , _snake_case : str , _snake_case : Optional[int] , **_snake_case : Optional[Any] ) -> List[Any]: '''simple docstring''' self.events.append('on_evaluate' ) def _lowerCAmelCase ( self : Optional[int] , _snake_case : Dict , _snake_case : Dict , _snake_case : Optional[Any] , **_snake_case : Dict ) -> Dict: '''simple docstring''' self.events.append('on_predict' ) def _lowerCAmelCase ( self : Tuple , _snake_case : Tuple , _snake_case : List[Any] , _snake_case : Tuple , **_snake_case : Any ) -> Optional[int]: '''simple docstring''' self.events.append('on_save' ) def _lowerCAmelCase ( self : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : Tuple , **_snake_case : Union[str, Any] ) -> Tuple: '''simple docstring''' self.events.append('on_log' ) def _lowerCAmelCase ( self : Any , _snake_case : List[Any] , _snake_case : List[str] , _snake_case : str , **_snake_case : int ) -> Union[str, Any]: '''simple docstring''' self.events.append('on_prediction_step' ) @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' a__ = tempfile.mkdtemp() def _lowerCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' shutil.rmtree(self.output_dir ) def _lowerCAmelCase ( self : int , _snake_case : int=0 , _snake_case : int=0 , _snake_case : Any=64 , _snake_case : Dict=64 , _snake_case : Any=None , _snake_case : List[Any]=False , **_snake_case : Union[str, Any] ) -> Tuple: '''simple docstring''' a__ = RegressionDataset(length=SCREAMING_SNAKE_CASE_ ) a__ = RegressionDataset(length=SCREAMING_SNAKE_CASE_ ) a__ = RegressionModelConfig(a=SCREAMING_SNAKE_CASE_ , b=SCREAMING_SNAKE_CASE_ ) a__ = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE_ ) a__ = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE_ , report_to=[] , **SCREAMING_SNAKE_CASE_ ) return Trainer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , callbacks=SCREAMING_SNAKE_CASE_ , ) def _lowerCAmelCase ( self : List[Any] , _snake_case : Tuple , _snake_case : Union[str, Any] ) -> List[str]: '''simple docstring''' self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) # Order doesn't matter a__ = sorted(SCREAMING_SNAKE_CASE_ , key=lambda _snake_case : cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cb.__class__.__name__ ) a__ = sorted(SCREAMING_SNAKE_CASE_ , key=lambda _snake_case : cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cb.__class__.__name__ ) for cba, cba in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(SCREAMING_SNAKE_CASE_ , cba.__class__ ) elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE_ ) else: self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowerCAmelCase ( self : Optional[int] , _snake_case : str ) -> Any: '''simple docstring''' a__ = ["""on_init_end""", """on_train_begin"""] a__ = 0 a__ = len(trainer.get_eval_dataloader() ) a__ = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(SCREAMING_SNAKE_CASE_ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _lowerCAmelCase ( self : List[str] ) -> Tuple: '''simple docstring''' a__ = self.get_trainer() a__ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_ ) # Callbacks passed at init are added to the default callbacks a__ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(SCREAMING_SNAKE_CASE_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback a__ = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE_ ) a__ = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_ ) def _lowerCAmelCase ( self : Dict ) -> Any: '''simple docstring''' a__ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] a__ = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(SCREAMING_SNAKE_CASE_ ) expected_callbacks.remove(SCREAMING_SNAKE_CASE_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_ ) a__ = self.get_trainer() a__ = trainer.pop_callback(SCREAMING_SNAKE_CASE_ ) self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_ ) trainer.add_callback(SCREAMING_SNAKE_CASE_ ) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_ ) # We can also add, pop, or remove by instance a__ = self.get_trainer() a__ = trainer.callback_handler.callbacks[0] trainer.remove_callback(SCREAMING_SNAKE_CASE_ ) expected_callbacks.remove(SCREAMING_SNAKE_CASE_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_ ) a__ = self.get_trainer() a__ = trainer.callback_handler.callbacks[0] a__ = trainer.pop_callback(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_ ) trainer.add_callback(SCREAMING_SNAKE_CASE_ ) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_ ) def _lowerCAmelCase ( self : Optional[Any] ) -> str: '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=SCREAMING_SNAKE_CASE_ ) a__ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() a__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_ ) ) # Independent log/save/eval a__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() a__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_ ) ) a__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() a__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_ ) ) a__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() a__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_ ) ) a__ = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() a__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_ ) ) # A bit of everything a__ = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() a__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_ ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: a__ = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(SCREAMING_SNAKE_CASE_ ) in warn_mock.call_args[0][0]
232
def UpperCamelCase ( lowercase_ ) -> float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) lowercase__ : int = sum(lowercase_ ) / len(lowercase_ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
12
0
"""simple docstring""" def __lowerCAmelCase ( lowercase : Union[str, Any] = 50 ) -> int: """simple docstring""" snake_case : List[Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
178
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Any = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 8 , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = do_rescale lowercase__ : List[Any] = rescale_factor lowercase__ : Tuple = do_pad lowercase__ : Optional[Any] = pad_size def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None): '''simple docstring''' lowercase__ , lowercase__ : Optional[int] = get_image_size(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = (old_height // size + 1) * size - old_height lowercase__ : str = (old_width // size + 1) * size - old_width return pad(SCREAMING_SNAKE_CASE_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Union[str, Any] = do_pad if do_pad is not None else self.do_pad lowercase__ : Optional[Any] = pad_size if pad_size is not None else self.pad_size lowercase__ : str = make_list_of_images(SCREAMING_SNAKE_CASE_) if not valid_images(SCREAMING_SNAKE_CASE_): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") # All transformations expect numpy arrays. lowercase__ : List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_) for image in images] if do_rescale: lowercase__ : str = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_) for image in images] if do_pad: lowercase__ : List[str] = [self.pad(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_) for image in images] lowercase__ : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for image in images] lowercase__ : Dict = {"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_)
12
0
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = LxmertTokenizer lowerCamelCase__ = LxmertTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True def A ( self : List[Any] ) -> Union[str, Any]: super().setUp() UpperCAmelCase : Tuple = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def A ( self : List[str] , __snake_case : int ) -> List[str]: UpperCAmelCase : Optional[Any] = """UNwant\u00E9d,running""" UpperCAmelCase : Union[str, Any] = """unwanted, running""" return input_text, output_text def A ( self : Any ) -> Union[str, Any]: UpperCAmelCase : Dict = self.tokenizer_class(self.vocab_file ) UpperCAmelCase : List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [7, 4, 5, 10, 8, 9] ) def A ( self : List[Any] ) -> Union[str, Any]: if not self.test_rust_tokenizer: return UpperCAmelCase : Tuple = self.get_tokenizer() UpperCAmelCase : Dict = self.get_rust_tokenizer() UpperCAmelCase : List[Any] = """I was born in 92000, and this is falsé.""" UpperCAmelCase : List[str] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase : Any = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCAmelCase : int = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCAmelCase : Tuple = self.get_rust_tokenizer() UpperCAmelCase : List[Any] = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase : Dict = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
127
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowerCamelCase__ : Optional[int] = [ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[Any]: '''simple docstring''' lowercase__ : List[Any] = True while ask_again: lowercase__ : Tuple = input(lowercase_ ) try: if default is not None and len(lowercase_ ) == 0: return default return convert_value(lowercase_ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowercase_ ) def UpperCamelCase ( lowercase_ , lowercase_=[] , lowercase_=None , lowercase_=0 ) -> Union[str, Any]: '''simple docstring''' lowercase__ : List[Any] = BulletMenu(lowercase_ , lowercase_ ) lowercase__ : Any = menu.run(default_choice=lowercase_ ) return convert_value(lowercase_ ) if convert_value is not None else result def UpperCamelCase ( lowercase_ ) -> str: '''simple docstring''' lowercase__ : Union[str, Any] = int(lowercase_ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' lowercase__ : List[str] = int(lowercase_ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def UpperCamelCase ( lowercase_ ) -> str: '''simple docstring''' lowercase__ : str = int(lowercase_ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def UpperCamelCase ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowercase__ : List[Any] = int(lowercase_ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' lowercase__ : List[Any] = int(lowercase_ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def UpperCamelCase ( lowercase_ ) -> Optional[int]: '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _snake_case ( argparse.RawDescriptionHelpFormatter ): def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : int = super()._format_usage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = usage.replace("""<command> [<args>] """ , """""") return usage
12
0
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() ) def lowercase__ ( lowercase_ ,lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : int = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue _UpperCamelCase : Optional[Any] = key.replace("heads.cmd.mim_head.cls.predictions" ,"mmm_image_head" ) _UpperCamelCase : Optional[Any] = key.replace("heads.cmd.mlm_head.cls.predictions" ,"mmm_text_head" ) _UpperCamelCase : Optional[Any] = key.replace("heads.cmd.itm_head.cls" ,"itm_head" ) _UpperCamelCase : Tuple = key.replace("heads.cmd.itm_head.pooler" ,"itm_head.pooler" ) _UpperCamelCase : Optional[Any] = key.replace("heads.cmd.clip_head.logit_scale" ,"flava.logit_scale" ) _UpperCamelCase : Optional[int] = key.replace("heads.fairseq_mlm.cls.predictions" ,"mlm_head" ) _UpperCamelCase : List[Any] = key.replace("heads.imagenet.mim_head.cls.predictions" ,"mim_head" ) _UpperCamelCase : int = key.replace("mm_text_projection" ,"flava.text_to_mm_projection" ) _UpperCamelCase : Optional[Any] = key.replace("mm_image_projection" ,"flava.image_to_mm_projection" ) _UpperCamelCase : Optional[Any] = key.replace("image_encoder.module" ,"flava.image_model" ) _UpperCamelCase : Any = key.replace("text_encoder.module" ,"flava.text_model" ) _UpperCamelCase : Optional[Any] = key.replace("mm_encoder.module.encoder.cls_token" ,"flava.multimodal_model.cls_token" ) _UpperCamelCase : Tuple = key.replace("mm_encoder.module" ,"flava.multimodal_model" ) _UpperCamelCase : Any = key.replace("text_projection" ,"flava.text_projection" ) _UpperCamelCase : List[Any] = key.replace("image_projection" ,"flava.image_projection" ) _UpperCamelCase : str = value.float() for key, value in codebook_state_dict.items(): _UpperCamelCase : Any = value return upgrade @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_=None ) -> Union[str, Any]: """simple docstring""" if config_path is not None: _UpperCamelCase : int = FlavaConfig.from_pretrained(lowercase_ ) else: _UpperCamelCase : Optional[int] = FlavaConfig() _UpperCamelCase : List[Any] = FlavaForPreTraining(lowercase_ ).eval() _UpperCamelCase : Dict = convert_dalle_checkpoint(lowercase_ ,lowercase_ ,save_checkpoint=lowercase_ ) if os.path.exists(lowercase_ ): _UpperCamelCase : Dict = torch.load(lowercase_ ,map_location="cpu" ) else: _UpperCamelCase : Dict = torch.hub.load_state_dict_from_url(lowercase_ ,map_location="cpu" ) _UpperCamelCase : int = upgrade_state_dict(lowercase_ ,lowercase_ ) hf_model.load_state_dict(lowercase_ ) _UpperCamelCase : Optional[int] = hf_model.state_dict() _UpperCamelCase : Optional[int] = count_parameters(lowercase_ ) _UpperCamelCase : Any = count_parameters(lowercase_ ) + count_parameters(lowercase_ ) assert torch.allclose(lowercase_ ,lowercase_ ,atol=1e-3 ) hf_model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") lowerCamelCase__ = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
624
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Tuple = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCamelCase__ ( UpperCAmelCase_ ): """simple docstring""" UpperCamelCase__ = 'philschmid/bart-large-cnn-samsum' UpperCamelCase__ = ( 'This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ' 'and returns a summary of the text.' ) UpperCamelCase__ = 'summarizer' UpperCamelCase__ = AutoTokenizer UpperCamelCase__ = AutoModelForSeqaSeqLM UpperCamelCase__ = ['text'] UpperCamelCase__ = ['text'] def lowerCAmelCase_ ( self : List[str] ,a__ : Any ): return self.pre_processor(SCREAMING_SNAKE_CASE_ ,return_tensors="pt" ,truncation=SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( self : Union[str, Any] ,a__ : List[Any] ): return self.model.generate(**SCREAMING_SNAKE_CASE_ )[0] def lowerCAmelCase_ ( self : str ,a__ : Union[str, Any] ): return self.pre_processor.decode(SCREAMING_SNAKE_CASE_ ,skip_special_tokens=SCREAMING_SNAKE_CASE_ ,clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )
331
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class _snake_case ( UpperCAmelCase_ ): def __init__( self): '''simple docstring''' lowercase__ : List[Any] = [] def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_init_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_train_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_train_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_epoch_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_epoch_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_step_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_step_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_evaluate""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_predict""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_save""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_log""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_prediction_step""") @require_torch class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = tempfile.mkdtemp() def lowercase__ ( self): '''simple docstring''' shutil.rmtree(self.output_dir) def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Any = RegressionDataset(length=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = RegressionDataset(length=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = RegressionModelConfig(a=SCREAMING_SNAKE_CASE_ , b=SCREAMING_SNAKE_CASE_) lowercase__ : Any = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE_) lowercase__ : Any = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE_ , report_to=[] , **SCREAMING_SNAKE_CASE_) return Trainer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , callbacks=SCREAMING_SNAKE_CASE_ , ) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_)) # Order doesn't matter lowercase__ : str = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__) lowercase__ : Tuple = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__) for cba, cba in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(SCREAMING_SNAKE_CASE_ , cba.__class__) elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE_) else: self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : int = ["""on_init_end""", """on_train_begin"""] lowercase__ : Union[str, Any] = 0 lowercase__ : Union[str, Any] = len(trainer.get_eval_dataloader()) lowercase__ : Dict = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader()) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs): expected_events.append("""on_epoch_begin""") for _ in range(SCREAMING_SNAKE_CASE_): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""") if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""") expected_events.append("""on_epoch_end""") if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def lowercase__ ( self): '''simple docstring''' lowercase__ : int = self.get_trainer() lowercase__ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # Callbacks passed at init are added to the default callbacks lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback]) expected_callbacks.append(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : Any = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : Tuple = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.remove(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_) self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) trainer.add_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # We can also add, pop, or remove by instance lowercase__ : Union[str, Any] = self.get_trainer() lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0] trainer.remove_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.remove(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) lowercase__ : str = self.get_trainer() lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) trainer.add_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback]) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # Independent log/save/eval lowercase__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5) trainer.train() lowercase__ : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5) trainer.train() lowercase__ : Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""") trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""") trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""") as warn_mock: lowercase__ : Dict = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(SCREAMING_SNAKE_CASE_) in warn_mock.call_args[0][0]
12
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : Tuple = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys a_ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
439
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = RoCBertTokenizer __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : str = False __lowerCAmelCase : List[Any] = True __lowerCAmelCase : Optional[int] = filter_non_english def lowercase__ ( self): '''simple docstring''' super().setUp() lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] lowercase__ : Dict = {} lowercase__ : Tuple = {} for i, value in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Tuple = i lowercase__ : Any = i lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""]) lowercase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) with open(self.word_shape_file , """w""" , encoding="""utf-8""") as word_shape_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_) with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""") as word_pronunciation_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) lowercase__ : Optional[int] = tokenizer.tokenize("""你好[SEP]你是谁""") self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) def lowercase__ ( self): '''simple docstring''' lowercase__ : int = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""") , ["""ah""", """\u535A""", """\u63A8""", """zz"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""h\u00E9llo"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=["""[UNK]"""]) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""") , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] lowercase__ : Optional[int] = {} for i, token in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = i lowercase__ : Union[str, Any] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""unwanted running""") , ["""un""", """##want""", """##ed""", """runn""", """##ing"""]) self.assertListEqual(tokenizer.tokenize("""unwantedX running""") , ["""[UNK]""", """runn""", """##ing"""]) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_whitespace(""" """)) self.assertTrue(_is_whitespace("""\t""")) self.assertTrue(_is_whitespace("""\r""")) self.assertTrue(_is_whitespace("""\n""")) self.assertTrue(_is_whitespace("""\u00A0""")) self.assertFalse(_is_whitespace("""A""")) self.assertFalse(_is_whitespace("""-""")) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_control("""\u0005""")) self.assertFalse(_is_control("""A""")) self.assertFalse(_is_control(""" """)) self.assertFalse(_is_control("""\t""")) self.assertFalse(_is_control("""\r""")) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_punctuation("""-""")) self.assertTrue(_is_punctuation("""$""")) self.assertTrue(_is_punctuation("""`""")) self.assertTrue(_is_punctuation(""".""")) self.assertFalse(_is_punctuation("""A""")) self.assertFalse(_is_punctuation(""" """)) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) if self.test_rust_tokenizer: lowercase__ : int = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) def lowercase__ ( self): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase__ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' lowercase__ : List[str] = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , ) lowercase__ : str = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , """do_lower_case""") else False lowercase__ : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""])) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = ["""的""", """人""", """有"""] lowercase__ : List[str] = """""".join(SCREAMING_SNAKE_CASE_) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase__ : Union[str, Any] = True lowercase__ : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : str = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Any = False lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) # it is expected that only the first Chinese character is not preceded by "##". lowercase__ : Any = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_) ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @slow def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) lowercase__ : Optional[Any] = tokenizer.encode("""你好""" , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Any = tokenizer.encode("""你是谁""" , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}'): lowercase__ : Optional[int] = """你好,你是谁""" lowercase__ : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) lowercase__ : Any = tokenizer.prepare_for_model( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
12
0
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version __UpperCamelCase : Any = version.parse(importlib_metadata.version("""nltk""")) if NLTK_VERSION >= version.Version("""3.6.4"""): from nltk import word_tokenize __UpperCamelCase : Union[str, Any] = """\ @inproceedings{banarjee2005, title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments}, author = {Banerjee, Satanjeev and Lavie, Alon}, booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization}, month = jun, year = {2005}, address = {Ann Arbor, Michigan}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W05-0909}, pages = {65--72}, } """ __UpperCamelCase : List[Any] = """\ METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic data and 0.331 on the Chinese data. This is shown to be an improvement on using simply unigram-precision, unigram-recall and their harmonic F1 combination. """ __UpperCamelCase : Dict = """ Computes METEOR score of translated segments against one or more references. Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. alpha: Parameter for controlling relative weights of precision and recall. default: 0.9 beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3 gamma: Relative weight assigned to fragmentation penalty. default: 0.5 Returns: 'meteor': meteor score. Examples: >>> meteor = datasets.load_metric('meteor') >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"] >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"] >>> results = meteor.compute(predictions=predictions, references=references) >>> print(round(results[\"meteor\"], 4)) 0.6944 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): def __UpperCamelCase ( self ) ->List[str]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def __UpperCamelCase ( self , lowerCamelCase ) ->Any: '''simple docstring''' import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=0.9 , lowerCamelCase=3 , lowerCamelCase=0.5 ) ->Tuple: '''simple docstring''' if NLTK_VERSION >= version.Version('3.6.5' ): __a = [ meteor_score.single_meteor_score( word_tokenize(SCREAMING_SNAKE_CASE_ ) , word_tokenize(SCREAMING_SNAKE_CASE_ ) , alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , gamma=SCREAMING_SNAKE_CASE_ ) for ref, pred in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] else: __a = [ meteor_score.single_meteor_score(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , gamma=SCREAMING_SNAKE_CASE_ ) for ref, pred in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] return {"meteor": np.mean(SCREAMING_SNAKE_CASE_ )}
448
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class _snake_case ( UpperCAmelCase_ ): def __init__( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.') requires_backends(self , """vision""") self.check_model_type(SCREAMING_SNAKE_CASE_) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' if "text_queries" in kwargs: lowercase__ : Any = kwargs.pop("""text_queries""") if isinstance(SCREAMING_SNAKE_CASE_ , (str, Image.Image)): lowercase__ : Optional[Any] = {"""image""": image, """candidate_labels""": candidate_labels} else: lowercase__ : int = image lowercase__ : List[str] = super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) return results def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = {} if "threshold" in kwargs: lowercase__ : List[Any] = kwargs["""threshold"""] if "top_k" in kwargs: lowercase__ : int = kwargs["""top_k"""] return {}, {}, postprocess_params def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = load_image(inputs["""image"""]) lowercase__ : Any = inputs["""candidate_labels"""] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): lowercase__ : List[str] = candidate_labels.split(""",""") lowercase__ : Tuple = torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) lowercase__ : Union[str, Any] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) yield { "is_last": i == len(SCREAMING_SNAKE_CASE_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = model_inputs.pop("""target_size""") lowercase__ : Optional[int] = model_inputs.pop("""candidate_label""") lowercase__ : Dict = model_inputs.pop("""is_last""") lowercase__ : Union[str, Any] = self.model(**SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : Union[str, Any] = [] for model_output in model_outputs: lowercase__ : Optional[int] = model_output["""candidate_label"""] lowercase__ : Tuple = BaseModelOutput(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.image_processor.post_process_object_detection( outputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ , target_sizes=model_output["""target_size"""])[0] for index in outputs["scores"].nonzero(): lowercase__ : Optional[Any] = outputs["""scores"""][index].item() lowercase__ : Optional[Any] = self._get_bounding_box(outputs["""boxes"""][index][0]) lowercase__ : Tuple = {"""score""": score, """label""": label, """box""": box} results.append(SCREAMING_SNAKE_CASE_) lowercase__ : int = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: x["score"] , reverse=SCREAMING_SNAKE_CASE_) if top_k: lowercase__ : Any = results[:top_k] return results def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""") lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = box.int().tolist() lowercase__ : Optional[int] = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
12
0
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[Any] = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: SCREAMING_SNAKE_CASE : List[str] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: SCREAMING_SNAKE_CASE : Optional[int] = 4 SCREAMING_SNAKE_CASE : Optional[Any] = 48 SCREAMING_SNAKE_CASE : int = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: SCREAMING_SNAKE_CASE : List[str] = [6, 6, 6, 6] SCREAMING_SNAKE_CASE : Any = 60 SCREAMING_SNAKE_CASE : Tuple = [6, 6, 6, 6] SCREAMING_SNAKE_CASE : Dict = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = 4 SCREAMING_SNAKE_CASE : Any = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: SCREAMING_SNAKE_CASE : str = 1 SCREAMING_SNAKE_CASE : Optional[int] = 1 SCREAMING_SNAKE_CASE : Optional[int] = 126 SCREAMING_SNAKE_CASE : Any = 7 SCREAMING_SNAKE_CASE : int = 255.0 SCREAMING_SNAKE_CASE : List[Any] = """""" return config def lowerCamelCase__ ( _a , _a): if "patch_embed.proj" in name and "layers" not in name: SCREAMING_SNAKE_CASE : Dict = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection") if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE : Dict = name.replace("patch_embed.norm" , "embeddings.patch_embeddings.layernorm") if "layers" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace("layers" , "encoder.stages") if "residual_group.blocks" in name: SCREAMING_SNAKE_CASE : Optional[int] = name.replace("residual_group.blocks" , "layers") if "attn.proj" in name: SCREAMING_SNAKE_CASE : int = name.replace("attn.proj" , "attention.output.dense") if "attn" in name: SCREAMING_SNAKE_CASE : Tuple = name.replace("attn" , "attention.self") if "norm1" in name: SCREAMING_SNAKE_CASE : int = name.replace("norm1" , "layernorm_before") if "norm2" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace("norm2" , "layernorm_after") if "mlp.fc1" in name: SCREAMING_SNAKE_CASE : List[Any] = name.replace("mlp.fc1" , "intermediate.dense") if "mlp.fc2" in name: SCREAMING_SNAKE_CASE : Dict = name.replace("mlp.fc2" , "output.dense") if "q_bias" in name: SCREAMING_SNAKE_CASE : Any = name.replace("q_bias" , "query.bias") if "k_bias" in name: SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("k_bias" , "key.bias") if "v_bias" in name: SCREAMING_SNAKE_CASE : Dict = name.replace("v_bias" , "value.bias") if "cpb_mlp" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace("cpb_mlp" , "continuous_position_bias_mlp") if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE : List[Any] = name.replace("patch_embed.proj" , "patch_embed.projection") if name == "norm.weight": SCREAMING_SNAKE_CASE : Union[str, Any] = """layernorm.weight""" if name == "norm.bias": SCREAMING_SNAKE_CASE : List[str] = """layernorm.bias""" if "conv_first" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace("conv_first" , "first_convolution") if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: SCREAMING_SNAKE_CASE : List[Any] = name.replace("conv_last" , "final_convolution") if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: SCREAMING_SNAKE_CASE : Optional[int] = name.replace("conv_before_upsample.0" , "conv_before_upsample") if "upsample.0" in name: SCREAMING_SNAKE_CASE : Dict = name.replace("upsample.0" , "upsample.convolution_0") if "upsample.2" in name: SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("upsample.2" , "upsample.convolution_1") SCREAMING_SNAKE_CASE : List[str] = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("upsample.0.weight" , "upsample.conv.weight") SCREAMING_SNAKE_CASE : int = name.replace("upsample.0.bias" , "upsample.conv.bias") else: pass else: SCREAMING_SNAKE_CASE : str = """swin2sr.""" + name return name def lowerCamelCase__ ( _a , _a): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE : str = orig_state_dict.pop(lowercase_) if "qkv" in key: SCREAMING_SNAKE_CASE : Any = key.split(".") SCREAMING_SNAKE_CASE : List[Any] = int(key_split[1]) SCREAMING_SNAKE_CASE : Dict = int(key_split[4]) SCREAMING_SNAKE_CASE : Optional[Any] = config.embed_dim if "weight" in key: SCREAMING_SNAKE_CASE : List[str] = val[:dim, :] SCREAMING_SNAKE_CASE : List[str] = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE : Optional[Any] = val[-dim:, :] else: SCREAMING_SNAKE_CASE : Optional[Any] = val[:dim] SCREAMING_SNAKE_CASE : List[Any] = val[dim : dim * 2] SCREAMING_SNAKE_CASE : Optional[int] = val[-dim:] pass else: SCREAMING_SNAKE_CASE : Optional[Any] = val return orig_state_dict def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Dict = get_config(lowercase_) SCREAMING_SNAKE_CASE : Any = SwinaSRForImageSuperResolution(lowercase_) model.eval() SCREAMING_SNAKE_CASE : List[str] = torch.hub.load_state_dict_from_url(lowercase_ , map_location="cpu") SCREAMING_SNAKE_CASE : Union[str, Any] = convert_state_dict(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE : Dict = model.load_state_dict(lowercase_ , strict=lowercase_) if len(lowercase_) > 0: raise ValueError("Missing keys when converting: {}".format(lowercase_)) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"Unexpected key {key} in state_dict") # verify values SCREAMING_SNAKE_CASE : Any = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" SCREAMING_SNAKE_CASE : Any = Image.open(requests.get(lowercase_ , stream=lowercase_).raw).convert("RGB") SCREAMING_SNAKE_CASE : Any = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values SCREAMING_SNAKE_CASE : Optional[int] = 126 if """Jpeg""" in checkpoint_url else 256 SCREAMING_SNAKE_CASE : Union[str, Any] = Compose( [ Resize((image_size, image_size)), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225]), ]) SCREAMING_SNAKE_CASE : Dict = transforms(lowercase_).unsqueeze(0) if config.num_channels == 1: SCREAMING_SNAKE_CASE : Any = pixel_values[:, 0, :, :].unsqueeze(1) SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowercase_) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size([1, 3, 512, 512]) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]]) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: SCREAMING_SNAKE_CASE : List[str] = torch.Size([1, 3, 1024, 1024]) SCREAMING_SNAKE_CASE : int = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]]) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size([1, 3, 1024, 1024]) SCREAMING_SNAKE_CASE : int = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]]) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = torch.Size([1, 3, 512, 512]) SCREAMING_SNAKE_CASE : int = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]]) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = torch.Size([1, 3, 1024, 1024]) SCREAMING_SNAKE_CASE : int = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]]) assert ( outputs.reconstruction.shape == expected_shape ), f"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase_ , atol=1E-3) print("Looks ok!") SCREAMING_SNAKE_CASE : str = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } SCREAMING_SNAKE_CASE : str = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}") model.save_pretrained(lowercase_) print(f"Saving image processor to {pytorch_dump_folder_path}") processor.save_pretrained(lowercase_) if push_to_hub: model.push_to_hub(f"caidas/{model_name}") processor.push_to_hub(f"caidas/{model_name}") if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth', type=str, help='URL of the original Swin2SR checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the converted model to the hub.') a_ = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
25
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowercase__ : str = mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) else: lowercase__ : List[str] = max( mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) , mf_knapsack(i - 1 , lowercase_ , lowercase_ , j - wt[i - 1] ) + val[i - 1] , ) lowercase__ : List[Any] = val return f[i][j] def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowercase__ : Any = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowercase__ : List[Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowercase__ : Tuple = dp[i - 1][w_] return dp[n][w_], dp def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' if not (isinstance(lowercase_ , (list, tuple) ) and isinstance(lowercase_ , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) lowercase__ : str = len(lowercase_ ) if num_items != len(lowercase_ ): lowercase__ : Optional[int] = ( """The number of weights must be the same as the number of values.\n""" F'But got {num_items} weights and {len(lowercase_ )} values' ) raise ValueError(lowercase_ ) for i in range(lowercase_ ): if not isinstance(wt[i] , lowercase_ ): lowercase__ : int = ( """All weights must be integers but got weight of """ F'type {type(wt[i] )} at index {i}' ) raise TypeError(lowercase_ ) lowercase__ , lowercase__ : Tuple = knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : set = set() _construct_solution(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return optimal_val, example_optional_set def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(lowercase_ , lowercase_ , i - 1 , lowercase_ , lowercase_ ) else: optimal_set.add(lowercase_ ) _construct_solution(lowercase_ , lowercase_ , i - 1 , j - wt[i - 1] , lowercase_ ) if __name__ == "__main__": lowerCamelCase__ : Dict = [3, 2, 4, 4] lowerCamelCase__ : List[Any] = [4, 3, 2, 3] lowerCamelCase__ : Optional[int] = 4 lowerCamelCase__ : Dict = 6 lowerCamelCase__ : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowerCamelCase__ , lowerCamelCase__ : int = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowerCamelCase__ , lowerCamelCase__ : Optional[int] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
12
0
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __snake_case ( ): '''simple docstring''' raise RuntimeError("CUDA out of memory." ) class UpperCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self :str ) ->Any: super().__init__() lowercase = nn.Linear(3 , 4 ) lowercase = nn.BatchNormad(4 ) lowercase = nn.Linear(4 , 5 ) def SCREAMING_SNAKE_CASE( self :List[Any] , lowerCAmelCase__ :Any ) ->Dict: return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE_ ) ) ) class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE( self :Optional[Any] ) ->int: lowercase = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowerCAmelCase__ :str ): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE_ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(SCREAMING_SNAKE_CASE_ , [128, 64, 32, 16, 8] ) def SCREAMING_SNAKE_CASE( self :List[str] ) ->Optional[int]: lowercase = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE_ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga lowercase = mock_training_loop_function("hello" ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, "hello"] ) def SCREAMING_SNAKE_CASE( self :Tuple ) ->List[Any]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(lowerCAmelCase__ :Any ): pass with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def SCREAMING_SNAKE_CASE( self :Any ) ->int: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowerCAmelCase__ :str ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def SCREAMING_SNAKE_CASE( self :Any ) ->List[str]: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as cm: mock_training_loop_function(128 , "hello" , "world" ) self.assertIn("Batch size was passed into `f`" , cm.exception.args[0] ) self.assertIn("`f(arg1='hello', arg2='world')" , cm.exception.args[0] ) def SCREAMING_SNAKE_CASE( self :Any ) ->List[str]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowerCAmelCase__ :Any ): raise ValueError("Oops, we had an error!" ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as cm: mock_training_loop_function() self.assertIn("Oops, we had an error!" , cm.exception.args[0] ) @require_cuda def SCREAMING_SNAKE_CASE( self :Dict ) ->int: lowercase = torch.cuda.memory_allocated() lowercase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_ ) lowercase = release_memory(SCREAMING_SNAKE_CASE_ ) self.assertEqual(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_ )
441
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def UpperCamelCase ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def UpperCamelCase ( lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' lowercase__ : int = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowercase__ : Optional[Any] = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" ) lowercase__ : Tuple = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" ) lowercase__ : Optional[Any] = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" ) lowercase__ : Optional[int] = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" ) lowercase__ : List[Any] = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" ) lowercase__ : int = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" ) lowercase__ : Optional[Any] = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" ) lowercase__ : Optional[Any] = key.replace("""image_encoder.module""" , """flava.image_model""" ) lowercase__ : Any = key.replace("""text_encoder.module""" , """flava.text_model""" ) lowercase__ : Optional[Any] = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" ) lowercase__ : Tuple = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" ) lowercase__ : Any = key.replace("""text_projection""" , """flava.text_projection""" ) lowercase__ : List[Any] = key.replace("""image_projection""" , """flava.image_projection""" ) lowercase__ : str = value.float() for key, value in codebook_state_dict.items(): lowercase__ : Any = value return upgrade @torch.no_grad() def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: lowercase__ : int = FlavaConfig.from_pretrained(lowercase_ ) else: lowercase__ : Optional[int] = FlavaConfig() lowercase__ : List[Any] = FlavaForPreTraining(lowercase_ ).eval() lowercase__ : Dict = convert_dalle_checkpoint(lowercase_ , lowercase_ , save_checkpoint=lowercase_ ) if os.path.exists(lowercase_ ): lowercase__ : Dict = torch.load(lowercase_ , map_location="""cpu""" ) else: lowercase__ : Dict = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" ) lowercase__ : int = upgrade_state_dict(lowercase_ , lowercase_ ) hf_model.load_state_dict(lowercase_ ) lowercase__ : Optional[int] = hf_model.state_dict() lowercase__ : Optional[int] = count_parameters(lowercase_ ) lowercase__ : Any = count_parameters(lowercase_ ) + count_parameters(lowercase_ ) assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) hf_model.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCamelCase__ : List[str] = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
12
0
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class __snake_case (unittest.TestCase ): def __a ( self: Dict ): __lowerCamelCase = """ylacombe/bark-small""" __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = """en_speaker_1""" __lowerCamelCase = """This is a test string""" __lowerCamelCase = """speaker_embeddings_path.json""" __lowerCamelCase = """speaker_embeddings""" def __a ( self: Union[str, Any] , **A_: List[Any] ): return AutoTokenizer.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE_ ) def __a ( self: int ): shutil.rmtree(self.tmpdirname ) def __a ( self: Optional[int] ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __a ( self: Optional[Any] ): __lowerCamelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __lowerCamelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __lowerCamelCase = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __a ( self: List[Any] ): __lowerCamelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __lowerCamelCase = 35 __lowerCamelCase = 2 __lowerCamelCase = 8 __lowerCamelCase = { """semantic_prompt""": np.ones(SCREAMING_SNAKE_CASE_ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __lowerCamelCase = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __lowerCamelCase = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __lowerCamelCase = processor(text=self.input_string , voice_preset=self.voice_preset ) def __a ( self: Dict ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = processor(text=self.input_string ) __lowerCamelCase = tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
281
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , ): '''simple docstring''' lowercase__ : List[str] = size if size is not None else {"""height""": 18, """width""": 18} lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : List[str] = num_channels lowercase__ : str = image_size lowercase__ : int = min_resolution lowercase__ : Dict = max_resolution lowercase__ : Tuple = do_resize lowercase__ : Union[str, Any] = size lowercase__ : Any = do_normalize lowercase__ : Tuple = image_mean lowercase__ : str = image_std def lowercase__ ( self): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Optional[Any] = ViTImageProcessor if is_vision_available() else None def lowercase__ ( self): '''simple docstring''' lowercase__ : str = EfficientFormerImageProcessorTester(self) @property def lowercase__ ( self): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_mean""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_std""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size""")) def lowercase__ ( self): '''simple docstring''' pass def lowercase__ ( self): '''simple docstring''' lowercase__ : str = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowercase__ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image) # Test not batched input lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : str = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowercase__ : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray) # Test not batched input lowercase__ : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : Dict = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowercase__ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor) # Test not batched input lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : Any = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
12
0
'''simple docstring''' import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _a : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Any ): warnings.warn( 'The preprocess method is deprecated and will be removed in a future version. Please' ' use VaeImageProcessor.preprocess instead' , lowercase_ , ) if isinstance(lowercase_ , torch.Tensor ): return image elif isinstance(lowercase_ , PIL.Image.Image ): UpperCAmelCase = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCAmelCase = image[0].size UpperCAmelCase = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 UpperCAmelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] UpperCAmelCase = np.concatenate(lowercase_ , axis=0 ) UpperCAmelCase = np.array(lowercase_ ).astype(np.floataa ) / 255.0 UpperCAmelCase = image.transpose(0 , 3 , 1 , 2 ) UpperCAmelCase = 2.0 * image - 1.0 UpperCAmelCase = torch.from_numpy(lowercase_ ) elif isinstance(image[0] , torch.Tensor ): UpperCAmelCase = torch.cat(lowercase_ , dim=0 ) return image def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : int ): if isinstance(lowercase_ , torch.Tensor ): return mask elif isinstance(lowercase_ , PIL.Image.Image ): UpperCAmelCase = [mask] if isinstance(mask[0] , PIL.Image.Image ): UpperCAmelCase = mask[0].size UpperCAmelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 UpperCAmelCase = [np.array(m.convert('L' ).resize((w, h) , resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask] UpperCAmelCase = np.concatenate(lowercase_ , axis=0 ) UpperCAmelCase = mask.astype(np.floataa ) / 255.0 UpperCAmelCase = 0 UpperCAmelCase = 1 UpperCAmelCase = torch.from_numpy(lowercase_ ) elif isinstance(mask[0] , torch.Tensor ): UpperCAmelCase = torch.cat(lowercase_ , dim=0 ) return mask class lowercase_ ( UpperCAmelCase_ ): '''simple docstring''' __lowerCAmelCase : UNetaDModel __lowerCAmelCase : RePaintScheduler def __init__( self , a_ , a_ ) -> Optional[int]: """simple docstring""" super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self , a_ , a_ , a_ = 2_5_0 , a_ = 0.0 , a_ = 1_0 , a_ = 1_0 , a_ = None , a_ = "pil" , a_ = True , ) -> Any: """simple docstring""" UpperCAmelCase = image UpperCAmelCase = _preprocess_image(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = original_image.to(device=self.device , dtype=self.unet.dtype ) UpperCAmelCase = _preprocess_mask(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = mask_image.to(device=self.device , dtype=self.unet.dtype ) UpperCAmelCase = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCAmelCase = original_image.shape UpperCAmelCase = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.device ) UpperCAmelCase = eta UpperCAmelCase = self.scheduler.timesteps[0] + 1 UpperCAmelCase = generator[0] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual UpperCAmelCase = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample # compute previous image: x_t -> x_t-1 UpperCAmelCase = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t UpperCAmelCase = self.scheduler.undo_step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = t UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ )
447
lowerCamelCase__ : dict[tuple[int, int, int], int] = {} def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on lowercase__ : Tuple = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one lowercase__ : Union[str, Any] = _calculate(days - 1 , lowercase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 lowercase__ : List[str] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter lowercase__ : Dict = _calculate(days - 1 , lowercase_ , 0 ) lowercase__ : List[str] = state_late + state_absent + state_ontime lowercase__ : List[Any] = prizestrings return prizestrings def UpperCamelCase ( lowercase_ = 30 ) -> int: '''simple docstring''' return _calculate(lowercase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
12
0
"""simple docstring""" __magic_name__ = """ # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git """ __magic_name__ = [{"""type""": """code""", """content""": INSTALL_CONTENT}] __magic_name__ = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
232
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCamelCase ( ) -> List[Any]: '''simple docstring''' raise RuntimeError("""CUDA out of memory.""" ) class _snake_case ( nn.Module ): def __init__( self): '''simple docstring''' super().__init__() lowercase__ : Optional[Any] = nn.Linear(3 , 4) lowercase__ : Union[str, Any] = nn.BatchNormad(4) lowercase__ : str = nn.Linear(4 , 5) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE_))) class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = [] @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE_) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8]) def lowercase__ ( self): '''simple docstring''' lowercase__ : int = [] @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE_) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga lowercase__ , lowercase__ : int = mock_training_loop_function("""hello""") self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8]) self.assertListEqual([bs, arga] , [8, """hello"""]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): pass with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=1_28) def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function(1_28 , """hello""" , """world""") self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0]) self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0]) def lowercase__ ( self): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(SCREAMING_SNAKE_CASE_): raise ValueError("""Oops, we had an error!""") with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0]) @require_cuda def lowercase__ ( self): '''simple docstring''' lowercase__ : str = torch.cuda.memory_allocated() lowercase__ : str = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = release_memory(SCREAMING_SNAKE_CASE_) self.assertEqual(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
12
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
178
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' lowercase__ : Optional[Any] = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ : List[str] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowercase__ : Optional[int] = 4 lowercase__ : Optional[Any] = 48 lowercase__ : int = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ : List[str] = [6, 6, 6, 6] lowercase__ : Any = 60 lowercase__ : Tuple = [6, 6, 6, 6] lowercase__ : Dict = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ : Tuple = 4 lowercase__ : Any = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowercase__ : str = 1 lowercase__ : Optional[int] = 1 lowercase__ : Optional[int] = 1_26 lowercase__ : Any = 7 lowercase__ : int = 255.0 lowercase__ : List[Any] = """""" return config def UpperCamelCase ( lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: lowercase__ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase__ : Dict = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: lowercase__ : List[str] = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: lowercase__ : Optional[int] = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: lowercase__ : int = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase__ : Tuple = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ : int = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: lowercase__ : Any = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: lowercase__ : Optional[Any] = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: lowercase__ : Dict = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: lowercase__ : Union[str, Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: lowercase__ : List[Any] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": lowercase__ : Union[str, Any] = """layernorm.weight""" if name == "norm.bias": lowercase__ : List[str] = """layernorm.bias""" if "conv_first" in name: lowercase__ : Union[str, Any] = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowercase__ : List[Any] = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowercase__ : Optional[int] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: lowercase__ : Dict = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: lowercase__ : Optional[Any] = name.replace("""upsample.2""" , """upsample.convolution_1""" ) lowercase__ : List[str] = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": lowercase__ : Optional[Any] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) lowercase__ : int = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: lowercase__ : str = """swin2sr.""" + name return name def UpperCamelCase ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase__ : str = orig_state_dict.pop(lowercase_ ) if "qkv" in key: lowercase__ : Any = key.split(""".""" ) lowercase__ : List[Any] = int(key_split[1] ) lowercase__ : Dict = int(key_split[4] ) lowercase__ : Optional[Any] = config.embed_dim if "weight" in key: lowercase__ : List[str] = val[:dim, :] lowercase__ : List[str] = val[dim : dim * 2, :] lowercase__ : Optional[Any] = val[-dim:, :] else: lowercase__ : Optional[Any] = val[:dim] lowercase__ : List[Any] = val[dim : dim * 2] lowercase__ : Optional[int] = val[-dim:] pass else: lowercase__ : Optional[Any] = val return orig_state_dict def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Dict = get_config(lowercase_ ) lowercase__ : Any = SwinaSRForImageSuperResolution(lowercase_ ) model.eval() lowercase__ : List[str] = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" ) lowercase__ : Union[str, Any] = convert_state_dict(lowercase_ , lowercase_ ) lowercase__ , lowercase__ : Dict = model.load_state_dict(lowercase_ , strict=lowercase_ ) if len(lowercase_ ) > 0: raise ValueError("""Missing keys when converting: {}""".format(lowercase_ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowercase__ : Any = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" lowercase__ : Any = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert("""RGB""" ) lowercase__ : Any = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowercase__ : Optional[int] = 1_26 if """Jpeg""" in checkpoint_url else 2_56 lowercase__ : Union[str, Any] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowercase__ : Dict = transforms(lowercase_ ).unsqueeze(0 ) if config.num_channels == 1: lowercase__ : Any = pixel_values[:, 0, :, :].unsqueeze(1 ) lowercase__ : Union[str, Any] = model(lowercase_ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowercase__ : Optional[Any] = torch.Size([1, 3, 5_12, 5_12] ) lowercase__ : Optional[Any] = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ : List[str] = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowercase__ : Optional[Any] = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ : Tuple = torch.Size([1, 3, 5_12, 5_12] ) lowercase__ : int = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ : Tuple = torch.Size([1, 3, 10_24, 10_24] ) lowercase__ : int = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase_ , atol=1E-3 ) print("""Looks ok!""" ) lowercase__ : str = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } lowercase__ : str = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": lowerCamelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""", type=str, help="""URL of the original Swin2SR checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""") lowerCamelCase__ : Any = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
12
0
'''simple docstring''' import itertools import string from collections.abc import Generator, Iterable def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] ) -> Generator[tuple[str, ...], None, None]: UpperCAmelCase : Any = iter(lowercase_ ) while True: UpperCAmelCase : Any = tuple(itertools.islice(lowercase_ , lowercase_ ) ) if not chunk: return yield chunk def snake_case_ ( _lowerCAmelCase : int ) -> str: UpperCAmelCase : Union[str, Any] = """""".join([c.upper() for c in dirty if c in string.ascii_letters] ) UpperCAmelCase : Union[str, Any] = """""" if len(lowercase_ ) < 2: return dirty for i in range(len(lowercase_ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(lowercase_ ) & 1: clean += "X" return clean def snake_case_ ( _lowerCAmelCase : Any ) -> list[str]: UpperCAmelCase : Optional[Any] = """ABCDEFGHIKLMNOPQRSTUVWXYZ""" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler UpperCAmelCase : List[Any] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(lowercase_ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(lowercase_ ) return table def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : int ) -> str: UpperCAmelCase : str = generate_table(lowercase_ ) UpperCAmelCase : Optional[int] = prepare_input(lowercase_ ) UpperCAmelCase : Optional[int] = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowercase_ , 2 ): UpperCAmelCase : Dict = divmod(table.index(lowercase_ ) , 5 ) UpperCAmelCase : Optional[int] = divmod(table.index(lowercase_ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Any ) -> str: UpperCAmelCase : int = generate_table(lowercase_ ) UpperCAmelCase : Tuple = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowercase_ , 2 ): UpperCAmelCase : Optional[int] = divmod(table.index(lowercase_ ) , 5 ) UpperCAmelCase : int = divmod(table.index(lowercase_ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
127
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : BigBirdConfig __lowerCAmelCase : jnp.dtype = jnp.floataa __lowerCAmelCase : bool = True def lowercase__ ( self): '''simple docstring''' super().setup() lowercase__ : Dict = nn.Dense(5 , dtype=self.dtype) def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[str] = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Optional[int] = FlaxBigBirdForNaturalQuestionsModule def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' def cross_entropy(lowercase_ , lowercase_ , lowercase_=None ): lowercase__ : int = logits.shape[-1] lowercase__ : List[str] = (labels[..., None] == jnp.arange(lowercase_ )[None]).astype("""f4""" ) lowercase__ : int = jax.nn.log_softmax(lowercase_ , axis=-1 ) lowercase__ : Any = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase__ : Optional[int] = reduction(lowercase_ ) return loss lowercase__ : int = partial(lowercase_ , reduction=jnp.mean ) lowercase__ : Tuple = cross_entropy(lowercase_ , lowercase_ ) lowercase__ : List[Any] = cross_entropy(lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = cross_entropy(lowercase_ , lowercase_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class _snake_case : __lowerCAmelCase : str = "google/bigbird-roberta-base" __lowerCAmelCase : int = 3_000 __lowerCAmelCase : int = 10_500 __lowerCAmelCase : int = 128 __lowerCAmelCase : int = 3 __lowerCAmelCase : int = 1 __lowerCAmelCase : int = 5 # tx_args __lowerCAmelCase : float = 3e-5 __lowerCAmelCase : float = 0.0 __lowerCAmelCase : int = 20_000 __lowerCAmelCase : float = 0.0_095 __lowerCAmelCase : str = "bigbird-roberta-natural-questions" __lowerCAmelCase : str = "training-expt" __lowerCAmelCase : str = "data/nq-training.jsonl" __lowerCAmelCase : str = "data/nq-validation.jsonl" def lowercase__ ( self): '''simple docstring''' os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE_) lowercase__ : Any = os.path.join(self.base_dir , self.save_dir) lowercase__ : str = self.batch_size_per_device * jax.device_count() @dataclass class _snake_case : __lowerCAmelCase : int __lowerCAmelCase : int = 4_096 # no dynamic padding on TPUs def __call__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = self.collate_fn(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) return batch def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ , lowercase__ : str = self.fetch_inputs(features["""input_ids"""]) lowercase__ : str = { """input_ids""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa), """attention_mask""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa), } return batch def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[Any] = [self._fetch_inputs(SCREAMING_SNAKE_CASE_) for ids in input_ids] return zip(*SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = [1 for _ in range(len(SCREAMING_SNAKE_CASE_))] while len(SCREAMING_SNAKE_CASE_) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> Optional[Any]: '''simple docstring''' if seed is not None: lowercase__ : Any = dataset.shuffle(seed=lowercase_ ) for i in range(len(lowercase_ ) // batch_size ): lowercase__ : List[str] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowercase_ ) @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase ( lowercase_ , lowercase_ , **lowercase_ ) -> int: '''simple docstring''' def loss_fn(lowercase_ ): lowercase__ : Dict = model_inputs.pop("""start_labels""" ) lowercase__ : List[Any] = model_inputs.pop("""end_labels""" ) lowercase__ : List[Any] = model_inputs.pop("""pooled_labels""" ) lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=lowercase_ , dropout_rng=lowercase_ , train=lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Any = outputs return state.loss_fn( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) lowercase__ , lowercase__ : Optional[int] = jax.random.split(lowercase_ ) lowercase__ : Tuple = jax.value_and_grad(lowercase_ ) lowercase__ , lowercase__ : Optional[int] = grad_fn(state.params ) lowercase__ : Tuple = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) lowercase__ : Any = jax.lax.pmean(lowercase_ , """batch""" ) lowercase__ : str = state.apply_gradients(grads=lowercase_ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase ( lowercase_ , **lowercase_ ) -> str: '''simple docstring''' lowercase__ : Tuple = model_inputs.pop("""start_labels""" ) lowercase__ : List[str] = model_inputs.pop("""end_labels""" ) lowercase__ : int = model_inputs.pop("""pooled_labels""" ) lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=state.params , train=lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Optional[int] = outputs lowercase__ : Optional[Any] = state.loss_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : List[str] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class _snake_case ( train_state.TrainState ): __lowerCAmelCase : Callable = struct.field(pytree_node=UpperCAmelCase_ ) @dataclass class _snake_case : __lowerCAmelCase : Args __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : wandb __lowerCAmelCase : Callable = None def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : List[str] = model.params lowercase__ : Dict = TrainState.create( apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , loss_fn=SCREAMING_SNAKE_CASE_ , ) if ckpt_dir is not None: lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = restore_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } lowercase__ , lowercase__ : Any = build_tx(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = train_state.TrainState( step=SCREAMING_SNAKE_CASE_ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , opt_state=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Optional[Any] = args lowercase__ : Union[str, Any] = data_collator lowercase__ : str = lr lowercase__ : Union[str, Any] = params lowercase__ : Dict = jax_utils.replicate(SCREAMING_SNAKE_CASE_) return state def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = self.args lowercase__ : List[str] = len(SCREAMING_SNAKE_CASE_) // args.batch_size lowercase__ : int = jax.random.PRNGKey(0) lowercase__ : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count()) for epoch in range(args.max_epochs): lowercase__ : Tuple = jnp.array(0 , dtype=jnp.floataa) lowercase__ : List[str] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , args.batch_size , seed=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc=f'Running EPOCH-{epoch}'): lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_) lowercase__ , lowercase__ , lowercase__ : List[Any] = self.train_step_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 if i % args.logging_steps == 0: lowercase__ : List[str] = jax_utils.unreplicate(state.step) lowercase__ : str = running_loss.item() / i lowercase__ : Tuple = self.scheduler_fn(state_step - 1) lowercase__ : Tuple = self.evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(SCREAMING_SNAKE_CASE_)) self.logger.log(SCREAMING_SNAKE_CASE_ , commit=SCREAMING_SNAKE_CASE_) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = get_batched_dataset(SCREAMING_SNAKE_CASE_ , self.args.batch_size) lowercase__ : Tuple = len(SCREAMING_SNAKE_CASE_) // self.args.batch_size lowercase__ : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa) lowercase__ : Optional[Any] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc="""Evaluating ... """): lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = self.val_step_fn(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 return running_loss / i def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = jax_utils.unreplicate(SCREAMING_SNAKE_CASE_) print(f'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """) self.model_save_fn(SCREAMING_SNAKE_CASE_ , params=state.params) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """opt_state.msgpack""") , """wb""") as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE_ , """args.joblib""")) joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE_ , """data_collator.joblib""")) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """training_state.json""") , """w""") as f: json.dump({"""step""": state.step.item()} , SCREAMING_SNAKE_CASE_) print("""DONE""") def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ ) with open(os.path.join(lowercase_ , """flax_model.msgpack""" ) , """rb""" ) as f: lowercase__ : Optional[Any] = from_bytes(state.params , f.read() ) with open(os.path.join(lowercase_ , """opt_state.msgpack""" ) , """rb""" ) as f: lowercase__ : Dict = from_bytes(state.opt_state , f.read() ) lowercase__ : Any = joblib.load(os.path.join(lowercase_ , """args.joblib""" ) ) lowercase__ : Optional[int] = joblib.load(os.path.join(lowercase_ , """data_collator.joblib""" ) ) with open(os.path.join(lowercase_ , """training_state.json""" ) , """r""" ) as f: lowercase__ : int = json.load(lowercase_ ) lowercase__ : Optional[Any] = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Optional[int] = num_train_steps - warmup_steps lowercase__ : int = optax.linear_schedule(init_value=lowercase_ , end_value=lowercase_ , transition_steps=lowercase_ ) lowercase__ : Optional[int] = optax.linear_schedule(init_value=lowercase_ , end_value=1E-7 , transition_steps=lowercase_ ) lowercase__ : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' def weight_decay_mask(lowercase_ ): lowercase__ : Dict = traverse_util.flatten_dict(lowercase_ ) lowercase__ : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(lowercase_ ) lowercase__ : Optional[int] = scheduler_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : int = optax.adamw(learning_rate=lowercase_ , weight_decay=lowercase_ , mask=lowercase_ ) return tx, lr
12
0
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_=0 ) -> List[str]: """simple docstring""" if name is None: _UpperCamelCase : List[Any] = None else: _UpperCamelCase : Any = """.""" * max(0 ,spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" _UpperCamelCase : int = fmt.format(lowercase_ ) # Print and recurse (if needed). if isinstance(lowercase_ ,lowercase_ ): if msg is not None: print(lowercase_ ) for k in val.keys(): recursive_print(lowercase_ ,val[k] ,spaces + 2 ) elif isinstance(lowercase_ ,torch.Tensor ): print(lowercase_ ,":" ,val.size() ) else: print(lowercase_ ,":" ,lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : List[Any] = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _UpperCamelCase : Optional[int] = (num_heads, hidden_size, num_splits) + input_shape[1:] _UpperCamelCase : str = param.view(*lowercase_ ) _UpperCamelCase : Dict = param.transpose(0 ,2 ) _UpperCamelCase : Tuple = param.transpose(1 ,2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _UpperCamelCase : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] _UpperCamelCase : int = param.view(*lowercase_ ) _UpperCamelCase : List[Any] = param.transpose(0 ,1 ).contiguous() _UpperCamelCase : List[str] = param.view(*lowercase_ ) return param def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Union[str, Any] = {} # old versions did not store training args _UpperCamelCase : Optional[int] = input_state_dict.get("args" ,lowercase_ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _UpperCamelCase : Optional[int] = ds_args.padded_vocab_size _UpperCamelCase : List[str] = ds_args.max_position_embeddings _UpperCamelCase : Union[str, Any] = ds_args.hidden_size _UpperCamelCase : Union[str, Any] = ds_args.num_layers _UpperCamelCase : List[Any] = ds_args.num_attention_heads _UpperCamelCase : Any = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _UpperCamelCase : Tuple = config.n_head # The hidden_size per head. _UpperCamelCase : List[str] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _UpperCamelCase : str = input_state_dict["""checkpoint_version"""] else: _UpperCamelCase : Optional[int] = 0.0 # The model. _UpperCamelCase : Tuple = input_state_dict["""model"""] # The language model. _UpperCamelCase : List[str] = model["""language_model"""] # The embeddings. _UpperCamelCase : Dict = lm["""embedding"""] # The word embeddings. _UpperCamelCase : Any = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. _UpperCamelCase : List[Any] = word_embeddings[: config.vocab_size, :] _UpperCamelCase : List[str] = word_embeddings # The position embeddings. _UpperCamelCase : Tuple = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _UpperCamelCase : List[str] = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. _UpperCamelCase : Optional[Any] = pos_embeddings # The transformer. _UpperCamelCase : List[str] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. _UpperCamelCase : str = re.compile(r"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)" ) # The simple map of names for "automated" rules. _UpperCamelCase : Optional[int] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. _UpperCamelCase : int = layer_re.match(lowercase_ ) # Stop if that's not a layer if m is None: break # The index of the layer. _UpperCamelCase : Union[str, Any] = int(m.group(1 ) ) # The name of the operation. _UpperCamelCase : Optional[Any] = m.group(2 ) # Is it a weight or a bias? _UpperCamelCase : Optional[int] = m.group(3 ) # The name of the layer. _UpperCamelCase : List[str] = F'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("layernorm" ): _UpperCamelCase : Optional[Any] = """ln_1""" if op_name.startswith("input" ) else """ln_2""" _UpperCamelCase : str = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _UpperCamelCase : List[str] = torch.tril(torch.ones((n_positions, n_positions) ,dtype=torch.floataa ) ).view( 1 ,1 ,lowercase_ ,lowercase_ ) _UpperCamelCase : Any = causal_mask # Insert a "dummy" tensor for masked_bias. _UpperCamelCase : Dict = torch.tensor(-1e4 ,dtype=torch.floataa ) _UpperCamelCase : Tuple = masked_bias _UpperCamelCase : List[Any] = fix_query_key_value_ordering(lowercase_ ,lowercase_ ,3 ,lowercase_ ,lowercase_ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _UpperCamelCase : Optional[int] = out_val.transpose(0 ,1 ).contiguous() # Store. _UpperCamelCase : int = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _UpperCamelCase : List[str] = fix_query_key_value_ordering(lowercase_ ,lowercase_ ,3 ,lowercase_ ,lowercase_ ) # Store. No change of shape. _UpperCamelCase : Dict = out_val # Transpose the weights. elif weight_or_bias == "weight": _UpperCamelCase : List[str] = megatron_to_transformers[op_name] _UpperCamelCase : int = val.transpose(0 ,1 ) # Copy the bias. elif weight_or_bias == "bias": _UpperCamelCase : List[str] = megatron_to_transformers[op_name] _UpperCamelCase : Dict = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _UpperCamelCase : Union[str, Any] = transformer["""final_layernorm.weight"""] _UpperCamelCase : List[Any] = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. _UpperCamelCase : Union[str, Any] = word_embeddings # It should be done! return output_state_dict def lowercase__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("--print-checkpoint-structure" ,action="store_true" ) parser.add_argument( "path_to_checkpoint" ,type=lowercase_ ,help="Path to the checkpoint file (.zip archive or direct .pt file)" ,) parser.add_argument( "--config_file" ,default="" ,type=lowercase_ ,help="An optional config json file describing the pre-trained model." ,) _UpperCamelCase : Optional[int] = parser.parse_args() # Extract the basename. _UpperCamelCase : Union[str, Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(".zip" ): with zipfile.ZipFile(args.path_to_checkpoint ,"r" ) as checkpoint: with checkpoint.open("release/mp_rank_00/model_optim_rng.pt" ) as pytorch_dict: _UpperCamelCase : Union[str, Any] = torch.load(lowercase_ ,map_location="cpu" ) else: _UpperCamelCase : int = torch.load(args.path_to_checkpoint ,map_location="cpu" ) _UpperCamelCase : Optional[int] = input_state_dict.get("args" ,lowercase_ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _UpperCamelCase : int = """gelu_fast""" elif ds_args.openai_gelu: _UpperCamelCase : Tuple = """gelu_new""" else: _UpperCamelCase : Union[str, Any] = """gelu""" else: # in the very early days this used to be "gelu_new" _UpperCamelCase : Optional[int] = """gelu_new""" # Spell out all parameters in case the defaults change. _UpperCamelCase : Tuple = GPTaConfig( vocab_size=50_257 ,n_positions=1_024 ,n_embd=1_024 ,n_layer=24 ,n_head=16 ,n_inner=4_096 ,activation_function=lowercase_ ,resid_pdrop=0.1 ,embd_pdrop=0.1 ,attn_pdrop=0.1 ,layer_norm_epsilon=1e-5 ,initializer_range=0.02 ,summary_type="cls_index" ,summary_use_proj=lowercase_ ,summary_activation=lowercase_ ,summary_proj_to_labels=lowercase_ ,summary_first_dropout=0.1 ,scale_attn_weights=lowercase_ ,use_cache=lowercase_ ,bos_token_id=50_256 ,eos_token_id=50_256 ,) else: _UpperCamelCase : List[str] = GPTaConfig.from_json_file(args.config_file ) _UpperCamelCase : Optional[Any] = ["""GPT2LMHeadModel"""] # Convert. print("Converting" ) _UpperCamelCase : Dict = convert_megatron_checkpoint(lowercase_ ,lowercase_ ,lowercase_ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(lowercase_ ,lowercase_ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _UpperCamelCase : Dict = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _UpperCamelCase : List[Any] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": _UpperCamelCase : str = ds_args.tokenizer_name_or_path else: raise ValueError(F'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: _UpperCamelCase : Union[str, Any] = """gpt2""" _UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained(lowercase_ ) _UpperCamelCase : int = type(lowercase_ ).__name__ _UpperCamelCase : str = tokenizer_class # Store the config to file. print("Saving config" ) config.save_pretrained(lowercase_ ) # Save tokenizer based on args print(F'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(lowercase_ ) # Store the state_dict to file. _UpperCamelCase : Optional[Any] = os.path.join(lowercase_ ,"pytorch_model.bin" ) print(F'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(lowercase_ ,lowercase_ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
624
lowerCamelCase__ : List[str] = """ # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase__ : List[Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase__ : int = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
12
0
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil UpperCamelCase_ : int = 100 UpperCamelCase_ : Optional[Any] = set(range(3, NUM_PRIMES, 2)) primes.add(2) UpperCamelCase_ : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def _lowerCAmelCase (_lowercase ): """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} a__ = set() a__ = 42 a__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def _lowerCAmelCase (_lowercase = 50_00 ): """simple docstring""" for number_to_partition in range(1 , lowercase_ ): if len(partition(lowercase_ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"{solution() = }")
331
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ): '''simple docstring''' lowercase__ : str = parent lowercase__ : Optional[int] = batch_size lowercase__ : Optional[int] = seq_length lowercase__ : Union[str, Any] = is_training lowercase__ : Any = use_input_mask lowercase__ : Optional[int] = use_token_type_ids lowercase__ : Optional[Any] = use_labels lowercase__ : Optional[int] = vocab_size lowercase__ : Optional[Any] = hidden_size lowercase__ : Any = rotary_dim lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Tuple = num_attention_heads lowercase__ : Tuple = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : Optional[Any] = hidden_dropout_prob lowercase__ : int = attention_probs_dropout_prob lowercase__ : Any = max_position_embeddings lowercase__ : Optional[int] = initializer_range lowercase__ : Optional[int] = None lowercase__ : str = vocab_size - 1 lowercase__ : Any = vocab_size - 1 lowercase__ : Dict = vocab_size - 1 def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ : Any = None if self.use_input_mask: lowercase__ : Dict = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ : List[Any] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Optional[Any] = config_and_inputs lowercase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = 20 lowercase__ : int = model_class_name(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_) lowercase__ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase__ : Tuple = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) lowercase__ : List[str] = model( input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase__ : str = model( input_ids[:, -1:] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE_) lowercase__ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}') def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Union[str, Any] = 20 lowercase__ : List[Any] = model_class_name(SCREAMING_SNAKE_CASE_) lowercase__ : Dict = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , ) lowercase__ : Dict = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) lowercase__ : Any = model( input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : int = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase__ : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , ) lowercase__ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_) lowercase__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}') @require_flax class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Dict = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowerCAmelCase : str = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = FlaxGPTJModelTester(self) def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ , lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ , lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @tooslow def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""") lowercase__ : List[str] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""") lowercase__ : Optional[Any] = False lowercase__ : List[str] = model.config.eos_token_id lowercase__ : List[Any] = jax.jit(model.generate) lowercase__ : Tuple = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id).sequences lowercase__ : List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @is_pt_flax_cross_test def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs lowercase__ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Any = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase__ : str = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ , lowercase__ : Dict = pt_inputs["""input_ids"""].shape lowercase__ : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : str = 0 lowercase__ : List[Any] = 1 lowercase__ : Dict = 0 lowercase__ : Any = 1 lowercase__ : List[Any] = pt_model_class(SCREAMING_SNAKE_CASE_).eval() lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa) lowercase__ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = fx_state with torch.no_grad(): lowercase__ : Optional[int] = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple() lowercase__ : Dict = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_pt=SCREAMING_SNAKE_CASE_) lowercase__ : str = fx_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output_loaded, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2) @is_pt_flax_cross_test def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs lowercase__ : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = pt_model_class(SCREAMING_SNAKE_CASE_).eval() lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa) lowercase__ : Optional[int] = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , fx_model.params) lowercase__ , lowercase__ : str = pt_inputs["""input_ids"""].shape lowercase__ : List[Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Tuple = 0 lowercase__ : int = 1 lowercase__ : str = 0 lowercase__ : str = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowercase__ : Dict = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple() lowercase__ : Optional[Any] = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = pt_model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_flax=SCREAMING_SNAKE_CASE_) with torch.no_grad(): lowercase__ : Tuple = pt_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""") for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) @tooslow def lowercase__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ : Any = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""") lowercase__ : int = model(np.ones((1, 1))) self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
12
0
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase ( UpperCAmelCase_ ): def __init__( self : List[Any] , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Optional[Any] = None , snake_case__ : Tuple = None , snake_case__ : Union[str, Any] = False , **snake_case__ : Union[str, Any] , ): """simple docstring""" super().__init__(features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = Sql( cache_dir=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , sql=SCREAMING_SNAKE_CASE_ , con=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE_ , download_mode=SCREAMING_SNAKE_CASE_ , verification_mode=SCREAMING_SNAKE_CASE_ , base_path=SCREAMING_SNAKE_CASE_ , ) # Build dataset for splits SCREAMING_SNAKE_CASE = self.builder.as_dataset( split='train' , verification_mode=SCREAMING_SNAKE_CASE_ , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase : def __init__( self : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Dict = None , snake_case__ : List[Any] = None , **snake_case__ : List[Any] , ): """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) SCREAMING_SNAKE_CASE = dataset SCREAMING_SNAKE_CASE = name SCREAMING_SNAKE_CASE = con SCREAMING_SNAKE_CASE = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE SCREAMING_SNAKE_CASE = num_proc SCREAMING_SNAKE_CASE = to_sql_kwargs def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.to_sql_kwargs.pop('sql' , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = self.to_sql_kwargs.pop('con' , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = self.to_sql_kwargs.pop('index' , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = self._write(index=SCREAMING_SNAKE_CASE_ , **self.to_sql_kwargs ) return written def UpperCamelCase ( self : Any , snake_case__ : str ): """simple docstring""" SCREAMING_SNAKE_CASE = args SCREAMING_SNAKE_CASE = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs SCREAMING_SNAKE_CASE = query_table( table=self.dataset.data , key=slice(SCREAMING_SNAKE_CASE_ , offset + self.batch_size ) , indices=self.dataset._indices , ) SCREAMING_SNAKE_CASE = batch.to_pandas() SCREAMING_SNAKE_CASE = df.to_sql(self.name , self.con , index=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return num_rows or len(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( self : Optional[int] , snake_case__ : str , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: SCREAMING_SNAKE_CASE = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += num_rows return written
439
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Any = ['image_processor', 'tokenizer'] __lowerCAmelCase : Union[str, Any] = 'AutoImageProcessor' __lowerCAmelCase : int = 'AutoTokenizer' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = self.image_processor def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""") if text is not None: lowercase__ : List[str] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) if images is not None: lowercase__ : Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) if text is not None and images is not None: lowercase__ : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_) , tensor_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) @property def lowercase__ ( self): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
12
0
'''simple docstring''' def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: Optional[int] ) -> int: """simple docstring""" if n == 1 or not isinstance(lowercase_, lowercase_ ): return 0 elif n == 2: return 1 else: __a = [0, 1] for i in range(2, n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: Union[str, Any] ) -> int: """simple docstring""" __a = 0 __a = 2 while digits < n: index += 1 __a = len(str(fibonacci(lowercase_ ) ) ) return index def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: Union[str, Any] = 1000 ) -> int: """simple docstring""" return fibonacci_digits_index(lowercase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
448
def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' if n == 1 or not isinstance(lowercase_ , lowercase_ ): return 0 elif n == 2: return 1 else: lowercase__ : List[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' lowercase__ : Optional[Any] = 0 lowercase__ : Dict = 2 while digits < n: index += 1 lowercase__ : str = len(str(fibonacci(lowercase_ ) ) ) return index def UpperCamelCase ( lowercase_ = 10_00 ) -> int: '''simple docstring''' return fibonacci_digits_index(lowercase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
12
0
from collections import defaultdict from math import ceil, sqrt def lowerCamelCase__ ( _a = 1000000 , _a = 10): SCREAMING_SNAKE_CASE : defaultdict = defaultdict(lowercase_) for outer_width in range(3 , (t_limit // 4) + 2): if outer_width * outer_width > t_limit: SCREAMING_SNAKE_CASE : Any = max( ceil(sqrt(outer_width * outer_width - t_limit)) , 1) else: SCREAMING_SNAKE_CASE : List[str] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(lowercase_ , outer_width - 1 , 2): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10) if __name__ == "__main__": print(F'''{solution() = }''')
25
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowerCamelCase__ : Any = """Create a default config file for Accelerate with only a few flags set.""" def UpperCamelCase ( lowercase_="no" , lowercase_ = default_json_config_file , lowercase_ = False ) -> Any: '''simple docstring''' lowercase__ : Any = Path(lowercase_ ) path.parent.mkdir(parents=lowercase_ , exist_ok=lowercase_ ) if path.exists(): print( F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' ) return False lowercase__ : int = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' ) lowercase__ : Dict = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): lowercase__ : Any = torch.cuda.device_count() lowercase__ : Any = num_gpus lowercase__ : Optional[int] = False if num_gpus > 1: lowercase__ : Tuple = """MULTI_GPU""" else: lowercase__ : Optional[Any] = """NO""" elif is_xpu_available() and use_xpu: lowercase__ : Union[str, Any] = torch.xpu.device_count() lowercase__ : str = num_xpus lowercase__ : List[Any] = False if num_xpus > 1: lowercase__ : str = """MULTI_XPU""" else: lowercase__ : Optional[Any] = """NO""" elif is_npu_available(): lowercase__ : Tuple = torch.npu.device_count() lowercase__ : Union[str, Any] = num_npus lowercase__ : Union[str, Any] = False if num_npus > 1: lowercase__ : List[Any] = """MULTI_NPU""" else: lowercase__ : int = """NO""" else: lowercase__ : Union[str, Any] = 0 lowercase__ : str = True lowercase__ : Union[str, Any] = 1 lowercase__ : int = """NO""" lowercase__ : Tuple = ClusterConfig(**lowercase_ ) config.to_json_file(lowercase_ ) return path def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' lowercase__ : List[str] = parser.add_parser("""default""" , parents=lowercase_ , help=lowercase_ , formatter_class=lowercase_ ) parser.add_argument( """--config_file""" , default=lowercase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , dest="""save_location""" , ) parser.add_argument( """--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=lowercase_ , help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , ) parser.set_defaults(func=lowercase_ ) return parser def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' lowercase__ : Optional[Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'accelerate configuration saved at {config_file}' )
12
0
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase : int = (DDPMScheduler,) def SCREAMING_SNAKE_CASE( self :List[str] , **lowerCAmelCase__ :Optional[int] ) ->Dict: lowercase = { """num_train_timesteps""": 1000, """beta_start""": 0.00_01, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**SCREAMING_SNAKE_CASE_ ) return config def SCREAMING_SNAKE_CASE( self :List[str] ) ->List[str]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE( self :Dict ) ->Any: for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE( self :List[Any] ) ->int: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE( self :Tuple ) ->Union[str, Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE( self :Union[str, Any] ) ->Dict: for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE( self :Union[str, Any] ) ->List[str]: self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , ) def SCREAMING_SNAKE_CASE( self :Dict ) ->Dict: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE( self :List[Any] ) ->List[Any]: for t in [0, 500, 999]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE( self :Union[str, Any] ) ->int: lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**SCREAMING_SNAKE_CASE_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_09_79 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def SCREAMING_SNAKE_CASE( self :str ) ->str: lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**SCREAMING_SNAKE_CASE_ ) lowercase = len(SCREAMING_SNAKE_CASE_ ) lowercase = self.dummy_model() lowercase = self.dummy_sample_deter lowercase = torch.manual_seed(0 ) for t in reversed(range(SCREAMING_SNAKE_CASE_ ) ): # 1. predict noise residual lowercase = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 2. predict previous mean of sample x_t-1 lowercase = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase = pred_prev_sample lowercase = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) lowercase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.33_72 ) < 1E-3 def SCREAMING_SNAKE_CASE( self :Tuple ) ->List[str]: lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(prediction_type="v_prediction" ) lowercase = scheduler_class(**SCREAMING_SNAKE_CASE_ ) lowercase = len(SCREAMING_SNAKE_CASE_ ) lowercase = self.dummy_model() lowercase = self.dummy_sample_deter lowercase = torch.manual_seed(0 ) for t in reversed(range(SCREAMING_SNAKE_CASE_ ) ): # 1. predict noise residual lowercase = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 2. predict previous mean of sample x_t-1 lowercase = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase = pred_prev_sample lowercase = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) lowercase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.26_31 ) < 1E-3 def SCREAMING_SNAKE_CASE( self :Optional[Any] ) ->Dict: lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**SCREAMING_SNAKE_CASE_ ) lowercase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ ) lowercase = scheduler.timesteps for i, timestep in enumerate(SCREAMING_SNAKE_CASE_ ): if i == len(SCREAMING_SNAKE_CASE_ ) - 1: lowercase = -1 else: lowercase = timesteps[i + 1] lowercase = scheduler.previous_timestep(SCREAMING_SNAKE_CASE_ ) lowercase = prev_t.item() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE( self :Union[str, Any] ) ->str: lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**SCREAMING_SNAKE_CASE_ ) lowercase = [100, 87, 50, 51, 0] with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE( self :Optional[Any] ) ->Dict: lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**SCREAMING_SNAKE_CASE_ ) lowercase = [100, 87, 50, 1, 0] lowercase = len(SCREAMING_SNAKE_CASE_ ) with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE( self :List[str] ) ->str: lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**SCREAMING_SNAKE_CASE_ ) lowercase = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ )
441
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Union[str, Any] = 'convbert' def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowercase__ : Dict = vocab_size lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : List[str] = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : Tuple = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : Tuple = max_position_embeddings lowercase__ : Dict = type_vocab_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Dict = layer_norm_eps lowercase__ : Tuple = embedding_size lowercase__ : List[str] = head_ratio lowercase__ : Dict = conv_kernel_size lowercase__ : Dict = num_groups lowercase__ : int = classifier_dropout class _snake_case ( UpperCAmelCase_ ): @property def lowercase__ ( self): '''simple docstring''' if self.task == "multiple-choice": lowercase__ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ : str = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ])
12
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __snake_case (unittest.TestCase ): def __a ( self: Tuple ): __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) __lowerCamelCase = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } __lowerCamelCase = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __a ( self: Tuple , **A_: Tuple ): return BertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def __a ( self: List[Any] , **A_: Optional[Any] ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def __a ( self: str , **A_: List[Any] ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def __a ( self: Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def __a ( self: int ): __lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCamelCase = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __a ( self: List[str] ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = self.get_image_processor() __lowerCamelCase = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCamelCase = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCamelCase = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE_ ) def __a ( self: Tuple ): __lowerCamelCase = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __lowerCamelCase = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) __lowerCamelCase = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) def __a ( self: List[str] ): __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""np""" ) __lowerCamelCase = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __a ( self: Any ): __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = """lower newer""" __lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __a ( self: List[Any] ): __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = """lower newer""" __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def __a ( self: Tuple ): __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCamelCase = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __a ( self: Any ): __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = AlignProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = """lower newer""" __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
281
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCamelCase__ : Any = datasets.utils.logging.get_logger(__name__) class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ): __lowerCAmelCase : bool = None __lowerCAmelCase : bool = None class _snake_case ( folder_based_builder.FolderBasedBuilder ): __lowerCAmelCase : Optional[Any] = datasets.Audio() __lowerCAmelCase : Union[str, Any] = 'audio' __lowerCAmelCase : str = AudioFolderConfig __lowerCAmelCase : List[str] # definition at the bottom of the script __lowerCAmelCase : Optional[int] = AudioClassification(audio_column='audio' , label_column='label' ) lowerCamelCase__ : int = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] lowerCamelCase__ : int = AUDIO_EXTENSIONS
12
0
'''simple docstring''' # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _a : List[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model _a : Dict = { # fairseq: """wmt19-ru-en""": {"""length_penalty""": 1.1}, """wmt19-en-ru""": {"""length_penalty""": 1.15}, """wmt19-en-de""": {"""length_penalty""": 1.0}, """wmt19-de-en""": {"""length_penalty""": 1.1}, # allenai: """wmt16-en-de-dist-12-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-dist-6-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-12-1""": {"""length_penalty""": 0.8}, """wmt19-de-en-6-6-base""": {"""length_penalty""": 0.6}, """wmt19-de-en-6-6-big""": {"""length_penalty""": 0.6}, } # this remaps the different models to their organization names _a : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _a : List[str] = """facebook""" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: _a : Optional[Any] = """allenai""" def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): UpperCAmelCase = dict((re.sub(R'@@$' , '' , lowercase_ ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , lowercase_ ), v) for k, v in d.items() ) UpperCAmelCase = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] UpperCAmelCase = d[k] # restore return da def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict ): assert os.path.exists(lowercase_ ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models UpperCAmelCase = basename(lowercase_ ) UpperCAmelCase = dirname(lowercase_ ) UpperCAmelCase = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel UpperCAmelCase = cls.hub_models() UpperCAmelCase = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""} UpperCAmelCase = """.""" # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) UpperCAmelCase = hub_utils.from_pretrained( lowercase_ , lowercase_ , lowercase_ , archive_map=lowercase_ , **lowercase_ ) UpperCAmelCase = vars(chkpt['args']['model'] ) UpperCAmelCase = args["""source_lang"""] UpperCAmelCase = args["""target_lang"""] UpperCAmelCase = dirname(lowercase_ ) UpperCAmelCase = basename(lowercase_ ) # dicts UpperCAmelCase = os.path.join(lowercase_ , f'''dict.{src_lang}.txt''' ) UpperCAmelCase = os.path.join(lowercase_ , f'''dict.{tgt_lang}.txt''' ) UpperCAmelCase = Dictionary.load(lowercase_ ) UpperCAmelCase = rewrite_dict_keys(src_dict.indices ) UpperCAmelCase = len(lowercase_ ) UpperCAmelCase = os.path.join(lowercase_ , 'vocab-src.json' ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(lowercase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(lowercase_ , ensure_ascii=lowercase_ , indent=lowercase_ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab UpperCAmelCase = True for k in src_vocab.keys(): if not k.islower(): UpperCAmelCase = False break UpperCAmelCase = Dictionary.load(lowercase_ ) UpperCAmelCase = rewrite_dict_keys(tgt_dict.indices ) UpperCAmelCase = len(lowercase_ ) UpperCAmelCase = os.path.join(lowercase_ , 'vocab-tgt.json' ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(lowercase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(lowercase_ , ensure_ascii=lowercase_ , indent=lowercase_ ) ) # merges_file (bpecodes) UpperCAmelCase = os.path.join(lowercase_ , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" UpperCAmelCase = os.path.join(lowercase_ , lowercase_ ) if os.path.exists(lowercase_ ): break with open(lowercase_ , encoding='utf-8' ) as fin: UpperCAmelCase = fin.read() UpperCAmelCase = re.sub(R' \d+$' , '' , lowercase_ , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(lowercase_ , 'w' , encoding='utf-8' ) as fout: fout.write(lowercase_ ) # model config UpperCAmelCase = os.path.join(lowercase_ , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' UpperCAmelCase = { """architectures""": ["""FSMTForConditionalGeneration"""], """model_type""": """fsmt""", """activation_dropout""": args["""activation_dropout"""], """activation_function""": """relu""", """attention_dropout""": args["""attention_dropout"""], """d_model""": args["""decoder_embed_dim"""], """dropout""": args["""dropout"""], """init_std""": 0.02, """max_position_embeddings""": args["""max_source_positions"""], """num_hidden_layers""": args["""encoder_layers"""], """src_vocab_size""": src_vocab_size, """tgt_vocab_size""": tgt_vocab_size, """langs""": [src_lang, tgt_lang], """encoder_attention_heads""": args["""encoder_attention_heads"""], """encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""], """encoder_layerdrop""": args["""encoder_layerdrop"""], """encoder_layers""": args["""encoder_layers"""], """decoder_attention_heads""": args["""decoder_attention_heads"""], """decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""], """decoder_layerdrop""": args["""decoder_layerdrop"""], """decoder_layers""": args["""decoder_layers"""], """bos_token_id""": 0, """pad_token_id""": 1, """eos_token_id""": 2, """is_encoder_decoder""": True, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_all_embeddings"""], } # good hparam defaults to start with UpperCAmelCase = 5 UpperCAmelCase = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: UpperCAmelCase = best_score_hparams[model_dir]["""length_penalty"""] else: UpperCAmelCase = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(lowercase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(lowercase_ , ensure_ascii=lowercase_ , indent=lowercase_ ) ) # tokenizer config UpperCAmelCase = os.path.join(lowercase_ , lowercase_ ) UpperCAmelCase = { """langs""": [src_lang, tgt_lang], """model_max_length""": 1024, """do_lower_case""": do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(lowercase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(lowercase_ , ensure_ascii=lowercase_ , indent=lowercase_ ) ) # model UpperCAmelCase = chkpt["""models"""][0] UpperCAmelCase = model.state_dict() # rename keys to start with 'model.' UpperCAmelCase = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys UpperCAmelCase = [ """model.model""", """model.encoder.version""", """model.decoder.version""", """model.encoder_embed_tokens.weight""", """model.decoder_embed_tokens.weight""", """model.encoder.embed_positions._float_tensor""", """model.decoder.embed_positions._float_tensor""", ] for k in ignore_keys: model_state_dict.pop(lowercase_ , lowercase_ ) UpperCAmelCase = FSMTConfig.from_pretrained(lowercase_ ) UpperCAmelCase = FSMTForConditionalGeneration(lowercase_ ) # check that it loads ok model_new.load_state_dict(lowercase_ , strict=lowercase_ ) # save UpperCAmelCase = os.path.join(lowercase_ , lowercase_ ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(lowercase_ , lowercase_ ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fsmt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a : List[str] = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
447
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : int = (DDPMScheduler,) def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = { """num_train_timesteps""": 10_00, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**SCREAMING_SNAKE_CASE_) return config def lowercase__ ( self): '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2]): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , ) def lowercase__ ( self): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : Union[str, Any] = self.get_scheduler_config() lowercase__ : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_0_9_7_9)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.0_2)) < 1E-5 def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.scheduler_classes[0] lowercase__ : str = self.get_scheduler_config() lowercase__ : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = len(SCREAMING_SNAKE_CASE_) lowercase__ : Any = self.dummy_model() lowercase__ : List[Any] = self.dummy_sample_deter lowercase__ : str = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : List[str] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : str = pred_prev_sample lowercase__ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_5_8.9_6_0_6) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : List[Any] = self.scheduler_classes[0] lowercase__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""") lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : Dict = len(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = self.dummy_model() lowercase__ : Union[str, Any] = self.dummy_sample_deter lowercase__ : int = torch.manual_seed(0) for t in reversed(range(SCREAMING_SNAKE_CASE_)): # 1. predict noise residual lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # 2. predict previous mean of sample x_t-1 lowercase__ : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ : Tuple = pred_prev_sample lowercase__ : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_)) lowercase__ : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_)) assert abs(result_sum.item() - 2_0_2.0_2_9_6) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1) < 1E-3 def lowercase__ ( self): '''simple docstring''' lowercase__ : str = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : str = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = scheduler.timesteps for i, timestep in enumerate(SCREAMING_SNAKE_CASE_): if i == len(SCREAMING_SNAKE_CASE_) - 1: lowercase__ : Optional[int] = -1 else: lowercase__ : Tuple = timesteps[i + 1] lowercase__ : Any = scheduler.previous_timestep(SCREAMING_SNAKE_CASE_) lowercase__ : int = prev_t.item() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = [1_00, 87, 50, 51, 0] with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`custom_timesteps` must be in descending order."""): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.scheduler_classes[0] lowercase__ : List[Any] = self.get_scheduler_config() lowercase__ : int = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : int = [1_00, 87, 50, 1, 0] lowercase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_) with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`."""): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE_) lowercase__ : str = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_)
12
0