code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
def _lowerCamelCase ( UpperCAmelCase__ ) -> set:
'''simple docstring'''
a__ = set()
# edges = list of graph's edges
a__ = get_edges(lowercase_ )
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
a__ = edges.pop()
chosen_vertices.add(lowercase_ )
chosen_vertices.add(lowercase_ )
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(lowercase_ )
return chosen_vertices
def _lowerCamelCase ( UpperCAmelCase__ ) -> set:
'''simple docstring'''
a__ = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node) )
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
| 232 |
def UpperCamelCase ( lowercase_ ) -> float:
'''simple docstring'''
if not nums: # Makes sure that the list is not empty
raise ValueError("""List is empty""" )
lowercase__ : int = sum(lowercase_ ) / len(lowercase_ ) # Calculate the average
return sum(abs(x - average ) for x in nums ) / len(lowercase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 0 |
"""simple docstring"""
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
# and perform gradient accumulation
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
__snake_case = 16
__snake_case = 32
def __lowerCAmelCase ( lowercase : int , lowercase : Union[str, Any] = 16 ) -> List[str]:
"""simple docstring"""
snake_case : Tuple = AutoTokenizer.from_pretrained("bert-base-cased" )
snake_case : Optional[int] = load_dataset("glue" , "mrpc" )
def tokenize_function(lowercase : List[str] ):
# max_length=None => use the model max length (it's actually the default)
snake_case : Optional[Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowercase_ , max_length=lowercase_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
snake_case : List[str] = datasets.map(
lowercase_ , batched=lowercase_ , remove_columns=["idx", "sentence1", "sentence2"] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
snake_case : Union[str, Any] = tokenized_datasets.rename_column("label" , "labels" )
def collate_fn(lowercase : List[str] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
snake_case : Optional[int] = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
snake_case : Dict = 16
elif accelerator.mixed_precision != "no":
snake_case : str = 8
else:
snake_case : Dict = None
return tokenizer.pad(
lowercase_ , padding="longest" , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , return_tensors="pt" , )
# Instantiate dataloaders.
snake_case : int = DataLoader(
tokenized_datasets["train"] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ )
snake_case : Optional[int] = DataLoader(
tokenized_datasets["validation"] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
__snake_case = mocked_dataloaders # noqa: F811
def __lowerCAmelCase ( lowercase : Any , lowercase : int ) -> Optional[Any]:
"""simple docstring"""
if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowercase_ ) == "1":
snake_case : List[str] = 2
# New Code #
snake_case : List[str] = int(args.gradient_accumulation_steps )
# Initialize accelerator
snake_case : Optional[int] = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowercase_ )
if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1:
raise NotImplementedError(
"Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
snake_case : Dict = config["""lr"""]
snake_case : Dict = int(config["num_epochs"] )
snake_case : int = int(config["seed"] )
snake_case : int = int(config["batch_size"] )
snake_case : str = evaluate.load("glue" , "mrpc" )
set_seed(lowercase_ )
snake_case : Dict = get_dataloaders(lowercase_ , lowercase_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
snake_case : int = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowercase_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
snake_case : str = model.to(accelerator.device )
# Instantiate optimizer
snake_case : Any = AdamW(params=model.parameters() , lr=lowercase_ )
# Instantiate scheduler
snake_case : Optional[int] = get_linear_schedule_with_warmup(
optimizer=lowercase_ , num_warmup_steps=100 , num_training_steps=(len(lowercase_ ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
snake_case : str = accelerator.prepare(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
# Now we train the model
for epoch in range(lowercase_ ):
model.train()
for step, batch in enumerate(lowercase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(lowercase_ ):
snake_case : List[str] = model(**lowercase_ )
snake_case : Any = output.loss
accelerator.backward(lowercase_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(lowercase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
snake_case : List[str] = model(**lowercase_ )
snake_case : Optional[Any] = outputs.logits.argmax(dim=-1 )
snake_case : Any = accelerator.gather_for_metrics((predictions, batch["labels"]) )
metric.add_batch(
predictions=lowercase_ , references=lowercase_ , )
snake_case : Optional[int] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'epoch {epoch}:' , lowercase_ )
def __lowerCAmelCase ( ) -> str:
"""simple docstring"""
snake_case : int = argparse.ArgumentParser(description="Simple example of training script." )
parser.add_argument(
"--mixed_precision" , type=lowercase_ , default=lowercase_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU." , )
# New Code #
parser.add_argument(
"--gradient_accumulation_steps" , type=lowercase_ , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , )
parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." )
snake_case : str = parser.parse_args()
snake_case : List[Any] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(lowercase_ , lowercase_ )
if __name__ == "__main__":
main()
| 178 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Any = ['pixel_values']
def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 2_55 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 8 , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = do_rescale
lowercase__ : List[Any] = rescale_factor
lowercase__ : Tuple = do_pad
lowercase__ : Optional[Any] = pad_size
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None):
'''simple docstring'''
lowercase__ , lowercase__ : Optional[int] = get_image_size(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = (old_height // size + 1) * size - old_height
lowercase__ : str = (old_width // size + 1) * size - old_width
return pad(SCREAMING_SNAKE_CASE_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
lowercase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase__ : Union[str, Any] = do_pad if do_pad is not None else self.do_pad
lowercase__ : Optional[Any] = pad_size if pad_size is not None else self.pad_size
lowercase__ : str = make_list_of_images(SCREAMING_SNAKE_CASE_)
if not valid_images(SCREAMING_SNAKE_CASE_):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""")
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""")
# All transformations expect numpy arrays.
lowercase__ : List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_) for image in images]
if do_rescale:
lowercase__ : str = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_) for image in images]
if do_pad:
lowercase__ : List[str] = [self.pad(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_) for image in images]
lowercase__ : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for image in images]
lowercase__ : Dict = {"""pixel_values""": images}
return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_)
| 12 | 0 |
'''simple docstring'''
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class SCREAMING_SNAKE_CASE( UpperCAmelCase_ ):
"""simple docstring"""
def A ( self : Union[str, Any] , __snake_case : Dict ) -> int:
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as input_file:
UpperCAmelCase : Any = re.compile(r'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' )
UpperCAmelCase : Any = input_file.read()
UpperCAmelCase : Any = regexp.search(SCREAMING_SNAKE_CASE_ )
return match
def A ( self : Dict , __snake_case : Dict ) -> List[str]:
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as input_file:
UpperCAmelCase : Any = re.compile(r'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL )
UpperCAmelCase : Union[str, Any] = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
UpperCAmelCase : List[Any] = regexp.finditer(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase : List[Any] = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def A ( self : Dict ) -> Tuple:
UpperCAmelCase : Any = Path('''./datasets''' )
UpperCAmelCase : List[Any] = list(dataset_paths.absolute().glob('''**/*.py''' ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(SCREAMING_SNAKE_CASE_ ) ):
raise AssertionError(F"""open(...) must use utf-8 encoding in {dataset}""" )
def A ( self : List[str] ) -> Dict:
UpperCAmelCase : Any = Path('''./datasets''' )
UpperCAmelCase : int = list(dataset_paths.absolute().glob('''**/*.py''' ) )
for dataset in dataset_files:
if self._no_print_statements(str(SCREAMING_SNAKE_CASE_ ) ):
raise AssertionError(F"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
| 127 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
lowerCamelCase__ : Optional[int] = [
"""EAGER""",
"""AOT_EAGER""",
"""INDUCTOR""",
"""NVFUSER""",
"""AOT_NVFUSER""",
"""AOT_CUDAGRAPHS""",
"""OFI""",
"""FX2TRT""",
"""ONNXRT""",
"""IPEX""",
]
def UpperCamelCase ( lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : List[Any] = True
while ask_again:
lowercase__ : Tuple = input(lowercase_ )
try:
if default is not None and len(lowercase_ ) == 0:
return default
return convert_value(lowercase_ ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(lowercase_ )
def UpperCamelCase ( lowercase_ , lowercase_=[] , lowercase_=None , lowercase_=0 ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : List[Any] = BulletMenu(lowercase_ , lowercase_ )
lowercase__ : Any = menu.run(default_choice=lowercase_ )
return convert_value(lowercase_ ) if convert_value is not None else result
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Union[str, Any] = int(lowercase_ )
return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowercase__ : List[str] = int(lowercase_ )
return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] )
def UpperCamelCase ( lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : str = int(lowercase_ )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : List[Any] = int(lowercase_ )
return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
lowercase__ : List[Any] = int(lowercase_ )
return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] )
def UpperCamelCase ( lowercase_ ) -> Optional[int]:
'''simple docstring'''
return {"yes": True, "no": False}[value.lower()]
class _snake_case ( argparse.RawDescriptionHelpFormatter ):
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = super()._format_usage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = usage.replace("""<command> [<args>] """ , """""")
return usage
| 12 | 0 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
lowerCamelCase__ = None
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
lowerCamelCase__ = {
"""vocab_file""": {
"""facebook/nllb-200-distilled-600M""": (
"""https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model"""
),
},
"""tokenizer_file""": {
"""facebook/nllb-200-distilled-600M""": (
"""https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json"""
),
},
}
lowerCamelCase__ = {
"""facebook/nllb-large-en-ro""": 1024,
"""facebook/nllb-200-distilled-600M""": 1024,
}
# fmt: off
lowerCamelCase__ = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""]
class __SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :List[str] = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE__ :str = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ :Tuple = ['input_ids', 'attention_mask']
SCREAMING_SNAKE_CASE__ :List[Any] = NllbTokenizer
SCREAMING_SNAKE_CASE__ :List[int] = []
SCREAMING_SNAKE_CASE__ :List[int] = []
def __init__( self : Any , __a : List[str]=None , __a : Optional[Any]=None , __a : int="<s>" , __a : Union[str, Any]="</s>" , __a : Optional[int]="</s>" , __a : Dict="<s>" , __a : Dict="<unk>" , __a : Tuple="<pad>" , __a : Any="<mask>" , __a : str=None , __a : Union[str, Any]=None , __a : List[Any]=None , __a : Optional[int]=False , **__a : int , ) -> List[str]:
_UpperCamelCase : Any = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token
_UpperCamelCase : Optional[int] = legacy_behaviour
super().__init__(
vocab_file=SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , src_lang=SCREAMING_SNAKE_CASE_ , tgt_lang=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , legacy_behaviour=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
_UpperCamelCase : int = vocab_file
_UpperCamelCase : Any = False if not self.vocab_file else True
_UpperCamelCase : Union[str, Any] = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} )
_UpperCamelCase : Optional[Any] = {
lang_code: self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
_UpperCamelCase : int = src_lang if src_lang is not None else """eng_Latn"""
_UpperCamelCase : Tuple = self.convert_tokens_to_ids(self._src_lang )
_UpperCamelCase : Dict = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def __SCREAMING_SNAKE_CASE ( self : int ) -> str:
return self._src_lang
@src_lang.setter
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Tuple ) -> List[str]:
_UpperCamelCase : int = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : List[Any] , __a : Any = None ) -> List[Any]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Dict , __a : Any = None ) -> Dict:
_UpperCamelCase : Optional[int] = [self.sep_token_id]
_UpperCamelCase : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : List[Any] , __a : List[str] , __a : Optional[int] , __a : int , **__a : Optional[int] ) -> Any:
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" )
_UpperCamelCase : Tuple = src_lang
_UpperCamelCase : Any = self(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
_UpperCamelCase : str = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ )
_UpperCamelCase : Optional[int] = tgt_lang_id
return inputs
def __SCREAMING_SNAKE_CASE ( self : str , __a : Optional[Any] , __a : Optional[Any] = "eng_Latn" , __a : Optional[Any] = None , __a : str = "fra_Latn" , **__a : str , ) -> Any:
_UpperCamelCase : Optional[int] = src_lang
_UpperCamelCase : List[str] = tgt_lang
return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any:
return self.set_src_lang_special_tokens(self.src_lang )
def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]:
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __SCREAMING_SNAKE_CASE ( self : int , __a : Any ) -> Union[str, Any]:
_UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ )
if self.legacy_behaviour:
_UpperCamelCase : Optional[Any] = []
_UpperCamelCase : Union[str, Any] = [self.eos_token_id, self.cur_lang_code]
else:
_UpperCamelCase : Optional[Any] = [self.cur_lang_code]
_UpperCamelCase : Tuple = [self.eos_token_id]
_UpperCamelCase : int = self.convert_ids_to_tokens(self.prefix_tokens )
_UpperCamelCase : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens )
_UpperCamelCase : str = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __SCREAMING_SNAKE_CASE ( self : int , __a : List[Any] ) -> Optional[Any]:
_UpperCamelCase : int = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ )
if self.legacy_behaviour:
_UpperCamelCase : Dict = []
_UpperCamelCase : Dict = [self.eos_token_id, self.cur_lang_code]
else:
_UpperCamelCase : Tuple = [self.cur_lang_code]
_UpperCamelCase : str = [self.eos_token_id]
_UpperCamelCase : Dict = self.convert_ids_to_tokens(self.prefix_tokens )
_UpperCamelCase : int = self.convert_ids_to_tokens(self.suffix_tokens )
_UpperCamelCase : Optional[Any] = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[Any] , __a : List[Any] = None ) -> Optional[int]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer." )
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' )
return
_UpperCamelCase : List[Any] = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ )
return (out_vocab_file,)
| 624 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase__ : Tuple = {
"""configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""],
"""processing_mgp_str""": ["""MgpstrProcessor"""],
"""tokenization_mgp_str""": ["""MgpstrTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Optional[int] = [
"""MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MgpstrModel""",
"""MgpstrPreTrainedModel""",
"""MgpstrForSceneTextRecognition""",
]
if TYPE_CHECKING:
from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig
from .processing_mgp_str import MgpstrProcessor
from .tokenization_mgp_str import MgpstrTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mgp_str import (
MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST,
MgpstrForSceneTextRecognition,
MgpstrModel,
MgpstrPreTrainedModel,
)
else:
import sys
lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 12 | 0 |
'''simple docstring'''
def _lowerCAmelCase (_lowercase ):
"""simple docstring"""
if not all(char in "01" for char in bin_string ):
raise ValueError("Non-binary value was passed to the function" )
if not bin_string:
raise ValueError("Empty string was passed to the function" )
a__ = """"""
while len(lowercase_ ) % 3 != 0:
a__ = """0""" + bin_string
a__ = [
bin_string[index : index + 3]
for index in range(len(lowercase_ ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
a__ = 0
for index, val in enumerate(lowercase_ ):
oct_val += int(2 ** (2 - index) * int(lowercase_ ) )
oct_string += str(lowercase_ )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod()
| 331 |
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class _snake_case ( UpperCAmelCase_ ):
def __init__( self):
'''simple docstring'''
lowercase__ : List[Any] = []
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_init_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_train_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_train_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_epoch_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_epoch_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_step_begin""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_step_end""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_evaluate""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_predict""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_save""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_log""")
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.events.append("""on_prediction_step""")
@require_torch
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = tempfile.mkdtemp()
def lowercase__ ( self):
'''simple docstring'''
shutil.rmtree(self.output_dir)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Any = RegressionDataset(length=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = RegressionDataset(length=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = RegressionModelConfig(a=SCREAMING_SNAKE_CASE_ , b=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE_ , report_to=[] , **SCREAMING_SNAKE_CASE_)
return Trainer(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , callbacks=SCREAMING_SNAKE_CASE_ , )
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_))
# Order doesn't matter
lowercase__ : str = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__)
lowercase__ : Tuple = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__)
for cba, cba in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(SCREAMING_SNAKE_CASE_ , cba.__class__)
elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE_)
else:
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : int = ["""on_init_end""", """on_train_begin"""]
lowercase__ : Union[str, Any] = 0
lowercase__ : Union[str, Any] = len(trainer.get_eval_dataloader())
lowercase__ : Dict = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader()) + ["""on_log""", """on_evaluate"""]
for _ in range(trainer.state.num_train_epochs):
expected_events.append("""on_epoch_begin""")
for _ in range(SCREAMING_SNAKE_CASE_):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append("""on_log""")
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append("""on_save""")
expected_events.append("""on_epoch_end""")
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = self.get_trainer()
lowercase__ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# Callbacks passed at init are added to the default callbacks
lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback])
expected_callbacks.append(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
lowercase__ : Any = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
lowercase__ : Tuple = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.remove(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = self.get_trainer()
lowercase__ : List[Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_)
self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
trainer.add_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
# We can also add, pop, or remove by instance
lowercase__ : Union[str, Any] = self.get_trainer()
lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0]
trainer.remove_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.remove(SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
lowercase__ : str = self.get_trainer()
lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0]
lowercase__ : Union[str, Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
trainer.add_callback(SCREAMING_SNAKE_CASE_)
expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_)
self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action="""ignore""" , category=SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback])
trainer.train()
lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# Independent log/save/eval
lowercase__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5)
trainer.train()
lowercase__ : List[str] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5)
trainer.train()
lowercase__ : Dict = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""")
trainer.train()
lowercase__ : int = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
lowercase__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""")
trainer.train()
lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# A bit of everything
lowercase__ : Any = self.get_trainer(
callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , )
trainer.train()
lowercase__ : str = trainer.callback_handler.callbacks[-2].events
self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_))
# warning should be emitted for duplicated callbacks
with patch("""transformers.trainer_callback.logger.warning""") as warn_mock:
lowercase__ : Dict = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , )
assert str(SCREAMING_SNAKE_CASE_) in warn_mock.call_args[0][0]
| 12 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
a_ : List[str] = {
"""configuration_roberta_prelayernorm""": [
"""ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""RobertaPreLayerNormConfig""",
"""RobertaPreLayerNormOnnxConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Optional[int] = [
"""ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""RobertaPreLayerNormForCausalLM""",
"""RobertaPreLayerNormForMaskedLM""",
"""RobertaPreLayerNormForMultipleChoice""",
"""RobertaPreLayerNormForQuestionAnswering""",
"""RobertaPreLayerNormForSequenceClassification""",
"""RobertaPreLayerNormForTokenClassification""",
"""RobertaPreLayerNormModel""",
"""RobertaPreLayerNormPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : List[str] = [
"""TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFRobertaPreLayerNormForCausalLM""",
"""TFRobertaPreLayerNormForMaskedLM""",
"""TFRobertaPreLayerNormForMultipleChoice""",
"""TFRobertaPreLayerNormForQuestionAnswering""",
"""TFRobertaPreLayerNormForSequenceClassification""",
"""TFRobertaPreLayerNormForTokenClassification""",
"""TFRobertaPreLayerNormMainLayer""",
"""TFRobertaPreLayerNormModel""",
"""TFRobertaPreLayerNormPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : List[Any] = [
"""FlaxRobertaPreLayerNormForCausalLM""",
"""FlaxRobertaPreLayerNormForMaskedLM""",
"""FlaxRobertaPreLayerNormForMultipleChoice""",
"""FlaxRobertaPreLayerNormForQuestionAnswering""",
"""FlaxRobertaPreLayerNormForSequenceClassification""",
"""FlaxRobertaPreLayerNormForTokenClassification""",
"""FlaxRobertaPreLayerNormModel""",
"""FlaxRobertaPreLayerNormPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP,
RobertaPreLayerNormConfig,
RobertaPreLayerNormOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaPreLayerNormForCausalLM,
RobertaPreLayerNormForMaskedLM,
RobertaPreLayerNormForMultipleChoice,
RobertaPreLayerNormForQuestionAnswering,
RobertaPreLayerNormForSequenceClassification,
RobertaPreLayerNormForTokenClassification,
RobertaPreLayerNormModel,
RobertaPreLayerNormPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta_prelayernorm import (
TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaPreLayerNormForCausalLM,
TFRobertaPreLayerNormForMaskedLM,
TFRobertaPreLayerNormForMultipleChoice,
TFRobertaPreLayerNormForQuestionAnswering,
TFRobertaPreLayerNormForSequenceClassification,
TFRobertaPreLayerNormForTokenClassification,
TFRobertaPreLayerNormMainLayer,
TFRobertaPreLayerNormModel,
TFRobertaPreLayerNormPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormPreTrainedModel,
)
else:
import sys
a_ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 439 |
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Union[str, Any] = RoCBertTokenizer
__lowerCAmelCase : Union[str, Any] = None
__lowerCAmelCase : str = False
__lowerCAmelCase : List[Any] = True
__lowerCAmelCase : Optional[int] = filter_non_english
def lowercase__ ( self):
'''simple docstring'''
super().setUp()
lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""]
lowercase__ : Dict = {}
lowercase__ : Tuple = {}
for i, value in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Tuple = i
lowercase__ : Any = i
lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""])
lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""])
lowercase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""])
with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens]))
with open(self.word_shape_file , """w""" , encoding="""utf-8""") as word_shape_writer:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_)
with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""") as word_pronunciation_writer:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file)
lowercase__ : Optional[int] = tokenizer.tokenize("""你好[SEP]你是谁""")
self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""])
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""") , ["""ah""", """\u535A""", """\u63A8""", """zz"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""h\u00E9llo"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""])
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_)
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=["""[UNK]"""])
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""") , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""]
lowercase__ : Optional[int] = {}
for i, token in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Optional[Any] = i
lowercase__ : Union[str, Any] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token="""[UNK]""")
self.assertListEqual(tokenizer.tokenize("""""") , [])
self.assertListEqual(tokenizer.tokenize("""unwanted running""") , ["""un""", """##want""", """##ed""", """runn""", """##ing"""])
self.assertListEqual(tokenizer.tokenize("""unwantedX running""") , ["""[UNK]""", """runn""", """##ing"""])
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_whitespace(""" """))
self.assertTrue(_is_whitespace("""\t"""))
self.assertTrue(_is_whitespace("""\r"""))
self.assertTrue(_is_whitespace("""\n"""))
self.assertTrue(_is_whitespace("""\u00A0"""))
self.assertFalse(_is_whitespace("""A"""))
self.assertFalse(_is_whitespace("""-"""))
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_control("""\u0005"""))
self.assertFalse(_is_control("""A"""))
self.assertFalse(_is_control(""" """))
self.assertFalse(_is_control("""\t"""))
self.assertFalse(_is_control("""\r"""))
def lowercase__ ( self):
'''simple docstring'''
self.assertTrue(_is_punctuation("""-"""))
self.assertTrue(_is_punctuation("""$"""))
self.assertTrue(_is_punctuation("""`"""))
self.assertTrue(_is_punctuation("""."""))
self.assertFalse(_is_punctuation("""A"""))
self.assertFalse(_is_punctuation(""" """))
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]])
if self.test_rust_tokenizer:
lowercase__ : int = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]])
def lowercase__ ( self):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'):
lowercase__ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'
lowercase__ : List[str] = tokenizer_r.encode_plus(
SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , )
lowercase__ : str = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , """do_lower_case""") else False
lowercase__ : Optional[Any] = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), """A"""),
((1, 2), ""","""),
((3, 5), """na"""),
((5, 6), """##ï"""),
((6, 8), """##ve"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """Allen"""),
((21, 23), """##NL"""),
((23, 24), """##P"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), """a"""),
((1, 2), ""","""),
((3, 8), """naive"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """allen"""),
((21, 23), """##nl"""),
((23, 24), """##p"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""]))
self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = ["""的""", """人""", """有"""]
lowercase__ : List[str] = """""".join(SCREAMING_SNAKE_CASE_)
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'):
lowercase__ : Union[str, Any] = True
lowercase__ : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : str = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Any = False
lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_)
# it is expected that only the first Chinese character is not preceded by "##".
lowercase__ : Any = [
f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_)
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file)
lowercase__ : Optional[Any] = tokenizer.encode("""你好""" , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = tokenizer.encode("""你是谁""" , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_)
for tokenizer in tokenizers:
with self.subTest(f'{tokenizer.__class__.__name__}'):
lowercase__ : Optional[int] = """你好,你是谁"""
lowercase__ : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = tokenizer.prepare_for_model(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
| 12 | 0 |
'''simple docstring'''
import logging
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEncoder,
BertModel,
BertPreTrainedModel,
)
__UpperCamelCase : Dict = logging.getLogger(__name__)
class __SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ):
def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ) ->Union[str, Any]:
'''simple docstring'''
__a = self.layer[current_layer](SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , head_mask[current_layer] )
__a = layer_outputs[0]
return hidden_states
@add_start_docstrings(
"The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , UpperCAmelCase_ , )
class __SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ):
def __init__( self , lowerCamelCase ) ->Dict:
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE_ )
__a = BertEncoderWithPabee(SCREAMING_SNAKE_CASE_ )
self.init_weights()
__a = 0
__a = 0
__a = 0
__a = 0
def __UpperCamelCase ( self , lowerCamelCase ) ->Optional[Any]:
'''simple docstring'''
__a = threshold
def __UpperCamelCase ( self , lowerCamelCase ) ->Optional[Any]:
'''simple docstring'''
__a = patience
def __UpperCamelCase ( self ) ->Dict:
'''simple docstring'''
__a = 0
__a = 0
def __UpperCamelCase ( self ) ->str:
'''simple docstring'''
__a = self.inference_layers_num / self.inference_instances_num
__a = (
F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up ="""
F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***"""
)
print(SCREAMING_SNAKE_CASE_ )
@add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ )
def __UpperCamelCase ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=False , ) ->Dict:
'''simple docstring'''
if input_ids is not None and inputs_embeds is not None:
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' )
elif input_ids is not None:
__a = input_ids.size()
elif inputs_embeds is not None:
__a = inputs_embeds.size()[:-1]
else:
raise ValueError('You have to specify either input_ids or inputs_embeds' )
__a = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
__a = torch.ones(SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ )
if token_type_ids is None:
__a = torch.zeros(SCREAMING_SNAKE_CASE_ , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
__a = self.get_extended_attention_mask(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
__a = encoder_hidden_states.size()
__a = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
__a = torch.ones(SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ )
__a = self.invert_attention_mask(SCREAMING_SNAKE_CASE_ )
else:
__a = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
__a = self.get_head_mask(SCREAMING_SNAKE_CASE_ , self.config.num_hidden_layers )
__a = self.embeddings(
input_ids=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , inputs_embeds=SCREAMING_SNAKE_CASE_ )
__a = embedding_output
if self.training:
__a = []
for i in range(self.config.num_hidden_layers ):
__a = self.encoder.adaptive_forward(
SCREAMING_SNAKE_CASE_ , current_layer=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ )
__a = self.pooler(SCREAMING_SNAKE_CASE_ )
__a = output_layers[i](output_dropout(SCREAMING_SNAKE_CASE_ ) )
res.append(SCREAMING_SNAKE_CASE_ )
elif self.patience == 0: # Use all layers for inference
__a = self.encoder(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=SCREAMING_SNAKE_CASE_ , )
__a = self.pooler(encoder_outputs[0] )
__a = [output_layers[self.config.num_hidden_layers - 1](SCREAMING_SNAKE_CASE_ )]
else:
__a = 0
__a = None
__a = 0
for i in range(self.config.num_hidden_layers ):
calculated_layer_num += 1
__a = self.encoder.adaptive_forward(
SCREAMING_SNAKE_CASE_ , current_layer=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ )
__a = self.pooler(SCREAMING_SNAKE_CASE_ )
__a = output_layers[i](SCREAMING_SNAKE_CASE_ )
if regression:
__a = logits.detach()
if patient_result is not None:
__a = patient_result.detach()
if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold:
patient_counter += 1
else:
__a = 0
else:
__a = logits.detach().argmax(dim=1 )
if patient_result is not None:
__a = patient_result.detach().argmax(dim=1 )
if (patient_result is not None) and torch.all(labels.eq(SCREAMING_SNAKE_CASE_ ) ):
patient_counter += 1
else:
__a = 0
__a = logits
if patient_counter == self.patience:
break
__a = [patient_result]
self.inference_layers_num += calculated_layer_num
self.inference_instances_num += 1
return res
@add_start_docstrings(
"Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , UpperCAmelCase_ , )
class __SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ):
def __init__( self , lowerCamelCase ) ->int:
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE_ )
__a = config.num_labels
__a = BertModelWithPabee(SCREAMING_SNAKE_CASE_ )
__a = nn.Dropout(config.hidden_dropout_prob )
__a = nn.ModuleList(
[nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] )
self.init_weights()
@add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ )
def __UpperCamelCase ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ) ->Tuple:
'''simple docstring'''
__a = self.bert(
input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ , inputs_embeds=SCREAMING_SNAKE_CASE_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , )
__a = (logits[-1],)
if labels is not None:
__a = None
__a = 0
for ix, logits_item in enumerate(SCREAMING_SNAKE_CASE_ ):
if self.num_labels == 1:
# We are doing regression
__a = MSELoss()
__a = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) )
else:
__a = CrossEntropyLoss()
__a = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) )
if total_loss is None:
__a = loss
else:
total_loss += loss * (ix + 1)
total_weights += ix + 1
__a = (total_loss / total_weights,) + outputs
return outputs | 448 |
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__)
@add_end_docstrings(UpperCAmelCase_ )
class _snake_case ( UpperCAmelCase_ ):
def __init__( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_)
if self.framework == "tf":
raise ValueError(f'The {self.__class__} is only available in PyTorch.')
requires_backends(self , """vision""")
self.check_model_type(SCREAMING_SNAKE_CASE_)
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
if "text_queries" in kwargs:
lowercase__ : Any = kwargs.pop("""text_queries""")
if isinstance(SCREAMING_SNAKE_CASE_ , (str, Image.Image)):
lowercase__ : Optional[Any] = {"""image""": image, """candidate_labels""": candidate_labels}
else:
lowercase__ : int = image
lowercase__ : List[str] = super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
return results
def lowercase__ ( self , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = {}
if "threshold" in kwargs:
lowercase__ : List[Any] = kwargs["""threshold"""]
if "top_k" in kwargs:
lowercase__ : int = kwargs["""top_k"""]
return {}, {}, postprocess_params
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = load_image(inputs["""image"""])
lowercase__ : Any = inputs["""candidate_labels"""]
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
lowercase__ : List[str] = candidate_labels.split(""",""")
lowercase__ : Tuple = torch.tensor([[image.height, image.width]] , dtype=torch.intaa)
for i, candidate_label in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework)
lowercase__ : Union[str, Any] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework)
yield {
"is_last": i == len(SCREAMING_SNAKE_CASE_) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = model_inputs.pop("""target_size""")
lowercase__ : Optional[int] = model_inputs.pop("""candidate_label""")
lowercase__ : Dict = model_inputs.pop("""is_last""")
lowercase__ : Union[str, Any] = self.model(**SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs}
return model_outputs
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
lowercase__ : Union[str, Any] = []
for model_output in model_outputs:
lowercase__ : Optional[int] = model_output["""candidate_label"""]
lowercase__ : Tuple = BaseModelOutput(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = self.image_processor.post_process_object_detection(
outputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ , target_sizes=model_output["""target_size"""])[0]
for index in outputs["scores"].nonzero():
lowercase__ : Optional[Any] = outputs["""scores"""][index].item()
lowercase__ : Optional[Any] = self._get_bounding_box(outputs["""boxes"""][index][0])
lowercase__ : Tuple = {"""score""": score, """label""": label, """box""": box}
results.append(SCREAMING_SNAKE_CASE_)
lowercase__ : int = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: x["score"] , reverse=SCREAMING_SNAKE_CASE_)
if top_k:
lowercase__ : Any = results[:top_k]
return results
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if self.framework != "pt":
raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""")
lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = box.int().tolist()
lowercase__ : Optional[int] = {
"""xmin""": xmin,
"""ymin""": ymin,
"""xmax""": xmax,
"""ymax""": ymax,
}
return bbox
| 12 | 0 |
def lowerCamelCase__ ( _a , _a):
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod() | 25 |
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]:
'''simple docstring'''
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
lowercase__ : str = mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ )
else:
lowercase__ : List[str] = max(
mf_knapsack(i - 1 , lowercase_ , lowercase_ , lowercase_ ) , mf_knapsack(i - 1 , lowercase_ , lowercase_ , j - wt[i - 1] ) + val[i - 1] , )
lowercase__ : List[Any] = val
return f[i][j]
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Any = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
lowercase__ : List[Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
lowercase__ : Tuple = dp[i - 1][w_]
return dp[n][w_], dp
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
if not (isinstance(lowercase_ , (list, tuple) ) and isinstance(lowercase_ , (list, tuple) )):
raise ValueError(
"""Both the weights and values vectors must be either lists or tuples""" )
lowercase__ : str = len(lowercase_ )
if num_items != len(lowercase_ ):
lowercase__ : Optional[int] = (
"""The number of weights must be the same as the number of values.\n"""
F'But got {num_items} weights and {len(lowercase_ )} values'
)
raise ValueError(lowercase_ )
for i in range(lowercase_ ):
if not isinstance(wt[i] , lowercase_ ):
lowercase__ : int = (
"""All weights must be integers but got weight of """
F'type {type(wt[i] )} at index {i}'
)
raise TypeError(lowercase_ )
lowercase__ , lowercase__ : Tuple = knapsack(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : set = set()
_construct_solution(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
return optimal_val, example_optional_set
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any:
'''simple docstring'''
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(lowercase_ , lowercase_ , i - 1 , lowercase_ , lowercase_ )
else:
optimal_set.add(lowercase_ )
_construct_solution(lowercase_ , lowercase_ , i - 1 , j - wt[i - 1] , lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : Dict = [3, 2, 4, 4]
lowerCamelCase__ : List[Any] = [4, 3, 2, 3]
lowerCamelCase__ : Optional[int] = 4
lowerCamelCase__ : Dict = 6
lowerCamelCase__ : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
lowerCamelCase__ , lowerCamelCase__ : int = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("""optimal_value = """, optimal_solution)
print("""An optimal subset corresponding to the optimal value""", optimal_subset)
| 12 | 0 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
_snake_case : Optional[int] = [
"""EAGER""",
"""AOT_EAGER""",
"""INDUCTOR""",
"""NVFUSER""",
"""AOT_NVFUSER""",
"""AOT_CUDAGRAPHS""",
"""OFI""",
"""FX2TRT""",
"""ONNXRT""",
"""IPEX""",
]
def __snake_case ( __magic_name__ , __magic_name__=None , __magic_name__=None , __magic_name__=None ):
'''simple docstring'''
lowercase = True
while ask_again:
lowercase = input(lowercase_ )
try:
if default is not None and len(lowercase_ ) == 0:
return default
return convert_value(lowercase_ ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(lowercase_ )
def __snake_case ( __magic_name__ , __magic_name__=[] , __magic_name__=None , __magic_name__=0 ):
'''simple docstring'''
lowercase = BulletMenu(lowercase_ , lowercase_ )
lowercase = menu.run(default_choice=lowercase_ )
return convert_value(lowercase_ ) if convert_value is not None else result
def __snake_case ( __magic_name__ ):
'''simple docstring'''
lowercase = int(lowercase_ )
return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] )
def __snake_case ( __magic_name__ ):
'''simple docstring'''
lowercase = int(lowercase_ )
return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] )
def __snake_case ( __magic_name__ ):
'''simple docstring'''
lowercase = int(lowercase_ )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def __snake_case ( __magic_name__ ):
'''simple docstring'''
lowercase = int(lowercase_ )
return PrecisionType(["no", "fp16", "bf16", "fp8"][value] )
def __snake_case ( __magic_name__ ):
'''simple docstring'''
lowercase = int(lowercase_ )
return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] )
def __snake_case ( __magic_name__ ):
'''simple docstring'''
return {"yes": True, "no": False}[value.lower()]
class UpperCamelCase_ ( argparse.RawDescriptionHelpFormatter ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE( self :Optional[int] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple ) ->List[str]:
lowercase = super()._format_usage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowercase = usage.replace("<command> [<args>] " , "" )
return usage
| 441 |
import argparse
import os
import torch
from transformers import FlavaConfig, FlavaForPreTraining
from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint
def UpperCamelCase ( lowercase_ ) -> Union[str, Any]:
'''simple docstring'''
return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() )
def UpperCamelCase ( lowercase_ , lowercase_ ) -> List[Any]:
'''simple docstring'''
lowercase__ : int = {}
for key, value in state_dict.items():
if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key:
continue
lowercase__ : Optional[Any] = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" )
lowercase__ : Tuple = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" )
lowercase__ : Optional[Any] = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" )
lowercase__ : Optional[int] = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" )
lowercase__ : List[Any] = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" )
lowercase__ : int = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" )
lowercase__ : Optional[Any] = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" )
lowercase__ : Optional[Any] = key.replace("""image_encoder.module""" , """flava.image_model""" )
lowercase__ : Any = key.replace("""text_encoder.module""" , """flava.text_model""" )
lowercase__ : Optional[Any] = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" )
lowercase__ : Tuple = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" )
lowercase__ : Any = key.replace("""text_projection""" , """flava.text_projection""" )
lowercase__ : List[Any] = key.replace("""image_projection""" , """flava.image_projection""" )
lowercase__ : str = value.float()
for key, value in codebook_state_dict.items():
lowercase__ : Any = value
return upgrade
@torch.no_grad()
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> Union[str, Any]:
'''simple docstring'''
if config_path is not None:
lowercase__ : int = FlavaConfig.from_pretrained(lowercase_ )
else:
lowercase__ : Optional[int] = FlavaConfig()
lowercase__ : List[Any] = FlavaForPreTraining(lowercase_ ).eval()
lowercase__ : Dict = convert_dalle_checkpoint(lowercase_ , lowercase_ , save_checkpoint=lowercase_ )
if os.path.exists(lowercase_ ):
lowercase__ : Dict = torch.load(lowercase_ , map_location="""cpu""" )
else:
lowercase__ : Dict = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" )
lowercase__ : int = upgrade_state_dict(lowercase_ , lowercase_ )
hf_model.load_state_dict(lowercase_ )
lowercase__ : Optional[int] = hf_model.state_dict()
lowercase__ : Optional[int] = count_parameters(lowercase_ )
lowercase__ : Any = count_parameters(lowercase_ ) + count_parameters(lowercase_ )
assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 )
hf_model.save_pretrained(lowercase_ )
if __name__ == "__main__":
lowerCamelCase__ : int = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""")
parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
lowerCamelCase__ : List[str] = parser.parse_args()
convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
| 12 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__magic_name__ : List[str] = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ : int = [
"""FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FocalNetForImageClassification""",
"""FocalNetForMaskedImageModeling""",
"""FocalNetBackbone""",
"""FocalNetModel""",
"""FocalNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_focalnet import (
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
FocalNetPreTrainedModel,
)
else:
import sys
__magic_name__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 281 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class _snake_case ( unittest.TestCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , ):
'''simple docstring'''
lowercase__ : List[str] = size if size is not None else {"""height""": 18, """width""": 18}
lowercase__ : int = parent
lowercase__ : Union[str, Any] = batch_size
lowercase__ : List[str] = num_channels
lowercase__ : str = image_size
lowercase__ : int = min_resolution
lowercase__ : Dict = max_resolution
lowercase__ : Tuple = do_resize
lowercase__ : Union[str, Any] = size
lowercase__ : Any = do_normalize
lowercase__ : Tuple = image_mean
lowercase__ : str = image_std
def lowercase__ ( self):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class _snake_case ( UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Optional[Any] = ViTImageProcessor if is_vision_available() else None
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = EfficientFormerImageProcessorTester(self)
@property
def lowercase__ ( self):
'''simple docstring'''
return self.image_proc_tester.prepare_image_processor_dict()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_mean"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_std"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize"""))
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size"""))
def lowercase__ ( self):
'''simple docstring'''
pass
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
lowercase__ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image)
# Test not batched input
lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : str = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
lowercase__ : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray)
# Test not batched input
lowercase__ : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : Dict = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
lowercase__ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_)
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor)
# Test not batched input
lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
# Test batched
lowercase__ : Any = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["""height"""],
self.image_proc_tester.size["""width"""],
) , )
| 12 | 0 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=UpperCAmelCase_ )
class lowercase_ ( UpperCAmelCase_ ):
'''simple docstring'''
__lowerCAmelCase : str = field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} )
__lowerCAmelCase : ClassVar[Features] = Features({"question": Value("string" ), "context": Value("string" )} )
__lowerCAmelCase : ClassVar[Features] = Features(
{
"answers": Sequence(
{
"text": Value("string" ),
"answer_start": Value("int32" ),
} )
} )
__lowerCAmelCase : str = "question"
__lowerCAmelCase : str = "context"
__lowerCAmelCase : str = "answers"
@property
def snake_case_ ( self ) -> Any:
"""simple docstring"""
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 447 |
lowerCamelCase__ : dict[tuple[int, int, int], int] = {}
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
lowercase__ : Tuple = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
lowercase__ : Union[str, Any] = _calculate(days - 1 , lowercase_ , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
lowercase__ : List[str] = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
lowercase__ : Dict = _calculate(days - 1 , lowercase_ , 0 )
lowercase__ : List[str] = state_late + state_absent + state_ontime
lowercase__ : List[Any] = prizestrings
return prizestrings
def UpperCamelCase ( lowercase_ = 30 ) -> int:
'''simple docstring'''
return _calculate(lowercase_ , absent=0 , late=0 )
if __name__ == "__main__":
print(solution())
| 12 | 0 |
"""simple docstring"""
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import torch
from ...utils import is_npu_available, is_xpu_available
from .config_args import ClusterConfig, default_json_config_file
from .config_utils import SubcommandHelpFormatter
__magic_name__ = """Create a default config file for Accelerate with only a few flags set."""
def _lowerCamelCase ( UpperCAmelCase__="no",UpperCAmelCase__ = default_json_config_file,UpperCAmelCase__ = False ) -> Any:
'''simple docstring'''
a__ = Path(lowercase_ )
path.parent.mkdir(parents=lowercase_,exist_ok=lowercase_ )
if path.exists():
print(
f'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' )
return False
a__ = mixed_precision.lower()
if mixed_precision not in ["no", "fp16", "bf16", "fp8"]:
raise ValueError(
f'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' )
a__ = {
"""compute_environment""": """LOCAL_MACHINE""",
"""mixed_precision""": mixed_precision,
}
if torch.cuda.is_available():
a__ = torch.cuda.device_count()
a__ = num_gpus
a__ = False
if num_gpus > 1:
a__ = """MULTI_GPU"""
else:
a__ = """NO"""
elif is_xpu_available() and use_xpu:
a__ = torch.xpu.device_count()
a__ = num_xpus
a__ = False
if num_xpus > 1:
a__ = """MULTI_XPU"""
else:
a__ = """NO"""
elif is_npu_available():
a__ = torch.npu.device_count()
a__ = num_npus
a__ = False
if num_npus > 1:
a__ = """MULTI_NPU"""
else:
a__ = """NO"""
else:
a__ = 0
a__ = True
a__ = 1
a__ = """NO"""
a__ = ClusterConfig(**lowercase_ )
config.to_json_file(lowercase_ )
return path
def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__ ) -> Optional[Any]:
'''simple docstring'''
a__ = parser.add_parser('default',parents=lowercase_,help=lowercase_,formatter_class=lowercase_ )
parser.add_argument(
'--config_file',default=lowercase_,help=(
'The path to use to store the config file. Will default to a file named default_config.yaml in the cache '
'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '
'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '
'with \'huggingface\'.'
),dest='save_location',)
parser.add_argument(
'--mixed_precision',choices=['no', 'fp16', 'bf16'],type=lowercase_,help='Whether or not to use mixed precision training. '
'Choose between FP16 and BF16 (bfloat16) training. '
'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.',default='no',)
parser.set_defaults(func=lowercase_ )
return parser
def _lowerCamelCase ( UpperCAmelCase__ ) -> Any:
'''simple docstring'''
a__ = write_basic_config(args.mixed_precision,args.save_location )
if config_file:
print(f'''accelerate configuration saved at {config_file}''' )
| 232 |
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
raise RuntimeError("""CUDA out of memory.""" )
class _snake_case ( nn.Module ):
def __init__( self):
'''simple docstring'''
super().__init__()
lowercase__ : Optional[Any] = nn.Linear(3 , 4)
lowercase__ : Union[str, Any] = nn.BatchNormad(4)
lowercase__ : str = nn.Linear(4 , 5)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE_)))
class _snake_case ( unittest.TestCase ):
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = []
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
nonlocal batch_sizes
batch_sizes.append(SCREAMING_SNAKE_CASE_)
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8])
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : int = []
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
nonlocal batch_sizes
batch_sizes.append(SCREAMING_SNAKE_CASE_)
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
lowercase__ , lowercase__ : int = mock_training_loop_function("""hello""")
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [1_28, 64, 32, 16, 8])
self.assertListEqual([bs, arga] , [8, """hello"""])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=0)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
pass
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=1_28)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function(1_28 , """hello""" , """world""")
self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0])
self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0])
def lowercase__ ( self):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16)
def mock_training_loop_function(SCREAMING_SNAKE_CASE_):
raise ValueError("""Oops, we had an error!""")
with self.assertRaises(SCREAMING_SNAKE_CASE_) as cm:
mock_training_loop_function()
self.assertIn("""Oops, we had an error!""" , cm.exception.args[0])
@require_cuda
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : str = torch.cuda.memory_allocated()
lowercase__ : str = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = release_memory(SCREAMING_SNAKE_CASE_)
self.assertEqual(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE_)
| 12 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available
__snake_case = {"""tokenization_herbert""": ["""HerbertTokenizer"""]}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ["""HerbertTokenizerFast"""]
if TYPE_CHECKING:
from .tokenization_herbert import HerbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_herbert_fast import HerbertTokenizerFast
else:
import sys
__snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 178 |
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Optional[Any] = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowercase__ : List[str] = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
lowercase__ : Optional[int] = 4
lowercase__ : Optional[Any] = 48
lowercase__ : int = """pixelshuffle_aux"""
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowercase__ : List[str] = [6, 6, 6, 6]
lowercase__ : Any = 60
lowercase__ : Tuple = [6, 6, 6, 6]
lowercase__ : Dict = """pixelshuffledirect"""
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowercase__ : Tuple = 4
lowercase__ : Any = """nearest+conv"""
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
lowercase__ : str = 1
lowercase__ : Optional[int] = 1
lowercase__ : Optional[int] = 1_26
lowercase__ : Any = 7
lowercase__ : int = 255.0
lowercase__ : List[Any] = """"""
return config
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
if "patch_embed.proj" in name and "layers" not in name:
lowercase__ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
lowercase__ : Dict = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" )
if "layers" in name:
lowercase__ : List[str] = name.replace("""layers""" , """encoder.stages""" )
if "residual_group.blocks" in name:
lowercase__ : Optional[int] = name.replace("""residual_group.blocks""" , """layers""" )
if "attn.proj" in name:
lowercase__ : int = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
lowercase__ : Tuple = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
lowercase__ : int = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
lowercase__ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
lowercase__ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowercase__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" )
if "q_bias" in name:
lowercase__ : Any = name.replace("""q_bias""" , """query.bias""" )
if "k_bias" in name:
lowercase__ : Optional[Any] = name.replace("""k_bias""" , """key.bias""" )
if "v_bias" in name:
lowercase__ : Dict = name.replace("""v_bias""" , """value.bias""" )
if "cpb_mlp" in name:
lowercase__ : Union[str, Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" )
if "patch_embed.proj" in name:
lowercase__ : List[Any] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" )
if name == "norm.weight":
lowercase__ : Union[str, Any] = """layernorm.weight"""
if name == "norm.bias":
lowercase__ : List[str] = """layernorm.bias"""
if "conv_first" in name:
lowercase__ : Union[str, Any] = name.replace("""conv_first""" , """first_convolution""" )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
lowercase__ : List[Any] = name.replace("""conv_last""" , """final_convolution""" )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
lowercase__ : Optional[int] = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" )
if "upsample.0" in name:
lowercase__ : Dict = name.replace("""upsample.0""" , """upsample.convolution_0""" )
if "upsample.2" in name:
lowercase__ : Optional[Any] = name.replace("""upsample.2""" , """upsample.convolution_1""" )
lowercase__ : List[str] = """upsample.""" + name
elif config.upsampler == "pixelshuffledirect":
lowercase__ : Optional[Any] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" )
lowercase__ : int = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" )
else:
pass
else:
lowercase__ : str = """swin2sr.""" + name
return name
def UpperCamelCase ( lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowercase__ : str = orig_state_dict.pop(lowercase_ )
if "qkv" in key:
lowercase__ : Any = key.split(""".""" )
lowercase__ : List[Any] = int(key_split[1] )
lowercase__ : Dict = int(key_split[4] )
lowercase__ : Optional[Any] = config.embed_dim
if "weight" in key:
lowercase__ : List[str] = val[:dim, :]
lowercase__ : List[str] = val[dim : dim * 2, :]
lowercase__ : Optional[Any] = val[-dim:, :]
else:
lowercase__ : Optional[Any] = val[:dim]
lowercase__ : List[Any] = val[dim : dim * 2]
lowercase__ : Optional[int] = val[-dim:]
pass
else:
lowercase__ : Optional[Any] = val
return orig_state_dict
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : Dict = get_config(lowercase_ )
lowercase__ : Any = SwinaSRForImageSuperResolution(lowercase_ )
model.eval()
lowercase__ : List[str] = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" )
lowercase__ : Union[str, Any] = convert_state_dict(lowercase_ , lowercase_ )
lowercase__ , lowercase__ : Dict = model.load_state_dict(lowercase_ , strict=lowercase_ )
if len(lowercase_ ) > 0:
raise ValueError("""Missing keys when converting: {}""".format(lowercase_ ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(F'Unexpected key {key} in state_dict' )
# verify values
lowercase__ : Any = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true"""
lowercase__ : Any = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert("""RGB""" )
lowercase__ : Any = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
lowercase__ : Optional[int] = 1_26 if """Jpeg""" in checkpoint_url else 2_56
lowercase__ : Union[str, Any] = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
lowercase__ : Dict = transforms(lowercase_ ).unsqueeze(0 )
if config.num_channels == 1:
lowercase__ : Any = pixel_values[:, 0, :, :].unsqueeze(1 )
lowercase__ : Union[str, Any] = model(lowercase_ )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
lowercase__ : Optional[Any] = torch.Size([1, 3, 5_12, 5_12] )
lowercase__ : Optional[Any] = torch.tensor(
[[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
lowercase__ : List[str] = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
lowercase__ : Optional[Any] = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
lowercase__ : Tuple = torch.Size([1, 3, 5_12, 5_12] )
lowercase__ : int = torch.tensor(
[[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
lowercase__ : Tuple = torch.Size([1, 3, 10_24, 10_24] )
lowercase__ : int = torch.tensor(
[[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] )
assert (
outputs.reconstruction.shape == expected_shape
), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase_ , atol=1E-3 )
print("""Looks ok!""" )
lowercase__ : str = {
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": (
"""swin2SR-classical-sr-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": (
"""swin2SR-classical-sr-x4-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": (
"""swin2SR-compressed-sr-x4-48"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": (
"""swin2SR-lightweight-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": (
"""swin2SR-realworld-sr-x4-64-bsrgan-psnr"""
),
}
lowercase__ : str = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase_ )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(lowercase_ )
if push_to_hub:
model.push_to_hub(F'caidas/{model_name}' )
processor.push_to_hub(F'caidas/{model_name}' )
if __name__ == "__main__":
lowerCamelCase__ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""",
type=str,
help="""URL of the original Swin2SR checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""")
lowerCamelCase__ : Any = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 12 | 0 |
'''simple docstring'''
import os
import time
import pytest
from datasets.utils.filelock import FileLock, Timeout
def snake_case_ ( _lowerCAmelCase : Union[str, Any] ) -> Optional[Any]:
UpperCAmelCase : Dict = FileLock(str(tmpdir / '''foo.lock''' ) )
UpperCAmelCase : Tuple = FileLock(str(tmpdir / '''foo.lock''' ) )
UpperCAmelCase : Optional[int] = 0.0_1
with locka.acquire():
with pytest.raises(lowercase_ ):
UpperCAmelCase : str = time.time()
locka.acquire(lowercase_ )
assert time.time() - _start > timeout
def snake_case_ ( _lowerCAmelCase : Tuple ) -> List[Any]:
UpperCAmelCase : Optional[int] = """a""" * 1000 + """.lock"""
UpperCAmelCase : Optional[Any] = FileLock(str(tmpdir / filename ) )
assert locka._lock_file.endswith('''.lock''' )
assert not locka._lock_file.endswith(lowercase_ )
assert len(os.path.basename(locka._lock_file ) ) <= 255
UpperCAmelCase : str = FileLock(tmpdir / filename )
with locka.acquire():
with pytest.raises(lowercase_ ):
locka.acquire(0 )
| 127 |
import json
import os
from dataclasses import dataclass
from functools import partial
from typing import Callable
import flax.linen as nn
import jax
import jax.numpy as jnp
import joblib
import optax
import wandb
from flax import jax_utils, struct, traverse_util
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import shard
from tqdm.auto import tqdm
from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering
from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : BigBirdConfig
__lowerCAmelCase : jnp.dtype = jnp.floataa
__lowerCAmelCase : bool = True
def lowercase__ ( self):
'''simple docstring'''
super().setup()
lowercase__ : Dict = nn.Dense(5 , dtype=self.dtype)
def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[str] = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = self.cls(outputs[2])
return outputs[:2] + (cls_out,)
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Optional[int] = FlaxBigBirdForNaturalQuestionsModule
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int:
'''simple docstring'''
def cross_entropy(lowercase_ , lowercase_ , lowercase_=None ):
lowercase__ : int = logits.shape[-1]
lowercase__ : List[str] = (labels[..., None] == jnp.arange(lowercase_ )[None]).astype("""f4""" )
lowercase__ : int = jax.nn.log_softmax(lowercase_ , axis=-1 )
lowercase__ : Any = -jnp.sum(labels * logits , axis=-1 )
if reduction is not None:
lowercase__ : Optional[int] = reduction(lowercase_ )
return loss
lowercase__ : int = partial(lowercase_ , reduction=jnp.mean )
lowercase__ : Tuple = cross_entropy(lowercase_ , lowercase_ )
lowercase__ : List[Any] = cross_entropy(lowercase_ , lowercase_ )
lowercase__ : Union[str, Any] = cross_entropy(lowercase_ , lowercase_ )
return (start_loss + end_loss + pooled_loss) / 3
@dataclass
class _snake_case :
__lowerCAmelCase : str = "google/bigbird-roberta-base"
__lowerCAmelCase : int = 3_000
__lowerCAmelCase : int = 10_500
__lowerCAmelCase : int = 128
__lowerCAmelCase : int = 3
__lowerCAmelCase : int = 1
__lowerCAmelCase : int = 5
# tx_args
__lowerCAmelCase : float = 3e-5
__lowerCAmelCase : float = 0.0
__lowerCAmelCase : int = 20_000
__lowerCAmelCase : float = 0.0_095
__lowerCAmelCase : str = "bigbird-roberta-natural-questions"
__lowerCAmelCase : str = "training-expt"
__lowerCAmelCase : str = "data/nq-training.jsonl"
__lowerCAmelCase : str = "data/nq-validation.jsonl"
def lowercase__ ( self):
'''simple docstring'''
os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = os.path.join(self.base_dir , self.save_dir)
lowercase__ : str = self.batch_size_per_device * jax.device_count()
@dataclass
class _snake_case :
__lowerCAmelCase : int
__lowerCAmelCase : int = 4_096 # no dynamic padding on TPUs
def __call__( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = self.collate_fn(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
return batch
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ , lowercase__ : str = self.fetch_inputs(features["""input_ids"""])
lowercase__ : str = {
"""input_ids""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa),
"""attention_mask""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa),
"""start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa),
"""end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa),
"""pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa),
}
return batch
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[Any] = [self._fetch_inputs(SCREAMING_SNAKE_CASE_) for ids in input_ids]
return zip(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = [1 for _ in range(len(SCREAMING_SNAKE_CASE_))]
while len(SCREAMING_SNAKE_CASE_) < self.max_length:
input_ids.append(self.pad_id)
attention_mask.append(0)
return input_ids, attention_mask
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> Optional[Any]:
'''simple docstring'''
if seed is not None:
lowercase__ : Any = dataset.shuffle(seed=lowercase_ )
for i in range(len(lowercase_ ) // batch_size ):
lowercase__ : List[str] = dataset[i * batch_size : (i + 1) * batch_size]
yield dict(lowercase_ )
@partial(jax.pmap , axis_name="""batch""" )
def UpperCamelCase ( lowercase_ , lowercase_ , **lowercase_ ) -> int:
'''simple docstring'''
def loss_fn(lowercase_ ):
lowercase__ : Dict = model_inputs.pop("""start_labels""" )
lowercase__ : List[Any] = model_inputs.pop("""end_labels""" )
lowercase__ : List[Any] = model_inputs.pop("""pooled_labels""" )
lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=lowercase_ , dropout_rng=lowercase_ , train=lowercase_ )
lowercase__ , lowercase__ , lowercase__ : Any = outputs
return state.loss_fn(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , )
lowercase__ , lowercase__ : Optional[int] = jax.random.split(lowercase_ )
lowercase__ : Tuple = jax.value_and_grad(lowercase_ )
lowercase__ , lowercase__ : Optional[int] = grad_fn(state.params )
lowercase__ : Tuple = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
lowercase__ : Any = jax.lax.pmean(lowercase_ , """batch""" )
lowercase__ : str = state.apply_gradients(grads=lowercase_ )
return state, metrics, new_drp_rng
@partial(jax.pmap , axis_name="""batch""" )
def UpperCamelCase ( lowercase_ , **lowercase_ ) -> str:
'''simple docstring'''
lowercase__ : Tuple = model_inputs.pop("""start_labels""" )
lowercase__ : List[str] = model_inputs.pop("""end_labels""" )
lowercase__ : int = model_inputs.pop("""pooled_labels""" )
lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=state.params , train=lowercase_ )
lowercase__ , lowercase__ , lowercase__ : Optional[int] = outputs
lowercase__ : Optional[Any] = state.loss_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : List[str] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
return metrics
class _snake_case ( train_state.TrainState ):
__lowerCAmelCase : Callable = struct.field(pytree_node=UpperCAmelCase_ )
@dataclass
class _snake_case :
__lowerCAmelCase : Args
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : Callable
__lowerCAmelCase : wandb
__lowerCAmelCase : Callable = None
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None):
'''simple docstring'''
lowercase__ : List[str] = model.params
lowercase__ : Dict = TrainState.create(
apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , loss_fn=SCREAMING_SNAKE_CASE_ , )
if ckpt_dir is not None:
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = restore_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = {
"""lr""": args.lr,
"""init_lr""": args.init_lr,
"""warmup_steps""": args.warmup_steps,
"""num_train_steps""": num_train_steps,
"""weight_decay""": args.weight_decay,
}
lowercase__ , lowercase__ : Any = build_tx(**SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = train_state.TrainState(
step=SCREAMING_SNAKE_CASE_ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , opt_state=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Optional[Any] = args
lowercase__ : Union[str, Any] = data_collator
lowercase__ : str = lr
lowercase__ : Union[str, Any] = params
lowercase__ : Dict = jax_utils.replicate(SCREAMING_SNAKE_CASE_)
return state
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = self.args
lowercase__ : List[str] = len(SCREAMING_SNAKE_CASE_) // args.batch_size
lowercase__ : int = jax.random.PRNGKey(0)
lowercase__ : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count())
for epoch in range(args.max_epochs):
lowercase__ : Tuple = jnp.array(0 , dtype=jnp.floataa)
lowercase__ : List[str] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , args.batch_size , seed=SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = 0
for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc=f'Running EPOCH-{epoch}'):
lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ , lowercase__ : List[Any] = self.train_step_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
running_loss += jax_utils.unreplicate(metrics["""loss"""])
i += 1
if i % args.logging_steps == 0:
lowercase__ : List[str] = jax_utils.unreplicate(state.step)
lowercase__ : str = running_loss.item() / i
lowercase__ : Tuple = self.scheduler_fn(state_step - 1)
lowercase__ : Tuple = self.evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = {
"""step""": state_step.item(),
"""eval_loss""": eval_loss.item(),
"""tr_loss""": tr_loss,
"""lr""": lr.item(),
}
tqdm.write(str(SCREAMING_SNAKE_CASE_))
self.logger.log(SCREAMING_SNAKE_CASE_ , commit=SCREAMING_SNAKE_CASE_)
if i % args.save_steps == 0:
self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Dict = get_batched_dataset(SCREAMING_SNAKE_CASE_ , self.args.batch_size)
lowercase__ : Tuple = len(SCREAMING_SNAKE_CASE_) // self.args.batch_size
lowercase__ : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa)
lowercase__ : Optional[Any] = 0
for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc="""Evaluating ... """):
lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = self.val_step_fn(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
running_loss += jax_utils.unreplicate(metrics["""loss"""])
i += 1
return running_loss / i
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = jax_utils.unreplicate(SCREAMING_SNAKE_CASE_)
print(f'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """)
self.model_save_fn(SCREAMING_SNAKE_CASE_ , params=state.params)
with open(os.path.join(SCREAMING_SNAKE_CASE_ , """opt_state.msgpack""") , """wb""") as f:
f.write(to_bytes(state.opt_state))
joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE_ , """args.joblib"""))
joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE_ , """data_collator.joblib"""))
with open(os.path.join(SCREAMING_SNAKE_CASE_ , """training_state.json""") , """w""") as f:
json.dump({"""step""": state.step.item()} , SCREAMING_SNAKE_CASE_)
print("""DONE""")
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ )
with open(os.path.join(lowercase_ , """flax_model.msgpack""" ) , """rb""" ) as f:
lowercase__ : Optional[Any] = from_bytes(state.params , f.read() )
with open(os.path.join(lowercase_ , """opt_state.msgpack""" ) , """rb""" ) as f:
lowercase__ : Dict = from_bytes(state.opt_state , f.read() )
lowercase__ : Any = joblib.load(os.path.join(lowercase_ , """args.joblib""" ) )
lowercase__ : Optional[int] = joblib.load(os.path.join(lowercase_ , """data_collator.joblib""" ) )
with open(os.path.join(lowercase_ , """training_state.json""" ) , """r""" ) as f:
lowercase__ : int = json.load(lowercase_ )
lowercase__ : Optional[Any] = training_state["""step"""]
print("""DONE""" )
return params, opt_state, step, args, data_collator
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple:
'''simple docstring'''
lowercase__ : Optional[int] = num_train_steps - warmup_steps
lowercase__ : int = optax.linear_schedule(init_value=lowercase_ , end_value=lowercase_ , transition_steps=lowercase_ )
lowercase__ : Optional[int] = optax.linear_schedule(init_value=lowercase_ , end_value=1E-7 , transition_steps=lowercase_ )
lowercase__ : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] )
return lr
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]:
'''simple docstring'''
def weight_decay_mask(lowercase_ ):
lowercase__ : Dict = traverse_util.flatten_dict(lowercase_ )
lowercase__ : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()}
return traverse_util.unflatten_dict(lowercase_ )
lowercase__ : Optional[int] = scheduler_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : int = optax.adamw(learning_rate=lowercase_ , weight_decay=lowercase_ , mask=lowercase_ )
return tx, lr
| 12 | 0 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Optional[Any] = MBartConfig
SCREAMING_SNAKE_CASE__ :Tuple = {}
SCREAMING_SNAKE_CASE__ :Any = 'gelu'
def __init__( self : int , __a : Optional[int] , __a : List[Any]=13 , __a : Tuple=7 , __a : Dict=True , __a : Dict=False , __a : Optional[Any]=99 , __a : str=32 , __a : str=2 , __a : Union[str, Any]=4 , __a : List[str]=37 , __a : Any=0.1 , __a : Tuple=0.1 , __a : str=20 , __a : Union[str, Any]=2 , __a : List[str]=1 , __a : Optional[Any]=0 , ) -> Any:
_UpperCamelCase : str = parent
_UpperCamelCase : Tuple = batch_size
_UpperCamelCase : List[str] = seq_length
_UpperCamelCase : List[Any] = is_training
_UpperCamelCase : str = use_labels
_UpperCamelCase : Any = vocab_size
_UpperCamelCase : str = hidden_size
_UpperCamelCase : str = num_hidden_layers
_UpperCamelCase : Optional[int] = num_attention_heads
_UpperCamelCase : List[str] = intermediate_size
_UpperCamelCase : int = hidden_dropout_prob
_UpperCamelCase : Dict = attention_probs_dropout_prob
_UpperCamelCase : List[str] = max_position_embeddings
_UpperCamelCase : Any = eos_token_id
_UpperCamelCase : Dict = pad_token_id
_UpperCamelCase : Dict = bos_token_id
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]:
_UpperCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_UpperCamelCase : str = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_UpperCamelCase : Dict = tf.concat([input_ids, eos_tensor] , axis=1 )
_UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase : List[Any] = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
_UpperCamelCase : Tuple = prepare_mbart_inputs_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return config, inputs_dict
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Any , __a : List[str] ) -> str:
_UpperCamelCase : Optional[Any] = TFMBartModel(config=SCREAMING_SNAKE_CASE_ ).get_decoder()
_UpperCamelCase : Optional[Any] = inputs_dict["""input_ids"""]
_UpperCamelCase : List[str] = input_ids[:1, :]
_UpperCamelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :]
_UpperCamelCase : List[str] = inputs_dict["""head_mask"""]
_UpperCamelCase : Any = 1
# first forward pass
_UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ )
_UpperCamelCase : int = outputs.to_tuple()
_UpperCamelCase : str = past_key_values[1]
def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=None ,lowercase_=None ,lowercase_=None ,) -> str:
"""simple docstring"""
if attention_mask is None:
_UpperCamelCase : Optional[int] = tf.cast(tf.math.not_equal(lowercase_ ,config.pad_token_id ) ,tf.inta )
if decoder_attention_mask is None:
_UpperCamelCase : Optional[Any] = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ),
] ,axis=-1 ,)
if head_mask is None:
_UpperCamelCase : Optional[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_UpperCamelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_UpperCamelCase : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class __SCREAMING_SNAKE_CASE ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Any = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
SCREAMING_SNAKE_CASE__ :List[Any] = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
SCREAMING_SNAKE_CASE__ :Optional[Any] = (
{
'conversational': TFMBartForConditionalGeneration,
'feature-extraction': TFMBartModel,
'summarization': TFMBartForConditionalGeneration,
'text2text-generation': TFMBartForConditionalGeneration,
'translation': TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
SCREAMING_SNAKE_CASE__ :Optional[int] = True
SCREAMING_SNAKE_CASE__ :str = False
SCREAMING_SNAKE_CASE__ :Union[str, Any] = False
def __SCREAMING_SNAKE_CASE ( self : Any , __a : Union[str, Any] , __a : Optional[Any] , __a : Union[str, Any] , __a : Dict , __a : List[Any] ) -> int:
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any:
_UpperCamelCase : Union[str, Any] = TFMBartModelTester(self )
_UpperCamelCase : Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]:
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple:
_UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE_ )
@require_sentencepiece
@require_tokenizers
@require_tf
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Optional[Any] = [
' UN Chief Says There Is No Military Solution in Syria',
]
SCREAMING_SNAKE_CASE__ :Any = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
]
SCREAMING_SNAKE_CASE__ :int = 'facebook/mbart-large-en-ro'
@cached_property
def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]:
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple:
_UpperCamelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , **__a : Any ) -> Union[str, Any]:
_UpperCamelCase : Dict = self.translate_src_text(**SCREAMING_SNAKE_CASE_ )
self.assertListEqual(self.expected_text , SCREAMING_SNAKE_CASE_ )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , **__a : Optional[int] ) -> Union[str, Any]:
_UpperCamelCase : List[Any] = self.tokenizer(self.src_text , **SCREAMING_SNAKE_CASE_ , return_tensors="tf" )
_UpperCamelCase : Any = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
_UpperCamelCase : Union[str, Any] = self.tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
return generated_words
@slow
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any:
self._assert_generated_batch_equal_expected()
| 624 |
lowerCamelCase__ : List[str] = """
# Installazione di Transformers
! pip install transformers datasets
# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e
# rimuovi la modalità commento al comando seguente.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
lowerCamelCase__ : List[Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
lowerCamelCase__ : int = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 12 | 0 |
'''simple docstring'''
import argparse
import os
import torch
from transformers import FlavaImageCodebook, FlavaImageCodebookConfig
def _lowerCAmelCase (_lowercase , _lowercase , _lowercase , _lowercase ):
"""simple docstring"""
a__ = s.rsplit(lowercase_ , lowercase_ )
return new.join(lowercase_ )
def _lowerCAmelCase (_lowercase ):
"""simple docstring"""
return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() )
def _lowerCAmelCase (_lowercase ):
"""simple docstring"""
a__ = {}
a__ = ["""group_1""", """group_2""", """group_3""", """group_4"""]
for key, value in state_dict.items():
for group_key in group_keys:
if group_key in key:
a__ = key.replace(F'{group_key}.' , F'{group_key}.group.' )
if "res_path" in key:
a__ = key.replace("res_path." , "res_path.path." )
if key.endswith(".w" ):
a__ = rreplace(lowercase_ , ".w" , ".weight" , 1 )
if key.endswith(".b" ):
a__ = rreplace(lowercase_ , ".b" , ".bias" , 1 )
a__ = value.float()
return upgrade
@torch.no_grad()
def _lowerCAmelCase (_lowercase , _lowercase , _lowercase=None , _lowercase=True ):
"""simple docstring"""
from dall_e import Encoder
a__ = Encoder()
if os.path.exists(lowercase_ ):
a__ = torch.load(lowercase_ )
else:
a__ = torch.hub.load_state_dict_from_url(lowercase_ )
if isinstance(lowercase_ , lowercase_ ):
a__ = ckpt.state_dict()
encoder.load_state_dict(lowercase_ )
if config_path is not None:
a__ = FlavaImageCodebookConfig.from_pretrained(lowercase_ )
else:
a__ = FlavaImageCodebookConfig()
a__ = FlavaImageCodebook(lowercase_ ).eval()
a__ = encoder.state_dict()
a__ = upgrade_state_dict(lowercase_ )
hf_model.load_state_dict(lowercase_ )
a__ = hf_model.state_dict()
a__ = count_parameters(lowercase_ )
a__ = count_parameters(lowercase_ )
assert torch.allclose(lowercase_ , lowercase_ , atol=1e-3 )
if save_checkpoint:
hf_model.save_pretrained(lowercase_ )
else:
return hf_state_dict
if __name__ == "__main__":
UpperCamelCase_ : List[str] = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
UpperCamelCase_ : List[str] = parser.parse_args()
convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 331 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class _snake_case :
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ):
'''simple docstring'''
lowercase__ : str = parent
lowercase__ : Optional[int] = batch_size
lowercase__ : Optional[int] = seq_length
lowercase__ : Union[str, Any] = is_training
lowercase__ : Any = use_input_mask
lowercase__ : Optional[int] = use_token_type_ids
lowercase__ : Optional[Any] = use_labels
lowercase__ : Optional[int] = vocab_size
lowercase__ : Optional[Any] = hidden_size
lowercase__ : Any = rotary_dim
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Tuple = num_attention_heads
lowercase__ : Tuple = intermediate_size
lowercase__ : List[str] = hidden_act
lowercase__ : Optional[Any] = hidden_dropout_prob
lowercase__ : int = attention_probs_dropout_prob
lowercase__ : Any = max_position_embeddings
lowercase__ : Optional[int] = initializer_range
lowercase__ : Optional[int] = None
lowercase__ : str = vocab_size - 1
lowercase__ : Any = vocab_size - 1
lowercase__ : Dict = vocab_size - 1
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ : Any = None
if self.use_input_mask:
lowercase__ : Dict = random_attention_mask([self.batch_size, self.seq_length])
lowercase__ : List[Any] = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Optional[int] = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ : Optional[Any] = config_and_inputs
lowercase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Tuple = 20
lowercase__ : int = model_class_name(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""")
lowercase__ : Tuple = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1))
lowercase__ : List[str] = model(
input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase__ : str = model(
input_ids[:, -1:] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=outputs_cache.past_key_values , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}')
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Union[str, Any] = 20
lowercase__ : List[Any] = model_class_name(SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , )
lowercase__ : Dict = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1))
lowercase__ : Any = model(
input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : int = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase__ : Tuple = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , )
lowercase__ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_)
lowercase__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}')
@require_flax
class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Dict = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__lowerCAmelCase : str = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = FlaxGPTJModelTester(self)
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ , lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ , lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@tooslow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""")
lowercase__ : List[str] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_)
lowercase__ : Dict = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""")
lowercase__ : Optional[Any] = False
lowercase__ : List[str] = model.config.eos_token_id
lowercase__ : List[Any] = jax.jit(model.generate)
lowercase__ : Tuple = jit_generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id).sequences
lowercase__ : List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@is_pt_flax_cross_test
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# prepare inputs
lowercase__ : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Any = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowercase__ : str = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ : Dict = pt_inputs["""input_ids"""].shape
lowercase__ : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,))
for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : str = 0
lowercase__ : List[Any] = 1
lowercase__ : Dict = 0
lowercase__ : Any = 1
lowercase__ : List[Any] = pt_model_class(SCREAMING_SNAKE_CASE_).eval()
lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa)
lowercase__ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = fx_state
with torch.no_grad():
lowercase__ : Optional[int] = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : Dict = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_pt=SCREAMING_SNAKE_CASE_)
lowercase__ : str = fx_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(
len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output_loaded, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2)
@is_pt_flax_cross_test
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# prepare inputs
lowercase__ : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowercase__ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowercase__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : str = pt_model_class(SCREAMING_SNAKE_CASE_).eval()
lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa)
lowercase__ : Optional[int] = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , fx_model.params)
lowercase__ , lowercase__ : str = pt_inputs["""input_ids"""].shape
lowercase__ : List[Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,))
for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE_):
lowercase__ : Tuple = 0
lowercase__ : int = 1
lowercase__ : str = 0
lowercase__ : str = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
lowercase__ : Dict = pt_model(**SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : Optional[Any] = fx_model(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : Tuple = pt_model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , from_flax=SCREAMING_SNAKE_CASE_)
with torch.no_grad():
lowercase__ : Tuple = pt_model_loaded(**SCREAMING_SNAKE_CASE_).to_tuple()
self.assertEqual(
len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_) , """Output lengths differ between Flax and PyTorch""")
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2)
@tooslow
def lowercase__ ( self):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ : Any = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""")
lowercase__ : int = model(np.ones((1, 1)))
self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
| 12 | 0 |
import argparse
import hashlib
import os
import urllib
import warnings
import torch
from torch import nn
from tqdm import tqdm
from transformers import WhisperConfig, WhisperForConditionalGeneration
a_ : int = {
"""tiny.en""": """https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt""",
"""tiny""": """https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt""",
"""base.en""": """https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt""",
"""base""": """https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt""",
"""small.en""": """https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt""",
"""small""": """https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt""",
"""medium.en""": """https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt""",
"""medium""": """https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt""",
"""large""": """https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt""",
"""large-v2""": """https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt""",
}
def __lowerCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
SCREAMING_SNAKE_CASE = ["""layers""", """blocks"""]
for k in ignore_keys:
state_dict.pop(lowercase_ , lowercase_ )
a_ : Optional[Any] = {
"""blocks""": """layers""",
"""mlp.0""": """fc1""",
"""mlp.2""": """fc2""",
"""mlp_ln""": """final_layer_norm""",
""".attn.query""": """.self_attn.q_proj""",
""".attn.key""": """.self_attn.k_proj""",
""".attn.value""": """.self_attn.v_proj""",
""".attn_ln""": """.self_attn_layer_norm""",
""".attn.out""": """.self_attn.out_proj""",
""".cross_attn.query""": """.encoder_attn.q_proj""",
""".cross_attn.key""": """.encoder_attn.k_proj""",
""".cross_attn.value""": """.encoder_attn.v_proj""",
""".cross_attn_ln""": """.encoder_attn_layer_norm""",
""".cross_attn.out""": """.encoder_attn.out_proj""",
"""decoder.ln.""": """decoder.layer_norm.""",
"""encoder.ln.""": """encoder.layer_norm.""",
"""token_embedding""": """embed_tokens""",
"""encoder.positional_embedding""": """encoder.embed_positions.weight""",
"""decoder.positional_embedding""": """decoder.embed_positions.weight""",
"""ln_post""": """layer_norm""",
}
def __lowerCAmelCase ( _UpperCamelCase : Tuple ) -> int:
'''simple docstring'''
SCREAMING_SNAKE_CASE = list(s_dict.keys() )
for key in keys:
SCREAMING_SNAKE_CASE = key
for k, v in WHISPER_MAPPING.items():
if k in key:
SCREAMING_SNAKE_CASE = new_key.replace(lowercase_ , lowercase_ )
print(f"""{key} -> {new_key}""" )
SCREAMING_SNAKE_CASE = s_dict.pop(lowercase_ )
return s_dict
def __lowerCAmelCase ( _UpperCamelCase : Any ) -> List[str]:
'''simple docstring'''
SCREAMING_SNAKE_CASE = emb.weight.shape
SCREAMING_SNAKE_CASE = nn.Linear(lowercase_ , lowercase_ , bias=lowercase_ )
SCREAMING_SNAKE_CASE = emb.weight.data
return lin_layer
def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Any ) -> bytes:
'''simple docstring'''
os.makedirs(lowercase_ , exist_ok=lowercase_ )
SCREAMING_SNAKE_CASE = os.path.basename(lowercase_ )
SCREAMING_SNAKE_CASE = url.split('/' )[-2]
SCREAMING_SNAKE_CASE = os.path.join(lowercase_ , lowercase_ )
if os.path.exists(lowercase_ ) and not os.path.isfile(lowercase_ ):
raise RuntimeError(f"""{download_target} exists and is not a regular file""" )
if os.path.isfile(lowercase_ ):
SCREAMING_SNAKE_CASE = open(lowercase_ , 'rb' ).read()
if hashlib.shaaaa(lowercase_ ).hexdigest() == expected_shaaaa:
return model_bytes
else:
warnings.warn(f"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" )
with urllib.request.urlopen(lowercase_ ) as source, open(lowercase_ , 'wb' ) as output:
with tqdm(
total=int(source.info().get('Content-Length' ) ) , ncols=80 , unit='iB' , unit_scale=lowercase_ , unit_divisor=10_24 ) as loop:
while True:
SCREAMING_SNAKE_CASE = source.read(81_92 )
if not buffer:
break
output.write(lowercase_ )
loop.update(len(lowercase_ ) )
SCREAMING_SNAKE_CASE = open(lowercase_ , 'rb' ).read()
if hashlib.shaaaa(lowercase_ ).hexdigest() != expected_shaaaa:
raise RuntimeError(
'Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.' )
return model_bytes
def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
if ".pt" not in checkpoint_path:
SCREAMING_SNAKE_CASE = _download(_MODELS[checkpoint_path] )
else:
SCREAMING_SNAKE_CASE = torch.load(lowercase_ , map_location='cpu' )
SCREAMING_SNAKE_CASE = original_checkpoint["""dims"""]
SCREAMING_SNAKE_CASE = original_checkpoint["""model_state_dict"""]
SCREAMING_SNAKE_CASE = state_dict["""decoder.token_embedding.weight"""]
remove_ignore_keys_(lowercase_ )
rename_keys(lowercase_ )
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = state_dict["""decoder.layers.0.fc1.weight"""].shape[0]
SCREAMING_SNAKE_CASE = WhisperConfig(
vocab_size=dimensions['n_vocab'] , encoder_ffn_dim=lowercase_ , decoder_ffn_dim=lowercase_ , num_mel_bins=dimensions['n_mels'] , d_model=dimensions['n_audio_state'] , max_target_positions=dimensions['n_text_ctx'] , encoder_layers=dimensions['n_audio_layer'] , encoder_attention_heads=dimensions['n_audio_head'] , decoder_layers=dimensions['n_text_layer'] , decoder_attention_heads=dimensions['n_text_state'] , max_source_positions=dimensions['n_audio_ctx'] , )
SCREAMING_SNAKE_CASE = WhisperForConditionalGeneration(lowercase_ )
SCREAMING_SNAKE_CASE = model.model.load_state_dict(lowercase_ , strict=lowercase_ )
if len(lowercase_ ) > 0 and not set(lowercase_ ) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,'
f""" but all the following weights are missing {missing}""" )
if tie_embeds:
SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.decoder.embed_tokens )
else:
SCREAMING_SNAKE_CASE = proj_out_weights
model.save_pretrained(lowercase_ )
if __name__ == "__main__":
a_ : Tuple = argparse.ArgumentParser()
# # Required parameters
parser.add_argument("--checkpoint_path", type=str, help="Patht to the downloaded checkpoints")
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
a_ : Any = parser.parse_args()
convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
| 439 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Any = ['image_processor', 'tokenizer']
__lowerCAmelCase : Union[str, Any] = 'AutoImageProcessor'
__lowerCAmelCase : int = 'AutoTokenizer'
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Union[str, Any] = self.image_processor
def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""")
if text is not None:
lowercase__ : List[str] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
if images is not None:
lowercase__ : Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
if text is not None and images is not None:
lowercase__ : Union[str, Any] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_) , tensor_type=SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
@property
def lowercase__ ( self):
'''simple docstring'''
return ["input_ids", "attention_mask", "pixel_values"]
| 12 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
__UpperCamelCase : str = logging.get_logger(__name__)
__UpperCamelCase : Dict = {
"""openai/imagegpt-small""": """""",
"""openai/imagegpt-medium""": """""",
"""openai/imagegpt-large""": """""",
}
class __SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ):
__a ='imagegpt'
__a =['past_key_values']
__a ={
'hidden_size': 'n_embd',
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , lowerCamelCase=512 + 1 , lowerCamelCase=32 * 32 , lowerCamelCase=512 , lowerCamelCase=24 , lowerCamelCase=8 , lowerCamelCase=None , lowerCamelCase="quick_gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=1e-5 , lowerCamelCase=0.02 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=False , **lowerCamelCase , ) ->Union[str, Any]:
'''simple docstring'''
__a = vocab_size
__a = n_positions
__a = n_embd
__a = n_layer
__a = n_head
__a = n_inner
__a = activation_function
__a = resid_pdrop
__a = embd_pdrop
__a = attn_pdrop
__a = layer_norm_epsilon
__a = initializer_range
__a = scale_attn_weights
__a = use_cache
__a = scale_attn_by_inverse_layer_idx
__a = reorder_and_upcast_attn
__a = tie_word_embeddings
super().__init__(tie_word_embeddings=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
class __SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ):
@property
def __UpperCamelCase ( self ) ->int:
'''simple docstring'''
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
] )
def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase = 1 , lowerCamelCase = -1 , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = 3 , lowerCamelCase = 32 , lowerCamelCase = 32 , ) ->Dict:
'''simple docstring'''
__a = self._generate_dummy_images(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__a = dict(preprocessor(images=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) )
return inputs | 448 |
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
if n == 1 or not isinstance(lowercase_ , lowercase_ ):
return 0
elif n == 2:
return 1
else:
lowercase__ : List[Any] = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def UpperCamelCase ( lowercase_ ) -> int:
'''simple docstring'''
lowercase__ : Optional[Any] = 0
lowercase__ : Dict = 2
while digits < n:
index += 1
lowercase__ : str = len(str(fibonacci(lowercase_ ) ) )
return index
def UpperCamelCase ( lowercase_ = 10_00 ) -> int:
'''simple docstring'''
return fibonacci_digits_index(lowercase_ )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 12 | 0 |
from __future__ import annotations
from typing import TypedDict
class _UpperCamelCase ( UpperCAmelCase_ ):
'''simple docstring'''
lowerCamelCase__ =42
lowerCamelCase__ =42
def lowerCamelCase__ ( _a):
if not isinstance(lowercase_ , lowercase_):
raise TypeError("The parameter s type must be str.")
return [s[i:] + s[:i] for i in range(len(lowercase_))]
def lowerCamelCase__ ( _a):
if not isinstance(lowercase_ , lowercase_):
raise TypeError("The parameter s type must be str.")
if not s:
raise ValueError("The parameter s must not be empty.")
SCREAMING_SNAKE_CASE : List[str] = all_rotations(lowercase_)
rotations.sort() # sort the list of rotations in alphabetically order
# make a string composed of the last char of each rotation
SCREAMING_SNAKE_CASE : BWTTransformDict = {
"bwt_string": "".join([word[-1] for word in rotations]),
"idx_original_string": rotations.index(lowercase_),
}
return response
def lowerCamelCase__ ( _a , _a):
if not isinstance(lowercase_ , lowercase_):
raise TypeError("The parameter bwt_string type must be str.")
if not bwt_string:
raise ValueError("The parameter bwt_string must not be empty.")
try:
SCREAMING_SNAKE_CASE : Optional[Any] = int(lowercase_)
except ValueError:
raise TypeError(
"The parameter idx_original_string type must be int or passive"
" of cast to int.")
if idx_original_string < 0:
raise ValueError("The parameter idx_original_string must not be lower than 0.")
if idx_original_string >= len(lowercase_):
raise ValueError(
"The parameter idx_original_string must be lower than" " len(bwt_string).")
SCREAMING_SNAKE_CASE : str = [""""""] * len(lowercase_)
for _ in range(len(lowercase_)):
for i in range(len(lowercase_)):
SCREAMING_SNAKE_CASE : List[Any] = bwt_string[i] + ordered_rotations[i]
ordered_rotations.sort()
return ordered_rotations[idx_original_string]
if __name__ == "__main__":
a_ = """Provide a string that I will generate its BWT transform: """
a_ = input(entry_msg).strip()
a_ = bwt_transform(s)
print(
F'''Burrows Wheeler transform for string \'{s}\' results '''
F'''in \'{result["bwt_string"]}\''''
)
a_ = reverse_bwt(result['bwt_string'], result['idx_original_string'])
print(
F'''Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' '''
F'''we get original string \'{original_string}\''''
) | 25 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import torch
from ...utils import is_npu_available, is_xpu_available
from .config_args import ClusterConfig, default_json_config_file
from .config_utils import SubcommandHelpFormatter
lowerCamelCase__ : Any = """Create a default config file for Accelerate with only a few flags set."""
def UpperCamelCase ( lowercase_="no" , lowercase_ = default_json_config_file , lowercase_ = False ) -> Any:
'''simple docstring'''
lowercase__ : Any = Path(lowercase_ )
path.parent.mkdir(parents=lowercase_ , exist_ok=lowercase_ )
if path.exists():
print(
F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' )
return False
lowercase__ : int = mixed_precision.lower()
if mixed_precision not in ["no", "fp16", "bf16", "fp8"]:
raise ValueError(
F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' )
lowercase__ : Dict = {
"""compute_environment""": """LOCAL_MACHINE""",
"""mixed_precision""": mixed_precision,
}
if torch.cuda.is_available():
lowercase__ : Any = torch.cuda.device_count()
lowercase__ : Any = num_gpus
lowercase__ : Optional[int] = False
if num_gpus > 1:
lowercase__ : Tuple = """MULTI_GPU"""
else:
lowercase__ : Optional[Any] = """NO"""
elif is_xpu_available() and use_xpu:
lowercase__ : Union[str, Any] = torch.xpu.device_count()
lowercase__ : str = num_xpus
lowercase__ : List[Any] = False
if num_xpus > 1:
lowercase__ : str = """MULTI_XPU"""
else:
lowercase__ : Optional[Any] = """NO"""
elif is_npu_available():
lowercase__ : Tuple = torch.npu.device_count()
lowercase__ : Union[str, Any] = num_npus
lowercase__ : Union[str, Any] = False
if num_npus > 1:
lowercase__ : List[Any] = """MULTI_NPU"""
else:
lowercase__ : int = """NO"""
else:
lowercase__ : Union[str, Any] = 0
lowercase__ : str = True
lowercase__ : Union[str, Any] = 1
lowercase__ : int = """NO"""
lowercase__ : Tuple = ClusterConfig(**lowercase_ )
config.to_json_file(lowercase_ )
return path
def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]:
'''simple docstring'''
lowercase__ : List[str] = parser.add_parser("""default""" , parents=lowercase_ , help=lowercase_ , formatter_class=lowercase_ )
parser.add_argument(
"""--config_file""" , default=lowercase_ , help=(
"""The path to use to store the config file. Will default to a file named default_config.yaml in the cache """
"""location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """
"""such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """
"""with 'huggingface'."""
) , dest="""save_location""" , )
parser.add_argument(
"""--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=lowercase_ , help="""Whether or not to use mixed precision training. """
"""Choose between FP16 and BF16 (bfloat16) training. """
"""BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , )
parser.set_defaults(func=lowercase_ )
return parser
def UpperCamelCase ( lowercase_ ) -> Any:
'''simple docstring'''
lowercase__ : Optional[Any] = write_basic_config(args.mixed_precision , args.save_location )
if config_file:
print(F'accelerate configuration saved at {config_file}' )
| 12 | 0 |
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class UpperCamelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = ['image_processor', 'tokenizer']
UpperCamelCase : Union[str, Any] = 'CLIPImageProcessor'
UpperCamelCase : Optional[int] = ('CLIPTokenizer', 'CLIPTokenizerFast')
def __init__( self :Union[str, Any] , lowerCAmelCase__ :List[str]=None , lowerCAmelCase__ :Tuple=None , **lowerCAmelCase__ :Union[str, Any] ) ->int:
lowercase = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , SCREAMING_SNAKE_CASE_ , )
lowercase = kwargs.pop("feature_extractor" )
lowercase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def __call__( self :Optional[Any] , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :List[Any]=None , **lowerCAmelCase__ :List[str] ) ->Dict:
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
lowercase = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if images is not None:
lowercase = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if text is not None and images is not None:
lowercase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_ ) , tensor_type=SCREAMING_SNAKE_CASE_ )
def SCREAMING_SNAKE_CASE( self :Tuple , *lowerCAmelCase__ :str , **lowerCAmelCase__ :Tuple ) ->List[Any]:
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def SCREAMING_SNAKE_CASE( self :Any , *lowerCAmelCase__ :Union[str, Any] , **lowerCAmelCase__ :List[str] ) ->int:
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
@property
def SCREAMING_SNAKE_CASE( self :List[Any] ) ->Optional[int]:
lowercase = self.tokenizer.model_input_names
lowercase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def SCREAMING_SNAKE_CASE( self :Dict ) ->Tuple:
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , SCREAMING_SNAKE_CASE_ , )
return self.image_processor_class
@property
def SCREAMING_SNAKE_CASE( self :Dict ) ->List[Any]:
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , SCREAMING_SNAKE_CASE_ , )
return self.image_processor
| 441 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ : List[Any] = logging.get_logger(__name__)
lowerCamelCase__ : Union[str, Any] = {
"""YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""",
"""YituTech/conv-bert-medium-small""": (
"""https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json"""
),
"""YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""",
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class _snake_case ( UpperCAmelCase_ ):
__lowerCAmelCase : Union[str, Any] = 'convbert'
def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
lowercase__ : Dict = vocab_size
lowercase__ : List[Any] = hidden_size
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Union[str, Any] = num_attention_heads
lowercase__ : List[str] = intermediate_size
lowercase__ : Optional[int] = hidden_act
lowercase__ : Tuple = hidden_dropout_prob
lowercase__ : List[str] = attention_probs_dropout_prob
lowercase__ : Tuple = max_position_embeddings
lowercase__ : Dict = type_vocab_size
lowercase__ : Union[str, Any] = initializer_range
lowercase__ : Dict = layer_norm_eps
lowercase__ : Tuple = embedding_size
lowercase__ : List[str] = head_ratio
lowercase__ : Dict = conv_kernel_size
lowercase__ : Dict = num_groups
lowercase__ : int = classifier_dropout
class _snake_case ( UpperCAmelCase_ ):
@property
def lowercase__ ( self):
'''simple docstring'''
if self.task == "multiple-choice":
lowercase__ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowercase__ : str = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
])
| 12 | 0 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : str = logging.get_logger(__name__)
A__ : int = {
"""asapp/sew-tiny-100k""": """https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json""",
# See all SEW models at https://huggingface.co/models?filter=sew
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Dict = 'sew'
def __init__( self , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_="group" , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) , SCREAMING_SNAKE_CASE_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE_=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1_28 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0_5 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_="mean" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=2_56 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=2 , **SCREAMING_SNAKE_CASE_ , ) -> Tuple:
super().__init__(**SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = hidden_size
__lowerCamelCase : int = feat_extract_norm
__lowerCamelCase : Optional[int] = feat_extract_activation
__lowerCamelCase : Any = list(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = list(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = list(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = conv_bias
__lowerCamelCase : Dict = num_conv_pos_embeddings
__lowerCamelCase : Optional[Any] = num_conv_pos_embedding_groups
__lowerCamelCase : Dict = len(self.conv_dim )
__lowerCamelCase : Optional[Any] = num_hidden_layers
__lowerCamelCase : Tuple = intermediate_size
__lowerCamelCase : List[Any] = squeeze_factor
__lowerCamelCase : List[str] = hidden_act
__lowerCamelCase : Dict = num_attention_heads
__lowerCamelCase : Dict = hidden_dropout
__lowerCamelCase : Tuple = attention_dropout
__lowerCamelCase : Dict = activation_dropout
__lowerCamelCase : Optional[int] = feat_proj_dropout
__lowerCamelCase : Tuple = final_dropout
__lowerCamelCase : str = layerdrop
__lowerCamelCase : int = layer_norm_eps
__lowerCamelCase : int = initializer_range
__lowerCamelCase : Optional[int] = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect.'
'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'
f'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'
f'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__lowerCamelCase : Optional[Any] = apply_spec_augment
__lowerCamelCase : Tuple = mask_time_prob
__lowerCamelCase : Any = mask_time_length
__lowerCamelCase : int = mask_time_min_masks
__lowerCamelCase : int = mask_feature_prob
__lowerCamelCase : Dict = mask_feature_length
__lowerCamelCase : List[str] = mask_feature_min_masks
# ctc loss
__lowerCamelCase : Any = ctc_loss_reduction
__lowerCamelCase : List[Any] = ctc_zero_infinity
# sequence classification
__lowerCamelCase : List[Any] = use_weighted_layer_sum
__lowerCamelCase : Union[str, Any] = classifier_proj_size
@property
def lowercase_ ( self ) -> List[Any]:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 13 |
'''simple docstring'''
from __future__ import annotations
import os
from collections.abc import Mapping
A__ : Optional[Any] = tuple[int, int]
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
__lowerCamelCase : set[int] = vertices
__lowerCamelCase : dict[EdgeT, int] = {
(min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ )): weight for edge, weight in edges.items()
}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
__lowerCamelCase : Union[str, Any] = weight
def lowercase_ ( self ) -> Graph:
__lowerCamelCase : Graph = Graph({min(self.vertices )} , {} )
__lowerCamelCase : EdgeT
__lowerCamelCase : int
__lowerCamelCase : EdgeT
__lowerCamelCase : int
while len(subgraph.vertices ) < len(self.vertices ):
__lowerCamelCase : Any = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
__lowerCamelCase : Optional[int] = edge
__lowerCamelCase : List[str] = weight
subgraph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return subgraph
def UpperCAmelCase__ ( UpperCAmelCase_ : str = "p107_network.txt" ) -> int:
__lowerCamelCase : str = os.path.abspath(os.path.dirname(UpperCAmelCase_ ) )
__lowerCamelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : dict[EdgeT, int] = {}
__lowerCamelCase : list[str]
__lowerCamelCase : int
__lowerCamelCase : int
with open(UpperCAmelCase_ ) as f:
__lowerCamelCase : Any = f.read().strip().split('\n' )
__lowerCamelCase : Any = [line.split(',' ) for line in data]
for edgea in range(1 , len(UpperCAmelCase_ ) ):
for edgea in range(UpperCAmelCase_ ):
if adjaceny_matrix[edgea][edgea] != "-":
__lowerCamelCase : int = int(adjaceny_matrix[edgea][edgea] )
__lowerCamelCase : Graph = Graph(set(range(len(UpperCAmelCase_ ) ) ) , UpperCAmelCase_ )
__lowerCamelCase : Graph = graph.prims_algorithm()
__lowerCamelCase : int = sum(graph.edges.values() )
__lowerCamelCase : int = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
A__ : List[str] = {
"""configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : str = [
"""GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""GPTBigCodeForSequenceClassification""",
"""GPTBigCodeForTokenClassification""",
"""GPTBigCodeForCausalLM""",
"""GPTBigCodeModel""",
"""GPTBigCodePreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_bigcode import (
GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTBigCodeForCausalLM,
GPTBigCodeForSequenceClassification,
GPTBigCodeForTokenClassification,
GPTBigCodeModel,
GPTBigCodePreTrainedModel,
)
else:
import sys
A__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 13 |
'''simple docstring'''
from collections.abc import Generator
from math import sin
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
if len(UpperCAmelCase_ ) != 32:
raise ValueError('Input must be of length 32' )
__lowerCamelCase : Dict = B''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bytes:
if i < 0:
raise ValueError('Input must be non-negative' )
__lowerCamelCase : Union[str, Any] = format(UpperCAmelCase_ , '08x' )[-8:]
__lowerCamelCase : str = B''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' )
return little_endian_hex
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
__lowerCamelCase : Optional[Any] = B''
for char in message:
bit_string += format(UpperCAmelCase_ , '08b' ).encode('utf-8' )
__lowerCamelCase : List[str] = format(len(UpperCAmelCase_ ) , '064b' ).encode('utf-8' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(UpperCAmelCase_ ) % 5_12 != 4_48:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> Generator[list[int], None, None]:
if len(UpperCAmelCase_ ) % 5_12 != 0:
raise ValueError('Input must have length that\'s a multiple of 512' )
for pos in range(0 , len(UpperCAmelCase_ ) , 5_12 ):
__lowerCamelCase : Any = bit_string[pos : pos + 5_12]
__lowerCamelCase : Optional[int] = []
for i in range(0 , 5_12 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int:
if i < 0:
raise ValueError('Input must be non-negative' )
__lowerCamelCase : List[Any] = format(UpperCAmelCase_ , '032b' )
__lowerCamelCase : Optional[int] = ''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(UpperCAmelCase_ , 2 )
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
return (a + b) % 2**32
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
if i < 0:
raise ValueError('Input must be non-negative' )
if shift < 0:
raise ValueError('Shift must be non-negative' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
__lowerCamelCase : Optional[Any] = preprocess(UpperCAmelCase_ )
__lowerCamelCase : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
__lowerCamelCase : Dict = 0x67_45_23_01
__lowerCamelCase : Union[str, Any] = 0xef_cd_ab_89
__lowerCamelCase : Optional[Any] = 0x98_ba_dc_fe
__lowerCamelCase : Union[str, Any] = 0x10_32_54_76
__lowerCamelCase : List[str] = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(UpperCAmelCase_ ):
__lowerCamelCase : Dict = aa
__lowerCamelCase : Tuple = ba
__lowerCamelCase : List[Any] = ca
__lowerCamelCase : Dict = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
__lowerCamelCase : List[str] = d ^ (b & (c ^ d))
__lowerCamelCase : Optional[int] = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
__lowerCamelCase : Optional[int] = c ^ (d & (b ^ c))
__lowerCamelCase : Tuple = (5 * i + 1) % 16
elif i <= 47:
__lowerCamelCase : str = b ^ c ^ d
__lowerCamelCase : Any = (3 * i + 5) % 16
else:
__lowerCamelCase : Union[str, Any] = c ^ (b | not_aa(UpperCAmelCase_ ))
__lowerCamelCase : int = (7 * i) % 16
__lowerCamelCase : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**32
__lowerCamelCase : Optional[Any] = d
__lowerCamelCase : Tuple = c
__lowerCamelCase : Optional[int] = b
__lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , left_rotate_aa(UpperCAmelCase_ , shift_amounts[i] ) )
# Add hashed chunk to running total
__lowerCamelCase : int = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : str = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : List[Any] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : Dict = reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 | 1 |
'''simple docstring'''
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Tuple = 'char'
lowerCamelCase : Dict = 'bpe'
lowerCamelCase : int = 'wp'
A__ : List[Any] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Optional[Any] = ['image_processor', 'char_tokenizer']
lowerCamelCase : int = 'ViTImageProcessor'
lowerCamelCase : Any = 'MgpstrTokenizer'
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
__lowerCamelCase : Optional[int] = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , SCREAMING_SNAKE_CASE_ , )
__lowerCamelCase : Dict = kwargs.pop('feature_extractor' )
__lowerCamelCase : Any = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
__lowerCamelCase : List[Any] = tokenizer
__lowerCamelCase : int = AutoTokenizer.from_pretrained('gpt2' )
__lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('bert-base-uncased' )
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> List[Any]:
if images is None and text is None:
raise ValueError('You need to specify either an `images` or `text` input to process.' )
if images is not None:
__lowerCamelCase : Tuple = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if text is not None:
__lowerCamelCase : int = self.char_tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if text is None:
return inputs
elif images is None:
return encodings
else:
__lowerCamelCase : Union[str, Any] = encodings['input_ids']
return inputs
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = sequences
__lowerCamelCase : Optional[int] = char_preds.size(0 )
__lowerCamelCase , __lowerCamelCase : Union[str, Any] = self._decode_helper(SCREAMING_SNAKE_CASE_ , 'char' )
__lowerCamelCase , __lowerCamelCase : str = self._decode_helper(SCREAMING_SNAKE_CASE_ , 'bpe' )
__lowerCamelCase , __lowerCamelCase : Tuple = self._decode_helper(SCREAMING_SNAKE_CASE_ , 'wp' )
__lowerCamelCase : Optional[Any] = []
__lowerCamelCase : Union[str, Any] = []
for i in range(SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Optional[int] = [char_scores[i], bpe_scores[i], wp_scores[i]]
__lowerCamelCase : str = [char_strs[i], bpe_strs[i], wp_strs[i]]
__lowerCamelCase : Dict = scores.index(max(SCREAMING_SNAKE_CASE_ ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
__lowerCamelCase : List[str] = {}
__lowerCamelCase : Optional[Any] = final_strs
__lowerCamelCase : Union[str, Any] = final_scores
__lowerCamelCase : Optional[int] = char_strs
__lowerCamelCase : Tuple = bpe_strs
__lowerCamelCase : Optional[int] = wp_strs
return out
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
if format == DecodeType.CHARACTER:
__lowerCamelCase : int = self.char_decode
__lowerCamelCase : str = 1
__lowerCamelCase : Optional[int] = '[s]'
elif format == DecodeType.BPE:
__lowerCamelCase : Optional[Any] = self.bpe_decode
__lowerCamelCase : int = 2
__lowerCamelCase : Union[str, Any] = '#'
elif format == DecodeType.WORDPIECE:
__lowerCamelCase : Optional[Any] = self.wp_decode
__lowerCamelCase : Optional[Any] = 1_02
__lowerCamelCase : Any = '[SEP]'
else:
raise ValueError(f'Format {format} is not supported.' )
__lowerCamelCase , __lowerCamelCase : Optional[int] = [], []
__lowerCamelCase : Dict = pred_logits.size(0 )
__lowerCamelCase : str = pred_logits.size(1 )
__lowerCamelCase , __lowerCamelCase : List[Any] = pred_logits.topk(1 , dim=-1 , largest=SCREAMING_SNAKE_CASE_ , sorted=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = preds_index.view(-1 , SCREAMING_SNAKE_CASE_ )[:, 1:]
__lowerCamelCase : Any = decoder(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase , __lowerCamelCase : Union[str, Any] = torch.nn.functional.softmax(SCREAMING_SNAKE_CASE_ , dim=2 ).max(dim=2 )
__lowerCamelCase : Dict = preds_max_prob[:, 1:]
for index in range(SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Optional[int] = preds_str[index].find(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = preds_str[index][:pred_eos]
__lowerCamelCase : Tuple = preds_index[index].cpu().tolist()
__lowerCamelCase : Any = pred_index.index(SCREAMING_SNAKE_CASE_ ) if eos_token in pred_index else -1
__lowerCamelCase : Union[str, Any] = preds_max_prob[index][: pred_eos_index + 1]
__lowerCamelCase : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(SCREAMING_SNAKE_CASE_ )
conf_scores.append(SCREAMING_SNAKE_CASE_ )
return dec_strs, conf_scores
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> int:
__lowerCamelCase : Any = [seq.replace(' ' , '' ) for seq in self.char_tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )]
return decode_strs
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Tuple:
return self.bpe_tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
__lowerCamelCase : Any = [seq.replace(' ' , '' ) for seq in self.wp_tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )]
return decode_strs
| 13 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : Tuple = logging.get_logger(__name__)
A__ : Dict = {
"""RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""",
"""RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""",
"""RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""",
"""RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""",
"""RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""",
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : List[Any] = 'rwkv'
lowerCamelCase : Any = {'max_position_embeddings': 'context_length'}
def __init__( self , SCREAMING_SNAKE_CASE_=5_02_77 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = vocab_size
__lowerCamelCase : Tuple = context_length
__lowerCamelCase : str = hidden_size
__lowerCamelCase : List[str] = num_hidden_layers
__lowerCamelCase : Any = attention_hidden_size if attention_hidden_size is not None else hidden_size
__lowerCamelCase : Optional[int] = intermediate_size if intermediate_size is not None else 4 * hidden_size
__lowerCamelCase : Optional[Any] = layer_norm_epsilon
__lowerCamelCase : int = rescale_every
__lowerCamelCase : Tuple = use_cache
__lowerCamelCase : int = bos_token_id
__lowerCamelCase : Optional[Any] = eos_token_id
super().__init__(
tie_word_embeddings=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
A__ : Dict = 8.988e9 # units = N * m^s * C^-2
def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> dict[str, float]:
__lowerCamelCase : Union[str, Any] = abs(chargea * chargea )
if (force, chargea, chargea, distance).count(0 ) != 1:
raise ValueError('One and only one argument must be 0' )
if distance < 0:
raise ValueError('Distance cannot be negative' )
if force == 0:
__lowerCamelCase : Any = COULOMBS_CONSTANT * charge_product / (distance**2)
return {"force": force}
elif chargea == 0:
__lowerCamelCase : str = abs(UpperCAmelCase_ ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge1": chargea}
elif chargea == 0:
__lowerCamelCase : List[Any] = abs(UpperCAmelCase_ ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge2": chargea}
elif distance == 0:
__lowerCamelCase : Any = (COULOMBS_CONSTANT * charge_product / abs(UpperCAmelCase_ )) ** 0.5
return {"distance": distance}
raise ValueError('Exactly one argument must be 0' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 10_00 ) -> int:
__lowerCamelCase : Union[str, Any] = 3
__lowerCamelCase : Dict = 0
while a < n:
if a % 3 == 0 or a % 5 == 0:
result += a
elif a % 15 == 0:
result -= a
a += 1
return result
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
A__ : List[str] = Path(__file__).resolve().parents[3] / """src"""
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
A__ : List[str] = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""}
A__ : Tuple = """zero2"""
A__ : str = """zero3"""
A__ : int = [ZEROa, ZEROa]
def UpperCAmelCase__ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : str ) -> int:
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
__lowerCamelCase : Dict = parameterized.to_safe_name('_'.join(str(UpperCAmelCase_ ) for x in param.args ) )
return F'{func.__name__}_{param_based_name}'
# Cartesian-product of zero stages with models to test
A__ : Union[str, Any] = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
@parameterized.expand(SCREAMING_SNAKE_CASE_ , name_func=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict:
self.run_and_check(
stage=SCREAMING_SNAKE_CASE_ , model=SCREAMING_SNAKE_CASE_ , distributed=SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ , )
@require_torch_multi_gpu
@parameterized.expand(SCREAMING_SNAKE_CASE_ , name_func=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple:
self.run_and_check(
stage=SCREAMING_SNAKE_CASE_ , model=SCREAMING_SNAKE_CASE_ , distributed=SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ , )
@parameterized.expand(SCREAMING_SNAKE_CASE_ , name_func=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]:
self.run_and_check(
stage=SCREAMING_SNAKE_CASE_ , model=SCREAMING_SNAKE_CASE_ , distributed=SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ , )
@require_torch_multi_gpu
@parameterized.expand(SCREAMING_SNAKE_CASE_ , name_func=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
self.run_and_check(
stage=SCREAMING_SNAKE_CASE_ , model=SCREAMING_SNAKE_CASE_ , distributed=SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ , )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
# XXX: run_asr is premature and doesn't save any results
# so all we check for now is that the process didn't fail
pass
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 10 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , ) -> str:
__lowerCamelCase : List[Any] = models[model]
__lowerCamelCase : Union[str, Any] = self.run_trainer(
stage=SCREAMING_SNAKE_CASE_ , model_name=SCREAMING_SNAKE_CASE_ , eval_steps=SCREAMING_SNAKE_CASE_ , num_train_epochs=1 , distributed=SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ , )
self.do_checks(SCREAMING_SNAKE_CASE_ )
return output_dir
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 10 , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = self.get_auto_remove_tmp_dir('./xxx' , after=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = f'\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(SCREAMING_SNAKE_CASE_ )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n '.split()
if fpaa:
args.extend(['--fp16'] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
__lowerCamelCase : str = f'--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'.split()
__lowerCamelCase : Any = [f'{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py']
__lowerCamelCase : Optional[int] = self.get_launcher(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=self.get_env() )
return output_dir
def lowercase_ ( self , SCREAMING_SNAKE_CASE_=False ) -> Optional[int]:
# 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
# - it won't be able to handle that
# 2. for now testing with just 2 gpus max (since some quality tests may give different
# results with mode gpus because we use very little data)
__lowerCamelCase : List[Any] = min(2 , get_gpu_count() ) if distributed else 1
return f'deepspeed --num_nodes 1 --num_gpus {num_gpus}'.split()
| 13 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Dict = XGLMConfig
lowerCamelCase : List[str] = {}
lowerCamelCase : Union[str, Any] = 'gelu'
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Any:
__lowerCamelCase : int = parent
__lowerCamelCase : Optional[int] = batch_size
__lowerCamelCase : Optional[Any] = seq_length
__lowerCamelCase : Optional[int] = is_training
__lowerCamelCase : str = use_input_mask
__lowerCamelCase : Dict = use_labels
__lowerCamelCase : Union[str, Any] = vocab_size
__lowerCamelCase : List[Any] = d_model
__lowerCamelCase : List[Any] = num_hidden_layers
__lowerCamelCase : List[Any] = num_attention_heads
__lowerCamelCase : Optional[Any] = ffn_dim
__lowerCamelCase : List[Any] = activation_function
__lowerCamelCase : List[Any] = activation_dropout
__lowerCamelCase : List[Any] = attention_dropout
__lowerCamelCase : Union[str, Any] = max_position_embeddings
__lowerCamelCase : Tuple = initializer_range
__lowerCamelCase : int = None
__lowerCamelCase : int = 0
__lowerCamelCase : Tuple = 2
__lowerCamelCase : Tuple = 1
def lowercase_ ( self ) -> Any:
return XGLMConfig.from_pretrained('facebook/xglm-564M' )
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : Optional[Any] = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
__lowerCamelCase : Optional[int] = None
if self.use_input_mask:
__lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCamelCase : str = self.get_config()
__lowerCamelCase : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def lowercase_ ( self ) -> Optional[int]:
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=SCREAMING_SNAKE_CASE_ , )
def lowercase_ ( self ) -> str:
__lowerCamelCase : List[Any] = self.prepare_config_and_inputs()
(
(
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) ,
) : str = config_and_inputs
__lowerCamelCase : Union[str, Any] = {
'input_ids': input_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_tf
class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
lowerCamelCase : List[Any] = (TFXGLMForCausalLM,) if is_tf_available() else ()
lowerCamelCase : Any = (
{'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {}
)
lowerCamelCase : List[Any] = False
lowerCamelCase : Dict = False
lowerCamelCase : Union[str, Any] = False
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : str = TFXGLMModelTester(self )
__lowerCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , n_embd=37 )
def lowercase_ ( self ) -> Dict:
self.config_tester.run_common_tests()
@slow
def lowercase_ ( self ) -> Optional[int]:
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCamelCase : Optional[Any] = TFXGLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' )
def lowercase_ ( self ) -> Any:
super().test_resize_token_embeddings()
@require_tf
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
@slow
def lowercase_ ( self , SCREAMING_SNAKE_CASE_=True ) -> List[str]:
__lowerCamelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : int = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
__lowerCamelCase : Optional[int] = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81]
# fmt: on
__lowerCamelCase : Any = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE_ )
@slow
def lowercase_ ( self ) -> int:
__lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
tf.random.set_seed(0 )
__lowerCamelCase : List[Any] = tokenizer('Today is a nice day and' , return_tensors='tf' )
__lowerCamelCase : int = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(':/CPU:0' ):
__lowerCamelCase : Tuple = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , seed=[7, 0] )
__lowerCamelCase : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = (
'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due'
)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@slow
def lowercase_ ( self ) -> int:
__lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : Any = 'left'
# use different length sentences to test batching
__lowerCamelCase : Any = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When',
'Hello, my dog is a little',
]
__lowerCamelCase : Any = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='tf' , padding=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = inputs['input_ids']
__lowerCamelCase : str = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 )
__lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids
__lowerCamelCase : int = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 )
__lowerCamelCase : Optional[Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids
__lowerCamelCase : Optional[Any] = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 )
__lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be '
'a single',
'Hello, my dog is a little bit of a shy one, but he is very friendly',
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [non_padded_sentence, padded_sentence] )
| 13 | 1 |
'''simple docstring'''
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
A__ : Dict = [
"""python""",
"""tqdm""",
"""regex""",
"""requests""",
"""packaging""",
"""filelock""",
"""numpy""",
"""tokenizers""",
"""huggingface-hub""",
"""safetensors""",
"""accelerate""",
"""pyyaml""",
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''')
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=None ) -> List[Any]:
require_version(deps[pkg] , UpperCAmelCase_ )
| 13 |
'''simple docstring'''
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : List[str] = logging.get_logger(__name__)
# TODO Update this
A__ : Tuple = {
"""facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""",
# See all ESM models at https://huggingface.co/models?filter=esm
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Tuple = 'esm'
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10_26 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]:
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , mask_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = vocab_size
__lowerCamelCase : List[Any] = hidden_size
__lowerCamelCase : str = num_hidden_layers
__lowerCamelCase : List[str] = num_attention_heads
__lowerCamelCase : Any = intermediate_size
__lowerCamelCase : Optional[Any] = hidden_dropout_prob
__lowerCamelCase : Tuple = attention_probs_dropout_prob
__lowerCamelCase : Optional[int] = max_position_embeddings
__lowerCamelCase : str = initializer_range
__lowerCamelCase : Optional[int] = layer_norm_eps
__lowerCamelCase : List[str] = position_embedding_type
__lowerCamelCase : int = use_cache
__lowerCamelCase : Optional[Any] = emb_layer_norm_before
__lowerCamelCase : Optional[Any] = token_dropout
__lowerCamelCase : str = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info('No esmfold_config supplied for folding model, using default values.' )
__lowerCamelCase : Dict = EsmFoldConfig()
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Optional[int] = EsmFoldConfig(**SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = esmfold_config
if vocab_list is None:
logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' )
__lowerCamelCase : List[str] = get_default_vocab_list()
else:
__lowerCamelCase : Optional[Any] = vocab_list
else:
__lowerCamelCase : Dict = None
__lowerCamelCase : Optional[Any] = None
if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , SCREAMING_SNAKE_CASE_ ):
raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : Any = super().to_dict()
if isinstance(self.esmfold_config , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : int = self.esmfold_config.to_dict()
return output
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : str = None
lowerCamelCase : bool = True
lowerCamelCase : bool = False
lowerCamelCase : bool = False
lowerCamelCase : bool = False
lowerCamelCase : float = 0
lowerCamelCase : bool = True
lowerCamelCase : bool = False
lowerCamelCase : int = 1_2_8
lowerCamelCase : "TrunkConfig" = None
def lowercase_ ( self ) -> Any:
if self.trunk is None:
__lowerCamelCase : List[str] = TrunkConfig()
elif isinstance(self.trunk , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Any = TrunkConfig(**self.trunk )
def lowercase_ ( self ) -> int:
__lowerCamelCase : Optional[int] = asdict(self )
__lowerCamelCase : str = self.trunk.to_dict()
return output
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : int = 4_8
lowerCamelCase : int = 1_0_2_4
lowerCamelCase : int = 1_2_8
lowerCamelCase : int = 3_2
lowerCamelCase : int = 3_2
lowerCamelCase : int = 3_2
lowerCamelCase : float = 0
lowerCamelCase : float = 0
lowerCamelCase : bool = False
lowerCamelCase : int = 4
lowerCamelCase : Optional[int] = 1_2_8
lowerCamelCase : "StructureModuleConfig" = None
def lowercase_ ( self ) -> Optional[int]:
if self.structure_module is None:
__lowerCamelCase : Dict = StructureModuleConfig()
elif isinstance(self.structure_module , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Optional[Any] = StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
'`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got'
f' {self.sequence_state_dim} and {self.sequence_state_dim}.' )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
'`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got'
f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' )
__lowerCamelCase : Tuple = self.sequence_state_dim // self.sequence_head_width
__lowerCamelCase : str = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
'`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got'
f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
'`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got'
f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' )
if self.dropout >= 0.4:
raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' )
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : List[str] = asdict(self )
__lowerCamelCase : int = self.structure_module.to_dict()
return output
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : int = 3_8_4
lowerCamelCase : int = 1_2_8
lowerCamelCase : int = 1_6
lowerCamelCase : int = 1_2_8
lowerCamelCase : int = 1_2
lowerCamelCase : int = 4
lowerCamelCase : int = 8
lowerCamelCase : float = 0.1
lowerCamelCase : int = 8
lowerCamelCase : int = 1
lowerCamelCase : int = 2
lowerCamelCase : int = 7
lowerCamelCase : int = 1_0
lowerCamelCase : float = 1e-8
lowerCamelCase : float = 1e5
def lowercase_ ( self ) -> Any:
return asdict(self )
def UpperCAmelCase__ ( ) -> Optional[Any]:
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 13 | 1 |
'''simple docstring'''
A__ : List[str] = [0, 2, 4, 6, 8]
A__ : Union[str, Any] = [1, 3, 5, 7, 9]
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int ) -> int:
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0
for i in range(length // 2 - 1 , -1 , -1 ):
remainder += digits[i] + digits[length - i - 1]
if remainder % 2 == 0:
return 0
remainder //= 10
return 1
if remaining_length == 1:
if remainder % 2 == 0:
return 0
__lowerCamelCase : Optional[Any] = 0
for digit in range(10 ):
__lowerCamelCase : Optional[int] = digit
result += reversible_numbers(
0 , (remainder + 2 * digit) // 10 , UpperCAmelCase_ , UpperCAmelCase_ )
return result
__lowerCamelCase : Optional[int] = 0
for digita in range(10 ):
__lowerCamelCase : List[Any] = digita
if (remainder + digita) % 2 == 0:
__lowerCamelCase : int = ODD_DIGITS
else:
__lowerCamelCase : Union[str, Any] = EVEN_DIGITS
for digita in other_parity_digits:
__lowerCamelCase : Optional[int] = digita
result += reversible_numbers(
remaining_length - 2 , (remainder + digita + digita) // 10 , UpperCAmelCase_ , UpperCAmelCase_ , )
return result
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 9 ) -> int:
__lowerCamelCase : List[Any] = 0
for length in range(1 , max_power + 1 ):
result += reversible_numbers(UpperCAmelCase_ , 0 , [0] * length , UpperCAmelCase_ )
return result
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 |
'''simple docstring'''
A__ : dict[tuple[int, int, int], int] = {}
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
# if we are absent twice, or late 3 consecutive days,
# no further prize strings are possible
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
__lowerCamelCase : List[Any] = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
__lowerCamelCase : Tuple = _calculate(days - 1 , UpperCAmelCase_ , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
__lowerCamelCase : int = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
__lowerCamelCase : List[Any] = _calculate(days - 1 , UpperCAmelCase_ , 0 )
__lowerCamelCase : Optional[int] = state_late + state_absent + state_ontime
__lowerCamelCase : Union[str, Any] = prizestrings
return prizestrings
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 30 ) -> int:
return _calculate(UpperCAmelCase_ , absent=0 , late=0 )
if __name__ == "__main__":
print(solution())
| 13 | 1 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
A__ : Dict = logging.get_logger(__name__)
A__ : int = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""}
A__ : Any = {
"""vocab_file""": {
"""allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""",
"""allenai/longformer-large-4096""": (
"""https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json"""
),
"""allenai/longformer-large-4096-finetuned-triviaqa""": (
"""https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json"""
),
"""allenai/longformer-base-4096-extra.pos.embd.only""": (
"""https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json"""
),
"""allenai/longformer-large-4096-extra.pos.embd.only""": (
"""https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json"""
),
},
"""merges_file""": {
"""allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""",
"""allenai/longformer-large-4096""": (
"""https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt"""
),
"""allenai/longformer-large-4096-finetuned-triviaqa""": (
"""https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt"""
),
"""allenai/longformer-base-4096-extra.pos.embd.only""": (
"""https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt"""
),
"""allenai/longformer-large-4096-extra.pos.embd.only""": (
"""https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt"""
),
},
}
A__ : Tuple = {
"""allenai/longformer-base-4096""": 4096,
"""allenai/longformer-large-4096""": 4096,
"""allenai/longformer-large-4096-finetuned-triviaqa""": 4096,
"""allenai/longformer-base-4096-extra.pos.embd.only""": 4096,
"""allenai/longformer-large-4096-extra.pos.embd.only""": 4096,
}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def UpperCAmelCase__ ( ) -> Optional[int]:
__lowerCamelCase : Tuple = (
list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) )
)
__lowerCamelCase : str = bs[:]
__lowerCamelCase : Tuple = 0
for b in range(2**8 ):
if b not in bs:
bs.append(UpperCAmelCase_ )
cs.append(2**8 + n )
n += 1
__lowerCamelCase : Union[str, Any] = [chr(UpperCAmelCase_ ) for n in cs]
return dict(zip(UpperCAmelCase_ , UpperCAmelCase_ ) )
def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> Union[str, Any]:
__lowerCamelCase : Union[str, Any] = set()
__lowerCamelCase : Union[str, Any] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__lowerCamelCase : List[str] = char
return pairs
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : List[Any] = VOCAB_FILES_NAMES
lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : str = ['input_ids', 'attention_mask']
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="replace" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Union[str, Any]:
__lowerCamelCase : List[Any] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token
__lowerCamelCase : str = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token
__lowerCamelCase : Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token
__lowerCamelCase : str = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token
__lowerCamelCase : Optional[int] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token
__lowerCamelCase : Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__lowerCamelCase : Optional[Any] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token
super().__init__(
errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
with open(SCREAMING_SNAKE_CASE_ , encoding='utf-8' ) as vocab_handle:
__lowerCamelCase : Optional[Any] = json.load(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = {v: k for k, v in self.encoder.items()}
__lowerCamelCase : List[str] = errors # how to handle errors in decoding
__lowerCamelCase : Dict = bytes_to_unicode()
__lowerCamelCase : Optional[int] = {v: k for k, v in self.byte_encoder.items()}
with open(SCREAMING_SNAKE_CASE_ , encoding='utf-8' ) as merges_handle:
__lowerCamelCase : Union[str, Any] = merges_handle.read().split('\n' )[1:-1]
__lowerCamelCase : Tuple = [tuple(merge.split() ) for merge in bpe_merges]
__lowerCamelCase : List[Any] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
__lowerCamelCase : Dict = {}
__lowerCamelCase : Dict = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__lowerCamelCase : Tuple = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' )
@property
def lowercase_ ( self ) -> Dict:
return len(self.encoder )
def lowercase_ ( self ) -> Union[str, Any]:
return dict(self.encoder , **self.added_tokens_encoder )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict:
if token in self.cache:
return self.cache[token]
__lowerCamelCase : str = tuple(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = get_pairs(SCREAMING_SNAKE_CASE_ )
if not pairs:
return token
while True:
__lowerCamelCase : str = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
__lowerCamelCase , __lowerCamelCase : Dict = bigram
__lowerCamelCase : List[str] = []
__lowerCamelCase : int = 0
while i < len(SCREAMING_SNAKE_CASE_ ):
try:
__lowerCamelCase : Optional[int] = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__lowerCamelCase : int = j
if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__lowerCamelCase : Tuple = tuple(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[str] = new_word
if len(SCREAMING_SNAKE_CASE_ ) == 1:
break
else:
__lowerCamelCase : str = get_pairs(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = ' '.join(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = word
return word
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase : str = []
for token in re.findall(self.pat , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Optional[int] = ''.join(
self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(' ' ) )
return bpe_tokens
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
return self.decoder.get(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
__lowerCamelCase : Dict = ''.join(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors )
return text
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]:
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
__lowerCamelCase : Any = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
__lowerCamelCase : Optional[Any] = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '\n' )
__lowerCamelCase : Dict = 0
with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ):
if index != token_index:
logger.warning(
f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
' Please check that the tokenizer is not corrupted!' )
__lowerCamelCase : List[Any] = token_index
writer.write(' '.join(SCREAMING_SNAKE_CASE_ ) + '\n' )
index += 1
return vocab_file, merge_file
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__lowerCamelCase : List[str] = [self.cls_token_id]
__lowerCamelCase : Any = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
__lowerCamelCase : List[str] = [self.sep_token_id]
__lowerCamelCase : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ ) -> List[Any]:
__lowerCamelCase : Dict = kwargs.pop('add_prefix_space' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()):
__lowerCamelCase : List[str] = ' ' + text
return (text, kwargs)
| 13 |
'''simple docstring'''
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
A__ : Any = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""")
@total_ordering
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : str
lowerCamelCase : Optional[str] = None
lowerCamelCase : Optional[Union[str, int]] = None
lowerCamelCase : Optional[Union[str, int]] = None
lowerCamelCase : Optional[Union[str, int]] = None
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = _str_to_version_tuple(self.version_str )
def __repr__( self ) -> Any:
return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}'
@property
def lowercase_ ( self ) -> int:
return self.major, self.minor, self.patch
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return Version(SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return other
raise TypeError(f'{other} (type {type(SCREAMING_SNAKE_CASE_ )}) cannot be compared to version.' )
def __eq__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
try:
__lowerCamelCase : Union[str, Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
__lowerCamelCase : List[Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ )
return self.tuple < other.tuple
def __hash__( self ) -> List[str]:
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase : str = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def lowercase_ ( self ) -> str:
return self.version_str
def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> str:
__lowerCamelCase : str = _VERSION_REG.match(UpperCAmelCase_ )
if not res:
raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' )
return tuple(int(UpperCAmelCase_ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] )
def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] ) -> Dict:
return ".".join(str(UpperCAmelCase_ ) for v in version_tuple )
| 13 | 1 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Optional[int]:
__lowerCamelCase : Optional[int] = parent
__lowerCamelCase : Dict = batch_size
__lowerCamelCase : int = image_size
__lowerCamelCase : List[str] = patch_size
__lowerCamelCase : Optional[int] = num_channels
__lowerCamelCase : Any = is_training
__lowerCamelCase : Dict = use_labels
__lowerCamelCase : List[Any] = hidden_size
__lowerCamelCase : List[Any] = num_hidden_layers
__lowerCamelCase : Optional[Any] = num_attention_heads
__lowerCamelCase : Dict = intermediate_size
__lowerCamelCase : Union[str, Any] = hidden_act
__lowerCamelCase : Optional[int] = hidden_dropout_prob
__lowerCamelCase : Tuple = attention_probs_dropout_prob
__lowerCamelCase : str = type_sequence_label_size
__lowerCamelCase : List[str] = initializer_range
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__lowerCamelCase : str = (image_size // patch_size) ** 2
__lowerCamelCase : Optional[int] = num_patches + 1
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowerCamelCase : Optional[int] = ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , )
return config, pixel_values
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
__lowerCamelCase : Union[str, Any] = FlaxViTModel(config=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = model(SCREAMING_SNAKE_CASE_ )
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
__lowerCamelCase : str = (self.image_size, self.image_size)
__lowerCamelCase : str = (self.patch_size, self.patch_size)
__lowerCamelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str:
__lowerCamelCase : Tuple = self.type_sequence_label_size
__lowerCamelCase : Any = FlaxViTForImageClassification(config=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__lowerCamelCase : List[str] = 1
__lowerCamelCase : List[Any] = FlaxViTForImageClassification(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : List[Any] = self.prepare_config_and_inputs()
(
(
__lowerCamelCase
) , (
__lowerCamelCase
) ,
) : int = config_and_inputs
__lowerCamelCase : Union[str, Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_flax
class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : str = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()
def lowercase_ ( self ) -> None:
__lowerCamelCase : str = FlaxViTModelTester(self )
__lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 )
def lowercase_ ( self ) -> List[Any]:
self.config_tester.run_common_tests()
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase : List[str] = [*signature.parameters.keys()]
__lowerCamelCase : Optional[int] = ['pixel_values']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowerCamelCase : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ )
@jax.jit
def model_jitted(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return model(pixel_values=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
with self.subTest('JIT Enabled' ):
__lowerCamelCase : Optional[int] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
__lowerCamelCase : Union[str, Any] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) )
for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowercase_ ( self ) -> List[Any]:
for model_class_name in self.all_model_classes:
__lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained('google/vit-base-patch16-224' )
__lowerCamelCase : Union[str, Any] = model(np.ones((1, 3, 2_24, 2_24) ) )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
| 13 |
'''simple docstring'''
import sys
from collections import defaultdict
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self ) -> int:
__lowerCamelCase : Any = []
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Any:
return self.node_position[vertex]
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple:
__lowerCamelCase : Optional[int] = pos
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
__lowerCamelCase : str = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
__lowerCamelCase : Optional[Any] = 2 * start + 1
else:
__lowerCamelCase : int = 2 * start + 2
if heap[smallest_child] < heap[start]:
__lowerCamelCase , __lowerCamelCase : Optional[Any] = heap[smallest_child], positions[smallest_child]
__lowerCamelCase , __lowerCamelCase : int = (
heap[start],
positions[start],
)
__lowerCamelCase , __lowerCamelCase : str = temp, tempa
__lowerCamelCase : Dict = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , SCREAMING_SNAKE_CASE_ )
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any:
__lowerCamelCase : Any = position[index]
while index != 0:
__lowerCamelCase : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
__lowerCamelCase : Union[str, Any] = heap[parent]
__lowerCamelCase : Any = position[parent]
self.set_position(position[parent] , SCREAMING_SNAKE_CASE_ )
else:
__lowerCamelCase : Tuple = val
__lowerCamelCase : List[str] = temp
self.set_position(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
break
__lowerCamelCase : Tuple = parent
else:
__lowerCamelCase : Union[str, Any] = val
__lowerCamelCase : Tuple = temp
self.set_position(SCREAMING_SNAKE_CASE_ , 0 )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
__lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) // 2 - 1
for i in range(SCREAMING_SNAKE_CASE_ , -1 , -1 ):
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
__lowerCamelCase : Any = positions[0]
__lowerCamelCase : Union[str, Any] = sys.maxsize
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
return temp
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> str:
__lowerCamelCase : List[Any] = Heap()
__lowerCamelCase : Optional[int] = [0] * len(UpperCAmelCase_ )
__lowerCamelCase : str = [-1] * len(UpperCAmelCase_ ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
__lowerCamelCase : List[str] = [] # Heap of Distance of vertices from their neighboring vertex
__lowerCamelCase : Tuple = []
for vertex in range(len(UpperCAmelCase_ ) ):
distance_tv.append(sys.maxsize )
positions.append(UpperCAmelCase_ )
heap.node_position.append(UpperCAmelCase_ )
__lowerCamelCase : Tuple = []
__lowerCamelCase : Dict = 1
__lowerCamelCase : str = sys.maxsize
for neighbor, distance in adjacency_list[0]:
__lowerCamelCase : Any = 0
__lowerCamelCase : Any = distance
heap.heapify(UpperCAmelCase_ , UpperCAmelCase_ )
for _ in range(1 , len(UpperCAmelCase_ ) ):
__lowerCamelCase : List[Any] = heap.delete_minimum(UpperCAmelCase_ , UpperCAmelCase_ )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
__lowerCamelCase : Union[str, Any] = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(UpperCAmelCase_ )]
):
__lowerCamelCase : Dict = distance
heap.bottom_to_top(
UpperCAmelCase_ , heap.get_position(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : str = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
A__ : Tuple = int(input("""Enter number of edges: """).strip())
A__ : str = defaultdict(list)
for _ in range(edges_number):
A__ : Optional[int] = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 13 | 1 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .modeling_utils import ModelMixin
@dataclass
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : torch.FloatTensor
class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase ):
"""simple docstring"""
@register_to_config
def __init__( self , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 88 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "geglu" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , ) -> Optional[Any]:
super().__init__()
__lowerCamelCase : int = num_attention_heads
__lowerCamelCase : str = attention_head_dim
__lowerCamelCase : Optional[int] = num_attention_heads * attention_head_dim
__lowerCamelCase : Tuple = in_channels
__lowerCamelCase : List[str] = torch.nn.GroupNorm(num_groups=SCREAMING_SNAKE_CASE_ , num_channels=SCREAMING_SNAKE_CASE_ , eps=1E-6 , affine=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# 3. Define transformers blocks
__lowerCamelCase : List[str] = nn.ModuleList(
[
BasicTransformerBlock(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , dropout=SCREAMING_SNAKE_CASE_ , cross_attention_dim=SCREAMING_SNAKE_CASE_ , activation_fn=SCREAMING_SNAKE_CASE_ , attention_bias=SCREAMING_SNAKE_CASE_ , double_self_attention=SCREAMING_SNAKE_CASE_ , norm_elementwise_affine=SCREAMING_SNAKE_CASE_ , )
for d in range(SCREAMING_SNAKE_CASE_ )
] )
__lowerCamelCase : Union[str, Any] = nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = True , ) -> Union[str, Any]:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = hidden_states.shape
__lowerCamelCase : Dict = batch_frames // num_frames
__lowerCamelCase : Tuple = hidden_states
__lowerCamelCase : Any = hidden_states[None, :].reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = hidden_states.permute(0 , 2 , 1 , 3 , 4 )
__lowerCamelCase : List[str] = self.norm(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = self.proj_in(SCREAMING_SNAKE_CASE_ )
# 2. Blocks
for block in self.transformer_blocks:
__lowerCamelCase : List[Any] = block(
SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , cross_attention_kwargs=SCREAMING_SNAKE_CASE_ , class_labels=SCREAMING_SNAKE_CASE_ , )
# 3. Output
__lowerCamelCase : Dict = self.proj_out(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = (
hidden_states[None, None, :]
.reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
.permute(0 , 3 , 4 , 1 , 2 )
.contiguous()
)
__lowerCamelCase : List[Any] = hidden_states.reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = hidden_states + residual
if not return_dict:
return (output,)
return TransformerTemporalModelOutput(sample=SCREAMING_SNAKE_CASE_ )
| 13 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00 ) -> int:
__lowerCamelCase : Union[str, Any] = n * (n + 1) * (2 * n + 1) / 6
__lowerCamelCase : Union[str, Any] = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bool:
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
raise ValueError('check_bouncy() accepts only integer arguments' )
__lowerCamelCase : Optional[int] = str(UpperCAmelCase_ )
__lowerCamelCase : List[str] = ''.join(sorted(UpperCAmelCase_ ) )
return sorted_str_n != str_n and sorted_str_n[::-1] != str_n
def UpperCAmelCase__ ( UpperCAmelCase_ : float = 99 ) -> int:
if not 0 < percent < 1_00:
raise ValueError('solution() only accepts values from 0 to 100' )
__lowerCamelCase : Tuple = 0
__lowerCamelCase : int = 1
while True:
if check_bouncy(UpperCAmelCase_ ):
bouncy_num += 1
if (bouncy_num / num) * 1_00 >= percent:
return num
num += 1
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f'''{solution(99)}''')
| 13 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Optional[int]:
__lowerCamelCase : Optional[int] = parent
__lowerCamelCase : Dict = batch_size
__lowerCamelCase : int = image_size
__lowerCamelCase : List[str] = patch_size
__lowerCamelCase : Optional[int] = num_channels
__lowerCamelCase : Any = is_training
__lowerCamelCase : Dict = use_labels
__lowerCamelCase : List[Any] = hidden_size
__lowerCamelCase : List[Any] = num_hidden_layers
__lowerCamelCase : Optional[Any] = num_attention_heads
__lowerCamelCase : Dict = intermediate_size
__lowerCamelCase : Union[str, Any] = hidden_act
__lowerCamelCase : Optional[int] = hidden_dropout_prob
__lowerCamelCase : Tuple = attention_probs_dropout_prob
__lowerCamelCase : str = type_sequence_label_size
__lowerCamelCase : List[str] = initializer_range
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__lowerCamelCase : str = (image_size // patch_size) ** 2
__lowerCamelCase : Optional[int] = num_patches + 1
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowerCamelCase : Optional[int] = ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , )
return config, pixel_values
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
__lowerCamelCase : Union[str, Any] = FlaxViTModel(config=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = model(SCREAMING_SNAKE_CASE_ )
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
__lowerCamelCase : str = (self.image_size, self.image_size)
__lowerCamelCase : str = (self.patch_size, self.patch_size)
__lowerCamelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str:
__lowerCamelCase : Tuple = self.type_sequence_label_size
__lowerCamelCase : Any = FlaxViTForImageClassification(config=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__lowerCamelCase : List[str] = 1
__lowerCamelCase : List[Any] = FlaxViTForImageClassification(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : List[Any] = self.prepare_config_and_inputs()
(
(
__lowerCamelCase
) , (
__lowerCamelCase
) ,
) : int = config_and_inputs
__lowerCamelCase : Union[str, Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_flax
class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : str = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()
def lowercase_ ( self ) -> None:
__lowerCamelCase : str = FlaxViTModelTester(self )
__lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 )
def lowercase_ ( self ) -> List[Any]:
self.config_tester.run_common_tests()
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase : List[str] = [*signature.parameters.keys()]
__lowerCamelCase : Optional[int] = ['pixel_values']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowerCamelCase : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ )
@jax.jit
def model_jitted(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return model(pixel_values=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
with self.subTest('JIT Enabled' ):
__lowerCamelCase : Optional[int] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
__lowerCamelCase : Union[str, Any] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) )
for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowercase_ ( self ) -> List[Any]:
for model_class_name in self.all_model_classes:
__lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained('google/vit-base-patch16-224' )
__lowerCamelCase : Union[str, Any] = model(np.ones((1, 3, 2_24, 2_24) ) )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
| 13 | 1 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
A__ : int = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
A__ : int = 250004
A__ : Union[str, Any] = 250020
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : List[str] = MBartaaTokenizer
lowerCamelCase : Optional[int] = MBartaaTokenizerFast
lowerCamelCase : str = True
lowerCamelCase : Any = True
def lowercase_ ( self ) -> Optional[int]:
super().setUp()
# We have a SentencePiece fixture for testing
__lowerCamelCase : List[str] = MBartaaTokenizer(SCREAMING_SNAKE_CASE_ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=SCREAMING_SNAKE_CASE_ )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase_ ( self ) -> str:
__lowerCamelCase : List[Any] = '<s>'
__lowerCamelCase : Optional[Any] = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : Dict = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , '<mask>' )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 10_54 )
def lowercase_ ( self ) -> Optional[int]:
self.assertEqual(self.get_tokenizer().vocab_size , 10_54 )
def lowercase_ ( self ) -> Dict:
__lowerCamelCase : List[Any] = MBartaaTokenizer(SCREAMING_SNAKE_CASE_ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = tokenizer.tokenize('This is a test' )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
__lowerCamelCase : int = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , )
__lowerCamelCase : List[str] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
__lowerCamelCase : Tuple = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , )
@slow
def lowercase_ ( self ) -> int:
# fmt: off
__lowerCamelCase : str = {'input_ids': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , )
def lowercase_ ( self ) -> Optional[int]:
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
__lowerCamelCase : List[Any] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
__lowerCamelCase : List[str] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = tempfile.mkdtemp()
__lowerCamelCase : Dict = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
__lowerCamelCase : Union[str, Any] = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f )
self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Checks everything loads correctly in the same way
__lowerCamelCase : Optional[int] = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(SCREAMING_SNAKE_CASE_ )
# Save tokenizer rust, legacy_format=True
__lowerCamelCase : str = tempfile.mkdtemp()
__lowerCamelCase : Optional[Any] = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ )
# Checks it save with the same files
self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Checks everything loads correctly in the same way
__lowerCamelCase : Tuple = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE_ )
# Save tokenizer rust, legacy_format=False
__lowerCamelCase : int = tempfile.mkdtemp()
__lowerCamelCase : str = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__lowerCamelCase : Tuple = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE_ )
@require_torch
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : List[str] = 'facebook/mbart-large-50-one-to-many-mmt'
lowerCamelCase : Dict = [
' UN Chief Says There Is No Military Solution in Syria',
' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.',
]
lowerCamelCase : List[Any] = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'
' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.',
]
lowerCamelCase : List[Any] = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2]
@classmethod
def lowercase_ ( cls ) -> str:
__lowerCamelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' )
__lowerCamelCase : List[Any] = 1
return cls
def lowercase_ ( self ) -> str:
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_00_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_00_04 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_00_20 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_00_38 )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : str = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Dict:
self.assertIn(SCREAMING_SNAKE_CASE_ , self.tokenizer.all_special_ids )
__lowerCamelCase : List[str] = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2]
__lowerCamelCase : Union[str, Any] = self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Dict:
__lowerCamelCase : Optional[Any] = ['this is gunna be a long sentence ' * 20]
assert isinstance(src_text[0] , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = 10
__lowerCamelCase : Union[str, Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ ).input_ids[0]
self.assertEqual(ids[0] , SCREAMING_SNAKE_CASE_ )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Optional[int]:
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_00_53, 25_00_01] )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : str = tempfile.mkdtemp()
__lowerCamelCase : List[str] = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = MBartaaTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , SCREAMING_SNAKE_CASE_ )
@require_torch
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : Tuple = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , return_tensors='pt' )
__lowerCamelCase : Any = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : Tuple = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , )
__lowerCamelCase : Tuple = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id )
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
__lowerCamelCase : List[str] = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : Dict = self.tokenizer(self.src_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors='pt' )
__lowerCamelCase : Optional[Any] = self.tokenizer(
text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=10 , return_tensors='pt' )
__lowerCamelCase : Optional[Any] = targets['input_ids']
__lowerCamelCase : List[str] = shift_tokens_right(SCREAMING_SNAKE_CASE_ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def lowercase_ ( self ) -> int:
__lowerCamelCase : List[str] = self.tokenizer._build_translation_inputs(
'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE_ ) , {
# en_XX, A, test, EOS
'input_ids': [[25_00_04, 62, 30_34, 2]],
'attention_mask': [[1, 1, 1, 1]],
# ar_AR
'forced_bos_token_id': 25_00_01,
} , )
| 13 |
'''simple docstring'''
import argparse
A__ : Optional[Any] = """docs/source/_static/js/custom.js"""
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> int:
with open(UpperCAmelCase_ , encoding='utf-8' , newline='\n' ) as f:
__lowerCamelCase : Dict = f.readlines()
__lowerCamelCase : Tuple = 0
# First let's put the right version
while not lines[index].startswith('const stableVersion =' ):
index += 1
__lowerCamelCase : Dict = F'const stableVersion = "v{version}"\n'
# Then update the dictionary
while not lines[index].startswith('const versionMapping = {' ):
index += 1
# We go until the end
while not lines[index].startswith('}' ):
index += 1
# We add the new version at the end
lines[index - 1] += F' "v{version}": "v{version}",\n'
with open(UpperCAmelCase_ , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(UpperCAmelCase_ )
if __name__ == "__main__":
A__ : str = argparse.ArgumentParser()
parser.add_argument("""--version""", help="""Release version.""")
A__ : Any = parser.parse_args()
update_custom_js(args.version)
| 13 | 1 |
'''simple docstring'''
from functools import reduce
A__ : Union[str, Any] = (
"""73167176531330624919225119674426574742355349194934"""
"""96983520312774506326239578318016984801869478851843"""
"""85861560789112949495459501737958331952853208805511"""
"""12540698747158523863050715693290963295227443043557"""
"""66896648950445244523161731856403098711121722383113"""
"""62229893423380308135336276614282806444486645238749"""
"""30358907296290491560440772390713810515859307960866"""
"""70172427121883998797908792274921901699720888093776"""
"""65727333001053367881220235421809751254540594752243"""
"""52584907711670556013604839586446706324415722155397"""
"""53697817977846174064955149290862569321978468622482"""
"""83972241375657056057490261407972968652414535100474"""
"""82166370484403199890008895243450658541227588666881"""
"""16427171479924442928230863465674813919123162824586"""
"""17866458359124566529476545682848912883142607690042"""
"""24219022671055626321111109370544217506941658960408"""
"""07198403850962455444362981230987879927244284909188"""
"""84580156166097919133875499200524063689912560717606"""
"""05886116467109405077541002256983155200055935729725"""
"""71636269561882670428252483600823257530420752963450"""
)
def UpperCAmelCase__ ( UpperCAmelCase_ : str = N ) -> int:
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda UpperCAmelCase_ , UpperCAmelCase_ : str(int(UpperCAmelCase_ ) * int(UpperCAmelCase_ ) ) , n[i : i + 13] ) )
for i in range(len(UpperCAmelCase_ ) - 12 ) )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 |
'''simple docstring'''
import flax.linen as nn
import jax
import jax.numpy as jnp
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : Optional[Any] = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> Any:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = hidden_states.shape
__lowerCamelCase : Dict = jax.image.resize(
SCREAMING_SNAKE_CASE_ , shape=(batch, height * 2, width * 2, channels) , method='nearest' , )
__lowerCamelCase : Optional[Any] = self.conv(SCREAMING_SNAKE_CASE_ )
return hidden_states
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : str = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]:
# pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
# hidden_states = jnp.pad(hidden_states, pad_width=pad)
__lowerCamelCase : str = self.conv(SCREAMING_SNAKE_CASE_ )
return hidden_states
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : int = None
lowerCamelCase : float = 0.0
lowerCamelCase : bool = None
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels
__lowerCamelCase : Optional[Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 )
__lowerCamelCase : Tuple = nn.Conv(
SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__lowerCamelCase : List[str] = nn.Dense(SCREAMING_SNAKE_CASE_ , dtype=self.dtype )
__lowerCamelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1E-5 )
__lowerCamelCase : int = nn.Dropout(self.dropout_prob )
__lowerCamelCase : Union[str, Any] = nn.Conv(
SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__lowerCamelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
__lowerCamelCase : List[Any] = None
if use_nin_shortcut:
__lowerCamelCase : Any = nn.Conv(
SCREAMING_SNAKE_CASE_ , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , )
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Tuple:
__lowerCamelCase : List[Any] = hidden_states
__lowerCamelCase : str = self.norma(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = nn.swish(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = self.conva(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = self.time_emb_proj(nn.swish(SCREAMING_SNAKE_CASE_ ) )
__lowerCamelCase : List[str] = jnp.expand_dims(jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , 1 )
__lowerCamelCase : Optional[int] = hidden_states + temb
__lowerCamelCase : List[Any] = self.norma(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = nn.swish(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self.dropout(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self.conva(SCREAMING_SNAKE_CASE_ )
if self.conv_shortcut is not None:
__lowerCamelCase : List[str] = self.conv_shortcut(SCREAMING_SNAKE_CASE_ )
return hidden_states + residual
| 13 | 1 |
'''simple docstring'''
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple ) -> int:
# load base model
__lowerCamelCase : List[Any] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
__lowerCamelCase : List[str] = load_file(UpperCAmelCase_ )
__lowerCamelCase : Dict = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
__lowerCamelCase : Optional[int] = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' )
__lowerCamelCase : Union[str, Any] = pipeline.text_encoder
else:
__lowerCamelCase : int = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' )
__lowerCamelCase : Any = pipeline.unet
# find the target layer
__lowerCamelCase : List[Any] = layer_infos.pop(0 )
while len(UpperCAmelCase_ ) > -1:
try:
__lowerCamelCase : Optional[int] = curr_layer.__getattr__(UpperCAmelCase_ )
if len(UpperCAmelCase_ ) > 0:
__lowerCamelCase : str = layer_infos.pop(0 )
elif len(UpperCAmelCase_ ) == 0:
break
except Exception:
if len(UpperCAmelCase_ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
__lowerCamelCase : Dict = layer_infos.pop(0 )
__lowerCamelCase : Optional[int] = []
if "lora_down" in key:
pair_keys.append(key.replace('lora_down' , 'lora_up' ) )
pair_keys.append(UpperCAmelCase_ )
else:
pair_keys.append(UpperCAmelCase_ )
pair_keys.append(key.replace('lora_up' , 'lora_down' ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
__lowerCamelCase : List[Any] = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
__lowerCamelCase : Optional[int] = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(UpperCAmelCase_ , UpperCAmelCase_ ).unsqueeze(2 ).unsqueeze(3 )
else:
__lowerCamelCase : Optional[int] = state_dict[pair_keys[0]].to(torch.floataa )
__lowerCamelCase : Any = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(UpperCAmelCase_ , UpperCAmelCase_ )
# update visited list
for item in pair_keys:
visited.append(UpperCAmelCase_ )
return pipeline
if __name__ == "__main__":
A__ : List[str] = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.7_5, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
A__ : Optional[int] = parser.parse_args()
A__ : Tuple = args.base_model_path
A__ : List[Any] = args.checkpoint_path
A__ : Union[str, Any] = args.dump_path
A__ : List[Any] = args.lora_prefix_unet
A__ : Tuple = args.lora_prefix_text_encoder
A__ : Tuple = args.alpha
A__ : Tuple = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
A__ : List[Any] = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 13 |
'''simple docstring'''
from __future__ import annotations
A__ : int = 10
def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] ) -> list[int]:
__lowerCamelCase : List[Any] = 1
__lowerCamelCase : Any = max(UpperCAmelCase_ )
while placement <= max_digit:
# declare and initialize empty buckets
__lowerCamelCase : list[list] = [[] for _ in range(UpperCAmelCase_ )]
# split list_of_ints between the buckets
for i in list_of_ints:
__lowerCamelCase : List[Any] = int((i / placement) % RADIX )
buckets[tmp].append(UpperCAmelCase_ )
# put each buckets' contents into list_of_ints
__lowerCamelCase : Tuple = 0
for b in range(UpperCAmelCase_ ):
for i in buckets[b]:
__lowerCamelCase : List[Any] = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
A__ : Optional[Any] = TypeVar("""T""")
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int:
return (position - 1) // 2
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int:
return (2 * position) + 1
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int:
return (2 * position) + 2
class UpperCAmelCase_ (Generic[T] ):
"""simple docstring"""
def __init__( self ) -> None:
__lowerCamelCase : list[tuple[T, int]] = []
__lowerCamelCase : dict[T, int] = {}
__lowerCamelCase : int = 0
def __len__( self ) -> int:
return self.elements
def __repr__( self ) -> str:
return str(self.heap )
def lowercase_ ( self ) -> bool:
# Check if the priority queue is empty
return self.elements == 0
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
# Add an element with given priority to the queue
self.heap.append((elem, weight) )
__lowerCamelCase : Any = self.elements
self.elements += 1
self._bubble_up(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> T:
# Remove and return the element with lowest weight (highest priority)
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1 )
__lowerCamelCase , __lowerCamelCase : int = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
__lowerCamelCase , __lowerCamelCase : Optional[int] = self.heap[0]
self._bubble_down(SCREAMING_SNAKE_CASE_ )
return elem
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
# Update the weight of the given key
__lowerCamelCase : Union[str, Any] = self.position_map[elem]
__lowerCamelCase : Any = (elem, weight)
if position > 0:
__lowerCamelCase : Union[str, Any] = get_parent_position(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase , __lowerCamelCase : List[str] = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(SCREAMING_SNAKE_CASE_ )
else:
self._bubble_down(SCREAMING_SNAKE_CASE_ )
else:
self._bubble_down(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> None:
# Place a node at the proper position (upward movement) [to be used internally
# only]
__lowerCamelCase : Tuple = self.position_map[elem]
if curr_pos == 0:
return None
__lowerCamelCase : Dict = get_parent_position(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase , __lowerCamelCase : int = self.heap[curr_pos]
__lowerCamelCase , __lowerCamelCase : Union[str, Any] = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return self._bubble_up(SCREAMING_SNAKE_CASE_ )
return None
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> None:
# Place a node at the proper position (downward movement) [to be used
# internally only]
__lowerCamelCase : List[str] = self.position_map[elem]
__lowerCamelCase , __lowerCamelCase : int = self.heap[curr_pos]
__lowerCamelCase : Union[str, Any] = get_child_left_position(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = get_child_right_position(SCREAMING_SNAKE_CASE_ )
if child_left_position < self.elements and child_right_position < self.elements:
__lowerCamelCase , __lowerCamelCase : Dict = self.heap[child_left_position]
__lowerCamelCase , __lowerCamelCase : List[Any] = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return self._bubble_down(SCREAMING_SNAKE_CASE_ )
if child_left_position < self.elements:
__lowerCamelCase , __lowerCamelCase : Optional[int] = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return self._bubble_down(SCREAMING_SNAKE_CASE_ )
else:
return None
if child_right_position < self.elements:
__lowerCamelCase , __lowerCamelCase : List[str] = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return self._bubble_down(SCREAMING_SNAKE_CASE_ )
return None
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
# Swap the nodes at the given positions
__lowerCamelCase : List[Any] = self.heap[nodea_pos][0]
__lowerCamelCase : Tuple = self.heap[nodea_pos][0]
__lowerCamelCase , __lowerCamelCase : Optional[Any] = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
__lowerCamelCase : int = nodea_pos
__lowerCamelCase : Optional[Any] = nodea_pos
class UpperCAmelCase_ (Generic[T] ):
"""simple docstring"""
def __init__( self ) -> None:
__lowerCamelCase : dict[T, dict[T, int]] = {}
__lowerCamelCase : int = 0
def __repr__( self ) -> str:
return str(self.connections )
def __len__( self ) -> int:
return self.nodes
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> None:
# Add a node in the graph if it is not in the graph
if node not in self.connections:
__lowerCamelCase : Optional[Any] = {}
self.nodes += 1
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
# Add an edge between 2 nodes in the graph
self.add_node(SCREAMING_SNAKE_CASE_ )
self.add_node(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = weight
__lowerCamelCase : Dict = weight
def UpperCAmelCase__ ( UpperCAmelCase_ : GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]:
__lowerCamelCase : dict[T, int] = {node: maxsize for node in graph.connections}
__lowerCamelCase : dict[T, T | None] = {node: None for node in graph.connections}
__lowerCamelCase : MinPriorityQueue[T] = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(UpperCAmelCase_ , UpperCAmelCase_ )
if priority_queue.is_empty():
return dist, parent
# initialization
__lowerCamelCase : List[Any] = priority_queue.extract_min()
__lowerCamelCase : Union[str, Any] = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
__lowerCamelCase : int = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(UpperCAmelCase_ , dist[neighbour] )
__lowerCamelCase : int = node
# running prim's algorithm
while not priority_queue.is_empty():
__lowerCamelCase : List[Any] = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
__lowerCamelCase : int = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(UpperCAmelCase_ , dist[neighbour] )
__lowerCamelCase : Union[str, Any] = node
return dist, parent
| 13 |
'''simple docstring'''
from collections import defaultdict
from math import gcd
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_50_00_00 ) -> int:
__lowerCamelCase : defaultdict = defaultdict(UpperCAmelCase_ )
__lowerCamelCase : Any = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , UpperCAmelCase_ , 2 ):
if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) > 1:
continue
__lowerCamelCase : Any = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(UpperCAmelCase_ , limit + 1 , UpperCAmelCase_ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_OBJECT_DETECTION_MAPPING,
AutoFeatureExtractor,
AutoModelForObjectDetection,
ObjectDetectionPipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_pytesseract,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class UpperCAmelCase_ :
"""simple docstring"""
@staticmethod
def lowercase_ ( *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Any:
pass
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = MODEL_FOR_OBJECT_DETECTION_MAPPING
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str:
__lowerCamelCase : Dict = ObjectDetectionPipeline(model=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"]
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple:
__lowerCamelCase : Optional[int] = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png' , threshold=0.0 )
self.assertGreater(len(SCREAMING_SNAKE_CASE_ ) , 0 )
for detected_object in outputs:
self.assertEqual(
SCREAMING_SNAKE_CASE_ , {
'score': ANY(SCREAMING_SNAKE_CASE_ ),
'label': ANY(SCREAMING_SNAKE_CASE_ ),
'box': {'xmin': ANY(SCREAMING_SNAKE_CASE_ ), 'ymin': ANY(SCREAMING_SNAKE_CASE_ ), 'xmax': ANY(SCREAMING_SNAKE_CASE_ ), 'ymax': ANY(SCREAMING_SNAKE_CASE_ )},
} , )
import datasets
__lowerCamelCase : Any = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' )
__lowerCamelCase : str = [
Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ),
'http://images.cocodataset.org/val2017/000000039769.jpg',
# RGBA
dataset[0]['file'],
# LA
dataset[1]['file'],
# L
dataset[2]['file'],
]
__lowerCamelCase : Any = object_detector(SCREAMING_SNAKE_CASE_ , threshold=0.0 )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) )
for outputs in batch_outputs:
self.assertGreater(len(SCREAMING_SNAKE_CASE_ ) , 0 )
for detected_object in outputs:
self.assertEqual(
SCREAMING_SNAKE_CASE_ , {
'score': ANY(SCREAMING_SNAKE_CASE_ ),
'label': ANY(SCREAMING_SNAKE_CASE_ ),
'box': {'xmin': ANY(SCREAMING_SNAKE_CASE_ ), 'ymin': ANY(SCREAMING_SNAKE_CASE_ ), 'xmax': ANY(SCREAMING_SNAKE_CASE_ ), 'ymax': ANY(SCREAMING_SNAKE_CASE_ )},
} , )
@require_tf
@unittest.skip('Object detection not implemented in TF' )
def lowercase_ ( self ) -> Any:
pass
@require_torch
def lowercase_ ( self ) -> str:
__lowerCamelCase : Union[str, Any] = 'hf-internal-testing/tiny-detr-mobilenetsv3'
__lowerCamelCase : Optional[Any] = AutoModelForObjectDetection.from_pretrained(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = ObjectDetectionPipeline(model=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=0.0 )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}},
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}},
] , )
__lowerCamelCase : Tuple = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
] , threshold=0.0 , )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [
[
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}},
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}},
],
[
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}},
{'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}},
],
] , )
@require_torch
@slow
def lowercase_ ( self ) -> Dict:
__lowerCamelCase : int = 'facebook/detr-resnet-50'
__lowerCamelCase : Dict = AutoModelForObjectDetection.from_pretrained(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = ObjectDetectionPipeline(model=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}},
] , )
__lowerCamelCase : Dict = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
] )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}},
],
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}},
],
] , )
@require_torch
@slow
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : Optional[int] = 'facebook/detr-resnet-50'
__lowerCamelCase : str = pipeline('object-detection' , model=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}},
] , )
__lowerCamelCase : str = object_detector(
[
'http://images.cocodataset.org/val2017/000000039769.jpg',
'http://images.cocodataset.org/val2017/000000039769.jpg',
] )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}},
],
[
{'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}},
{'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}},
{'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}},
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}},
],
] , )
@require_torch
@slow
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : List[Any] = 0.9_9_8_5
__lowerCamelCase : Optional[int] = 'facebook/detr-resnet-50'
__lowerCamelCase : int = pipeline('object-detection' , model=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[str] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=SCREAMING_SNAKE_CASE_ )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [
{'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}},
{'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}},
] , )
@require_torch
@require_pytesseract
@slow
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : Optional[Any] = 'Narsil/layoutlmv3-finetuned-funsd'
__lowerCamelCase : Dict = 0.9_9_9_3
__lowerCamelCase : int = pipeline('object-detection' , model=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = object_detector(
'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [
{'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 2_94, 'ymin': 2_54, 'xmax': 3_43, 'ymax': 2_64}},
{'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 2_94, 'ymin': 2_54, 'xmax': 3_43, 'ymax': 2_64}},
] , )
| 13 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
A__ : str = logging.get_logger(__name__)
A__ : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
A__ : Tuple = {
"""vocab_file""": {
"""junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""",
"""junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""",
"""junnyu/roformer_chinese_char_small""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt"""
),
"""junnyu/roformer_chinese_char_base""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt"""
),
"""junnyu/roformer_small_discriminator""": (
"""https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt"""
),
"""junnyu/roformer_small_generator""": (
"""https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt"""
),
}
}
A__ : str = {
"""junnyu/roformer_chinese_small""": 1536,
"""junnyu/roformer_chinese_base""": 1536,
"""junnyu/roformer_chinese_char_small""": 512,
"""junnyu/roformer_chinese_char_base""": 512,
"""junnyu/roformer_small_discriminator""": 128,
"""junnyu/roformer_small_generator""": 128,
}
A__ : Tuple = {
"""junnyu/roformer_chinese_small""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_base""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True},
"""junnyu/roformer_small_discriminator""": {"""do_lower_case""": True},
"""junnyu/roformer_small_generator""": {"""do_lower_case""": True},
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES
lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION
lowerCamelCase : Dict = RoFormerTokenizer
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]:
super().__init__(
SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
__lowerCamelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case
or pre_tok_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents
):
__lowerCamelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) )
__lowerCamelCase : Union[str, Any] = do_lower_case
__lowerCamelCase : str = strip_accents
__lowerCamelCase : Optional[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = do_lower_case
def __getstate__( self ) -> List[str]:
__lowerCamelCase : Union[str, Any] = self.__dict__.copy()
__lowerCamelCase : Dict = BertPreTokenizer()
return state
def __setstate__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = d
__lowerCamelCase : List[Any] = self.__dict__['_tokenizer'].get_vocab()
__lowerCamelCase : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(SCREAMING_SNAKE_CASE_ ) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str:
__lowerCamelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
__lowerCamelCase : List[str] = [self.sep_token_id]
__lowerCamelCase : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]:
__lowerCamelCase : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ )
return tuple(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Any:
__lowerCamelCase : Tuple = BertPreTokenizer()
return super().save_pretrained(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 13 | 1 |
'''simple docstring'''
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from transformers import TvltFeatureExtractor, is_datasets_available
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
if is_datasets_available():
from datasets import load_dataset
A__ : Any = random.Random()
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict=1.0 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : List[Any]=None ) -> Union[str, Any]:
if rng is None:
__lowerCamelCase : Any = global_rng
__lowerCamelCase : List[Any] = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=20_00 , SCREAMING_SNAKE_CASE_=20_48 , SCREAMING_SNAKE_CASE_=1_28 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_41_00 , ) -> str:
__lowerCamelCase : Dict = parent
__lowerCamelCase : Union[str, Any] = batch_size
__lowerCamelCase : Any = min_seq_length
__lowerCamelCase : List[Any] = max_seq_length
__lowerCamelCase : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
__lowerCamelCase : Any = spectrogram_length
__lowerCamelCase : Any = feature_size
__lowerCamelCase : List[str] = num_audio_channels
__lowerCamelCase : Dict = hop_length
__lowerCamelCase : Optional[Any] = chunk_length
__lowerCamelCase : Optional[Any] = sampling_rate
def lowercase_ ( self ) -> List[str]:
return {
"spectrogram_length": self.spectrogram_length,
"feature_size": self.feature_size,
"num_audio_channels": self.num_audio_channels,
"hop_length": self.hop_length,
"chunk_length": self.chunk_length,
"sampling_rate": self.sampling_rate,
}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False ) -> Dict:
def _flatten(SCREAMING_SNAKE_CASE_ ):
return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) )
if equal_length:
__lowerCamelCase : Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
__lowerCamelCase : Dict = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
__lowerCamelCase : Union[str, Any] = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Dict = TvltFeatureExtractor
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : Any = TvltFeatureExtractionTester(self )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'spectrogram_length' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'feature_size' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'num_audio_channels' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'hop_length' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'chunk_length' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'sampling_rate' ) )
def lowercase_ ( self ) -> Dict:
__lowerCamelCase : int = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
__lowerCamelCase : List[str] = feat_extract_first.save_pretrained(SCREAMING_SNAKE_CASE_ )[0]
check_json_file_has_correct_format(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self.feature_extraction_class.from_pretrained(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = feat_extract_first.to_dict()
__lowerCamelCase : Optional[int] = feat_extract_second.to_dict()
__lowerCamelCase : Union[str, Any] = dict_first.pop('mel_filters' )
__lowerCamelCase : List[Any] = dict_second.pop('mel_filters' )
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : int = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
__lowerCamelCase : int = os.path.join(SCREAMING_SNAKE_CASE_ , 'feat_extract.json' )
feat_extract_first.to_json_file(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = self.feature_extraction_class.from_json_file(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = feat_extract_first.to_dict()
__lowerCamelCase : Optional[Any] = feat_extract_second.to_dict()
__lowerCamelCase : Union[str, Any] = dict_first.pop('mel_filters' )
__lowerCamelCase : str = dict_second.pop('mel_filters' )
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> List[str]:
# Initialize feature_extractor
__lowerCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_dict )
# create three inputs of length 800, 1000, and 1200
__lowerCamelCase : int = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
__lowerCamelCase : Union[str, Any] = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs]
# Test not batched input
__lowerCamelCase : Union[str, Any] = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_41_00 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test batched
__lowerCamelCase : Any = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' , sampling_rate=4_41_00 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test audio masking
__lowerCamelCase : Dict = feature_extractor(
SCREAMING_SNAKE_CASE_ , return_tensors='np' , sampling_rate=4_41_00 , mask_audio=SCREAMING_SNAKE_CASE_ ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test 2-D numpy arrays are batched.
__lowerCamelCase : Optional[Any] = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)]
__lowerCamelCase : int = np.asarray(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' , sampling_rate=4_41_00 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
__lowerCamelCase : Union[str, Any] = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' )
# automatic decoding with librispeech
__lowerCamelCase : Union[str, Any] = ds.sort('id' ).select(range(SCREAMING_SNAKE_CASE_ ) )[:num_samples]['audio']
return [x["array"] for x in speech_samples]
def lowercase_ ( self ) -> Dict:
__lowerCamelCase : Tuple = self._load_datasamples(1 )
__lowerCamelCase : List[Any] = TvltFeatureExtractor()
__lowerCamelCase : List[str] = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).audio_values
self.assertEquals(audio_values.shape , (1, 1, 1_92, 1_28) )
__lowerCamelCase : str = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] )
self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
| 13 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
A__ : int = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
A__ : Dict = TaTokenizerFast
A__ : Dict = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Any = [
"""MT5EncoderModel""",
"""MT5ForConditionalGeneration""",
"""MT5ForQuestionAnswering""",
"""MT5Model""",
"""MT5PreTrainedModel""",
"""MT5Stack""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : str = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : str = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
A__ : Union[str, Any] = _LazyModule(
__name__,
globals()["""__file__"""],
_import_structure,
extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast},
module_spec=__spec__,
)
| 13 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaInpaintPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Any = KandinskyVaaInpaintPipeline
lowerCamelCase : Dict = ['image_embeds', 'negative_image_embeds', 'image', 'mask_image']
lowerCamelCase : List[Any] = [
'image_embeds',
'negative_image_embeds',
'image',
'mask_image',
]
lowerCamelCase : Union[str, Any] = [
'generator',
'height',
'width',
'latents',
'guidance_scale',
'num_inference_steps',
'return_dict',
'guidance_scale',
'num_images_per_prompt',
'output_type',
'return_dict',
]
lowerCamelCase : str = False
@property
def lowercase_ ( self ) -> Union[str, Any]:
return 32
@property
def lowercase_ ( self ) -> str:
return 32
@property
def lowercase_ ( self ) -> Tuple:
return self.time_input_dim
@property
def lowercase_ ( self ) -> Optional[Any]:
return self.time_input_dim * 4
@property
def lowercase_ ( self ) -> Optional[Any]:
return 1_00
@property
def lowercase_ ( self ) -> Any:
torch.manual_seed(0 )
__lowerCamelCase : str = {
'in_channels': 9,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'image',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
__lowerCamelCase : Union[str, Any] = UNetaDConditionModel(**SCREAMING_SNAKE_CASE_ )
return model
@property
def lowercase_ ( self ) -> List[Any]:
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowercase_ ( self ) -> Optional[int]:
torch.manual_seed(0 )
__lowerCamelCase : List[Any] = VQModel(**self.dummy_movq_kwargs )
return model
def lowercase_ ( self ) -> Any:
__lowerCamelCase : List[str] = self.dummy_unet
__lowerCamelCase : str = self.dummy_movq
__lowerCamelCase : List[str] = DDIMScheduler(
num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , steps_offset=1 , prediction_type='epsilon' , thresholding=SCREAMING_SNAKE_CASE_ , )
__lowerCamelCase : Optional[Any] = {
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ) -> Tuple:
__lowerCamelCase : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
SCREAMING_SNAKE_CASE_ )
# create init_image
__lowerCamelCase : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__lowerCamelCase : Optional[int] = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_ ) ).convert('RGB' ).resize((2_56, 2_56) )
# create mask
__lowerCamelCase : Optional[Any] = np.ones((64, 64) , dtype=np.floataa )
__lowerCamelCase : Dict = 0
if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ):
__lowerCamelCase : Any = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
else:
__lowerCamelCase : Optional[int] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = {
'image': init_image,
'mask_image': mask,
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'generator': generator,
'height': 64,
'width': 64,
'num_inference_steps': 2,
'guidance_scale': 4.0,
'output_type': 'np',
}
return inputs
def lowercase_ ( self ) -> str:
__lowerCamelCase : List[str] = 'cpu'
__lowerCamelCase : int = self.get_dummy_components()
__lowerCamelCase : Optional[int] = self.pipeline_class(**SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = pipe.to(SCREAMING_SNAKE_CASE_ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) )
__lowerCamelCase : List[str] = output.images
__lowerCamelCase : Dict = pipe(
**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) , return_dict=SCREAMING_SNAKE_CASE_ , )[0]
__lowerCamelCase : int = image[0, -3:, -3:, -1]
__lowerCamelCase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1]
print(f'image.shape {image.shape}' )
assert image.shape == (1, 64, 64, 3)
__lowerCamelCase : Dict = np.array(
[0.5_0_7_7_5_9_0_3, 0.4_9_5_2_7_1_9_5, 0.4_8_8_2_4_5_4_3, 0.5_0_1_9_2_2_3_7, 0.4_8_6_4_4_9_0_6, 0.4_9_3_7_3_8_1_4, 0.4_7_8_0_5_9_8, 0.4_7_2_3_4_8_2_7, 0.4_8_3_2_7_8_4_8] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
def lowercase_ ( self ) -> List[Any]:
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ) -> Optional[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : str = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' )
__lowerCamelCase : Optional[Any] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
__lowerCamelCase : str = np.ones((7_68, 7_68) , dtype=np.floataa )
__lowerCamelCase : str = 0
__lowerCamelCase : Tuple = 'a hat'
__lowerCamelCase : Union[str, Any] = KandinskyVaaPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa )
pipe_prior.to(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = KandinskyVaaInpaintPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa )
__lowerCamelCase : Optional[Any] = pipeline.to(SCREAMING_SNAKE_CASE_ )
pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = torch.Generator(device='cpu' ).manual_seed(0 )
__lowerCamelCase , __lowerCamelCase : str = pipe_prior(
SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=5 , negative_prompt='' , ).to_tuple()
__lowerCamelCase : Optional[Any] = pipeline(
image=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , image_embeds=SCREAMING_SNAKE_CASE_ , negative_image_embeds=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='np' , )
__lowerCamelCase : Optional[int] = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
| 13 |
'''simple docstring'''
import re
from typing import Callable, List, Optional, Union
import tensorflow as tf
try:
from tensorflow.keras.optimizers.legacy import Adam
except ImportError:
from tensorflow.keras.optimizers import Adam
class UpperCAmelCase_ (tf.keras.optimizers.schedules.LearningRateSchedule ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = None , ) -> Any:
super().__init__()
__lowerCamelCase : Optional[Any] = initial_learning_rate
__lowerCamelCase : Optional[Any] = warmup_steps
__lowerCamelCase : Union[str, Any] = power
__lowerCamelCase : Optional[int] = decay_schedule_fn
__lowerCamelCase : Any = name
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str:
with tf.name_scope(self.name or 'WarmUp' ) as name:
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
__lowerCamelCase : str = tf.cast(SCREAMING_SNAKE_CASE_ , tf.floataa )
__lowerCamelCase : Optional[int] = tf.cast(self.warmup_steps , tf.floataa )
__lowerCamelCase : List[Any] = global_step_float / warmup_steps_float
__lowerCamelCase : Optional[Any] = self.initial_learning_rate * tf.math.pow(SCREAMING_SNAKE_CASE_ , self.power )
return tf.cond(
global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=SCREAMING_SNAKE_CASE_ , )
def lowercase_ ( self ) -> Optional[Any]:
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_schedule_fn": self.decay_schedule_fn,
"warmup_steps": self.warmup_steps,
"power": self.power,
"name": self.name,
}
def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 0.9 , UpperCAmelCase_ : float = 0.999 , UpperCAmelCase_ : float = 1e-8 , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : Optional[List[str]] = None , ) -> int:
__lowerCamelCase : int = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=UpperCAmelCase_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCAmelCase_ , )
if num_warmup_steps:
__lowerCamelCase : str = WarmUp(
initial_learning_rate=UpperCAmelCase_ , decay_schedule_fn=UpperCAmelCase_ , warmup_steps=UpperCAmelCase_ , )
if weight_decay_rate > 0.0:
__lowerCamelCase : List[Any] = AdamWeightDecay(
learning_rate=UpperCAmelCase_ , weight_decay_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=UpperCAmelCase_ , )
else:
__lowerCamelCase : Tuple = tf.keras.optimizers.Adam(
learning_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , )
# We return the optimizer and the LR scheduler in order to better track the
# evolution of the LR independently of the optimizer.
return optimizer, lr_schedule
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ = 0.0_0_1 , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = 0.9_9_9 , SCREAMING_SNAKE_CASE_ = 1E-7 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "AdamWeightDecay" , **SCREAMING_SNAKE_CASE_ , ) -> int:
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = weight_decay_rate
__lowerCamelCase : str = include_in_weight_decay
__lowerCamelCase : List[Any] = exclude_from_weight_decay
@classmethod
def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> Dict:
__lowerCamelCase : Any = {'WarmUp': WarmUp}
return super(SCREAMING_SNAKE_CASE_ , cls ).from_config(SCREAMING_SNAKE_CASE_ , custom_objects=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
super(SCREAMING_SNAKE_CASE_ , self )._prepare_local(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tf.constant(
self.weight_decay_rate , name='adam_weight_decay_rate' )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
__lowerCamelCase : Tuple = self._do_use_weight_decay(var.name )
if do_decay:
return var.assign_sub(
learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , )
return tf.no_op()
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase , __lowerCamelCase : Optional[Any] = list(zip(*SCREAMING_SNAKE_CASE_ ) )
return super(SCREAMING_SNAKE_CASE_ , self ).apply_gradients(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , name=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str:
if apply_state is None:
return self._decayed_lr_t[var_dtype], {}
__lowerCamelCase : Optional[int] = apply_state or {}
__lowerCamelCase : Dict = apply_state.get((var_device, var_dtype) )
if coefficients is None:
__lowerCamelCase : List[Any] = self._fallback_apply_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = coefficients
return coefficients["lr_t"], {"apply_state": apply_state}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str:
__lowerCamelCase , __lowerCamelCase : Dict = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
with tf.control_dependencies([decay] ):
return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_dense(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Union[str, Any]:
__lowerCamelCase , __lowerCamelCase : Tuple = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
with tf.control_dependencies([decay] ):
return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_sparse(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : Any = super().get_config()
config.update({'weight_decay_rate': self.weight_decay_rate} )
return config
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict:
if self.weight_decay_rate == 0:
return False
if self._include_in_weight_decay:
for r in self._include_in_weight_decay:
if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None:
return True
if self._exclude_from_weight_decay:
for r in self._exclude_from_weight_decay:
if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None:
return False
return True
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self ) -> Tuple:
__lowerCamelCase : Tuple = []
__lowerCamelCase : Optional[Any] = None
@property
def lowercase_ ( self ) -> List[str]:
if self._accum_steps is None:
__lowerCamelCase : Tuple = tf.Variable(
tf.constant(0 , dtype=tf.intaa ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
return self._accum_steps.value()
@property
def lowercase_ ( self ) -> List[str]:
if not self._gradients:
raise ValueError('The accumulator should be called first to initialize the gradients' )
return [gradient.value() if gradient is not None else gradient for gradient in self._gradients]
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str:
if not self._gradients:
__lowerCamelCase : List[str] = self.step # Create the step variable.
self._gradients.extend(
[
tf.Variable(
tf.zeros_like(SCREAMING_SNAKE_CASE_ ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
if gradient is not None
else gradient
for gradient in gradients
] )
if len(SCREAMING_SNAKE_CASE_ ) != len(self._gradients ):
raise ValueError(f'Expected {len(self._gradients )} gradients, but got {len(SCREAMING_SNAKE_CASE_ )}' )
for accum_gradient, gradient in zip(self._gradients , SCREAMING_SNAKE_CASE_ ):
if accum_gradient is not None and gradient is not None:
accum_gradient.assign_add(SCREAMING_SNAKE_CASE_ )
self._accum_steps.assign_add(1 )
def lowercase_ ( self ) -> int:
if not self._gradients:
return
self._accum_steps.assign(0 )
for gradient in self._gradients:
if gradient is not None:
gradient.assign(tf.zeros_like(SCREAMING_SNAKE_CASE_ ) )
| 13 | 1 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> str:
if a < 0 or b < 0:
raise ValueError('the value of both inputs must be positive' )
__lowerCamelCase : int = str(bin(UpperCAmelCase_ ) )[2:] # remove the leading "0b"
__lowerCamelCase : Any = str(bin(UpperCAmelCase_ ) )[2:] # remove the leading "0b"
__lowerCamelCase : List[str] = max(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) )
return "0b" + "".join(
str(int(char_a == '1' and char_b == '1' ) )
for char_a, char_b in zip(a_binary.zfill(UpperCAmelCase_ ) , b_binary.zfill(UpperCAmelCase_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=[1, 2, 1] , SCREAMING_SNAKE_CASE_=[2, 2, 4] , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=["stage1", "stage2", "stage3"] , SCREAMING_SNAKE_CASE_=[1, 2, 3] , ) -> Any:
__lowerCamelCase : Optional[Any] = parent
__lowerCamelCase : int = batch_size
__lowerCamelCase : Optional[int] = image_size
__lowerCamelCase : Optional[int] = patch_size
__lowerCamelCase : Optional[Any] = num_channels
__lowerCamelCase : Dict = embed_dim
__lowerCamelCase : List[Any] = depths
__lowerCamelCase : int = num_heads
__lowerCamelCase : Optional[Any] = window_size
__lowerCamelCase : Optional[Any] = mlp_ratio
__lowerCamelCase : List[str] = qkv_bias
__lowerCamelCase : List[str] = hidden_dropout_prob
__lowerCamelCase : int = attention_probs_dropout_prob
__lowerCamelCase : List[Any] = drop_path_rate
__lowerCamelCase : Any = hidden_act
__lowerCamelCase : Union[str, Any] = use_absolute_embeddings
__lowerCamelCase : Any = patch_norm
__lowerCamelCase : Optional[Any] = layer_norm_eps
__lowerCamelCase : str = initializer_range
__lowerCamelCase : Dict = is_training
__lowerCamelCase : Optional[Any] = scope
__lowerCamelCase : Dict = use_labels
__lowerCamelCase : List[str] = type_sequence_label_size
__lowerCamelCase : Dict = encoder_stride
__lowerCamelCase : Union[str, Any] = out_features
__lowerCamelCase : str = out_indices
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowerCamelCase : List[str] = None
if self.use_labels:
__lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowerCamelCase : List[str] = self.get_config()
return config, pixel_values, labels
def lowercase_ ( self ) -> Optional[int]:
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
__lowerCamelCase : Dict = MaskFormerSwinModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__lowerCamelCase : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
__lowerCamelCase : Tuple = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , [16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : str = ['stem']
__lowerCamelCase : Optional[Any] = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : Optional[int] = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = config_and_inputs
__lowerCamelCase : Optional[int] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : List[Any] = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase : int = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {}
lowerCamelCase : int = False
lowerCamelCase : int = False
lowerCamelCase : str = False
lowerCamelCase : int = False
lowerCamelCase : Union[str, Any] = False
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : Optional[Any] = MaskFormerSwinModelTester(self )
__lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
'`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with'
' `nn.DataParallel`'
) )
def lowercase_ ( self ) -> int:
pass
def lowercase_ ( self ) -> Union[str, Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase_ ( self ) -> Tuple:
return
def lowercase_ ( self ) -> Dict:
__lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ )
@unittest.skip('Swin does not use inputs_embeds' )
def lowercase_ ( self ) -> Optional[int]:
pass
@unittest.skip('Swin does not support feedforward chunking' )
def lowercase_ ( self ) -> Dict:
pass
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__lowerCamelCase : Optional[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase , __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase : str = [*signature.parameters.keys()]
__lowerCamelCase : Any = ['pixel_values']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ )
@unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' )
def lowercase_ ( self ) -> Any:
pass
@unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' )
def lowercase_ ( self ) -> List[Any]:
pass
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
with torch.no_grad():
__lowerCamelCase : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
__lowerCamelCase : int = outputs.hidden_states
__lowerCamelCase : Tuple = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
# Swin has a different seq_length
__lowerCamelCase : Optional[Any] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase : List[Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
__lowerCamelCase : Dict = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowerCamelCase : Optional[int] = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase : Union[str, Any] = 3
__lowerCamelCase : Dict = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__lowerCamelCase : str = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__lowerCamelCase : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__lowerCamelCase : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
__lowerCamelCase : str = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowerCamelCase : Tuple = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) )
@unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' )
def lowercase_ ( self ) -> Optional[Any]:
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def lowercase_ ( self ) -> Any:
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def lowercase_ ( self ) -> Union[str, Any]:
pass
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Any = 0
return t
def check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_={} ):
with torch.no_grad():
__lowerCamelCase : Optional[int] = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).to_tuple()
def recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if isinstance(SCREAMING_SNAKE_CASE_ , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values() ):
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , atol=1E-5 ) , msg=(
'Tuple and dict output are not equal. Difference:'
f' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:'
f' {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}. Dict has'
f' `nan`: {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}.'
) , )
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
for model_class in self.all_model_classes:
__lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} )
__lowerCamelCase : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} )
@require_torch
class UpperCAmelCase_ (unittest.TestCase , _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else ()
lowerCamelCase : List[str] = MaskFormerSwinConfig
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : List[str] = MaskFormerSwinModelTester(self )
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase : Any = inputs_dict['pixel_values'].shape[0]
for backbone_class in self.all_model_classes:
__lowerCamelCase : Optional[Any] = backbone_class(SCREAMING_SNAKE_CASE_ )
backbone.to(SCREAMING_SNAKE_CASE_ )
backbone.eval()
__lowerCamelCase : int = backbone(**SCREAMING_SNAKE_CASE_ )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , SCREAMING_SNAKE_CASE_ )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
__lowerCamelCase : Union[str, Any] = backbone(**SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
__lowerCamelCase : Optional[int] = backbone(**SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(outputs.attentions )
| 13 | 1 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
@slow
@require_torch_gpu
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ) -> Tuple:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : str = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' )
__lowerCamelCase : Dict = sd_pipe.to(SCREAMING_SNAKE_CASE_ )
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
sd_pipe.set_scheduler('sample_euler' )
__lowerCamelCase : int = 'A painting of a squirrel eating a burger'
__lowerCamelCase : Tuple = torch.manual_seed(0 )
__lowerCamelCase : Tuple = sd_pipe([prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' )
__lowerCamelCase : Union[str, Any] = output.images
__lowerCamelCase : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__lowerCamelCase : List[str] = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowercase_ ( self ) -> Dict:
__lowerCamelCase : List[Any] = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' )
__lowerCamelCase : List[Any] = sd_pipe.to(SCREAMING_SNAKE_CASE_ )
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
sd_pipe.set_scheduler('sample_euler' )
__lowerCamelCase : Union[str, Any] = 'A painting of a squirrel eating a burger'
__lowerCamelCase : Any = torch.manual_seed(0 )
__lowerCamelCase : List[str] = sd_pipe([prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' )
__lowerCamelCase : List[str] = output.images
__lowerCamelCase : List[str] = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__lowerCamelCase : Tuple = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : List[Any] = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' )
__lowerCamelCase : Dict = sd_pipe.to(SCREAMING_SNAKE_CASE_ )
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
sd_pipe.set_scheduler('sample_dpmpp_2m' )
__lowerCamelCase : Any = 'A painting of a squirrel eating a burger'
__lowerCamelCase : Optional[Any] = torch.manual_seed(0 )
__lowerCamelCase : Optional[int] = sd_pipe(
[prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=SCREAMING_SNAKE_CASE_ , )
__lowerCamelCase : Optional[Any] = output.images
__lowerCamelCase : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__lowerCamelCase : List[Any] = np.array(
[0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 13 |
'''simple docstring'''
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
A__ : Dict = [
"""python""",
"""tqdm""",
"""regex""",
"""requests""",
"""packaging""",
"""filelock""",
"""numpy""",
"""tokenizers""",
"""huggingface-hub""",
"""safetensors""",
"""accelerate""",
"""pyyaml""",
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''')
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=None ) -> List[Any]:
require_version(deps[pkg] , UpperCAmelCase_ )
| 13 | 1 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Any = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : List[Any] = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[Any]:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Dict = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> int:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> int:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Dict:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : str = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> str:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> int:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Dict = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Tuple:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : str = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Tuple:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : int = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[Any]:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Optional[Any] = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Dict = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : List[Any] = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Any:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Optional[int] = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Tuple = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Any = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Tuple = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> int:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Tuple = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> int:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Optional[int] = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Any:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Optional[Any] = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Tuple:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Tuple = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Dict:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Optional[int] = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[Any]:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : int = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Tuple:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Any = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> int:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Tuple = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Dict:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Tuple = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[Any]:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Tuple = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Tuple = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Any:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Tuple = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Dict:
requires_backends(self , ['sentencepiece'] )
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : List[str] = ['sentencepiece']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Tuple:
requires_backends(self , ['sentencepiece'] )
| 13 |
'''simple docstring'''
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import platform
import sys
A__ : List[str] = """3"""
print("""Python version:""", sys.version)
print("""OS platform:""", platform.platform())
print("""OS architecture:""", platform.machine())
try:
import torch
print("""Torch version:""", torch.__version__)
print("""Cuda available:""", torch.cuda.is_available())
print("""Cuda version:""", torch.version.cuda)
print("""CuDNN version:""", torch.backends.cudnn.version())
print("""Number of GPUs available:""", torch.cuda.device_count())
except ImportError:
print("""Torch version:""", None)
try:
import transformers
print("""transformers version:""", transformers.__version__)
except ImportError:
print("""transformers version:""", None)
| 13 | 1 |
'''simple docstring'''
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.17.0.dev0""")
require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""")
A__ : str = logging.getLogger(__name__)
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[str] = field(
default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} )
lowerCamelCase : Optional[str] = field(
default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , )
lowerCamelCase : int = field(
default=1_0_2_4 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
lowerCamelCase : bool = field(
default=_UpperCAmelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} )
lowerCamelCase : bool = field(
default=_UpperCAmelCase , metadata={
'help': (
'Whether to pad all samples to `max_seq_length`. '
'If False, will pad the samples dynamically when batching to the maximum length in the batch.'
)
} , )
lowerCamelCase : Optional[int] = field(
default=_UpperCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of training examples to this '
'value if set.'
)
} , )
lowerCamelCase : Optional[int] = field(
default=_UpperCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of evaluation examples to this '
'value if set.'
)
} , )
lowerCamelCase : Optional[int] = field(
default=_UpperCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of prediction examples to this '
'value if set.'
)
} , )
lowerCamelCase : Optional[str] = field(
default=_UpperCAmelCase , metadata={'help': 'A csv or a json file containing the training data.'} )
lowerCamelCase : Optional[str] = field(
default=_UpperCAmelCase , metadata={'help': 'A csv or a json file containing the validation data.'} )
lowerCamelCase : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'A csv or a json file containing the test data.'} )
def lowercase_ ( self ) -> Tuple:
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' )
else:
__lowerCamelCase : Dict = self.train_file.split('.' )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
__lowerCamelCase : Tuple = self.validation_file.split('.' )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : str = field(
default=_UpperCAmelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
lowerCamelCase : Optional[str] = field(
default=_UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
lowerCamelCase : Optional[str] = field(
default=_UpperCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
lowerCamelCase : Optional[str] = field(
default=_UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , )
lowerCamelCase : bool = field(
default=_UpperCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , )
lowerCamelCase : str = field(
default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , )
lowerCamelCase : bool = field(
default=_UpperCAmelCase , metadata={
'help': (
'Will use the token generated when running `huggingface-cli login` (necessary to use this script '
'with private models).'
)
} , )
def UpperCAmelCase__ ( ) -> Tuple:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__lowerCamelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , )
__lowerCamelCase : List[str] = training_args.get_process_log_level()
logger.setLevel(UpperCAmelCase_ )
datasets.utils.logging.set_verbosity(UpperCAmelCase_ )
transformers.utils.logging.set_verbosity(UpperCAmelCase_ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'
+ F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' )
logger.info(F'Training/evaluation parameters {training_args}' )
# Detecting last checkpoint.
__lowerCamelCase : List[str] = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__lowerCamelCase : Any = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'Output directory ({training_args.output_dir}) already exists and is not empty. '
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
__lowerCamelCase : Union[str, Any] = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
__lowerCamelCase : Dict = {'train': data_args.train_file, 'validation': data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
__lowerCamelCase : Optional[int] = data_args.train_file.split('.' )[-1]
__lowerCamelCase : List[str] = data_args.test_file.split('.' )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
__lowerCamelCase : Dict = data_args.test_file
else:
raise ValueError('Need either a GLUE task or a test file for `do_predict`.' )
for key in data_files.keys():
logger.info(F'load a local file for {key}: {data_files[key]}' )
if data_args.train_file.endswith('.csv' ):
# Loading a dataset from local csv files
__lowerCamelCase : str = load_dataset('csv' , data_files=UpperCAmelCase_ , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
__lowerCamelCase : Tuple = load_dataset('json' , data_files=UpperCAmelCase_ , cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
__lowerCamelCase : Dict = raw_datasets['train'].features['label'].names
__lowerCamelCase : str = len(UpperCAmelCase_ )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__lowerCamelCase : Any = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# load tapex tokenizer
__lowerCamelCase : Any = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=UpperCAmelCase_ , )
__lowerCamelCase : Union[str, Any] = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Padding strategy
if data_args.pad_to_max_length:
__lowerCamelCase : Any = 'max_length'
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
__lowerCamelCase : Dict = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
__lowerCamelCase : Optional[int] = {'Refused': 0, 'Entailed': 1}
__lowerCamelCase : int = {0: 'Refused', 1: 'Entailed'}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the'
F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' )
__lowerCamelCase : Dict = min(data_args.max_seq_length , tokenizer.model_max_length )
def preprocess_tabfact_function(UpperCAmelCase_ : Optional[Any] ):
# Tokenize the texts
def _convert_table_text_to_pandas(UpperCAmelCase_ : Dict ):
__lowerCamelCase : Dict = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )]
__lowerCamelCase : str = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] )
return _table_pd
__lowerCamelCase : Union[str, Any] = examples['statement']
__lowerCamelCase : List[str] = list(map(_convert_table_text_to_pandas , examples['table_text'] ) )
__lowerCamelCase : int = tokenizer(UpperCAmelCase_ , UpperCAmelCase_ , padding=UpperCAmelCase_ , max_length=UpperCAmelCase_ , truncation=UpperCAmelCase_ )
__lowerCamelCase : Optional[int] = examples['label']
return result
with training_args.main_process_first(desc='dataset map pre-processing' ):
__lowerCamelCase : Any = raw_datasets.map(
UpperCAmelCase_ , batched=UpperCAmelCase_ , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , )
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('--do_train requires a train dataset' )
__lowerCamelCase : Tuple = raw_datasets['train']
if data_args.max_train_samples is not None:
__lowerCamelCase : Optional[Any] = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError('--do_eval requires a validation dataset' )
__lowerCamelCase : Optional[Any] = raw_datasets['validation']
if data_args.max_eval_samples is not None:
__lowerCamelCase : Optional[Any] = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError('--do_predict requires a test dataset' )
__lowerCamelCase : Union[str, Any] = raw_datasets['test']
if data_args.max_predict_samples is not None:
__lowerCamelCase : List[str] = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(UpperCAmelCase_ ) ) , 3 ):
logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(UpperCAmelCase_ : EvalPrediction ):
__lowerCamelCase : Any = p.predictions[0] if isinstance(p.predictions , UpperCAmelCase_ ) else p.predictions
__lowerCamelCase : Optional[Any] = np.argmax(UpperCAmelCase_ , axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
__lowerCamelCase : Any = default_data_collator
elif training_args.fpaa:
__lowerCamelCase : Dict = DataCollatorWithPadding(UpperCAmelCase_ , pad_to_multiple_of=8 )
else:
__lowerCamelCase : List[Any] = None
# Initialize our Trainer
__lowerCamelCase : Union[str, Any] = Trainer(
model=UpperCAmelCase_ , args=UpperCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , data_collator=UpperCAmelCase_ , )
# Training
if training_args.do_train:
__lowerCamelCase : int = None
if training_args.resume_from_checkpoint is not None:
__lowerCamelCase : List[Any] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__lowerCamelCase : str = last_checkpoint
__lowerCamelCase : Tuple = trainer.train(resume_from_checkpoint=UpperCAmelCase_ )
__lowerCamelCase : List[str] = train_result.metrics
__lowerCamelCase : List[Any] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCAmelCase_ )
)
__lowerCamelCase : List[str] = min(UpperCAmelCase_ , len(UpperCAmelCase_ ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics('train' , UpperCAmelCase_ )
trainer.save_metrics('train' , UpperCAmelCase_ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('*** Evaluate ***' )
__lowerCamelCase : Union[str, Any] = trainer.evaluate(eval_dataset=UpperCAmelCase_ )
__lowerCamelCase : Optional[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCAmelCase_ )
__lowerCamelCase : int = min(UpperCAmelCase_ , len(UpperCAmelCase_ ) )
trainer.log_metrics('eval' , UpperCAmelCase_ )
trainer.save_metrics('eval' , UpperCAmelCase_ )
if training_args.do_predict:
logger.info('*** Predict ***' )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
__lowerCamelCase : Optional[int] = predict_dataset.remove_columns('label' )
__lowerCamelCase : List[str] = trainer.predict(UpperCAmelCase_ , metric_key_prefix='predict' ).predictions
__lowerCamelCase : Dict = np.argmax(UpperCAmelCase_ , axis=1 )
__lowerCamelCase : Any = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' )
if trainer.is_world_process_zero():
with open(UpperCAmelCase_ , 'w' ) as writer:
logger.info('***** Predict Results *****' )
writer.write('index\tprediction\n' )
for index, item in enumerate(UpperCAmelCase_ ):
__lowerCamelCase : int = label_list[item]
writer.write(F'{index}\t{item}\n' )
__lowerCamelCase : Dict = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'}
if training_args.push_to_hub:
trainer.push_to_hub(**UpperCAmelCase_ )
else:
trainer.create_model_card(**UpperCAmelCase_ )
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] ) -> Union[str, Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 13 |
'''simple docstring'''
from collections import namedtuple
import requests
from lxml import html # type: ignore
A__ : Tuple = namedtuple("""covid_data""", """cases deaths recovered""")
def UpperCAmelCase__ ( UpperCAmelCase_ : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data:
__lowerCamelCase : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()'
return covid_data(*html.fromstring(requests.get(UpperCAmelCase_ ).content ).xpath(UpperCAmelCase_ ) )
A__ : str = """Total COVID-19 cases in the world: {}
Total deaths due to COVID-19 in the world: {}
Total COVID-19 patients recovered in the world: {}"""
print(fmt.format(*covid_stats()))
| 13 | 1 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
A__ : Union[str, Any] = logging.get_logger(__name__)
A__ : List[str] = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""adapter_layer""": """encoder.layers.*.adapter_layer""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
"""pooling_layer.linear""": """projector""",
"""pooling_layer.projection""": """classifier""",
}
A__ : str = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""projector""",
"""classifier""",
]
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] ) -> Tuple:
__lowerCamelCase : Tuple = {}
with open(UpperCAmelCase_ , 'r' ) as file:
for line_number, line in enumerate(UpperCAmelCase_ ):
__lowerCamelCase : Any = line.strip()
if line:
__lowerCamelCase : Optional[int] = line.split()
__lowerCamelCase : List[Any] = line_number
__lowerCamelCase : int = words[0]
__lowerCamelCase : List[str] = value
return result
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any ) -> Dict:
for attribute in key.split('.' ):
__lowerCamelCase : Optional[int] = getattr(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : Any = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(UpperCAmelCase_ ):
__lowerCamelCase : Dict = PARAM_MAPPING[full_name.split('.' )[-1]]
__lowerCamelCase : str = 'param'
if weight_type is not None and weight_type != "param":
__lowerCamelCase : List[Any] = getattr(UpperCAmelCase_ , UpperCAmelCase_ ).shape
elif weight_type is not None and weight_type == "param":
__lowerCamelCase : Any = hf_pointer
for attribute in hf_param_name.split('.' ):
__lowerCamelCase : Optional[int] = getattr(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : List[Any] = shape_pointer.shape
# let's reduce dimension
__lowerCamelCase : Optional[int] = value[0]
else:
__lowerCamelCase : List[Any] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
F' {value.shape} for {full_name}' )
if weight_type == "weight":
__lowerCamelCase : List[str] = value
elif weight_type == "weight_g":
__lowerCamelCase : Tuple = value
elif weight_type == "weight_v":
__lowerCamelCase : List[Any] = value
elif weight_type == "bias":
__lowerCamelCase : Any = value
elif weight_type == "param":
for attribute in hf_param_name.split('.' ):
__lowerCamelCase : Dict = getattr(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : List[str] = value
else:
__lowerCamelCase : Tuple = value
logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def UpperCAmelCase__ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int ) -> Dict:
__lowerCamelCase : Dict = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(UpperCAmelCase_ ):
__lowerCamelCase : Tuple = PARAM_MAPPING[full_name.split('.' )[-1]]
__lowerCamelCase : Optional[Any] = 'param'
if weight_type is not None and weight_type != "param":
__lowerCamelCase : List[str] = '.'.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
__lowerCamelCase : str = '.'.join([key, hf_param_name] )
else:
__lowerCamelCase : Dict = key
__lowerCamelCase : str = value if 'lm_head' in full_key else value[0]
A__ : int = {
"""W_a""": """linear_1.weight""",
"""W_b""": """linear_2.weight""",
"""b_a""": """linear_1.bias""",
"""b_b""": """linear_2.bias""",
"""ln_W""": """norm.weight""",
"""ln_b""": """norm.bias""",
}
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Tuple=None ) -> List[Any]:
__lowerCamelCase : Any = False
for key, mapped_key in MAPPING.items():
__lowerCamelCase : str = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
__lowerCamelCase : Dict = True
if "*" in mapped_key:
__lowerCamelCase : Union[str, Any] = name.split(UpperCAmelCase_ )[0].split('.' )[-2]
__lowerCamelCase : Any = mapped_key.replace('*' , UpperCAmelCase_ )
if "weight_g" in name:
__lowerCamelCase : int = 'weight_g'
elif "weight_v" in name:
__lowerCamelCase : Union[str, Any] = 'weight_v'
elif "bias" in name:
__lowerCamelCase : Any = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__lowerCamelCase : str = 'weight'
else:
__lowerCamelCase : List[str] = None
if hf_dict is not None:
rename_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
else:
set_recursively(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
return is_used
return is_used
def UpperCAmelCase__ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str ) -> Any:
__lowerCamelCase : Optional[int] = []
__lowerCamelCase : Union[str, Any] = fairseq_model.state_dict()
__lowerCamelCase : int = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
__lowerCamelCase : List[Any] = False
if "conv_layers" in name:
load_conv_layer(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , hf_model.config.feat_extract_norm == 'group' , )
__lowerCamelCase : Union[str, Any] = True
else:
__lowerCamelCase : Optional[int] = load_wavaveca_layer(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
if not is_used:
unused_weights.append(UpperCAmelCase_ )
logger.warning(F'Unused weights: {unused_weights}' )
def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple ) -> Union[str, Any]:
__lowerCamelCase : Tuple = full_name.split('conv_layers.' )[-1]
__lowerCamelCase : str = name.split('.' )
__lowerCamelCase : Optional[int] = int(items[0] )
__lowerCamelCase : List[str] = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F'{full_name} has size {value.shape}, but'
F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
__lowerCamelCase : List[str] = value
logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F'{full_name} has size {value.shape}, but'
F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
__lowerCamelCase : Dict = value
logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F'{full_name} has size {value.shape}, but'
F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
__lowerCamelCase : List[str] = value
logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F'{full_name} has size {value.shape}, but'
F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
__lowerCamelCase : Union[str, Any] = value
logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(UpperCAmelCase_ )
@torch.no_grad()
def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : List[str]=False ) -> Optional[Any]:
if config_path is not None:
__lowerCamelCase : str = WavaVecaConfig.from_pretrained(UpperCAmelCase_ )
else:
__lowerCamelCase : Any = WavaVecaConfig()
if is_seq_class:
__lowerCamelCase : List[str] = read_txt_into_dict(UpperCAmelCase_ )
__lowerCamelCase : List[Any] = idalabel
__lowerCamelCase : str = WavaVecaForSequenceClassification(UpperCAmelCase_ )
__lowerCamelCase : int = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , )
feature_extractor.save_pretrained(UpperCAmelCase_ )
elif is_finetuned:
if dict_path:
__lowerCamelCase : str = Dictionary.load(UpperCAmelCase_ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__lowerCamelCase : Any = target_dict.pad_index
__lowerCamelCase : int = target_dict.bos_index
__lowerCamelCase : int = target_dict.eos_index
__lowerCamelCase : Optional[Any] = len(target_dict.symbols )
__lowerCamelCase : Tuple = os.path.join(UpperCAmelCase_ , 'vocab.json' )
if not os.path.isdir(UpperCAmelCase_ ):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCAmelCase_ ) )
return
os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ )
__lowerCamelCase : Tuple = target_dict.indices
# fairseq has the <pad> and <s> switched
__lowerCamelCase : Union[str, Any] = 0
__lowerCamelCase : Optional[Any] = 1
with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as vocab_handle:
json.dump(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : str = WavaVecaCTCTokenizer(
UpperCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=UpperCAmelCase_ , )
__lowerCamelCase : List[str] = True if config.feat_extract_norm == 'layer' else False
__lowerCamelCase : Any = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , )
__lowerCamelCase : int = WavaVecaProcessor(feature_extractor=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ )
processor.save_pretrained(UpperCAmelCase_ )
__lowerCamelCase : Any = WavaVecaForCTC(UpperCAmelCase_ )
else:
__lowerCamelCase : List[str] = WavaVecaForPreTraining(UpperCAmelCase_ )
if is_finetuned or is_seq_class:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
else:
__lowerCamelCase : Union[str, Any] = argparse.Namespace(task='audio_pretraining' )
__lowerCamelCase : Optional[int] = fairseq.tasks.setup_task(UpperCAmelCase_ )
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCAmelCase_ )
__lowerCamelCase : List[str] = model[0].eval()
recursively_load_weights(UpperCAmelCase_ , UpperCAmelCase_ , not is_finetuned )
hf_wavavec.save_pretrained(UpperCAmelCase_ )
if __name__ == "__main__":
A__ : Dict = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
parser.add_argument(
"""--is_seq_class""",
action="""store_true""",
help="""Whether the model to convert is a fine-tuned sequence classification model or not""",
)
A__ : int = parser.parse_args()
A__ : str = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 13 |
'''simple docstring'''
from __future__ import annotations
import os
from collections.abc import Mapping
A__ : Optional[Any] = tuple[int, int]
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
__lowerCamelCase : set[int] = vertices
__lowerCamelCase : dict[EdgeT, int] = {
(min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ )): weight for edge, weight in edges.items()
}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
__lowerCamelCase : Union[str, Any] = weight
def lowercase_ ( self ) -> Graph:
__lowerCamelCase : Graph = Graph({min(self.vertices )} , {} )
__lowerCamelCase : EdgeT
__lowerCamelCase : int
__lowerCamelCase : EdgeT
__lowerCamelCase : int
while len(subgraph.vertices ) < len(self.vertices ):
__lowerCamelCase : Any = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
__lowerCamelCase : Optional[int] = edge
__lowerCamelCase : List[str] = weight
subgraph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return subgraph
def UpperCAmelCase__ ( UpperCAmelCase_ : str = "p107_network.txt" ) -> int:
__lowerCamelCase : str = os.path.abspath(os.path.dirname(UpperCAmelCase_ ) )
__lowerCamelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : dict[EdgeT, int] = {}
__lowerCamelCase : list[str]
__lowerCamelCase : int
__lowerCamelCase : int
with open(UpperCAmelCase_ ) as f:
__lowerCamelCase : Any = f.read().strip().split('\n' )
__lowerCamelCase : Any = [line.split(',' ) for line in data]
for edgea in range(1 , len(UpperCAmelCase_ ) ):
for edgea in range(UpperCAmelCase_ ):
if adjaceny_matrix[edgea][edgea] != "-":
__lowerCamelCase : int = int(adjaceny_matrix[edgea][edgea] )
__lowerCamelCase : Graph = Graph(set(range(len(UpperCAmelCase_ ) ) ) , UpperCAmelCase_ )
__lowerCamelCase : Graph = graph.prims_algorithm()
__lowerCamelCase : int = sum(graph.edges.values() )
__lowerCamelCase : int = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
@property
def lowercase_ ( self ) -> int:
torch.manual_seed(0 )
__lowerCamelCase : str = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , )
return model
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : Dict = self.dummy_uncond_unet
__lowerCamelCase : Any = ScoreSdeVeScheduler()
__lowerCamelCase : Dict = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ )
sde_ve.to(SCREAMING_SNAKE_CASE_ )
sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = torch.manual_seed(0 )
__lowerCamelCase : List[str] = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=SCREAMING_SNAKE_CASE_ ).images
__lowerCamelCase : List[Any] = torch.manual_seed(0 )
__lowerCamelCase : Any = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ )[
0
]
__lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1]
__lowerCamelCase : int = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__lowerCamelCase : Tuple = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ) -> int:
__lowerCamelCase : Tuple = 'google/ncsnpp-church-256'
__lowerCamelCase : List[str] = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[str] = ScoreSdeVeScheduler.from_pretrained(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ )
sde_ve.to(SCREAMING_SNAKE_CASE_ )
sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = torch.manual_seed(0 )
__lowerCamelCase : int = sde_ve(num_inference_steps=10 , output_type='numpy' , generator=SCREAMING_SNAKE_CASE_ ).images
__lowerCamelCase : List[str] = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
__lowerCamelCase : Optional[Any] = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 13 |
'''simple docstring'''
from collections.abc import Generator
from math import sin
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
if len(UpperCAmelCase_ ) != 32:
raise ValueError('Input must be of length 32' )
__lowerCamelCase : Dict = B''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bytes:
if i < 0:
raise ValueError('Input must be non-negative' )
__lowerCamelCase : Union[str, Any] = format(UpperCAmelCase_ , '08x' )[-8:]
__lowerCamelCase : str = B''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' )
return little_endian_hex
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
__lowerCamelCase : Optional[Any] = B''
for char in message:
bit_string += format(UpperCAmelCase_ , '08b' ).encode('utf-8' )
__lowerCamelCase : List[str] = format(len(UpperCAmelCase_ ) , '064b' ).encode('utf-8' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(UpperCAmelCase_ ) % 5_12 != 4_48:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> Generator[list[int], None, None]:
if len(UpperCAmelCase_ ) % 5_12 != 0:
raise ValueError('Input must have length that\'s a multiple of 512' )
for pos in range(0 , len(UpperCAmelCase_ ) , 5_12 ):
__lowerCamelCase : Any = bit_string[pos : pos + 5_12]
__lowerCamelCase : Optional[int] = []
for i in range(0 , 5_12 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int:
if i < 0:
raise ValueError('Input must be non-negative' )
__lowerCamelCase : List[Any] = format(UpperCAmelCase_ , '032b' )
__lowerCamelCase : Optional[int] = ''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(UpperCAmelCase_ , 2 )
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
return (a + b) % 2**32
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
if i < 0:
raise ValueError('Input must be non-negative' )
if shift < 0:
raise ValueError('Shift must be non-negative' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
__lowerCamelCase : Optional[Any] = preprocess(UpperCAmelCase_ )
__lowerCamelCase : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
__lowerCamelCase : Dict = 0x67_45_23_01
__lowerCamelCase : Union[str, Any] = 0xef_cd_ab_89
__lowerCamelCase : Optional[Any] = 0x98_ba_dc_fe
__lowerCamelCase : Union[str, Any] = 0x10_32_54_76
__lowerCamelCase : List[str] = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(UpperCAmelCase_ ):
__lowerCamelCase : Dict = aa
__lowerCamelCase : Tuple = ba
__lowerCamelCase : List[Any] = ca
__lowerCamelCase : Dict = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
__lowerCamelCase : List[str] = d ^ (b & (c ^ d))
__lowerCamelCase : Optional[int] = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
__lowerCamelCase : Optional[int] = c ^ (d & (b ^ c))
__lowerCamelCase : Tuple = (5 * i + 1) % 16
elif i <= 47:
__lowerCamelCase : str = b ^ c ^ d
__lowerCamelCase : Any = (3 * i + 5) % 16
else:
__lowerCamelCase : Union[str, Any] = c ^ (b | not_aa(UpperCAmelCase_ ))
__lowerCamelCase : int = (7 * i) % 16
__lowerCamelCase : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**32
__lowerCamelCase : Optional[Any] = d
__lowerCamelCase : Tuple = c
__lowerCamelCase : Optional[int] = b
__lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , left_rotate_aa(UpperCAmelCase_ , shift_amounts[i] ) )
# Add hashed chunk to running total
__lowerCamelCase : int = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : str = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : List[Any] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : Dict = reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 | 1 |
'''simple docstring'''
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import platform
import sys
A__ : List[str] = """3"""
print("""Python version:""", sys.version)
print("""OS platform:""", platform.platform())
print("""OS architecture:""", platform.machine())
try:
import torch
print("""Torch version:""", torch.__version__)
print("""Cuda available:""", torch.cuda.is_available())
print("""Cuda version:""", torch.version.cuda)
print("""CuDNN version:""", torch.backends.cudnn.version())
print("""Number of GPUs available:""", torch.cuda.device_count())
except ImportError:
print("""Torch version:""", None)
try:
import transformers
print("""transformers version:""", transformers.__version__)
except ImportError:
print("""transformers version:""", None)
| 13 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : Tuple = logging.get_logger(__name__)
A__ : Dict = {
"""RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""",
"""RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""",
"""RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""",
"""RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""",
"""RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""",
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : List[Any] = 'rwkv'
lowerCamelCase : Any = {'max_position_embeddings': 'context_length'}
def __init__( self , SCREAMING_SNAKE_CASE_=5_02_77 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = vocab_size
__lowerCamelCase : Tuple = context_length
__lowerCamelCase : str = hidden_size
__lowerCamelCase : List[str] = num_hidden_layers
__lowerCamelCase : Any = attention_hidden_size if attention_hidden_size is not None else hidden_size
__lowerCamelCase : Optional[int] = intermediate_size if intermediate_size is not None else 4 * hidden_size
__lowerCamelCase : Optional[Any] = layer_norm_epsilon
__lowerCamelCase : int = rescale_every
__lowerCamelCase : Tuple = use_cache
__lowerCamelCase : int = bos_token_id
__lowerCamelCase : Optional[Any] = eos_token_id
super().__init__(
tie_word_embeddings=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 13 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
A__ : List[Any] = {
"""configuration_graphormer""": ["""GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GraphormerConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : int = [
"""GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""GraphormerForGraphClassification""",
"""GraphormerModel""",
"""GraphormerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_graphormer import (
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
GraphormerForGraphClassification,
GraphormerModel,
GraphormerPreTrainedModel,
)
else:
import sys
A__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 13 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 10_00 ) -> int:
__lowerCamelCase : Union[str, Any] = 3
__lowerCamelCase : Dict = 0
while a < n:
if a % 3 == 0 or a % 5 == 0:
result += a
elif a % 15 == 0:
result -= a
a += 1
return result
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_torch_available,
is_transformers_available,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .multicontrolnet import MultiControlNetModel
from .pipeline_controlnet import StableDiffusionControlNetPipeline
from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline
from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
if is_transformers_available() and is_flax_available():
from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
| 13 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Dict = XGLMConfig
lowerCamelCase : List[str] = {}
lowerCamelCase : Union[str, Any] = 'gelu'
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Any:
__lowerCamelCase : int = parent
__lowerCamelCase : Optional[int] = batch_size
__lowerCamelCase : Optional[Any] = seq_length
__lowerCamelCase : Optional[int] = is_training
__lowerCamelCase : str = use_input_mask
__lowerCamelCase : Dict = use_labels
__lowerCamelCase : Union[str, Any] = vocab_size
__lowerCamelCase : List[Any] = d_model
__lowerCamelCase : List[Any] = num_hidden_layers
__lowerCamelCase : List[Any] = num_attention_heads
__lowerCamelCase : Optional[Any] = ffn_dim
__lowerCamelCase : List[Any] = activation_function
__lowerCamelCase : List[Any] = activation_dropout
__lowerCamelCase : List[Any] = attention_dropout
__lowerCamelCase : Union[str, Any] = max_position_embeddings
__lowerCamelCase : Tuple = initializer_range
__lowerCamelCase : int = None
__lowerCamelCase : int = 0
__lowerCamelCase : Tuple = 2
__lowerCamelCase : Tuple = 1
def lowercase_ ( self ) -> Any:
return XGLMConfig.from_pretrained('facebook/xglm-564M' )
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : Optional[Any] = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
__lowerCamelCase : Optional[int] = None
if self.use_input_mask:
__lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCamelCase : str = self.get_config()
__lowerCamelCase : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def lowercase_ ( self ) -> Optional[int]:
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=SCREAMING_SNAKE_CASE_ , )
def lowercase_ ( self ) -> str:
__lowerCamelCase : List[Any] = self.prepare_config_and_inputs()
(
(
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) ,
) : str = config_and_inputs
__lowerCamelCase : Union[str, Any] = {
'input_ids': input_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_tf
class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
lowerCamelCase : List[Any] = (TFXGLMForCausalLM,) if is_tf_available() else ()
lowerCamelCase : Any = (
{'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {}
)
lowerCamelCase : List[Any] = False
lowerCamelCase : Dict = False
lowerCamelCase : Union[str, Any] = False
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : str = TFXGLMModelTester(self )
__lowerCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , n_embd=37 )
def lowercase_ ( self ) -> Dict:
self.config_tester.run_common_tests()
@slow
def lowercase_ ( self ) -> Optional[int]:
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCamelCase : Optional[Any] = TFXGLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' )
def lowercase_ ( self ) -> Any:
super().test_resize_token_embeddings()
@require_tf
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
@slow
def lowercase_ ( self , SCREAMING_SNAKE_CASE_=True ) -> List[str]:
__lowerCamelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : int = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
__lowerCamelCase : Optional[int] = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81]
# fmt: on
__lowerCamelCase : Any = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE_ )
@slow
def lowercase_ ( self ) -> int:
__lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
tf.random.set_seed(0 )
__lowerCamelCase : List[Any] = tokenizer('Today is a nice day and' , return_tensors='tf' )
__lowerCamelCase : int = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(':/CPU:0' ):
__lowerCamelCase : Tuple = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , seed=[7, 0] )
__lowerCamelCase : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = (
'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due'
)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@slow
def lowercase_ ( self ) -> int:
__lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : Any = 'left'
# use different length sentences to test batching
__lowerCamelCase : Any = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When',
'Hello, my dog is a little',
]
__lowerCamelCase : Any = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='tf' , padding=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = inputs['input_ids']
__lowerCamelCase : str = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 )
__lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids
__lowerCamelCase : int = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 )
__lowerCamelCase : Optional[Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids
__lowerCamelCase : Optional[Any] = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 )
__lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be '
'a single',
'Hello, my dog is a little bit of a shy one, but he is very friendly',
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [non_padded_sentence, padded_sentence] )
| 13 | 1 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : dict ) -> str:
__lowerCamelCase : List[Any] = BeautifulSoup(requests.get(UpperCAmelCase_ , params=UpperCAmelCase_ ).content , 'html.parser' )
__lowerCamelCase : Any = soup.find('div' , attrs={'class': 'gs_ri'} )
__lowerCamelCase : Any = div.find('div' , attrs={'class': 'gs_fl'} ).find_all('a' )
return anchors[2].get_text()
if __name__ == "__main__":
A__ : int = {
"""title""": (
"""Precisely geometry controlled microsupercapacitors for ultrahigh areal """
"""capacitance, volumetric capacitance, and energy density"""
),
"""journal""": """Chem. Mater.""",
"""volume""": 30,
"""pages""": """3979-3990""",
"""year""": 2018,
"""hl""": """en""",
}
print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
| 13 |
'''simple docstring'''
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : List[str] = logging.get_logger(__name__)
# TODO Update this
A__ : Tuple = {
"""facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""",
# See all ESM models at https://huggingface.co/models?filter=esm
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Tuple = 'esm'
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10_26 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]:
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , mask_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = vocab_size
__lowerCamelCase : List[Any] = hidden_size
__lowerCamelCase : str = num_hidden_layers
__lowerCamelCase : List[str] = num_attention_heads
__lowerCamelCase : Any = intermediate_size
__lowerCamelCase : Optional[Any] = hidden_dropout_prob
__lowerCamelCase : Tuple = attention_probs_dropout_prob
__lowerCamelCase : Optional[int] = max_position_embeddings
__lowerCamelCase : str = initializer_range
__lowerCamelCase : Optional[int] = layer_norm_eps
__lowerCamelCase : List[str] = position_embedding_type
__lowerCamelCase : int = use_cache
__lowerCamelCase : Optional[Any] = emb_layer_norm_before
__lowerCamelCase : Optional[Any] = token_dropout
__lowerCamelCase : str = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info('No esmfold_config supplied for folding model, using default values.' )
__lowerCamelCase : Dict = EsmFoldConfig()
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Optional[int] = EsmFoldConfig(**SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = esmfold_config
if vocab_list is None:
logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' )
__lowerCamelCase : List[str] = get_default_vocab_list()
else:
__lowerCamelCase : Optional[Any] = vocab_list
else:
__lowerCamelCase : Dict = None
__lowerCamelCase : Optional[Any] = None
if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , SCREAMING_SNAKE_CASE_ ):
raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : Any = super().to_dict()
if isinstance(self.esmfold_config , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : int = self.esmfold_config.to_dict()
return output
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : str = None
lowerCamelCase : bool = True
lowerCamelCase : bool = False
lowerCamelCase : bool = False
lowerCamelCase : bool = False
lowerCamelCase : float = 0
lowerCamelCase : bool = True
lowerCamelCase : bool = False
lowerCamelCase : int = 1_2_8
lowerCamelCase : "TrunkConfig" = None
def lowercase_ ( self ) -> Any:
if self.trunk is None:
__lowerCamelCase : List[str] = TrunkConfig()
elif isinstance(self.trunk , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Any = TrunkConfig(**self.trunk )
def lowercase_ ( self ) -> int:
__lowerCamelCase : Optional[int] = asdict(self )
__lowerCamelCase : str = self.trunk.to_dict()
return output
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : int = 4_8
lowerCamelCase : int = 1_0_2_4
lowerCamelCase : int = 1_2_8
lowerCamelCase : int = 3_2
lowerCamelCase : int = 3_2
lowerCamelCase : int = 3_2
lowerCamelCase : float = 0
lowerCamelCase : float = 0
lowerCamelCase : bool = False
lowerCamelCase : int = 4
lowerCamelCase : Optional[int] = 1_2_8
lowerCamelCase : "StructureModuleConfig" = None
def lowercase_ ( self ) -> Optional[int]:
if self.structure_module is None:
__lowerCamelCase : Dict = StructureModuleConfig()
elif isinstance(self.structure_module , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Optional[Any] = StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
'`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got'
f' {self.sequence_state_dim} and {self.sequence_state_dim}.' )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
'`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got'
f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' )
__lowerCamelCase : Tuple = self.sequence_state_dim // self.sequence_head_width
__lowerCamelCase : str = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
'`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got'
f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
'`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got'
f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' )
if self.dropout >= 0.4:
raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' )
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : List[str] = asdict(self )
__lowerCamelCase : int = self.structure_module.to_dict()
return output
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : int = 3_8_4
lowerCamelCase : int = 1_2_8
lowerCamelCase : int = 1_6
lowerCamelCase : int = 1_2_8
lowerCamelCase : int = 1_2
lowerCamelCase : int = 4
lowerCamelCase : int = 8
lowerCamelCase : float = 0.1
lowerCamelCase : int = 8
lowerCamelCase : int = 1
lowerCamelCase : int = 2
lowerCamelCase : int = 7
lowerCamelCase : int = 1_0
lowerCamelCase : float = 1e-8
lowerCamelCase : float = 1e5
def lowercase_ ( self ) -> Any:
return asdict(self )
def UpperCAmelCase__ ( ) -> Optional[Any]:
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 13 | 1 |
'''simple docstring'''
import re
from typing import Callable, List, Optional, Union
import tensorflow as tf
try:
from tensorflow.keras.optimizers.legacy import Adam
except ImportError:
from tensorflow.keras.optimizers import Adam
class UpperCAmelCase_ (tf.keras.optimizers.schedules.LearningRateSchedule ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = None , ) -> Any:
super().__init__()
__lowerCamelCase : Optional[Any] = initial_learning_rate
__lowerCamelCase : Optional[Any] = warmup_steps
__lowerCamelCase : Union[str, Any] = power
__lowerCamelCase : Optional[int] = decay_schedule_fn
__lowerCamelCase : Any = name
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str:
with tf.name_scope(self.name or 'WarmUp' ) as name:
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
__lowerCamelCase : str = tf.cast(SCREAMING_SNAKE_CASE_ , tf.floataa )
__lowerCamelCase : Optional[int] = tf.cast(self.warmup_steps , tf.floataa )
__lowerCamelCase : List[Any] = global_step_float / warmup_steps_float
__lowerCamelCase : Optional[Any] = self.initial_learning_rate * tf.math.pow(SCREAMING_SNAKE_CASE_ , self.power )
return tf.cond(
global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=SCREAMING_SNAKE_CASE_ , )
def lowercase_ ( self ) -> Optional[Any]:
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_schedule_fn": self.decay_schedule_fn,
"warmup_steps": self.warmup_steps,
"power": self.power,
"name": self.name,
}
def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 0.9 , UpperCAmelCase_ : float = 0.999 , UpperCAmelCase_ : float = 1e-8 , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : Optional[List[str]] = None , ) -> int:
__lowerCamelCase : int = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=UpperCAmelCase_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCAmelCase_ , )
if num_warmup_steps:
__lowerCamelCase : str = WarmUp(
initial_learning_rate=UpperCAmelCase_ , decay_schedule_fn=UpperCAmelCase_ , warmup_steps=UpperCAmelCase_ , )
if weight_decay_rate > 0.0:
__lowerCamelCase : List[Any] = AdamWeightDecay(
learning_rate=UpperCAmelCase_ , weight_decay_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=UpperCAmelCase_ , )
else:
__lowerCamelCase : Tuple = tf.keras.optimizers.Adam(
learning_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , )
# We return the optimizer and the LR scheduler in order to better track the
# evolution of the LR independently of the optimizer.
return optimizer, lr_schedule
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ = 0.0_0_1 , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = 0.9_9_9 , SCREAMING_SNAKE_CASE_ = 1E-7 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "AdamWeightDecay" , **SCREAMING_SNAKE_CASE_ , ) -> int:
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = weight_decay_rate
__lowerCamelCase : str = include_in_weight_decay
__lowerCamelCase : List[Any] = exclude_from_weight_decay
@classmethod
def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> Dict:
__lowerCamelCase : Any = {'WarmUp': WarmUp}
return super(SCREAMING_SNAKE_CASE_ , cls ).from_config(SCREAMING_SNAKE_CASE_ , custom_objects=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
super(SCREAMING_SNAKE_CASE_ , self )._prepare_local(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tf.constant(
self.weight_decay_rate , name='adam_weight_decay_rate' )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
__lowerCamelCase : Tuple = self._do_use_weight_decay(var.name )
if do_decay:
return var.assign_sub(
learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , )
return tf.no_op()
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase , __lowerCamelCase : Optional[Any] = list(zip(*SCREAMING_SNAKE_CASE_ ) )
return super(SCREAMING_SNAKE_CASE_ , self ).apply_gradients(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , name=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str:
if apply_state is None:
return self._decayed_lr_t[var_dtype], {}
__lowerCamelCase : Optional[int] = apply_state or {}
__lowerCamelCase : Dict = apply_state.get((var_device, var_dtype) )
if coefficients is None:
__lowerCamelCase : List[Any] = self._fallback_apply_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = coefficients
return coefficients["lr_t"], {"apply_state": apply_state}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str:
__lowerCamelCase , __lowerCamelCase : Dict = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
with tf.control_dependencies([decay] ):
return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_dense(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Union[str, Any]:
__lowerCamelCase , __lowerCamelCase : Tuple = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
with tf.control_dependencies([decay] ):
return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_sparse(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : Any = super().get_config()
config.update({'weight_decay_rate': self.weight_decay_rate} )
return config
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict:
if self.weight_decay_rate == 0:
return False
if self._include_in_weight_decay:
for r in self._include_in_weight_decay:
if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None:
return True
if self._exclude_from_weight_decay:
for r in self._exclude_from_weight_decay:
if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None:
return False
return True
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self ) -> Tuple:
__lowerCamelCase : Tuple = []
__lowerCamelCase : Optional[Any] = None
@property
def lowercase_ ( self ) -> List[str]:
if self._accum_steps is None:
__lowerCamelCase : Tuple = tf.Variable(
tf.constant(0 , dtype=tf.intaa ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
return self._accum_steps.value()
@property
def lowercase_ ( self ) -> List[str]:
if not self._gradients:
raise ValueError('The accumulator should be called first to initialize the gradients' )
return [gradient.value() if gradient is not None else gradient for gradient in self._gradients]
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str:
if not self._gradients:
__lowerCamelCase : List[str] = self.step # Create the step variable.
self._gradients.extend(
[
tf.Variable(
tf.zeros_like(SCREAMING_SNAKE_CASE_ ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
if gradient is not None
else gradient
for gradient in gradients
] )
if len(SCREAMING_SNAKE_CASE_ ) != len(self._gradients ):
raise ValueError(f'Expected {len(self._gradients )} gradients, but got {len(SCREAMING_SNAKE_CASE_ )}' )
for accum_gradient, gradient in zip(self._gradients , SCREAMING_SNAKE_CASE_ ):
if accum_gradient is not None and gradient is not None:
accum_gradient.assign_add(SCREAMING_SNAKE_CASE_ )
self._accum_steps.assign_add(1 )
def lowercase_ ( self ) -> int:
if not self._gradients:
return
self._accum_steps.assign(0 )
for gradient in self._gradients:
if gradient is not None:
gradient.assign(tf.zeros_like(SCREAMING_SNAKE_CASE_ ) )
| 13 |
'''simple docstring'''
A__ : dict[tuple[int, int, int], int] = {}
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
# if we are absent twice, or late 3 consecutive days,
# no further prize strings are possible
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
__lowerCamelCase : List[Any] = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
__lowerCamelCase : Tuple = _calculate(days - 1 , UpperCAmelCase_ , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
__lowerCamelCase : int = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
__lowerCamelCase : List[Any] = _calculate(days - 1 , UpperCAmelCase_ , 0 )
__lowerCamelCase : Optional[int] = state_late + state_absent + state_ontime
__lowerCamelCase : Union[str, Any] = prizestrings
return prizestrings
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 30 ) -> int:
return _calculate(UpperCAmelCase_ , absent=0 , late=0 )
if __name__ == "__main__":
print(solution())
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections import Counter
from random import random
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self ) -> int:
__lowerCamelCase : List[str] = {}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> None:
__lowerCamelCase : Optional[int] = {}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
if nodea not in self.connections:
self.add_node(SCREAMING_SNAKE_CASE_ )
if nodea not in self.connections:
self.add_node(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = probability
def lowercase_ ( self ) -> list[str]:
return list(self.connections )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> str:
__lowerCamelCase : Optional[Any] = 0
__lowerCamelCase : Optional[Any] = random()
for dest in self.connections[node]:
current_probability += self.connections[node][dest]
if current_probability > random_value:
return dest
return ""
def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : list[tuple[str, str, float]] , UpperCAmelCase_ : int ) -> dict[str, int]:
__lowerCamelCase : Any = MarkovChainGraphUndirectedUnweighted()
for nodea, nodea, probability in transitions:
graph.add_transition_probability(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : Optional[int] = Counter(graph.get_nodes() )
__lowerCamelCase : Optional[int] = start
for _ in range(UpperCAmelCase_ ):
__lowerCamelCase : List[Any] = graph.transition(UpperCAmelCase_ )
visited[node] += 1
return visited
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
A__ : Any = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""")
@total_ordering
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : str
lowerCamelCase : Optional[str] = None
lowerCamelCase : Optional[Union[str, int]] = None
lowerCamelCase : Optional[Union[str, int]] = None
lowerCamelCase : Optional[Union[str, int]] = None
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = _str_to_version_tuple(self.version_str )
def __repr__( self ) -> Any:
return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}'
@property
def lowercase_ ( self ) -> int:
return self.major, self.minor, self.patch
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return Version(SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return other
raise TypeError(f'{other} (type {type(SCREAMING_SNAKE_CASE_ )}) cannot be compared to version.' )
def __eq__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
try:
__lowerCamelCase : Union[str, Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
__lowerCamelCase : List[Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ )
return self.tuple < other.tuple
def __hash__( self ) -> List[str]:
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase : str = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def lowercase_ ( self ) -> str:
return self.version_str
def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> str:
__lowerCamelCase : str = _VERSION_REG.match(UpperCAmelCase_ )
if not res:
raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' )
return tuple(int(UpperCAmelCase_ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] )
def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] ) -> Dict:
return ".".join(str(UpperCAmelCase_ ) for v in version_tuple )
| 13 | 1 |
'''simple docstring'''
from collections import defaultdict
from math import ceil, sqrt
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00_00_00 , UpperCAmelCase_ : int = 10 ) -> int:
__lowerCamelCase : defaultdict = defaultdict(UpperCAmelCase_ )
for outer_width in range(3 , (t_limit // 4) + 2 ):
if outer_width * outer_width > t_limit:
__lowerCamelCase : Optional[int] = max(
ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 )
else:
__lowerCamelCase : List[str] = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(UpperCAmelCase_ , outer_width - 1 , 2 ):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 10 )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 |
'''simple docstring'''
import sys
from collections import defaultdict
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self ) -> int:
__lowerCamelCase : Any = []
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Any:
return self.node_position[vertex]
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple:
__lowerCamelCase : Optional[int] = pos
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
__lowerCamelCase : str = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
__lowerCamelCase : Optional[Any] = 2 * start + 1
else:
__lowerCamelCase : int = 2 * start + 2
if heap[smallest_child] < heap[start]:
__lowerCamelCase , __lowerCamelCase : Optional[Any] = heap[smallest_child], positions[smallest_child]
__lowerCamelCase , __lowerCamelCase : int = (
heap[start],
positions[start],
)
__lowerCamelCase , __lowerCamelCase : str = temp, tempa
__lowerCamelCase : Dict = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , SCREAMING_SNAKE_CASE_ )
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any:
__lowerCamelCase : Any = position[index]
while index != 0:
__lowerCamelCase : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
__lowerCamelCase : Union[str, Any] = heap[parent]
__lowerCamelCase : Any = position[parent]
self.set_position(position[parent] , SCREAMING_SNAKE_CASE_ )
else:
__lowerCamelCase : Tuple = val
__lowerCamelCase : List[str] = temp
self.set_position(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
break
__lowerCamelCase : Tuple = parent
else:
__lowerCamelCase : Union[str, Any] = val
__lowerCamelCase : Tuple = temp
self.set_position(SCREAMING_SNAKE_CASE_ , 0 )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
__lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) // 2 - 1
for i in range(SCREAMING_SNAKE_CASE_ , -1 , -1 ):
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
__lowerCamelCase : Any = positions[0]
__lowerCamelCase : Union[str, Any] = sys.maxsize
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
return temp
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> str:
__lowerCamelCase : List[Any] = Heap()
__lowerCamelCase : Optional[int] = [0] * len(UpperCAmelCase_ )
__lowerCamelCase : str = [-1] * len(UpperCAmelCase_ ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
__lowerCamelCase : List[str] = [] # Heap of Distance of vertices from their neighboring vertex
__lowerCamelCase : Tuple = []
for vertex in range(len(UpperCAmelCase_ ) ):
distance_tv.append(sys.maxsize )
positions.append(UpperCAmelCase_ )
heap.node_position.append(UpperCAmelCase_ )
__lowerCamelCase : Tuple = []
__lowerCamelCase : Dict = 1
__lowerCamelCase : str = sys.maxsize
for neighbor, distance in adjacency_list[0]:
__lowerCamelCase : Any = 0
__lowerCamelCase : Any = distance
heap.heapify(UpperCAmelCase_ , UpperCAmelCase_ )
for _ in range(1 , len(UpperCAmelCase_ ) ):
__lowerCamelCase : List[Any] = heap.delete_minimum(UpperCAmelCase_ , UpperCAmelCase_ )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
__lowerCamelCase : Union[str, Any] = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(UpperCAmelCase_ )]
):
__lowerCamelCase : Dict = distance
heap.bottom_to_top(
UpperCAmelCase_ , heap.get_position(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : str = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
A__ : Tuple = int(input("""Enter number of edges: """).strip())
A__ : str = defaultdict(list)
for _ in range(edges_number):
A__ : Optional[int] = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 13 | 1 |
'''simple docstring'''
import flax.linen as nn
import jax.numpy as jnp
from .attention_flax import FlaxTransformeraDModel
from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : int
lowerCamelCase : float = 0.0
lowerCamelCase : int = 1
lowerCamelCase : int = 1
lowerCamelCase : bool = True
lowerCamelCase : bool = False
lowerCamelCase : bool = False
lowerCamelCase : bool = False
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> Any:
__lowerCamelCase : Any = []
__lowerCamelCase : List[str] = []
for i in range(self.num_layers ):
__lowerCamelCase : Optional[Any] = self.in_channels if i == 0 else self.out_channels
__lowerCamelCase : Optional[int] = FlaxResnetBlockaD(
in_channels=SCREAMING_SNAKE_CASE_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = resnets
__lowerCamelCase : str = attentions
if self.add_downsample:
__lowerCamelCase : Any = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Dict:
__lowerCamelCase : Dict = ()
for resnet, attn in zip(self.resnets , self.attentions ):
__lowerCamelCase : List[Any] = resnet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , deterministic=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[str] = attn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , deterministic=SCREAMING_SNAKE_CASE_ )
output_states += (hidden_states,)
if self.add_downsample:
__lowerCamelCase : Optional[Any] = self.downsamplers_a(SCREAMING_SNAKE_CASE_ )
output_states += (hidden_states,)
return hidden_states, output_states
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : int
lowerCamelCase : float = 0.0
lowerCamelCase : int = 1
lowerCamelCase : bool = True
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : Tuple = []
for i in range(self.num_layers ):
__lowerCamelCase : Optional[int] = self.in_channels if i == 0 else self.out_channels
__lowerCamelCase : Union[str, Any] = FlaxResnetBlockaD(
in_channels=SCREAMING_SNAKE_CASE_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = resnets
if self.add_downsample:
__lowerCamelCase : Any = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Union[str, Any]:
__lowerCamelCase : int = ()
for resnet in self.resnets:
__lowerCamelCase : Dict = resnet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , deterministic=SCREAMING_SNAKE_CASE_ )
output_states += (hidden_states,)
if self.add_downsample:
__lowerCamelCase : int = self.downsamplers_a(SCREAMING_SNAKE_CASE_ )
output_states += (hidden_states,)
return hidden_states, output_states
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : int
lowerCamelCase : int
lowerCamelCase : float = 0.0
lowerCamelCase : int = 1
lowerCamelCase : int = 1
lowerCamelCase : bool = True
lowerCamelCase : bool = False
lowerCamelCase : bool = False
lowerCamelCase : bool = False
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> Dict:
__lowerCamelCase : Optional[Any] = []
__lowerCamelCase : Dict = []
for i in range(self.num_layers ):
__lowerCamelCase : Union[str, Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels
__lowerCamelCase : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels
__lowerCamelCase : Optional[Any] = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = resnets
__lowerCamelCase : Optional[Any] = attentions
if self.add_upsample:
__lowerCamelCase : Union[str, Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Tuple:
for resnet, attn in zip(self.resnets , self.attentions ):
# pop res hidden states
__lowerCamelCase : int = res_hidden_states_tuple[-1]
__lowerCamelCase : str = res_hidden_states_tuple[:-1]
__lowerCamelCase : Optional[int] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
__lowerCamelCase : List[str] = resnet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , deterministic=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = attn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , deterministic=SCREAMING_SNAKE_CASE_ )
if self.add_upsample:
__lowerCamelCase : Tuple = self.upsamplers_a(SCREAMING_SNAKE_CASE_ )
return hidden_states
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : int
lowerCamelCase : int
lowerCamelCase : float = 0.0
lowerCamelCase : int = 1
lowerCamelCase : bool = True
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> str:
__lowerCamelCase : Tuple = []
for i in range(self.num_layers ):
__lowerCamelCase : Dict = self.in_channels if (i == self.num_layers - 1) else self.out_channels
__lowerCamelCase : str = self.prev_output_channel if i == 0 else self.out_channels
__lowerCamelCase : Optional[int] = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[str] = resnets
if self.add_upsample:
__lowerCamelCase : Tuple = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> List[Any]:
for resnet in self.resnets:
# pop res hidden states
__lowerCamelCase : List[Any] = res_hidden_states_tuple[-1]
__lowerCamelCase : Any = res_hidden_states_tuple[:-1]
__lowerCamelCase : Any = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
__lowerCamelCase : Optional[int] = resnet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , deterministic=SCREAMING_SNAKE_CASE_ )
if self.add_upsample:
__lowerCamelCase : int = self.upsamplers_a(SCREAMING_SNAKE_CASE_ )
return hidden_states
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : float = 0.0
lowerCamelCase : int = 1
lowerCamelCase : int = 1
lowerCamelCase : bool = False
lowerCamelCase : bool = False
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> Optional[Any]:
# there is always at least one resnet
__lowerCamelCase : Dict = [
FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
]
__lowerCamelCase : List[str] = []
for _ in range(self.num_layers ):
__lowerCamelCase : List[str] = FlaxTransformeraDModel(
in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = resnets
__lowerCamelCase : Optional[int] = attentions
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Dict:
__lowerCamelCase : List[str] = self.resnets[0](SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
for attn, resnet in zip(self.attentions , self.resnets[1:] ):
__lowerCamelCase : Optional[int] = attn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , deterministic=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = resnet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , deterministic=SCREAMING_SNAKE_CASE_ )
return hidden_states
| 13 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00 ) -> int:
__lowerCamelCase : Union[str, Any] = n * (n + 1) * (2 * n + 1) / 6
__lowerCamelCase : Union[str, Any] = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
A__ : int = logging.getLogger(__name__)
torch.set_grad_enabled(False)
A__ : Optional[int] = """cuda""" if torch.cuda.is_available() else """cpu"""
def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]=1_00 , UpperCAmelCase_ : Any=" " ) -> List[str]:
__lowerCamelCase : Any = text.split(UpperCAmelCase_ )
return [character.join(text[i : i + n] ).strip() for i in range(0 , len(UpperCAmelCase_ ) , UpperCAmelCase_ )]
def UpperCAmelCase__ ( UpperCAmelCase_ : dict ) -> dict:
__lowerCamelCase , __lowerCamelCase : List[Any] = [], []
for title, text in zip(documents['title'] , documents['text'] ):
if text is not None:
for passage in split_text(UpperCAmelCase_ ):
titles.append(title if title is not None else '' )
texts.append(UpperCAmelCase_ )
return {"title": titles, "text": texts}
def UpperCAmelCase__ ( UpperCAmelCase_ : dict , UpperCAmelCase_ : DPRContextEncoder , UpperCAmelCase_ : DPRContextEncoderTokenizerFast ) -> dict:
__lowerCamelCase : Union[str, Any] = ctx_tokenizer(
documents['title'] , documents['text'] , truncation=UpperCAmelCase_ , padding='longest' , return_tensors='pt' )['input_ids']
__lowerCamelCase : Tuple = ctx_encoder(input_ids.to(device=UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ ).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def UpperCAmelCase__ ( UpperCAmelCase_ : "RagExampleArguments" , UpperCAmelCase_ : "ProcessingArguments" , UpperCAmelCase_ : "IndexHnswArguments" , ) -> Dict:
######################################
logger.info('Step 1 - Create the dataset' )
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
__lowerCamelCase : int = load_dataset(
'csv' , data_files=[rag_example_args.csv_path] , split='train' , delimiter='\t' , column_names=['title', 'text'] )
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
__lowerCamelCase : str = dataset.map(UpperCAmelCase_ , batched=UpperCAmelCase_ , num_proc=processing_args.num_proc )
# And compute the embeddings
__lowerCamelCase : Union[str, Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=UpperCAmelCase_ )
__lowerCamelCase : Dict = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name )
__lowerCamelCase : Any = Features(
{'text': Value('string' ), 'title': Value('string' ), 'embeddings': Sequence(Value('float32' ) )} ) # optional, save as float32 instead of float64 to save space
__lowerCamelCase : List[str] = dataset.map(
partial(UpperCAmelCase_ , ctx_encoder=UpperCAmelCase_ , ctx_tokenizer=UpperCAmelCase_ ) , batched=UpperCAmelCase_ , batch_size=processing_args.batch_size , features=UpperCAmelCase_ , )
# And finally save your dataset
__lowerCamelCase : Dict = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset' )
dataset.save_to_disk(UpperCAmelCase_ )
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info('Step 2 - Index the dataset' )
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
__lowerCamelCase : int = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT )
dataset.add_faiss_index('embeddings' , custom_index=UpperCAmelCase_ )
# And save the index
__lowerCamelCase : Union[str, Any] = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset_hnsw_index.faiss' )
dataset.get_index('embeddings' ).save(UpperCAmelCase_ )
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : str = field(
default=str(Path(_UpperCAmelCase ).parent / 'test_run' / 'dummy-kb' / 'my_knowledge_dataset.csv' ) , metadata={'help': 'Path to a tab-separated csv file with columns \'title\' and \'text\''} , )
lowerCamelCase : Optional[str] = field(
default=_UpperCAmelCase , metadata={'help': 'Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'} , )
lowerCamelCase : str = field(
default='facebook/rag-sequence-nq' , metadata={'help': 'The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''} , )
lowerCamelCase : str = field(
default='facebook/dpr-ctx_encoder-multiset-base' , metadata={
'help': (
'The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or'
' \'facebook/dpr-ctx_encoder-multiset-base\''
)
} , )
lowerCamelCase : Optional[str] = field(
default=str(Path(_UpperCAmelCase ).parent / 'test_run' / 'dummy-kb' ) , metadata={'help': 'Path to a directory where the dataset passages and the index will be saved'} , )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Optional[int] = field(
default=_UpperCAmelCase , metadata={
'help': 'The number of processes to use to split the documents into passages. Default is single process.'
} , )
lowerCamelCase : int = field(
default=1_6 , metadata={
'help': 'The batch size to use when computing the passages embeddings using the DPR context encoder.'
} , )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : int = field(
default=7_6_8 , metadata={'help': 'The dimension of the embeddings to pass to the HNSW Faiss index.'} , )
lowerCamelCase : int = field(
default=1_2_8 , metadata={
'help': (
'The number of bi-directional links created for every new element during the HNSW index construction.'
)
} , )
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
A__ : Any = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
A__ , A__ , A__ : Tuple = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
A__ : List[str] = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 13 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Optional[int]:
__lowerCamelCase : Optional[int] = parent
__lowerCamelCase : Dict = batch_size
__lowerCamelCase : int = image_size
__lowerCamelCase : List[str] = patch_size
__lowerCamelCase : Optional[int] = num_channels
__lowerCamelCase : Any = is_training
__lowerCamelCase : Dict = use_labels
__lowerCamelCase : List[Any] = hidden_size
__lowerCamelCase : List[Any] = num_hidden_layers
__lowerCamelCase : Optional[Any] = num_attention_heads
__lowerCamelCase : Dict = intermediate_size
__lowerCamelCase : Union[str, Any] = hidden_act
__lowerCamelCase : Optional[int] = hidden_dropout_prob
__lowerCamelCase : Tuple = attention_probs_dropout_prob
__lowerCamelCase : str = type_sequence_label_size
__lowerCamelCase : List[str] = initializer_range
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__lowerCamelCase : str = (image_size // patch_size) ** 2
__lowerCamelCase : Optional[int] = num_patches + 1
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowerCamelCase : Optional[int] = ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , )
return config, pixel_values
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
__lowerCamelCase : Union[str, Any] = FlaxViTModel(config=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = model(SCREAMING_SNAKE_CASE_ )
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
__lowerCamelCase : str = (self.image_size, self.image_size)
__lowerCamelCase : str = (self.patch_size, self.patch_size)
__lowerCamelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str:
__lowerCamelCase : Tuple = self.type_sequence_label_size
__lowerCamelCase : Any = FlaxViTForImageClassification(config=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__lowerCamelCase : List[str] = 1
__lowerCamelCase : List[Any] = FlaxViTForImageClassification(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : List[Any] = self.prepare_config_and_inputs()
(
(
__lowerCamelCase
) , (
__lowerCamelCase
) ,
) : int = config_and_inputs
__lowerCamelCase : Union[str, Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_flax
class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : str = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()
def lowercase_ ( self ) -> None:
__lowerCamelCase : str = FlaxViTModelTester(self )
__lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 )
def lowercase_ ( self ) -> List[Any]:
self.config_tester.run_common_tests()
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase : List[str] = [*signature.parameters.keys()]
__lowerCamelCase : Optional[int] = ['pixel_values']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowerCamelCase : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ )
@jax.jit
def model_jitted(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return model(pixel_values=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
with self.subTest('JIT Enabled' ):
__lowerCamelCase : Optional[int] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
__lowerCamelCase : Union[str, Any] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) )
for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowercase_ ( self ) -> List[Any]:
for model_class_name in self.all_model_classes:
__lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained('google/vit-base-patch16-224' )
__lowerCamelCase : Union[str, Any] = model(np.ones((1, 3, 2_24, 2_24) ) )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
| 13 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
A__ : Optional[int] = {
"""configuration_transfo_xl""": ["""TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TransfoXLConfig"""],
"""tokenization_transfo_xl""": ["""TransfoXLCorpus""", """TransfoXLTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Dict = [
"""TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AdaptiveEmbedding""",
"""TransfoXLForSequenceClassification""",
"""TransfoXLLMHeadModel""",
"""TransfoXLModel""",
"""TransfoXLPreTrainedModel""",
"""load_tf_weights_in_transfo_xl""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : List[Any] = [
"""TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFAdaptiveEmbedding""",
"""TFTransfoXLForSequenceClassification""",
"""TFTransfoXLLMHeadModel""",
"""TFTransfoXLMainLayer""",
"""TFTransfoXLModel""",
"""TFTransfoXLPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig
from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_transfo_xl import (
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
AdaptiveEmbedding,
TransfoXLForSequenceClassification,
TransfoXLLMHeadModel,
TransfoXLModel,
TransfoXLPreTrainedModel,
load_tf_weights_in_transfo_xl,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_transfo_xl import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFAdaptiveEmbedding,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLMainLayer,
TFTransfoXLModel,
TFTransfoXLPreTrainedModel,
)
else:
import sys
A__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 13 |
'''simple docstring'''
import argparse
A__ : Optional[Any] = """docs/source/_static/js/custom.js"""
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> int:
with open(UpperCAmelCase_ , encoding='utf-8' , newline='\n' ) as f:
__lowerCamelCase : Dict = f.readlines()
__lowerCamelCase : Tuple = 0
# First let's put the right version
while not lines[index].startswith('const stableVersion =' ):
index += 1
__lowerCamelCase : Dict = F'const stableVersion = "v{version}"\n'
# Then update the dictionary
while not lines[index].startswith('const versionMapping = {' ):
index += 1
# We go until the end
while not lines[index].startswith('}' ):
index += 1
# We add the new version at the end
lines[index - 1] += F' "v{version}": "v{version}",\n'
with open(UpperCAmelCase_ , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(UpperCAmelCase_ )
if __name__ == "__main__":
A__ : str = argparse.ArgumentParser()
parser.add_argument("""--version""", help="""Release version.""")
A__ : Any = parser.parse_args()
update_custom_js(args.version)
| 13 | 1 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bool:
return str(UpperCAmelCase_ ) == str(UpperCAmelCase_ )[::-1]
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int:
return int(UpperCAmelCase_ ) + int(str(UpperCAmelCase_ )[::-1] )
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00_00 ) -> int:
__lowerCamelCase : Tuple = []
for num in range(1 , UpperCAmelCase_ ):
__lowerCamelCase : int = 0
__lowerCamelCase : Optional[int] = num
while iterations < 50:
__lowerCamelCase : Union[str, Any] = sum_reverse(UpperCAmelCase_ )
iterations += 1
if is_palindrome(UpperCAmelCase_ ):
break
else:
lychrel_nums.append(UpperCAmelCase_ )
return len(UpperCAmelCase_ )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 |
'''simple docstring'''
import flax.linen as nn
import jax
import jax.numpy as jnp
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : Optional[Any] = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> Any:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = hidden_states.shape
__lowerCamelCase : Dict = jax.image.resize(
SCREAMING_SNAKE_CASE_ , shape=(batch, height * 2, width * 2, channels) , method='nearest' , )
__lowerCamelCase : Optional[Any] = self.conv(SCREAMING_SNAKE_CASE_ )
return hidden_states
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : str = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]:
# pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
# hidden_states = jnp.pad(hidden_states, pad_width=pad)
__lowerCamelCase : str = self.conv(SCREAMING_SNAKE_CASE_ )
return hidden_states
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : int = None
lowerCamelCase : float = 0.0
lowerCamelCase : bool = None
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels
__lowerCamelCase : Optional[Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 )
__lowerCamelCase : Tuple = nn.Conv(
SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__lowerCamelCase : List[str] = nn.Dense(SCREAMING_SNAKE_CASE_ , dtype=self.dtype )
__lowerCamelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1E-5 )
__lowerCamelCase : int = nn.Dropout(self.dropout_prob )
__lowerCamelCase : Union[str, Any] = nn.Conv(
SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__lowerCamelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
__lowerCamelCase : List[Any] = None
if use_nin_shortcut:
__lowerCamelCase : Any = nn.Conv(
SCREAMING_SNAKE_CASE_ , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , )
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Tuple:
__lowerCamelCase : List[Any] = hidden_states
__lowerCamelCase : str = self.norma(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = nn.swish(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = self.conva(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = self.time_emb_proj(nn.swish(SCREAMING_SNAKE_CASE_ ) )
__lowerCamelCase : List[str] = jnp.expand_dims(jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , 1 )
__lowerCamelCase : Optional[int] = hidden_states + temb
__lowerCamelCase : List[Any] = self.norma(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = nn.swish(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self.dropout(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self.conva(SCREAMING_SNAKE_CASE_ )
if self.conv_shortcut is not None:
__lowerCamelCase : List[str] = self.conv_shortcut(SCREAMING_SNAKE_CASE_ )
return hidden_states + residual
| 13 | 1 |
'''simple docstring'''
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
A__ : Optional[int] = """bart"""
A__ : Optional[int] = True
@st.cache(allow_output_mutation=UpperCAmelCase_ )
def UpperCAmelCase__ ( ) -> Optional[Any]:
if LOAD_DENSE_INDEX:
__lowerCamelCase : Tuple = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' )
__lowerCamelCase : Optional[int] = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' )
__lowerCamelCase : int = qar_model.eval()
else:
__lowerCamelCase , __lowerCamelCase : Union[str, Any] = (None, None)
if MODEL_TYPE == "bart":
__lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained('yjernite/bart_eli5' )
__lowerCamelCase : List[str] = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' )
__lowerCamelCase : Dict = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' )
sas_model.load_state_dict(save_dict['model'] )
__lowerCamelCase : Optional[Any] = sas_model.eval()
else:
__lowerCamelCase , __lowerCamelCase : List[Any] = make_qa_sas_model(
model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=UpperCAmelCase_ )
def UpperCAmelCase__ ( ) -> int:
if LOAD_DENSE_INDEX:
__lowerCamelCase : List[str] = faiss.StandardGpuResources()
__lowerCamelCase : Any = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train']
__lowerCamelCase : List[Any] = np.memmap(
'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 1_28) , )
__lowerCamelCase : Any = faiss.IndexFlatIP(1_28 )
__lowerCamelCase : Dict = faiss.index_cpu_to_gpu(UpperCAmelCase_ , 1 , UpperCAmelCase_ )
wikiaab_gpu_index_flat.add(UpperCAmelCase_ ) # TODO fix for larger GPU
else:
__lowerCamelCase , __lowerCamelCase : Dict = (None, None)
__lowerCamelCase : Union[str, Any] = Elasticsearch([{'host': 'localhost', 'port': '9200'}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=UpperCAmelCase_ )
def UpperCAmelCase__ ( ) -> Dict:
__lowerCamelCase : Union[str, Any] = datasets.load_dataset('eli5' , name='LFQA_reddit' )
__lowerCamelCase : Union[str, Any] = elia['train_eli5']
__lowerCamelCase : List[Any] = np.memmap(
'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 1_28) )
__lowerCamelCase : int = faiss.IndexFlatIP(1_28 )
eli5_train_q_index.add(UpperCAmelCase_ )
return (elia_train, eli5_train_q_index)
A__ , A__ , A__ : Dict = load_indexes()
A__ , A__ , A__ , A__ : str = load_models()
A__ , A__ : Dict = load_train_data()
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple=10 ) -> List[str]:
__lowerCamelCase : List[str] = embed_questions_for_retrieval([question] , UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase , __lowerCamelCase : int = eli5_train_q_index.search(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : Union[str, Any] = [elia_train[int(UpperCAmelCase_ )] for i in I[0]]
return nn_examples
def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple="wiki40b" , UpperCAmelCase_ : Dict="dense" , UpperCAmelCase_ : int=10 ) -> Any:
if source == "none":
__lowerCamelCase , __lowerCamelCase : Optional[Any] = (' <P> '.join(['' for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
__lowerCamelCase , __lowerCamelCase : Optional[int] = query_qa_dense_index(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
else:
__lowerCamelCase , __lowerCamelCase : Optional[Any] = query_es_index(
UpperCAmelCase_ , UpperCAmelCase_ , index_name='english_wiki40b_snippets_100w' , n_results=UpperCAmelCase_ , )
__lowerCamelCase : Tuple = [
(res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst
]
__lowerCamelCase : Any = 'question: {} context: {}'.format(UpperCAmelCase_ , UpperCAmelCase_ )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda UpperCAmelCase_ : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda UpperCAmelCase_ : None),
} )
def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any]=64 , UpperCAmelCase_ : Tuple=2_56 , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=0.95 , UpperCAmelCase_ : Union[str, Any]=0.8 ) -> Optional[int]:
with torch.no_grad():
__lowerCamelCase : Any = qa_sas_generate(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , num_answers=1 , num_beams=UpperCAmelCase_ , min_len=UpperCAmelCase_ , max_len=UpperCAmelCase_ , do_sample=UpperCAmelCase_ , temp=UpperCAmelCase_ , top_p=UpperCAmelCase_ , top_k=UpperCAmelCase_ , max_input_length=10_24 , device='cuda:0' , )[0]
return (answer, support_list)
st.title("""Long Form Question Answering with ELI5""")
# Start sidebar
A__ : Optional[Any] = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>"""
A__ : List[Any] = """
<html>
<head>
<style>
.img-container {
padding-left: 90px;
padding-right: 90px;
padding-top: 50px;
padding-bottom: 50px;
background-color: #f0f3f9;
}
</style>
</head>
<body>
<span class=\"img-container\"> <!-- Inline parent element -->
%s
</span>
</body>
</html>
""" % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
A__ : Any = """
This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).
First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,
a pre-processed fixed snapshot of Wikipedia.
"""
st.sidebar.markdown(description, unsafe_allow_html=True)
A__ : Optional[Any] = [
"""Answer the question""",
"""View the retrieved document only""",
"""View the most similar ELI5 question and answer""",
"""Show me everything, please!""",
]
A__ : List[str] = st.sidebar.checkbox("""Demo options""")
if demo_options:
A__ : List[Any] = st.sidebar.selectbox(
"""""",
action_list,
index=3,
)
A__ : str = action_list.index(action_st)
A__ : str = st.sidebar.selectbox(
"""""",
["""Show full text of passages""", """Show passage section titles"""],
index=0,
)
A__ : List[str] = show_type == """Show full text of passages"""
else:
A__ : Optional[Any] = 3
A__ : Optional[int] = True
A__ : Optional[int] = st.sidebar.checkbox("""Retrieval options""")
if retrieval_options:
A__ : Optional[int] = """
### Information retriever options
The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding
trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.
The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.
"""
st.sidebar.markdown(retriever_info)
A__ : List[str] = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""])
A__ : Optional[Any] = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""])
else:
A__ : Union[str, Any] = """wiki40b"""
A__ : Union[str, Any] = """dense"""
A__ : Dict = """beam"""
A__ : Dict = 2
A__ : List[Any] = 64
A__ : Dict = 256
A__ : Dict = None
A__ : Optional[int] = None
A__ : List[str] = st.sidebar.checkbox("""Generation options""")
if generate_options:
A__ : Any = """
### Answer generation options
The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)
weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with
**beam** search, or **sample** from the decoder's output probabilities.
"""
st.sidebar.markdown(generate_info)
A__ : Dict = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""])
A__ : int = st.sidebar.slider(
"""Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None
)
A__ : Optional[int] = st.sidebar.slider(
"""Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None
)
if sampled == "beam":
A__ : List[Any] = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
A__ : Any = st.sidebar.slider(
"""Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None
)
A__ : int = st.sidebar.slider(
"""Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None
)
A__ : int = None
# start main text
A__ : int = [
"""<MY QUESTION>""",
"""How do people make chocolate?""",
"""Why do we get a fever when we are sick?""",
"""How can different animals perceive different colors?""",
"""What is natural language processing?""",
"""What's the best way to treat a sunburn?""",
"""What exactly are vitamins ?""",
"""How does nuclear energy provide electricity?""",
"""What's the difference between viruses and bacteria?""",
"""Why are flutes classified as woodwinds when most of them are made out of metal ?""",
"""Why do people like drinking coffee even though it tastes so bad?""",
"""What happens when wine ages? How does it make the wine taste better?""",
"""If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""",
"""How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""",
"""How does New Zealand have so many large bird predators?""",
]
A__ : int = st.selectbox(
"""What would you like to ask? ---- select <MY QUESTION> to enter a new query""",
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
A__ : List[Any] = st.text_input("""Enter your question here:""", """""")
else:
A__ : Dict = question_s
if st.button("""Show me!"""):
if action in [0, 1, 3]:
if index_type == "mixed":
A__ , A__ : Optional[int] = make_support(question, source=wiki_source, method="""dense""", n_results=10)
A__ , A__ : Tuple = make_support(question, source=wiki_source, method="""sparse""", n_results=10)
A__ : str = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
A__ : Union[str, Any] = support_list[:10]
A__ : List[str] = """<P> """ + """ <P> """.join([res[-1] for res in support_list])
else:
A__ , A__ : int = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
A__ , A__ : Tuple = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == """sampled"""),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown("""### The model generated answer is:""")
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""")
for i, res in enumerate(support_list):
A__ : List[Any] = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_"""))
A__ : int = res[1].strip()
if sec_titles == "":
A__ : int = """[{}]({})""".format(res[0], wiki_url)
else:
A__ : Union[str, Any] = sec_titles.split(""" & """)
A__ : Optional[int] = """ & """.join(
["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list]
)
st.markdown(
"""{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
"""> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True
)
if action in [2, 3]:
A__ : Optional[Any] = find_nearest_training(question)
A__ : str = nn_train_list[0]
st.markdown(
"""--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""])
)
A__ : Optional[Any] = [
"""{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""]))
for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""]))
if i == 0 or sc > 2
]
st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st)))
A__ : Optional[Any] = """
---
**Disclaimer**
*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.
Evaluating biases of such a model and ensuring factual generations are still very much open research problems.
Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*
"""
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 13 |
'''simple docstring'''
from __future__ import annotations
A__ : int = 10
def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] ) -> list[int]:
__lowerCamelCase : List[Any] = 1
__lowerCamelCase : Any = max(UpperCAmelCase_ )
while placement <= max_digit:
# declare and initialize empty buckets
__lowerCamelCase : list[list] = [[] for _ in range(UpperCAmelCase_ )]
# split list_of_ints between the buckets
for i in list_of_ints:
__lowerCamelCase : List[Any] = int((i / placement) % RADIX )
buckets[tmp].append(UpperCAmelCase_ )
# put each buckets' contents into list_of_ints
__lowerCamelCase : Tuple = 0
for b in range(UpperCAmelCase_ ):
for i in buckets[b]:
__lowerCamelCase : List[Any] = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
A__ : Optional[int] = {
"""configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Optional[Any] = [
"""NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""NezhaForNextSentencePrediction""",
"""NezhaForMaskedLM""",
"""NezhaForPreTraining""",
"""NezhaForMultipleChoice""",
"""NezhaForQuestionAnswering""",
"""NezhaForSequenceClassification""",
"""NezhaForTokenClassification""",
"""NezhaModel""",
"""NezhaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nezha import (
NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
NezhaPreTrainedModel,
)
else:
import sys
A__ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 13 |
'''simple docstring'''
from collections import defaultdict
from math import gcd
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_50_00_00 ) -> int:
__lowerCamelCase : defaultdict = defaultdict(UpperCAmelCase_ )
__lowerCamelCase : Any = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , UpperCAmelCase_ , 2 ):
if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) > 1:
continue
__lowerCamelCase : Any = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(UpperCAmelCase_ , limit + 1 , UpperCAmelCase_ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
from math import loga
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int:
if a < 0:
raise ValueError('Input value must be a positive integer' )
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
raise TypeError('Input value must be a \'int\' type' )
return 0 if (a == 0) else int(loga(a & -a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
A__ : str = logging.get_logger(__name__)
A__ : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
A__ : Tuple = {
"""vocab_file""": {
"""junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""",
"""junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""",
"""junnyu/roformer_chinese_char_small""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt"""
),
"""junnyu/roformer_chinese_char_base""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt"""
),
"""junnyu/roformer_small_discriminator""": (
"""https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt"""
),
"""junnyu/roformer_small_generator""": (
"""https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt"""
),
}
}
A__ : str = {
"""junnyu/roformer_chinese_small""": 1536,
"""junnyu/roformer_chinese_base""": 1536,
"""junnyu/roformer_chinese_char_small""": 512,
"""junnyu/roformer_chinese_char_base""": 512,
"""junnyu/roformer_small_discriminator""": 128,
"""junnyu/roformer_small_generator""": 128,
}
A__ : Tuple = {
"""junnyu/roformer_chinese_small""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_base""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True},
"""junnyu/roformer_small_discriminator""": {"""do_lower_case""": True},
"""junnyu/roformer_small_generator""": {"""do_lower_case""": True},
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES
lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION
lowerCamelCase : Dict = RoFormerTokenizer
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]:
super().__init__(
SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
__lowerCamelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case
or pre_tok_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents
):
__lowerCamelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) )
__lowerCamelCase : Union[str, Any] = do_lower_case
__lowerCamelCase : str = strip_accents
__lowerCamelCase : Optional[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = do_lower_case
def __getstate__( self ) -> List[str]:
__lowerCamelCase : Union[str, Any] = self.__dict__.copy()
__lowerCamelCase : Dict = BertPreTokenizer()
return state
def __setstate__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = d
__lowerCamelCase : List[Any] = self.__dict__['_tokenizer'].get_vocab()
__lowerCamelCase : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(SCREAMING_SNAKE_CASE_ ) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str:
__lowerCamelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
__lowerCamelCase : List[str] = [self.sep_token_id]
__lowerCamelCase : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]:
__lowerCamelCase : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ )
return tuple(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Any:
__lowerCamelCase : Tuple = BertPreTokenizer()
return super().save_pretrained(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 13 | 1 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
A__ : int = logging.get_logger(__name__)
A__ : Optional[Any] = {
"""ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""",
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Tuple = 'deta'
lowerCamelCase : Tuple = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=9_00 , SCREAMING_SNAKE_CASE_=20_48 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=20_48 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="relu" , SCREAMING_SNAKE_CASE_=2_56 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="sine" , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=3_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.2_5 , **SCREAMING_SNAKE_CASE_ , ) -> Any:
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' )
__lowerCamelCase : Any = CONFIG_MAPPING['resnet'](out_features=['stage2', 'stage3', 'stage4'] )
else:
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Dict = backbone_config.pop('model_type' )
__lowerCamelCase : List[str] = CONFIG_MAPPING[backbone_model_type]
__lowerCamelCase : int = config_class.from_dict(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = backbone_config
__lowerCamelCase : Dict = num_queries
__lowerCamelCase : Dict = max_position_embeddings
__lowerCamelCase : Tuple = d_model
__lowerCamelCase : Optional[int] = encoder_ffn_dim
__lowerCamelCase : Dict = encoder_layers
__lowerCamelCase : Optional[int] = encoder_attention_heads
__lowerCamelCase : str = decoder_ffn_dim
__lowerCamelCase : int = decoder_layers
__lowerCamelCase : int = decoder_attention_heads
__lowerCamelCase : List[str] = dropout
__lowerCamelCase : List[Any] = attention_dropout
__lowerCamelCase : Union[str, Any] = activation_dropout
__lowerCamelCase : str = activation_function
__lowerCamelCase : Optional[Any] = init_std
__lowerCamelCase : Optional[Any] = init_xavier_std
__lowerCamelCase : Optional[int] = encoder_layerdrop
__lowerCamelCase : str = auxiliary_loss
__lowerCamelCase : Union[str, Any] = position_embedding_type
# deformable attributes
__lowerCamelCase : int = num_feature_levels
__lowerCamelCase : List[str] = encoder_n_points
__lowerCamelCase : Optional[Any] = decoder_n_points
__lowerCamelCase : Tuple = two_stage
__lowerCamelCase : List[str] = two_stage_num_proposals
__lowerCamelCase : Optional[Any] = with_box_refine
__lowerCamelCase : str = assign_first_stage
if two_stage is True and with_box_refine is False:
raise ValueError('If two_stage is True, with_box_refine must be True.' )
# Hungarian matcher
__lowerCamelCase : List[Any] = class_cost
__lowerCamelCase : str = bbox_cost
__lowerCamelCase : Optional[Any] = giou_cost
# Loss coefficients
__lowerCamelCase : Optional[int] = mask_loss_coefficient
__lowerCamelCase : Any = dice_loss_coefficient
__lowerCamelCase : Optional[int] = bbox_loss_coefficient
__lowerCamelCase : str = giou_loss_coefficient
__lowerCamelCase : Tuple = eos_coefficient
__lowerCamelCase : str = focal_alpha
super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
@property
def lowercase_ ( self ) -> int:
return self.encoder_attention_heads
@property
def lowercase_ ( self ) -> int:
return self.d_model
def lowercase_ ( self ) -> Dict:
__lowerCamelCase : List[str] = copy.deepcopy(self.__dict__ )
__lowerCamelCase : Optional[Any] = self.backbone_config.to_dict()
__lowerCamelCase : Optional[int] = self.__class__.model_type
return output
| 13 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
A__ : int = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
A__ : Dict = TaTokenizerFast
A__ : Dict = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Any = [
"""MT5EncoderModel""",
"""MT5ForConditionalGeneration""",
"""MT5ForQuestionAnswering""",
"""MT5Model""",
"""MT5PreTrainedModel""",
"""MT5Stack""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : str = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : str = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
A__ : Union[str, Any] = _LazyModule(
__name__,
globals()["""__file__"""],
_import_structure,
extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast},
module_spec=__spec__,
)
| 13 | 1 |
'''simple docstring'''
from graphs.minimum_spanning_tree_kruskal import kruskal
def UpperCAmelCase__ ( ) -> str:
__lowerCamelCase : Optional[Any] = 9
__lowerCamelCase : str = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
__lowerCamelCase : Union[str, Any] = kruskal(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : List[str] = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
assert sorted(UpperCAmelCase_ ) == sorted(UpperCAmelCase_ )
| 13 |
'''simple docstring'''
import re
from typing import Callable, List, Optional, Union
import tensorflow as tf
try:
from tensorflow.keras.optimizers.legacy import Adam
except ImportError:
from tensorflow.keras.optimizers import Adam
class UpperCAmelCase_ (tf.keras.optimizers.schedules.LearningRateSchedule ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = None , ) -> Any:
super().__init__()
__lowerCamelCase : Optional[Any] = initial_learning_rate
__lowerCamelCase : Optional[Any] = warmup_steps
__lowerCamelCase : Union[str, Any] = power
__lowerCamelCase : Optional[int] = decay_schedule_fn
__lowerCamelCase : Any = name
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str:
with tf.name_scope(self.name or 'WarmUp' ) as name:
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
__lowerCamelCase : str = tf.cast(SCREAMING_SNAKE_CASE_ , tf.floataa )
__lowerCamelCase : Optional[int] = tf.cast(self.warmup_steps , tf.floataa )
__lowerCamelCase : List[Any] = global_step_float / warmup_steps_float
__lowerCamelCase : Optional[Any] = self.initial_learning_rate * tf.math.pow(SCREAMING_SNAKE_CASE_ , self.power )
return tf.cond(
global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=SCREAMING_SNAKE_CASE_ , )
def lowercase_ ( self ) -> Optional[Any]:
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_schedule_fn": self.decay_schedule_fn,
"warmup_steps": self.warmup_steps,
"power": self.power,
"name": self.name,
}
def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 0.9 , UpperCAmelCase_ : float = 0.999 , UpperCAmelCase_ : float = 1e-8 , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : Optional[List[str]] = None , ) -> int:
__lowerCamelCase : int = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=UpperCAmelCase_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCAmelCase_ , )
if num_warmup_steps:
__lowerCamelCase : str = WarmUp(
initial_learning_rate=UpperCAmelCase_ , decay_schedule_fn=UpperCAmelCase_ , warmup_steps=UpperCAmelCase_ , )
if weight_decay_rate > 0.0:
__lowerCamelCase : List[Any] = AdamWeightDecay(
learning_rate=UpperCAmelCase_ , weight_decay_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=UpperCAmelCase_ , )
else:
__lowerCamelCase : Tuple = tf.keras.optimizers.Adam(
learning_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , )
# We return the optimizer and the LR scheduler in order to better track the
# evolution of the LR independently of the optimizer.
return optimizer, lr_schedule
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ = 0.0_0_1 , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = 0.9_9_9 , SCREAMING_SNAKE_CASE_ = 1E-7 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "AdamWeightDecay" , **SCREAMING_SNAKE_CASE_ , ) -> int:
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = weight_decay_rate
__lowerCamelCase : str = include_in_weight_decay
__lowerCamelCase : List[Any] = exclude_from_weight_decay
@classmethod
def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> Dict:
__lowerCamelCase : Any = {'WarmUp': WarmUp}
return super(SCREAMING_SNAKE_CASE_ , cls ).from_config(SCREAMING_SNAKE_CASE_ , custom_objects=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
super(SCREAMING_SNAKE_CASE_ , self )._prepare_local(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tf.constant(
self.weight_decay_rate , name='adam_weight_decay_rate' )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
__lowerCamelCase : Tuple = self._do_use_weight_decay(var.name )
if do_decay:
return var.assign_sub(
learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , )
return tf.no_op()
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase , __lowerCamelCase : Optional[Any] = list(zip(*SCREAMING_SNAKE_CASE_ ) )
return super(SCREAMING_SNAKE_CASE_ , self ).apply_gradients(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , name=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str:
if apply_state is None:
return self._decayed_lr_t[var_dtype], {}
__lowerCamelCase : Optional[int] = apply_state or {}
__lowerCamelCase : Dict = apply_state.get((var_device, var_dtype) )
if coefficients is None:
__lowerCamelCase : List[Any] = self._fallback_apply_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = coefficients
return coefficients["lr_t"], {"apply_state": apply_state}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str:
__lowerCamelCase , __lowerCamelCase : Dict = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
with tf.control_dependencies([decay] ):
return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_dense(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Union[str, Any]:
__lowerCamelCase , __lowerCamelCase : Tuple = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
with tf.control_dependencies([decay] ):
return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_sparse(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : Any = super().get_config()
config.update({'weight_decay_rate': self.weight_decay_rate} )
return config
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict:
if self.weight_decay_rate == 0:
return False
if self._include_in_weight_decay:
for r in self._include_in_weight_decay:
if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None:
return True
if self._exclude_from_weight_decay:
for r in self._exclude_from_weight_decay:
if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None:
return False
return True
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self ) -> Tuple:
__lowerCamelCase : Tuple = []
__lowerCamelCase : Optional[Any] = None
@property
def lowercase_ ( self ) -> List[str]:
if self._accum_steps is None:
__lowerCamelCase : Tuple = tf.Variable(
tf.constant(0 , dtype=tf.intaa ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
return self._accum_steps.value()
@property
def lowercase_ ( self ) -> List[str]:
if not self._gradients:
raise ValueError('The accumulator should be called first to initialize the gradients' )
return [gradient.value() if gradient is not None else gradient for gradient in self._gradients]
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str:
if not self._gradients:
__lowerCamelCase : List[str] = self.step # Create the step variable.
self._gradients.extend(
[
tf.Variable(
tf.zeros_like(SCREAMING_SNAKE_CASE_ ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
if gradient is not None
else gradient
for gradient in gradients
] )
if len(SCREAMING_SNAKE_CASE_ ) != len(self._gradients ):
raise ValueError(f'Expected {len(self._gradients )} gradients, but got {len(SCREAMING_SNAKE_CASE_ )}' )
for accum_gradient, gradient in zip(self._gradients , SCREAMING_SNAKE_CASE_ ):
if accum_gradient is not None and gradient is not None:
accum_gradient.assign_add(SCREAMING_SNAKE_CASE_ )
self._accum_steps.assign_add(1 )
def lowercase_ ( self ) -> int:
if not self._gradients:
return
self._accum_steps.assign(0 )
for gradient in self._gradients:
if gradient is not None:
gradient.assign(tf.zeros_like(SCREAMING_SNAKE_CASE_ ) )
| 13 | 1 |
'''simple docstring'''
import collections
import gzip
import os
import urllib
import numpy
from tensorflow.python.framework import dtypes, random_seed
from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated
A__ : List[Any] = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""])
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
A__ : Union[str, Any] = """https://storage.googleapis.com/cvdf-datasets/mnist/"""
def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> Any:
__lowerCamelCase : Union[str, Any] = numpy.dtype(numpy.uintaa ).newbyteorder('>' )
return numpy.frombuffer(bytestream.read(4 ) , dtype=UpperCAmelCase_ )[0]
@deprecated(UpperCAmelCase_ , 'Please use tf.data to implement this functionality.' )
def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> List[Any]:
print('Extracting' , f.name )
with gzip.GzipFile(fileobj=UpperCAmelCase_ ) as bytestream:
__lowerCamelCase : str = _readaa(UpperCAmelCase_ )
if magic != 20_51:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) )
__lowerCamelCase : Dict = _readaa(UpperCAmelCase_ )
__lowerCamelCase : List[Any] = _readaa(UpperCAmelCase_ )
__lowerCamelCase : Optional[int] = _readaa(UpperCAmelCase_ )
__lowerCamelCase : Tuple = bytestream.read(rows * cols * num_images )
__lowerCamelCase : Union[str, Any] = numpy.frombuffer(UpperCAmelCase_ , dtype=numpy.uinta )
__lowerCamelCase : Any = data.reshape(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , 1 )
return data
@deprecated(UpperCAmelCase_ , 'Please use tf.one_hot on tensors.' )
def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] ) -> Optional[Any]:
__lowerCamelCase : Any = labels_dense.shape[0]
__lowerCamelCase : Optional[int] = numpy.arange(UpperCAmelCase_ ) * num_classes
__lowerCamelCase : List[str] = numpy.zeros((num_labels, num_classes) )
__lowerCamelCase : Optional[Any] = 1
return labels_one_hot
@deprecated(UpperCAmelCase_ , 'Please use tf.data to implement this functionality.' )
def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : List[str]=10 ) -> str:
print('Extracting' , f.name )
with gzip.GzipFile(fileobj=UpperCAmelCase_ ) as bytestream:
__lowerCamelCase : List[str] = _readaa(UpperCAmelCase_ )
if magic != 20_49:
raise ValueError(
'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) )
__lowerCamelCase : Any = _readaa(UpperCAmelCase_ )
__lowerCamelCase : Any = bytestream.read(UpperCAmelCase_ )
__lowerCamelCase : Tuple = numpy.frombuffer(UpperCAmelCase_ , dtype=numpy.uinta )
if one_hot:
return _dense_to_one_hot(UpperCAmelCase_ , UpperCAmelCase_ )
return labels
class UpperCAmelCase_ :
"""simple docstring"""
@deprecated(
SCREAMING_SNAKE_CASE_ , 'Please use alternatives such as official/mnist/_DataSet.py'
' from tensorflow/models.' , )
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=dtypes.floataa , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , ) -> str:
__lowerCamelCase , __lowerCamelCase : Any = random_seed.get_seed(SCREAMING_SNAKE_CASE_ )
# If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seeda if seed is None else seeda )
__lowerCamelCase : Optional[Any] = dtypes.as_dtype(SCREAMING_SNAKE_CASE_ ).base_dtype
if dtype not in (dtypes.uinta, dtypes.floataa):
raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype )
if fake_data:
__lowerCamelCase : Optional[int] = 1_00_00
__lowerCamelCase : Any = one_hot
else:
assert (
images.shape[0] == labels.shape[0]
), f'images.shape: {images.shape} labels.shape: {labels.shape}'
__lowerCamelCase : Optional[int] = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
if reshape:
assert images.shape[3] == 1
__lowerCamelCase : Optional[int] = images.reshape(
images.shape[0] , images.shape[1] * images.shape[2] )
if dtype == dtypes.floataa:
# Convert from [0, 255] -> [0.0, 1.0].
__lowerCamelCase : Union[str, Any] = images.astype(numpy.floataa )
__lowerCamelCase : Union[str, Any] = numpy.multiply(SCREAMING_SNAKE_CASE_ , 1.0 / 2_5_5.0 )
__lowerCamelCase : int = images
__lowerCamelCase : int = labels
__lowerCamelCase : Tuple = 0
__lowerCamelCase : Optional[int] = 0
@property
def lowercase_ ( self ) -> Dict:
return self._images
@property
def lowercase_ ( self ) -> Any:
return self._labels
@property
def lowercase_ ( self ) -> List[Any]:
return self._num_examples
@property
def lowercase_ ( self ) -> Union[str, Any]:
return self._epochs_completed
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True ) -> int:
if fake_data:
__lowerCamelCase : int = [1] * 7_84
__lowerCamelCase : int = [1] + [0] * 9 if self.one_hot else 0
return (
[fake_image for _ in range(SCREAMING_SNAKE_CASE_ )],
[fake_label for _ in range(SCREAMING_SNAKE_CASE_ )],
)
__lowerCamelCase : Tuple = self._index_in_epoch
# Shuffle for the first epoch
if self._epochs_completed == 0 and start == 0 and shuffle:
__lowerCamelCase : int = numpy.arange(self._num_examples )
numpy.random.shuffle(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self.images[perma]
__lowerCamelCase : Dict = self.labels[perma]
# Go to the next epoch
if start + batch_size > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Get the rest examples in this epoch
__lowerCamelCase : Any = self._num_examples - start
__lowerCamelCase : Optional[Any] = self._images[start : self._num_examples]
__lowerCamelCase : Tuple = self._labels[start : self._num_examples]
# Shuffle the data
if shuffle:
__lowerCamelCase : Optional[int] = numpy.arange(self._num_examples )
numpy.random.shuffle(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self.images[perm]
__lowerCamelCase : str = self.labels[perm]
# Start next epoch
__lowerCamelCase : Any = 0
__lowerCamelCase : Optional[int] = batch_size - rest_num_examples
__lowerCamelCase : Optional[int] = self._index_in_epoch
__lowerCamelCase : str = self._images[start:end]
__lowerCamelCase : List[str] = self._labels[start:end]
return (
numpy.concatenate((images_rest_part, images_new_part) , axis=0 ),
numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ),
)
else:
self._index_in_epoch += batch_size
__lowerCamelCase : Optional[int] = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
@deprecated(UpperCAmelCase_ , 'Please write your own downloading logic.' )
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple ) -> Tuple:
if not gfile.Exists(UpperCAmelCase_ ):
gfile.MakeDirs(UpperCAmelCase_ )
__lowerCamelCase : Tuple = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ )
if not gfile.Exists(UpperCAmelCase_ ):
urllib.request.urlretrieve(UpperCAmelCase_ , UpperCAmelCase_ ) # noqa: S310
with gfile.GFile(UpperCAmelCase_ ) as f:
__lowerCamelCase : str = f.size()
print('Successfully downloaded' , UpperCAmelCase_ , UpperCAmelCase_ , 'bytes.' )
return filepath
@deprecated(
UpperCAmelCase_ , 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' )
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : Optional[Any]=dtypes.floataa , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Optional[Any]=50_00 , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : List[Any]=DEFAULT_SOURCE_URL , ) -> List[Any]:
if fake_data:
def fake():
return _DataSet(
[] , [] , fake_data=UpperCAmelCase_ , one_hot=UpperCAmelCase_ , dtype=UpperCAmelCase_ , seed=UpperCAmelCase_ )
__lowerCamelCase : Union[str, Any] = fake()
__lowerCamelCase : Optional[Any] = fake()
__lowerCamelCase : Dict = fake()
return _Datasets(train=UpperCAmelCase_ , validation=UpperCAmelCase_ , test=UpperCAmelCase_ )
if not source_url: # empty string check
__lowerCamelCase : Tuple = DEFAULT_SOURCE_URL
__lowerCamelCase : Dict = 'train-images-idx3-ubyte.gz'
__lowerCamelCase : int = 'train-labels-idx1-ubyte.gz'
__lowerCamelCase : Union[str, Any] = 't10k-images-idx3-ubyte.gz'
__lowerCamelCase : Tuple = 't10k-labels-idx1-ubyte.gz'
__lowerCamelCase : Dict = _maybe_download(
UpperCAmelCase_ , UpperCAmelCase_ , source_url + train_images_file )
with gfile.Open(UpperCAmelCase_ , 'rb' ) as f:
__lowerCamelCase : Union[str, Any] = _extract_images(UpperCAmelCase_ )
__lowerCamelCase : List[str] = _maybe_download(
UpperCAmelCase_ , UpperCAmelCase_ , source_url + train_labels_file )
with gfile.Open(UpperCAmelCase_ , 'rb' ) as f:
__lowerCamelCase : List[Any] = _extract_labels(UpperCAmelCase_ , one_hot=UpperCAmelCase_ )
__lowerCamelCase : str = _maybe_download(
UpperCAmelCase_ , UpperCAmelCase_ , source_url + test_images_file )
with gfile.Open(UpperCAmelCase_ , 'rb' ) as f:
__lowerCamelCase : Dict = _extract_images(UpperCAmelCase_ )
__lowerCamelCase : List[Any] = _maybe_download(
UpperCAmelCase_ , UpperCAmelCase_ , source_url + test_labels_file )
with gfile.Open(UpperCAmelCase_ , 'rb' ) as f:
__lowerCamelCase : List[str] = _extract_labels(UpperCAmelCase_ , one_hot=UpperCAmelCase_ )
if not 0 <= validation_size <= len(UpperCAmelCase_ ):
__lowerCamelCase : int = (
'Validation size should be between 0 and '
F'{len(UpperCAmelCase_ )}. Received: {validation_size}.'
)
raise ValueError(UpperCAmelCase_ )
__lowerCamelCase : Dict = train_images[:validation_size]
__lowerCamelCase : str = train_labels[:validation_size]
__lowerCamelCase : List[str] = train_images[validation_size:]
__lowerCamelCase : int = train_labels[validation_size:]
__lowerCamelCase : Any = {'dtype': dtype, 'reshape': reshape, 'seed': seed}
__lowerCamelCase : Union[str, Any] = _DataSet(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ )
__lowerCamelCase : Union[str, Any] = _DataSet(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ )
__lowerCamelCase : Any = _DataSet(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ )
return _Datasets(train=UpperCAmelCase_ , validation=UpperCAmelCase_ , test=UpperCAmelCase_ )
| 13 |
'''simple docstring'''
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=[1, 2, 1] , SCREAMING_SNAKE_CASE_=[2, 2, 4] , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=["stage1", "stage2", "stage3"] , SCREAMING_SNAKE_CASE_=[1, 2, 3] , ) -> Any:
__lowerCamelCase : Optional[Any] = parent
__lowerCamelCase : int = batch_size
__lowerCamelCase : Optional[int] = image_size
__lowerCamelCase : Optional[int] = patch_size
__lowerCamelCase : Optional[Any] = num_channels
__lowerCamelCase : Dict = embed_dim
__lowerCamelCase : List[Any] = depths
__lowerCamelCase : int = num_heads
__lowerCamelCase : Optional[Any] = window_size
__lowerCamelCase : Optional[Any] = mlp_ratio
__lowerCamelCase : List[str] = qkv_bias
__lowerCamelCase : List[str] = hidden_dropout_prob
__lowerCamelCase : int = attention_probs_dropout_prob
__lowerCamelCase : List[Any] = drop_path_rate
__lowerCamelCase : Any = hidden_act
__lowerCamelCase : Union[str, Any] = use_absolute_embeddings
__lowerCamelCase : Any = patch_norm
__lowerCamelCase : Optional[Any] = layer_norm_eps
__lowerCamelCase : str = initializer_range
__lowerCamelCase : Dict = is_training
__lowerCamelCase : Optional[Any] = scope
__lowerCamelCase : Dict = use_labels
__lowerCamelCase : List[str] = type_sequence_label_size
__lowerCamelCase : Dict = encoder_stride
__lowerCamelCase : Union[str, Any] = out_features
__lowerCamelCase : str = out_indices
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowerCamelCase : List[str] = None
if self.use_labels:
__lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowerCamelCase : List[str] = self.get_config()
return config, pixel_values, labels
def lowercase_ ( self ) -> Optional[int]:
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
__lowerCamelCase : Dict = MaskFormerSwinModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__lowerCamelCase : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
__lowerCamelCase : Tuple = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , [16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : str = ['stem']
__lowerCamelCase : Optional[Any] = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : Optional[int] = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = config_and_inputs
__lowerCamelCase : Optional[int] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : List[Any] = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase : int = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {}
lowerCamelCase : int = False
lowerCamelCase : int = False
lowerCamelCase : str = False
lowerCamelCase : int = False
lowerCamelCase : Union[str, Any] = False
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : Optional[Any] = MaskFormerSwinModelTester(self )
__lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
'`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with'
' `nn.DataParallel`'
) )
def lowercase_ ( self ) -> int:
pass
def lowercase_ ( self ) -> Union[str, Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase_ ( self ) -> Tuple:
return
def lowercase_ ( self ) -> Dict:
__lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ )
@unittest.skip('Swin does not use inputs_embeds' )
def lowercase_ ( self ) -> Optional[int]:
pass
@unittest.skip('Swin does not support feedforward chunking' )
def lowercase_ ( self ) -> Dict:
pass
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__lowerCamelCase : Optional[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase , __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase : str = [*signature.parameters.keys()]
__lowerCamelCase : Any = ['pixel_values']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ )
@unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' )
def lowercase_ ( self ) -> Any:
pass
@unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' )
def lowercase_ ( self ) -> List[Any]:
pass
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
with torch.no_grad():
__lowerCamelCase : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
__lowerCamelCase : int = outputs.hidden_states
__lowerCamelCase : Tuple = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
# Swin has a different seq_length
__lowerCamelCase : Optional[Any] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase : List[Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
__lowerCamelCase : Dict = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowerCamelCase : Optional[int] = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase : Union[str, Any] = 3
__lowerCamelCase : Dict = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__lowerCamelCase : str = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__lowerCamelCase : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__lowerCamelCase : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
__lowerCamelCase : str = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowerCamelCase : Tuple = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) )
@unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' )
def lowercase_ ( self ) -> Optional[Any]:
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def lowercase_ ( self ) -> Any:
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def lowercase_ ( self ) -> Union[str, Any]:
pass
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Any = 0
return t
def check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_={} ):
with torch.no_grad():
__lowerCamelCase : Optional[int] = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).to_tuple()
def recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if isinstance(SCREAMING_SNAKE_CASE_ , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values() ):
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , atol=1E-5 ) , msg=(
'Tuple and dict output are not equal. Difference:'
f' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:'
f' {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}. Dict has'
f' `nan`: {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}.'
) , )
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
for model_class in self.all_model_classes:
__lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} )
__lowerCamelCase : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} )
@require_torch
class UpperCAmelCase_ (unittest.TestCase , _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else ()
lowerCamelCase : List[str] = MaskFormerSwinConfig
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : List[str] = MaskFormerSwinModelTester(self )
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase : Any = inputs_dict['pixel_values'].shape[0]
for backbone_class in self.all_model_classes:
__lowerCamelCase : Optional[Any] = backbone_class(SCREAMING_SNAKE_CASE_ )
backbone.to(SCREAMING_SNAKE_CASE_ )
backbone.eval()
__lowerCamelCase : int = backbone(**SCREAMING_SNAKE_CASE_ )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , SCREAMING_SNAKE_CASE_ )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
__lowerCamelCase : Union[str, Any] = backbone(**SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
__lowerCamelCase : Optional[int] = backbone(**SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(outputs.attentions )
| 13 | 1 |
'''simple docstring'''
import argparse
import os
import jax as jnp
import numpy as onp
import torch
import torch.nn as nn
from music_spectrogram_diffusion import inference
from tax import checkpoints
from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline
from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder
A__ : str = """base_with_context"""
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple ) -> Union[str, Any]:
__lowerCamelCase : int = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) )
__lowerCamelCase : List[Any] = nn.Parameter(
torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=UpperCAmelCase_ )
for lyr_num, lyr in enumerate(model.encoders ):
__lowerCamelCase : int = weights[F'layers_{lyr_num}']
__lowerCamelCase : int = nn.Parameter(
torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) )
__lowerCamelCase : Union[str, Any] = ly_weight['attention']
__lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) )
__lowerCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) )
__lowerCamelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) )
__lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) )
__lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) )
__lowerCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) )
__lowerCamelCase : str = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) )
__lowerCamelCase : int = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) )
__lowerCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) )
return model
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Dict ) -> Tuple:
__lowerCamelCase : int = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) )
__lowerCamelCase : List[str] = nn.Parameter(
torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=UpperCAmelCase_ )
for lyr_num, lyr in enumerate(model.encoders ):
__lowerCamelCase : Optional[int] = weights[F'layers_{lyr_num}']
__lowerCamelCase : Any = ly_weight['attention']
__lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) )
__lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) )
__lowerCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) )
__lowerCamelCase : int = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) )
__lowerCamelCase : Any = nn.Parameter(
torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) )
__lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) )
__lowerCamelCase : str = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) )
__lowerCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) )
__lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) )
__lowerCamelCase : str = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) )
return model
def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int ) -> Dict:
__lowerCamelCase : int = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) )
__lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) )
__lowerCamelCase : List[str] = nn.Parameter(
torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=UpperCAmelCase_ )
__lowerCamelCase : List[str] = nn.Parameter(
torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) )
for lyr_num, lyr in enumerate(model.decoders ):
__lowerCamelCase : Optional[int] = weights[F'layers_{lyr_num}']
__lowerCamelCase : Dict = nn.Parameter(
torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) )
__lowerCamelCase : Dict = nn.Parameter(
torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) )
__lowerCamelCase : str = ly_weight['self_attention']
__lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) )
__lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) )
__lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) )
__lowerCamelCase : int = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) )
__lowerCamelCase : Union[str, Any] = ly_weight['MultiHeadDotProductAttention_0']
__lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) )
__lowerCamelCase : int = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) )
__lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) )
__lowerCamelCase : int = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) )
__lowerCamelCase : Union[str, Any] = nn.Parameter(
torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) )
__lowerCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) )
__lowerCamelCase : Optional[int] = nn.Parameter(
torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) )
__lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) )
__lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) )
__lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) )
__lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) )
__lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) )
return model
def UpperCAmelCase__ ( UpperCAmelCase_ : Any ) -> Optional[Any]:
__lowerCamelCase : Optional[Any] = checkpoints.load_tax_checkpoint(args.checkpoint_path )
__lowerCamelCase : Union[str, Any] = jnp.tree_util.tree_map(onp.array , UpperCAmelCase_ )
__lowerCamelCase : str = [
'from __gin__ import dynamic_registration',
'from music_spectrogram_diffusion.models.diffusion import diffusion_utils',
'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0',
'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()',
]
__lowerCamelCase : Union[str, Any] = os.path.join(args.checkpoint_path , '..' , 'config.gin' )
__lowerCamelCase : str = inference.parse_training_gin_file(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : Optional[int] = inference.InferenceModel(args.checkpoint_path , UpperCAmelCase_ )
__lowerCamelCase : int = DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' )
__lowerCamelCase : Tuple = SpectrogramNotesEncoder(
max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , )
__lowerCamelCase : List[str] = SpectrogramContEncoder(
input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , )
__lowerCamelCase : List[str] = TaFilmDecoder(
input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , )
__lowerCamelCase : List[Any] = load_notes_encoder(ta_checkpoint['target']['token_encoder'] , UpperCAmelCase_ )
__lowerCamelCase : Dict = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , UpperCAmelCase_ )
__lowerCamelCase : Union[str, Any] = load_decoder(ta_checkpoint['target']['decoder'] , UpperCAmelCase_ )
__lowerCamelCase : Optional[Any] = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' )
__lowerCamelCase : List[str] = SpectrogramDiffusionPipeline(
notes_encoder=UpperCAmelCase_ , continuous_encoder=UpperCAmelCase_ , decoder=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , melgan=UpperCAmelCase_ , )
if args.save:
pipe.save_pretrained(args.output_path )
if __name__ == "__main__":
A__ : int = argparse.ArgumentParser()
parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""")
parser.add_argument(
"""--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not."""
)
parser.add_argument(
"""--checkpoint_path""",
default=f'''{MODEL}/checkpoint_500000''',
type=str,
required=False,
help="""Path to the original jax model checkpoint.""",
)
A__ : str = parser.parse_args()
main(args)
| 13 |
'''simple docstring'''
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
A__ : Dict = [
"""python""",
"""tqdm""",
"""regex""",
"""requests""",
"""packaging""",
"""filelock""",
"""numpy""",
"""tokenizers""",
"""huggingface-hub""",
"""safetensors""",
"""accelerate""",
"""pyyaml""",
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''')
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=None ) -> List[Any]:
require_version(deps[pkg] , UpperCAmelCase_ )
| 13 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
A__ : Dict = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Dict = ["""MLukeTokenizer"""]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
A__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 13 |
'''simple docstring'''
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import platform
import sys
A__ : List[str] = """3"""
print("""Python version:""", sys.version)
print("""OS platform:""", platform.platform())
print("""OS architecture:""", platform.machine())
try:
import torch
print("""Torch version:""", torch.__version__)
print("""Cuda available:""", torch.cuda.is_available())
print("""Cuda version:""", torch.version.cuda)
print("""CuDNN version:""", torch.backends.cudnn.version())
print("""Number of GPUs available:""", torch.cuda.device_count())
except ImportError:
print("""Torch version:""", None)
try:
import transformers
print("""transformers version:""", transformers.__version__)
except ImportError:
print("""transformers version:""", None)
| 13 | 1 |
'''simple docstring'''
import math
from collections import defaultdict
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any]=0.999 , UpperCAmelCase_ : Dict="cosine" , ) -> List[str]:
if alpha_transform_type == "cosine":
def alpha_bar_fn(UpperCAmelCase_ : Dict ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(UpperCAmelCase_ : Any ):
return math.exp(t * -12.0 )
else:
raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' )
__lowerCamelCase : List[str] = []
for i in range(UpperCAmelCase_ ):
__lowerCamelCase : Any = i / num_diffusion_timesteps
__lowerCamelCase : str = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(UpperCAmelCase_ ) / alpha_bar_fn(UpperCAmelCase_ ) , UpperCAmelCase_ ) )
return torch.tensor(UpperCAmelCase_ , dtype=torch.floataa )
class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : List[Any] = [e.name for e in KarrasDiffusionSchedulers]
lowerCamelCase : List[str] = 2
@register_to_config
def __init__( self , SCREAMING_SNAKE_CASE_ = 10_00 , SCREAMING_SNAKE_CASE_ = 0.0_0_0_8_5 , SCREAMING_SNAKE_CASE_ = 0.0_1_2 , SCREAMING_SNAKE_CASE_ = "linear" , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "epsilon" , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = "linspace" , SCREAMING_SNAKE_CASE_ = 0 , ) -> Dict:
if trained_betas is not None:
__lowerCamelCase : Optional[Any] = torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa )
elif beta_schedule == "linear":
__lowerCamelCase : Union[str, Any] = torch.linspace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
__lowerCamelCase : Any = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
__lowerCamelCase : Optional[int] = betas_for_alpha_bar(SCREAMING_SNAKE_CASE_ , alpha_transform_type='cosine' )
elif beta_schedule == "exp":
__lowerCamelCase : Union[str, Any] = betas_for_alpha_bar(SCREAMING_SNAKE_CASE_ , alpha_transform_type='exp' )
else:
raise NotImplementedError(f'{beta_schedule} does is not implemented for {self.__class__}' )
__lowerCamelCase : Dict = 1.0 - self.betas
__lowerCamelCase : Dict = torch.cumprod(self.alphas , dim=0 )
# set all values
self.set_timesteps(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = use_karras_sigmas
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> List[str]:
if schedule_timesteps is None:
__lowerCamelCase : Dict = self.timesteps
__lowerCamelCase : Any = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
if len(self._index_counter ) == 0:
__lowerCamelCase : List[str] = 1 if len(SCREAMING_SNAKE_CASE_ ) > 1 else 0
else:
__lowerCamelCase : Optional[Any] = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE_ ) else timestep
__lowerCamelCase : Union[str, Any] = self._index_counter[timestep_int]
return indices[pos].item()
@property
def lowercase_ ( self ) -> Dict:
# standard deviation of the initial noise distribution
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> torch.FloatTensor:
__lowerCamelCase : Dict = self.index_for_timestep(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = self.sigmas[step_index]
__lowerCamelCase : List[Any] = sample / ((sigma**2 + 1) ** 0.5)
return sample
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , ) -> str:
__lowerCamelCase : Optional[int] = num_inference_steps
__lowerCamelCase : List[Any] = num_train_timesteps or self.config.num_train_timesteps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
__lowerCamelCase : List[Any] = np.linspace(0 , num_train_timesteps - 1 , SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ )[::-1].copy()
elif self.config.timestep_spacing == "leading":
__lowerCamelCase : str = num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
__lowerCamelCase : Optional[Any] = (np.arange(0 , SCREAMING_SNAKE_CASE_ ) * step_ratio).round()[::-1].copy().astype(SCREAMING_SNAKE_CASE_ )
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
__lowerCamelCase : Any = num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
__lowerCamelCase : List[str] = (np.arange(SCREAMING_SNAKE_CASE_ , 0 , -step_ratio )).round().copy().astype(SCREAMING_SNAKE_CASE_ )
timesteps -= 1
else:
raise ValueError(
f'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' )
__lowerCamelCase : Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 )
__lowerCamelCase : Dict = np.log(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = np.interp(SCREAMING_SNAKE_CASE_ , np.arange(0 , len(SCREAMING_SNAKE_CASE_ ) ) , SCREAMING_SNAKE_CASE_ )
if self.config.use_karras_sigmas:
__lowerCamelCase : Any = self._convert_to_karras(in_sigmas=SCREAMING_SNAKE_CASE_ , num_inference_steps=self.num_inference_steps )
__lowerCamelCase : List[str] = np.array([self._sigma_to_t(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for sigma in sigmas] )
__lowerCamelCase : List[Any] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa )
__lowerCamelCase : Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[str] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] )
__lowerCamelCase : str = torch.from_numpy(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] )
if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ):
# mps does not support float64
__lowerCamelCase : int = timesteps.to(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa )
else:
__lowerCamelCase : Optional[int] = timesteps.to(device=SCREAMING_SNAKE_CASE_ )
# empty dt and derivative
__lowerCamelCase : Tuple = None
__lowerCamelCase : str = None
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
# we need an index counter
__lowerCamelCase : int = defaultdict(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
# get log sigma
__lowerCamelCase : str = np.log(SCREAMING_SNAKE_CASE_ )
# get distribution
__lowerCamelCase : Optional[Any] = log_sigma - log_sigmas[:, np.newaxis]
# get sigmas range
__lowerCamelCase : int = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 )
__lowerCamelCase : Optional[Any] = low_idx + 1
__lowerCamelCase : Optional[Any] = log_sigmas[low_idx]
__lowerCamelCase : Optional[int] = log_sigmas[high_idx]
# interpolate sigmas
__lowerCamelCase : Union[str, Any] = (low - log_sigma) / (low - high)
__lowerCamelCase : Optional[Any] = np.clip(SCREAMING_SNAKE_CASE_ , 0 , 1 )
# transform interpolation to time range
__lowerCamelCase : List[str] = (1 - w) * low_idx + w * high_idx
__lowerCamelCase : str = t.reshape(sigma.shape )
return t
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> torch.FloatTensor:
__lowerCamelCase : float = in_sigmas[-1].item()
__lowerCamelCase : float = in_sigmas[0].item()
__lowerCamelCase : int = 7.0 # 7.0 is the value used in the paper
__lowerCamelCase : int = np.linspace(0 , 1 , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = sigma_min ** (1 / rho)
__lowerCamelCase : List[Any] = sigma_max ** (1 / rho)
__lowerCamelCase : Union[str, Any] = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
@property
def lowercase_ ( self ) -> Any:
return self.dt is None
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = True , ) -> Union[SchedulerOutput, Tuple]:
__lowerCamelCase : Union[str, Any] = self.index_for_timestep(SCREAMING_SNAKE_CASE_ )
# advance index counter by 1
__lowerCamelCase : Any = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE_ ) else timestep
self._index_counter[timestep_int] += 1
if self.state_in_first_order:
__lowerCamelCase : List[Any] = self.sigmas[step_index]
__lowerCamelCase : Optional[int] = self.sigmas[step_index + 1]
else:
# 2nd order / Heun's method
__lowerCamelCase : str = self.sigmas[step_index - 1]
__lowerCamelCase : int = self.sigmas[step_index]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
__lowerCamelCase : List[str] = 0
__lowerCamelCase : Any = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
__lowerCamelCase : List[str] = sigma_hat if self.state_in_first_order else sigma_next
__lowerCamelCase : Optional[int] = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
__lowerCamelCase : List[str] = sigma_hat if self.state_in_first_order else sigma_next
__lowerCamelCase : Optional[int] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
__lowerCamelCase : Any = model_output
else:
raise ValueError(
f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' )
if self.config.clip_sample:
__lowerCamelCase : Any = pred_original_sample.clamp(
-self.config.clip_sample_range , self.config.clip_sample_range )
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
__lowerCamelCase : str = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
__lowerCamelCase : str = sigma_next - sigma_hat
# store for 2nd order step
__lowerCamelCase : str = derivative
__lowerCamelCase : Any = dt
__lowerCamelCase : Any = sample
else:
# 2. 2nd order / Heun's method
__lowerCamelCase : Optional[Any] = (sample - pred_original_sample) / sigma_next
__lowerCamelCase : int = (self.prev_derivative + derivative) / 2
# 3. take prev timestep & sample
__lowerCamelCase : Optional[int] = self.dt
__lowerCamelCase : Dict = self.sample
# free dt and derivative
# Note, this puts the scheduler in "first order mode"
__lowerCamelCase : Dict = None
__lowerCamelCase : Any = None
__lowerCamelCase : Optional[Any] = None
__lowerCamelCase : int = sample + derivative * dt
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> torch.FloatTensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
__lowerCamelCase : Optional[int] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype )
if original_samples.device.type == "mps" and torch.is_floating_point(SCREAMING_SNAKE_CASE_ ):
# mps does not support float64
__lowerCamelCase : str = self.timesteps.to(original_samples.device , dtype=torch.floataa )
__lowerCamelCase : Union[str, Any] = timesteps.to(original_samples.device , dtype=torch.floataa )
else:
__lowerCamelCase : Dict = self.timesteps.to(original_samples.device )
__lowerCamelCase : Any = timesteps.to(original_samples.device )
__lowerCamelCase : int = [self.index_for_timestep(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for t in timesteps]
__lowerCamelCase : Optional[int] = sigmas[step_indices].flatten()
while len(sigma.shape ) < len(original_samples.shape ):
__lowerCamelCase : Dict = sigma.unsqueeze(-1 )
__lowerCamelCase : int = original_samples + noise * sigma
return noisy_samples
def __len__( self ) -> Any:
return self.config.num_train_timesteps
| 13 |
'''simple docstring'''
from collections import namedtuple
import requests
from lxml import html # type: ignore
A__ : Tuple = namedtuple("""covid_data""", """cases deaths recovered""")
def UpperCAmelCase__ ( UpperCAmelCase_ : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data:
__lowerCamelCase : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()'
return covid_data(*html.fromstring(requests.get(UpperCAmelCase_ ).content ).xpath(UpperCAmelCase_ ) )
A__ : str = """Total COVID-19 cases in the world: {}
Total deaths due to COVID-19 in the world: {}
Total COVID-19 patients recovered in the world: {}"""
print(fmt.format(*covid_stats()))
| 13 | 1 |
'''simple docstring'''
import torch
from transformers import CamembertForMaskedLM, CamembertTokenizer
def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int]=5 ) -> Optional[Any]:
# Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py
assert masked_input.count('<mask>' ) == 1
__lowerCamelCase : Dict = torch.tensor(tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ).unsqueeze(0 ) # Batch size 1
__lowerCamelCase : Tuple = model(UpperCAmelCase_ )[0] # The last hidden-state is the first element of the output tuple
__lowerCamelCase : Tuple = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item()
__lowerCamelCase : Optional[Any] = logits[0, masked_index, :]
__lowerCamelCase : List[str] = logits.softmax(dim=0 )
__lowerCamelCase , __lowerCamelCase : Tuple = prob.topk(k=UpperCAmelCase_ , dim=0 )
__lowerCamelCase : str = ' '.join(
[tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(UpperCAmelCase_ ) )] )
__lowerCamelCase : Any = tokenizer.mask_token
__lowerCamelCase : Optional[int] = []
for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(' ' ) ):
__lowerCamelCase : str = predicted_token_bpe.replace('\u2581' , ' ' )
if " {0}".format(UpperCAmelCase_ ) in masked_input:
topk_filled_outputs.append(
(
masked_input.replace(' {0}'.format(UpperCAmelCase_ ) , UpperCAmelCase_ ),
values[index].item(),
predicted_token,
) )
else:
topk_filled_outputs.append(
(
masked_input.replace(UpperCAmelCase_ , UpperCAmelCase_ ),
values[index].item(),
predicted_token,
) )
return topk_filled_outputs
A__ : Dict = CamembertTokenizer.from_pretrained("""camembert-base""")
A__ : Union[str, Any] = CamembertForMaskedLM.from_pretrained("""camembert-base""")
model.eval()
A__ : Optional[Any] = """Le camembert est <mask> :)"""
print(fill_mask(masked_input, model, tokenizer, topk=3))
| 13 |
'''simple docstring'''
from __future__ import annotations
import os
from collections.abc import Mapping
A__ : Optional[Any] = tuple[int, int]
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
__lowerCamelCase : set[int] = vertices
__lowerCamelCase : dict[EdgeT, int] = {
(min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ )): weight for edge, weight in edges.items()
}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
__lowerCamelCase : Union[str, Any] = weight
def lowercase_ ( self ) -> Graph:
__lowerCamelCase : Graph = Graph({min(self.vertices )} , {} )
__lowerCamelCase : EdgeT
__lowerCamelCase : int
__lowerCamelCase : EdgeT
__lowerCamelCase : int
while len(subgraph.vertices ) < len(self.vertices ):
__lowerCamelCase : Any = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
__lowerCamelCase : Optional[int] = edge
__lowerCamelCase : List[str] = weight
subgraph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return subgraph
def UpperCAmelCase__ ( UpperCAmelCase_ : str = "p107_network.txt" ) -> int:
__lowerCamelCase : str = os.path.abspath(os.path.dirname(UpperCAmelCase_ ) )
__lowerCamelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : dict[EdgeT, int] = {}
__lowerCamelCase : list[str]
__lowerCamelCase : int
__lowerCamelCase : int
with open(UpperCAmelCase_ ) as f:
__lowerCamelCase : Any = f.read().strip().split('\n' )
__lowerCamelCase : Any = [line.split(',' ) for line in data]
for edgea in range(1 , len(UpperCAmelCase_ ) ):
for edgea in range(UpperCAmelCase_ ):
if adjaceny_matrix[edgea][edgea] != "-":
__lowerCamelCase : int = int(adjaceny_matrix[edgea][edgea] )
__lowerCamelCase : Graph = Graph(set(range(len(UpperCAmelCase_ ) ) ) , UpperCAmelCase_ )
__lowerCamelCase : Graph = graph.prims_algorithm()
__lowerCamelCase : int = sum(graph.edges.values() )
__lowerCamelCase : int = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
A__ : Optional[int] = logging.get_logger(__name__)
@add_end_docstrings(_UpperCAmelCase )
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self , **SCREAMING_SNAKE_CASE_ ) -> List[str]:
super().__init__(**SCREAMING_SNAKE_CASE_ )
if self.framework == "tf":
raise ValueError(f'The {self.__class__} is only available in PyTorch.' )
requires_backends(self , 'vision' )
self.check_model_type(SCREAMING_SNAKE_CASE_ )
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]:
if "text_queries" in kwargs:
__lowerCamelCase : List[Any] = kwargs.pop('text_queries' )
if isinstance(SCREAMING_SNAKE_CASE_ , (str, Image.Image) ):
__lowerCamelCase : str = {'image': image, 'candidate_labels': candidate_labels}
else:
__lowerCamelCase : List[str] = image
__lowerCamelCase : Optional[int] = super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
return results
def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> List[Any]:
__lowerCamelCase : Union[str, Any] = {}
if "threshold" in kwargs:
__lowerCamelCase : Any = kwargs['threshold']
if "top_k" in kwargs:
__lowerCamelCase : Tuple = kwargs['top_k']
return {}, {}, postprocess_params
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase : Union[str, Any] = load_image(inputs['image'] )
__lowerCamelCase : int = inputs['candidate_labels']
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Optional[int] = candidate_labels.split(',' )
__lowerCamelCase : int = torch.tensor([[image.height, image.width]] , dtype=torch.intaa )
for i, candidate_label in enumerate(SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Optional[int] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework )
__lowerCamelCase : str = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework )
yield {
"is_last": i == len(SCREAMING_SNAKE_CASE_ ) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Any:
__lowerCamelCase : Optional[Any] = model_inputs.pop('target_size' )
__lowerCamelCase : List[Any] = model_inputs.pop('candidate_label' )
__lowerCamelCase : List[Any] = model_inputs.pop('is_last' )
__lowerCamelCase : str = self.model(**SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs}
return model_outputs
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=None ) -> Tuple:
__lowerCamelCase : Any = []
for model_output in model_outputs:
__lowerCamelCase : Tuple = model_output['candidate_label']
__lowerCamelCase : str = BaseModelOutput(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = self.image_processor.post_process_object_detection(
outputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ , target_sizes=model_output['target_size'] )[0]
for index in outputs["scores"].nonzero():
__lowerCamelCase : Optional[int] = outputs['scores'][index].item()
__lowerCamelCase : List[Any] = self._get_bounding_box(outputs['boxes'][index][0] )
__lowerCamelCase : Dict = {'score': score, 'label': label, 'box': box}
results.append(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x["score"] , reverse=SCREAMING_SNAKE_CASE_ )
if top_k:
__lowerCamelCase : List[str] = results[:top_k]
return results
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict[str, int]:
if self.framework != "pt":
raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' )
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Union[str, Any] = box.int().tolist()
__lowerCamelCase : Any = {
'xmin': xmin,
'ymin': ymin,
'xmax': xmax,
'ymax': ymax,
}
return bbox
| 13 |
'''simple docstring'''
from collections.abc import Generator
from math import sin
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
if len(UpperCAmelCase_ ) != 32:
raise ValueError('Input must be of length 32' )
__lowerCamelCase : Dict = B''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bytes:
if i < 0:
raise ValueError('Input must be non-negative' )
__lowerCamelCase : Union[str, Any] = format(UpperCAmelCase_ , '08x' )[-8:]
__lowerCamelCase : str = B''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' )
return little_endian_hex
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
__lowerCamelCase : Optional[Any] = B''
for char in message:
bit_string += format(UpperCAmelCase_ , '08b' ).encode('utf-8' )
__lowerCamelCase : List[str] = format(len(UpperCAmelCase_ ) , '064b' ).encode('utf-8' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(UpperCAmelCase_ ) % 5_12 != 4_48:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> Generator[list[int], None, None]:
if len(UpperCAmelCase_ ) % 5_12 != 0:
raise ValueError('Input must have length that\'s a multiple of 512' )
for pos in range(0 , len(UpperCAmelCase_ ) , 5_12 ):
__lowerCamelCase : Any = bit_string[pos : pos + 5_12]
__lowerCamelCase : Optional[int] = []
for i in range(0 , 5_12 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int:
if i < 0:
raise ValueError('Input must be non-negative' )
__lowerCamelCase : List[Any] = format(UpperCAmelCase_ , '032b' )
__lowerCamelCase : Optional[int] = ''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(UpperCAmelCase_ , 2 )
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
return (a + b) % 2**32
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
if i < 0:
raise ValueError('Input must be non-negative' )
if shift < 0:
raise ValueError('Shift must be non-negative' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
__lowerCamelCase : Optional[Any] = preprocess(UpperCAmelCase_ )
__lowerCamelCase : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
__lowerCamelCase : Dict = 0x67_45_23_01
__lowerCamelCase : Union[str, Any] = 0xef_cd_ab_89
__lowerCamelCase : Optional[Any] = 0x98_ba_dc_fe
__lowerCamelCase : Union[str, Any] = 0x10_32_54_76
__lowerCamelCase : List[str] = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(UpperCAmelCase_ ):
__lowerCamelCase : Dict = aa
__lowerCamelCase : Tuple = ba
__lowerCamelCase : List[Any] = ca
__lowerCamelCase : Dict = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
__lowerCamelCase : List[str] = d ^ (b & (c ^ d))
__lowerCamelCase : Optional[int] = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
__lowerCamelCase : Optional[int] = c ^ (d & (b ^ c))
__lowerCamelCase : Tuple = (5 * i + 1) % 16
elif i <= 47:
__lowerCamelCase : str = b ^ c ^ d
__lowerCamelCase : Any = (3 * i + 5) % 16
else:
__lowerCamelCase : Union[str, Any] = c ^ (b | not_aa(UpperCAmelCase_ ))
__lowerCamelCase : int = (7 * i) % 16
__lowerCamelCase : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**32
__lowerCamelCase : Optional[Any] = d
__lowerCamelCase : Tuple = c
__lowerCamelCase : Optional[int] = b
__lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , left_rotate_aa(UpperCAmelCase_ , shift_amounts[i] ) )
# Add hashed chunk to running total
__lowerCamelCase : int = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : str = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : List[Any] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : Dict = reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 | 1 |
'''simple docstring'''
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
A__ : List[str] = {
"""distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
"""roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
"""bert""": (BertConfig, BertForMaskedLM, BertTokenizer),
"""gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> Dict:
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] ) -> Union[str, Any]:
if args.student_type == "roberta":
__lowerCamelCase : List[str] = False
elif args.student_type == "gpt2":
__lowerCamelCase : Any = False
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] ) -> str:
if args.student_type == "roberta":
__lowerCamelCase : Optional[Any] = False
def UpperCAmelCase__ ( ) -> Union[str, Any]:
__lowerCamelCase : Union[str, Any] = argparse.ArgumentParser(description='Training' )
parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' )
parser.add_argument(
'--dump_path' , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='The output directory (log, checkpoints, parameters, etc.)' )
parser.add_argument(
'--data_file' , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , )
parser.add_argument(
'--student_type' , type=UpperCAmelCase_ , choices=['distilbert', 'roberta', 'gpt2'] , required=UpperCAmelCase_ , help='The student type (DistilBERT, RoBERTa).' , )
parser.add_argument('--student_config' , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='Path to the student configuration.' )
parser.add_argument(
'--student_pretrained_weights' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help='Load student initialization checkpoint.' )
parser.add_argument(
'--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=UpperCAmelCase_ , help='Teacher type (BERT, RoBERTa).' )
parser.add_argument('--teacher_name' , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='The teacher model.' )
parser.add_argument('--temperature' , default=2.0 , type=UpperCAmelCase_ , help='Temperature for the softmax temperature.' )
parser.add_argument(
'--alpha_ce' , default=0.5 , type=UpperCAmelCase_ , help='Linear weight for the distillation loss. Must be >=0.' )
parser.add_argument(
'--alpha_mlm' , default=0.0 , type=UpperCAmelCase_ , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , )
parser.add_argument('--alpha_clm' , default=0.5 , type=UpperCAmelCase_ , help='Linear weight for the CLM loss. Must be >=0.' )
parser.add_argument('--alpha_mse' , default=0.0 , type=UpperCAmelCase_ , help='Linear weight of the MSE loss. Must be >=0.' )
parser.add_argument(
'--alpha_cos' , default=0.0 , type=UpperCAmelCase_ , help='Linear weight of the cosine embedding loss. Must be >=0.' )
parser.add_argument(
'--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' )
parser.add_argument(
'--mlm_mask_prop' , default=0.15 , type=UpperCAmelCase_ , help='Proportion of tokens for which we need to make a prediction.' , )
parser.add_argument('--word_mask' , default=0.8 , type=UpperCAmelCase_ , help='Proportion of tokens to mask out.' )
parser.add_argument('--word_keep' , default=0.1 , type=UpperCAmelCase_ , help='Proportion of tokens to keep.' )
parser.add_argument('--word_rand' , default=0.1 , type=UpperCAmelCase_ , help='Proportion of tokens to randomly replace.' )
parser.add_argument(
'--mlm_smoothing' , default=0.7 , type=UpperCAmelCase_ , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , )
parser.add_argument('--token_counts' , type=UpperCAmelCase_ , help='The token counts in the data_file for MLM.' )
parser.add_argument(
'--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , )
parser.add_argument(
'--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , )
parser.add_argument(
'--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , )
parser.add_argument('--n_epoch' , type=UpperCAmelCase_ , default=3 , help='Number of pass on the whole dataset.' )
parser.add_argument('--batch_size' , type=UpperCAmelCase_ , default=5 , help='Batch size (for each process).' )
parser.add_argument(
'--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , )
parser.add_argument(
'--gradient_accumulation_steps' , type=UpperCAmelCase_ , default=50 , help='Gradient accumulation for larger training batches.' , )
parser.add_argument('--warmup_prop' , default=0.05 , type=UpperCAmelCase_ , help='Linear warmup proportion.' )
parser.add_argument('--weight_decay' , default=0.0 , type=UpperCAmelCase_ , help='Weight decay if we apply some.' )
parser.add_argument('--learning_rate' , default=5e-4 , type=UpperCAmelCase_ , help='The initial learning rate for Adam.' )
parser.add_argument('--adam_epsilon' , default=1e-6 , type=UpperCAmelCase_ , help='Epsilon for Adam optimizer.' )
parser.add_argument('--max_grad_norm' , default=5.0 , type=UpperCAmelCase_ , help='Max gradient norm.' )
parser.add_argument('--initializer_range' , default=0.02 , type=UpperCAmelCase_ , help='Random initialization range.' )
parser.add_argument(
'--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , )
parser.add_argument(
'--fp16_opt_level' , type=UpperCAmelCase_ , default='O1' , help=(
'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'
'See details at https://nvidia.github.io/apex/amp.html'
) , )
parser.add_argument('--n_gpu' , type=UpperCAmelCase_ , default=1 , help='Number of GPUs in the node.' )
parser.add_argument('--local_rank' , type=UpperCAmelCase_ , default=-1 , help='Distributed training - Local rank' )
parser.add_argument('--seed' , type=UpperCAmelCase_ , default=56 , help='Random seed' )
parser.add_argument('--log_interval' , type=UpperCAmelCase_ , default=5_00 , help='Tensorboard logging interval.' )
parser.add_argument('--checkpoint_interval' , type=UpperCAmelCase_ , default=40_00 , help='Checkpoint interval.' )
__lowerCamelCase : Optional[int] = parser.parse_args()
sanity_checks(UpperCAmelCase_ )
# ARGS #
init_gpu_params(UpperCAmelCase_ )
set_seed(UpperCAmelCase_ )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
F'Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite'
' itUse `--force` if you want to overwrite it' )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(F'Experiment will be dumped and logged in {args.dump_path}' )
# SAVE PARAMS #
logger.info(F'Param: {args}' )
with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f:
json.dump(vars(UpperCAmelCase_ ) , UpperCAmelCase_ , indent=4 )
git_log(args.dump_path )
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = MODEL_CLASSES[args.student_type]
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
__lowerCamelCase : Tuple = teacher_tokenizer_class.from_pretrained(args.teacher_name )
__lowerCamelCase : int = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
__lowerCamelCase : List[Any] = tokenizer.all_special_tokens.index(UpperCAmelCase_ )
__lowerCamelCase : List[Any] = tokenizer.all_special_ids[idx]
logger.info(F'Special tokens {special_tok_ids}' )
__lowerCamelCase : Dict = special_tok_ids
__lowerCamelCase : Union[str, Any] = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(F'Loading data from {args.data_file}' )
with open(args.data_file , 'rb' ) as fp:
__lowerCamelCase : Any = pickle.load(UpperCAmelCase_ )
if args.mlm:
logger.info(F'Loading token counts from {args.token_counts} (already pre-computed)' )
with open(args.token_counts , 'rb' ) as fp:
__lowerCamelCase : Tuple = pickle.load(UpperCAmelCase_ )
__lowerCamelCase : Tuple = np.maximum(UpperCAmelCase_ , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
__lowerCamelCase : Any = 0.0 # do not predict special tokens
__lowerCamelCase : List[Any] = torch.from_numpy(UpperCAmelCase_ )
else:
__lowerCamelCase : Optional[Any] = None
__lowerCamelCase : Any = LmSeqsDataset(params=UpperCAmelCase_ , data=UpperCAmelCase_ )
logger.info('Data loader created.' )
# STUDENT #
logger.info(F'Loading student config from {args.student_config}' )
__lowerCamelCase : List[Any] = student_config_class.from_pretrained(args.student_config )
__lowerCamelCase : Optional[Any] = True
if args.student_pretrained_weights is not None:
logger.info(F'Loading pretrained weights from {args.student_pretrained_weights}' )
__lowerCamelCase : str = student_model_class.from_pretrained(args.student_pretrained_weights , config=UpperCAmelCase_ )
else:
__lowerCamelCase : Optional[Any] = student_model_class(UpperCAmelCase_ )
if args.n_gpu > 0:
student.to(F'cuda:{args.local_rank}' )
logger.info('Student loaded.' )
# TEACHER #
__lowerCamelCase : Tuple = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=UpperCAmelCase_ )
if args.n_gpu > 0:
teacher.to(F'cuda:{args.local_rank}' )
logger.info(F'Teacher loaded from {args.teacher_name}.' )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(UpperCAmelCase_ , UpperCAmelCase_ )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(UpperCAmelCase_ , UpperCAmelCase_ )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
__lowerCamelCase : Dict = Distiller(
params=UpperCAmelCase_ , dataset=UpperCAmelCase_ , token_probs=UpperCAmelCase_ , student=UpperCAmelCase_ , teacher=UpperCAmelCase_ )
distiller.train()
logger.info('Let\'s go get some drinks.' )
if __name__ == "__main__":
main()
| 13 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : Tuple = logging.get_logger(__name__)
A__ : Dict = {
"""RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""",
"""RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""",
"""RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""",
"""RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""",
"""RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""",
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : List[Any] = 'rwkv'
lowerCamelCase : Any = {'max_position_embeddings': 'context_length'}
def __init__( self , SCREAMING_SNAKE_CASE_=5_02_77 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = vocab_size
__lowerCamelCase : Tuple = context_length
__lowerCamelCase : str = hidden_size
__lowerCamelCase : List[str] = num_hidden_layers
__lowerCamelCase : Any = attention_hidden_size if attention_hidden_size is not None else hidden_size
__lowerCamelCase : Optional[int] = intermediate_size if intermediate_size is not None else 4 * hidden_size
__lowerCamelCase : Optional[Any] = layer_norm_epsilon
__lowerCamelCase : int = rescale_every
__lowerCamelCase : Tuple = use_cache
__lowerCamelCase : int = bos_token_id
__lowerCamelCase : Optional[Any] = eos_token_id
super().__init__(
tie_word_embeddings=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 13 | 1 |
'''simple docstring'''
from collections import namedtuple
import requests
from lxml import html # type: ignore
A__ : Tuple = namedtuple("""covid_data""", """cases deaths recovered""")
def UpperCAmelCase__ ( UpperCAmelCase_ : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data:
__lowerCamelCase : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()'
return covid_data(*html.fromstring(requests.get(UpperCAmelCase_ ).content ).xpath(UpperCAmelCase_ ) )
A__ : str = """Total COVID-19 cases in the world: {}
Total deaths due to COVID-19 in the world: {}
Total COVID-19 patients recovered in the world: {}"""
print(fmt.format(*covid_stats()))
| 13 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 10_00 ) -> int:
__lowerCamelCase : Union[str, Any] = 3
__lowerCamelCase : Dict = 0
while a < n:
if a % 3 == 0 or a % 5 == 0:
result += a
elif a % 15 == 0:
result -= a
a += 1
return result
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
A__ : str = list[list[float | int]]
def UpperCAmelCase__ ( UpperCAmelCase_ : Matrix , UpperCAmelCase_ : Matrix ) -> Matrix:
__lowerCamelCase : int = len(UpperCAmelCase_ )
__lowerCamelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(UpperCAmelCase_ )]
__lowerCamelCase : int
__lowerCamelCase : int
__lowerCamelCase : int
__lowerCamelCase : int
__lowerCamelCase : int
__lowerCamelCase : float
for row in range(UpperCAmelCase_ ):
for col in range(UpperCAmelCase_ ):
__lowerCamelCase : Union[str, Any] = matrix[row][col]
__lowerCamelCase : Optional[Any] = vector[row][0]
__lowerCamelCase : int = 0
__lowerCamelCase : Optional[Any] = 0
while row < size and col < size:
# pivoting
__lowerCamelCase : int = max((abs(augmented[rowa][col] ), rowa) for rowa in range(UpperCAmelCase_ , UpperCAmelCase_ ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
__lowerCamelCase , __lowerCamelCase : Optional[int] = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , UpperCAmelCase_ ):
__lowerCamelCase : List[Any] = augmented[rowa][col] / augmented[row][col]
__lowerCamelCase : Dict = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , UpperCAmelCase_ ):
for row in range(UpperCAmelCase_ ):
__lowerCamelCase : Optional[int] = augmented[row][col] / augmented[col][col]
for cola in range(UpperCAmelCase_ , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(UpperCAmelCase_ )
]
def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] ) -> Callable[[int], int]:
__lowerCamelCase : int = len(UpperCAmelCase_ )
__lowerCamelCase : Matrix = [[0 for _ in range(UpperCAmelCase_ )] for _ in range(UpperCAmelCase_ )]
__lowerCamelCase : Matrix = [[0] for _ in range(UpperCAmelCase_ )]
__lowerCamelCase : Matrix
__lowerCamelCase : int
__lowerCamelCase : int
__lowerCamelCase : int
for x_val, y_val in enumerate(UpperCAmelCase_ ):
for col in range(UpperCAmelCase_ ):
__lowerCamelCase : str = (x_val + 1) ** (size - col - 1)
__lowerCamelCase : str = y_val
__lowerCamelCase : Dict = solve(UpperCAmelCase_ , UpperCAmelCase_ )
def interpolated_func(UpperCAmelCase_ : int ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(UpperCAmelCase_ ) )
return interpolated_func
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int:
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def UpperCAmelCase__ ( UpperCAmelCase_ : Callable[[int], int] = question_function , UpperCAmelCase_ : int = 10 ) -> int:
__lowerCamelCase : list[int] = [func(UpperCAmelCase_ ) for x_val in range(1 , order + 1 )]
__lowerCamelCase : list[Callable[[int], int]] = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
__lowerCamelCase : int = 0
__lowerCamelCase : Callable[[int], int]
__lowerCamelCase : int
for poly in polynomials:
__lowerCamelCase : Optional[Any] = 1
while func(UpperCAmelCase_ ) == poly(UpperCAmelCase_ ):
x_val += 1
ret += poly(UpperCAmelCase_ )
return ret
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Dict = XGLMConfig
lowerCamelCase : List[str] = {}
lowerCamelCase : Union[str, Any] = 'gelu'
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Any:
__lowerCamelCase : int = parent
__lowerCamelCase : Optional[int] = batch_size
__lowerCamelCase : Optional[Any] = seq_length
__lowerCamelCase : Optional[int] = is_training
__lowerCamelCase : str = use_input_mask
__lowerCamelCase : Dict = use_labels
__lowerCamelCase : Union[str, Any] = vocab_size
__lowerCamelCase : List[Any] = d_model
__lowerCamelCase : List[Any] = num_hidden_layers
__lowerCamelCase : List[Any] = num_attention_heads
__lowerCamelCase : Optional[Any] = ffn_dim
__lowerCamelCase : List[Any] = activation_function
__lowerCamelCase : List[Any] = activation_dropout
__lowerCamelCase : List[Any] = attention_dropout
__lowerCamelCase : Union[str, Any] = max_position_embeddings
__lowerCamelCase : Tuple = initializer_range
__lowerCamelCase : int = None
__lowerCamelCase : int = 0
__lowerCamelCase : Tuple = 2
__lowerCamelCase : Tuple = 1
def lowercase_ ( self ) -> Any:
return XGLMConfig.from_pretrained('facebook/xglm-564M' )
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : Optional[Any] = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
__lowerCamelCase : Optional[int] = None
if self.use_input_mask:
__lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCamelCase : str = self.get_config()
__lowerCamelCase : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def lowercase_ ( self ) -> Optional[int]:
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=SCREAMING_SNAKE_CASE_ , )
def lowercase_ ( self ) -> str:
__lowerCamelCase : List[Any] = self.prepare_config_and_inputs()
(
(
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) ,
) : str = config_and_inputs
__lowerCamelCase : Union[str, Any] = {
'input_ids': input_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_tf
class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
lowerCamelCase : List[Any] = (TFXGLMForCausalLM,) if is_tf_available() else ()
lowerCamelCase : Any = (
{'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {}
)
lowerCamelCase : List[Any] = False
lowerCamelCase : Dict = False
lowerCamelCase : Union[str, Any] = False
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : str = TFXGLMModelTester(self )
__lowerCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , n_embd=37 )
def lowercase_ ( self ) -> Dict:
self.config_tester.run_common_tests()
@slow
def lowercase_ ( self ) -> Optional[int]:
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCamelCase : Optional[Any] = TFXGLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' )
def lowercase_ ( self ) -> Any:
super().test_resize_token_embeddings()
@require_tf
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
@slow
def lowercase_ ( self , SCREAMING_SNAKE_CASE_=True ) -> List[str]:
__lowerCamelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : int = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
__lowerCamelCase : Optional[int] = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81]
# fmt: on
__lowerCamelCase : Any = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE_ )
@slow
def lowercase_ ( self ) -> int:
__lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
tf.random.set_seed(0 )
__lowerCamelCase : List[Any] = tokenizer('Today is a nice day and' , return_tensors='tf' )
__lowerCamelCase : int = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(':/CPU:0' ):
__lowerCamelCase : Tuple = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , seed=[7, 0] )
__lowerCamelCase : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = (
'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due'
)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@slow
def lowercase_ ( self ) -> int:
__lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : Any = 'left'
# use different length sentences to test batching
__lowerCamelCase : Any = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When',
'Hello, my dog is a little',
]
__lowerCamelCase : Any = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='tf' , padding=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = inputs['input_ids']
__lowerCamelCase : str = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 )
__lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids
__lowerCamelCase : int = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 )
__lowerCamelCase : Optional[Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids
__lowerCamelCase : Optional[Any] = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 )
__lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be '
'a single',
'Hello, my dog is a little bit of a shy one, but he is very friendly',
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [non_padded_sentence, padded_sentence] )
| 13 | 1 |
'''simple docstring'''
import sys
from collections import defaultdict
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self ) -> int:
__lowerCamelCase : Any = []
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Any:
return self.node_position[vertex]
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple:
__lowerCamelCase : Optional[int] = pos
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
__lowerCamelCase : str = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
__lowerCamelCase : Optional[Any] = 2 * start + 1
else:
__lowerCamelCase : int = 2 * start + 2
if heap[smallest_child] < heap[start]:
__lowerCamelCase , __lowerCamelCase : Optional[Any] = heap[smallest_child], positions[smallest_child]
__lowerCamelCase , __lowerCamelCase : int = (
heap[start],
positions[start],
)
__lowerCamelCase , __lowerCamelCase : str = temp, tempa
__lowerCamelCase : Dict = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , SCREAMING_SNAKE_CASE_ )
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any:
__lowerCamelCase : Any = position[index]
while index != 0:
__lowerCamelCase : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
__lowerCamelCase : Union[str, Any] = heap[parent]
__lowerCamelCase : Any = position[parent]
self.set_position(position[parent] , SCREAMING_SNAKE_CASE_ )
else:
__lowerCamelCase : Tuple = val
__lowerCamelCase : List[str] = temp
self.set_position(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
break
__lowerCamelCase : Tuple = parent
else:
__lowerCamelCase : Union[str, Any] = val
__lowerCamelCase : Tuple = temp
self.set_position(SCREAMING_SNAKE_CASE_ , 0 )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
__lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) // 2 - 1
for i in range(SCREAMING_SNAKE_CASE_ , -1 , -1 ):
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
__lowerCamelCase : Any = positions[0]
__lowerCamelCase : Union[str, Any] = sys.maxsize
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
return temp
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> str:
__lowerCamelCase : List[Any] = Heap()
__lowerCamelCase : Optional[int] = [0] * len(UpperCAmelCase_ )
__lowerCamelCase : str = [-1] * len(UpperCAmelCase_ ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
__lowerCamelCase : List[str] = [] # Heap of Distance of vertices from their neighboring vertex
__lowerCamelCase : Tuple = []
for vertex in range(len(UpperCAmelCase_ ) ):
distance_tv.append(sys.maxsize )
positions.append(UpperCAmelCase_ )
heap.node_position.append(UpperCAmelCase_ )
__lowerCamelCase : Tuple = []
__lowerCamelCase : Dict = 1
__lowerCamelCase : str = sys.maxsize
for neighbor, distance in adjacency_list[0]:
__lowerCamelCase : Any = 0
__lowerCamelCase : Any = distance
heap.heapify(UpperCAmelCase_ , UpperCAmelCase_ )
for _ in range(1 , len(UpperCAmelCase_ ) ):
__lowerCamelCase : List[Any] = heap.delete_minimum(UpperCAmelCase_ , UpperCAmelCase_ )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
__lowerCamelCase : Union[str, Any] = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(UpperCAmelCase_ )]
):
__lowerCamelCase : Dict = distance
heap.bottom_to_top(
UpperCAmelCase_ , heap.get_position(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : str = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
A__ : Tuple = int(input("""Enter number of edges: """).strip())
A__ : str = defaultdict(list)
for _ in range(edges_number):
A__ : Optional[int] = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 13 |
'''simple docstring'''
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : List[str] = logging.get_logger(__name__)
# TODO Update this
A__ : Tuple = {
"""facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""",
# See all ESM models at https://huggingface.co/models?filter=esm
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Tuple = 'esm'
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10_26 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]:
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , mask_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = vocab_size
__lowerCamelCase : List[Any] = hidden_size
__lowerCamelCase : str = num_hidden_layers
__lowerCamelCase : List[str] = num_attention_heads
__lowerCamelCase : Any = intermediate_size
__lowerCamelCase : Optional[Any] = hidden_dropout_prob
__lowerCamelCase : Tuple = attention_probs_dropout_prob
__lowerCamelCase : Optional[int] = max_position_embeddings
__lowerCamelCase : str = initializer_range
__lowerCamelCase : Optional[int] = layer_norm_eps
__lowerCamelCase : List[str] = position_embedding_type
__lowerCamelCase : int = use_cache
__lowerCamelCase : Optional[Any] = emb_layer_norm_before
__lowerCamelCase : Optional[Any] = token_dropout
__lowerCamelCase : str = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info('No esmfold_config supplied for folding model, using default values.' )
__lowerCamelCase : Dict = EsmFoldConfig()
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Optional[int] = EsmFoldConfig(**SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = esmfold_config
if vocab_list is None:
logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' )
__lowerCamelCase : List[str] = get_default_vocab_list()
else:
__lowerCamelCase : Optional[Any] = vocab_list
else:
__lowerCamelCase : Dict = None
__lowerCamelCase : Optional[Any] = None
if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , SCREAMING_SNAKE_CASE_ ):
raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : Any = super().to_dict()
if isinstance(self.esmfold_config , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : int = self.esmfold_config.to_dict()
return output
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : str = None
lowerCamelCase : bool = True
lowerCamelCase : bool = False
lowerCamelCase : bool = False
lowerCamelCase : bool = False
lowerCamelCase : float = 0
lowerCamelCase : bool = True
lowerCamelCase : bool = False
lowerCamelCase : int = 1_2_8
lowerCamelCase : "TrunkConfig" = None
def lowercase_ ( self ) -> Any:
if self.trunk is None:
__lowerCamelCase : List[str] = TrunkConfig()
elif isinstance(self.trunk , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Any = TrunkConfig(**self.trunk )
def lowercase_ ( self ) -> int:
__lowerCamelCase : Optional[int] = asdict(self )
__lowerCamelCase : str = self.trunk.to_dict()
return output
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : int = 4_8
lowerCamelCase : int = 1_0_2_4
lowerCamelCase : int = 1_2_8
lowerCamelCase : int = 3_2
lowerCamelCase : int = 3_2
lowerCamelCase : int = 3_2
lowerCamelCase : float = 0
lowerCamelCase : float = 0
lowerCamelCase : bool = False
lowerCamelCase : int = 4
lowerCamelCase : Optional[int] = 1_2_8
lowerCamelCase : "StructureModuleConfig" = None
def lowercase_ ( self ) -> Optional[int]:
if self.structure_module is None:
__lowerCamelCase : Dict = StructureModuleConfig()
elif isinstance(self.structure_module , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Optional[Any] = StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
'`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got'
f' {self.sequence_state_dim} and {self.sequence_state_dim}.' )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
'`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got'
f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' )
__lowerCamelCase : Tuple = self.sequence_state_dim // self.sequence_head_width
__lowerCamelCase : str = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
'`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got'
f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
'`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got'
f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' )
if self.dropout >= 0.4:
raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' )
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : List[str] = asdict(self )
__lowerCamelCase : int = self.structure_module.to_dict()
return output
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : int = 3_8_4
lowerCamelCase : int = 1_2_8
lowerCamelCase : int = 1_6
lowerCamelCase : int = 1_2_8
lowerCamelCase : int = 1_2
lowerCamelCase : int = 4
lowerCamelCase : int = 8
lowerCamelCase : float = 0.1
lowerCamelCase : int = 8
lowerCamelCase : int = 1
lowerCamelCase : int = 2
lowerCamelCase : int = 7
lowerCamelCase : int = 1_0
lowerCamelCase : float = 1e-8
lowerCamelCase : float = 1e5
def lowercase_ ( self ) -> Any:
return asdict(self )
def UpperCAmelCase__ ( ) -> Optional[Any]:
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 13 | 1 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int:
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
__lowerCamelCase : Union[str, Any] = F'Input value of [number={number}] must be an integer'
raise TypeError(UpperCAmelCase_ )
if number < 1:
__lowerCamelCase : Tuple = F'Input value of [number={number}] must be > 0'
raise ValueError(UpperCAmelCase_ )
__lowerCamelCase : Optional[int] = 1
for i in range(1 , UpperCAmelCase_ ):
current_number *= 4 * i - 2
current_number //= i + 1
return current_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
A__ : dict[tuple[int, int, int], int] = {}
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
# if we are absent twice, or late 3 consecutive days,
# no further prize strings are possible
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
__lowerCamelCase : List[Any] = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
__lowerCamelCase : Tuple = _calculate(days - 1 , UpperCAmelCase_ , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
__lowerCamelCase : int = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
__lowerCamelCase : List[Any] = _calculate(days - 1 , UpperCAmelCase_ , 0 )
__lowerCamelCase : Optional[int] = state_late + state_absent + state_ontime
__lowerCamelCase : Union[str, Any] = prizestrings
return prizestrings
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 30 ) -> int:
return _calculate(UpperCAmelCase_ , absent=0 , late=0 )
if __name__ == "__main__":
print(solution())
| 13 | 1 |
'''simple docstring'''
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
A__ : Tuple = logging.get_logger(__name__)
A__ : int = {
"""vocab_file""": """vocab.json""",
"""merges_file""": """merges.txt""",
"""tokenizer_config_file""": """tokenizer_config.json""",
}
A__ : List[Any] = {
"""vocab_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"""
},
"""merges_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"""
},
"""tokenizer_config_file""": {
"""facebook/blenderbot_small-90M""": (
"""https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"""
)
},
}
A__ : Tuple = {"""facebook/blenderbot_small-90M""": 512}
def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> List[Any]:
__lowerCamelCase : Dict = set()
__lowerCamelCase : Optional[int] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__lowerCamelCase : Optional[Any] = char
__lowerCamelCase : str = set(UpperCAmelCase_ )
return pairs
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : List[Any] = VOCAB_FILES_NAMES
lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : List[Any] = ['input_ids', 'attention_mask']
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="__start__" , SCREAMING_SNAKE_CASE_="__end__" , SCREAMING_SNAKE_CASE_="__unk__" , SCREAMING_SNAKE_CASE_="__null__" , **SCREAMING_SNAKE_CASE_ , ) -> int:
super().__init__(unk_token=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
with open(SCREAMING_SNAKE_CASE_ , encoding='utf-8' ) as vocab_handle:
__lowerCamelCase : Tuple = json.load(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()}
with open(SCREAMING_SNAKE_CASE_ , encoding='utf-8' ) as merges_handle:
__lowerCamelCase : Dict = merges_handle.read().split('\n' )[1:-1]
__lowerCamelCase : int = [tuple(merge.split() ) for merge in merges]
__lowerCamelCase : Optional[int] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
__lowerCamelCase : Any = {}
@property
def lowercase_ ( self ) -> int:
return len(self.encoder )
def lowercase_ ( self ) -> Dict:
return dict(self.encoder , **self.added_tokens_encoder )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> str:
if token in self.cache:
return self.cache[token]
__lowerCamelCase : Dict = re.sub('([.,!?()])' , r' \1' , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = re.sub('(\')' , r' \1 ' , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = re.sub(r'\s{2,}' , ' ' , SCREAMING_SNAKE_CASE_ )
if "\n" in token:
__lowerCamelCase : List[str] = token.replace('\n' , ' __newln__' )
__lowerCamelCase : Dict = token.split(' ' )
__lowerCamelCase : List[str] = []
for token in tokens:
if not len(SCREAMING_SNAKE_CASE_ ):
continue
__lowerCamelCase : Optional[int] = token.lower()
__lowerCamelCase : List[str] = tuple(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = tuple(list(word[:-1] ) + [word[-1] + '</w>'] )
__lowerCamelCase : List[Any] = get_pairs(SCREAMING_SNAKE_CASE_ )
if not pairs:
words.append(SCREAMING_SNAKE_CASE_ )
continue
while True:
__lowerCamelCase : List[Any] = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
__lowerCamelCase , __lowerCamelCase : Optional[int] = bigram
__lowerCamelCase : Tuple = []
__lowerCamelCase : Dict = 0
while i < len(SCREAMING_SNAKE_CASE_ ):
try:
__lowerCamelCase : Any = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
new_word.extend(word[i:j] )
__lowerCamelCase : Optional[Any] = j
except ValueError:
new_word.extend(word[i:] )
break
if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__lowerCamelCase : str = tuple(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = new_word
if len(SCREAMING_SNAKE_CASE_ ) == 1:
break
else:
__lowerCamelCase : List[str] = get_pairs(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = '@@ '.join(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = word[:-4]
__lowerCamelCase : Union[str, Any] = word
words.append(SCREAMING_SNAKE_CASE_ )
return " ".join(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase : Optional[Any] = []
__lowerCamelCase : List[str] = re.findall(r'\S+\n?' , SCREAMING_SNAKE_CASE_ )
for token in words:
split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE_ ).split(' ' ) ) )
return split_tokens
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> int:
__lowerCamelCase : List[str] = token.lower()
return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> str:
return self.decoder.get(SCREAMING_SNAKE_CASE_ , self.unk_token )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> str:
__lowerCamelCase : Tuple = ' '.join(SCREAMING_SNAKE_CASE_ ).replace('@@ ' , '' ).strip()
return out_string
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]:
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
__lowerCamelCase : Dict = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
__lowerCamelCase : Dict = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '\n' )
__lowerCamelCase : int = 0
with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ):
if index != token_index:
logger.warning(
f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
' Please check that the tokenizer is not corrupted!' )
__lowerCamelCase : int = token_index
writer.write(' '.join(SCREAMING_SNAKE_CASE_ ) + '\n' )
index += 1
return vocab_file, merge_file
| 13 |
'''simple docstring'''
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
A__ : Any = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""")
@total_ordering
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : str
lowerCamelCase : Optional[str] = None
lowerCamelCase : Optional[Union[str, int]] = None
lowerCamelCase : Optional[Union[str, int]] = None
lowerCamelCase : Optional[Union[str, int]] = None
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = _str_to_version_tuple(self.version_str )
def __repr__( self ) -> Any:
return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}'
@property
def lowercase_ ( self ) -> int:
return self.major, self.minor, self.patch
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return Version(SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return other
raise TypeError(f'{other} (type {type(SCREAMING_SNAKE_CASE_ )}) cannot be compared to version.' )
def __eq__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
try:
__lowerCamelCase : Union[str, Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
__lowerCamelCase : List[Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ )
return self.tuple < other.tuple
def __hash__( self ) -> List[str]:
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase : str = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def lowercase_ ( self ) -> str:
return self.version_str
def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> str:
__lowerCamelCase : str = _VERSION_REG.match(UpperCAmelCase_ )
if not res:
raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' )
return tuple(int(UpperCAmelCase_ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] )
def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] ) -> Dict:
return ".".join(str(UpperCAmelCase_ ) for v in version_tuple )
| 13 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : Tuple = logging.get_logger(__name__)
A__ : Dict = {
"""RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""",
"""RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""",
"""RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""",
"""RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""",
"""RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""",
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : List[Any] = 'rwkv'
lowerCamelCase : Any = {'max_position_embeddings': 'context_length'}
def __init__( self , SCREAMING_SNAKE_CASE_=5_02_77 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = vocab_size
__lowerCamelCase : Tuple = context_length
__lowerCamelCase : str = hidden_size
__lowerCamelCase : List[str] = num_hidden_layers
__lowerCamelCase : Any = attention_hidden_size if attention_hidden_size is not None else hidden_size
__lowerCamelCase : Optional[int] = intermediate_size if intermediate_size is not None else 4 * hidden_size
__lowerCamelCase : Optional[Any] = layer_norm_epsilon
__lowerCamelCase : int = rescale_every
__lowerCamelCase : Tuple = use_cache
__lowerCamelCase : int = bos_token_id
__lowerCamelCase : Optional[Any] = eos_token_id
super().__init__(
tie_word_embeddings=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 13 |
'''simple docstring'''
import sys
from collections import defaultdict
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self ) -> int:
__lowerCamelCase : Any = []
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Any:
return self.node_position[vertex]
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple:
__lowerCamelCase : Optional[int] = pos
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
__lowerCamelCase : str = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
__lowerCamelCase : Optional[Any] = 2 * start + 1
else:
__lowerCamelCase : int = 2 * start + 2
if heap[smallest_child] < heap[start]:
__lowerCamelCase , __lowerCamelCase : Optional[Any] = heap[smallest_child], positions[smallest_child]
__lowerCamelCase , __lowerCamelCase : int = (
heap[start],
positions[start],
)
__lowerCamelCase , __lowerCamelCase : str = temp, tempa
__lowerCamelCase : Dict = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , SCREAMING_SNAKE_CASE_ )
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any:
__lowerCamelCase : Any = position[index]
while index != 0:
__lowerCamelCase : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
__lowerCamelCase : Union[str, Any] = heap[parent]
__lowerCamelCase : Any = position[parent]
self.set_position(position[parent] , SCREAMING_SNAKE_CASE_ )
else:
__lowerCamelCase : Tuple = val
__lowerCamelCase : List[str] = temp
self.set_position(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
break
__lowerCamelCase : Tuple = parent
else:
__lowerCamelCase : Union[str, Any] = val
__lowerCamelCase : Tuple = temp
self.set_position(SCREAMING_SNAKE_CASE_ , 0 )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
__lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) // 2 - 1
for i in range(SCREAMING_SNAKE_CASE_ , -1 , -1 ):
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
__lowerCamelCase : Any = positions[0]
__lowerCamelCase : Union[str, Any] = sys.maxsize
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
return temp
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> str:
__lowerCamelCase : List[Any] = Heap()
__lowerCamelCase : Optional[int] = [0] * len(UpperCAmelCase_ )
__lowerCamelCase : str = [-1] * len(UpperCAmelCase_ ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
__lowerCamelCase : List[str] = [] # Heap of Distance of vertices from their neighboring vertex
__lowerCamelCase : Tuple = []
for vertex in range(len(UpperCAmelCase_ ) ):
distance_tv.append(sys.maxsize )
positions.append(UpperCAmelCase_ )
heap.node_position.append(UpperCAmelCase_ )
__lowerCamelCase : Tuple = []
__lowerCamelCase : Dict = 1
__lowerCamelCase : str = sys.maxsize
for neighbor, distance in adjacency_list[0]:
__lowerCamelCase : Any = 0
__lowerCamelCase : Any = distance
heap.heapify(UpperCAmelCase_ , UpperCAmelCase_ )
for _ in range(1 , len(UpperCAmelCase_ ) ):
__lowerCamelCase : List[Any] = heap.delete_minimum(UpperCAmelCase_ , UpperCAmelCase_ )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
__lowerCamelCase : Union[str, Any] = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(UpperCAmelCase_ )]
):
__lowerCamelCase : Dict = distance
heap.bottom_to_top(
UpperCAmelCase_ , heap.get_position(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : str = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
A__ : Tuple = int(input("""Enter number of edges: """).strip())
A__ : str = defaultdict(list)
for _ in range(edges_number):
A__ : Optional[int] = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 13 | 1 |
'''simple docstring'''
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 13 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00 ) -> int:
__lowerCamelCase : Union[str, Any] = n * (n + 1) * (2 * n + 1) / 6
__lowerCamelCase : Union[str, Any] = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
from typing import Optional
import numpy as np
import torch
from torch import nn
from transformers import GPTaConfig, GPTaLMHeadModel
from transformers.modeling_utils import ModuleUtilsMixin
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Any = [r'h\.\d+\.attn\.bias', r'h\.\d+\.attn\.masked_bias']
@register_to_config
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 5_02_57 , SCREAMING_SNAKE_CASE_ = 10_24 , SCREAMING_SNAKE_CASE_ = 7_68 , SCREAMING_SNAKE_CASE_ = 12 , SCREAMING_SNAKE_CASE_ = 12 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "gelu_new" , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 1E-5 , SCREAMING_SNAKE_CASE_ = 0.0_2 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , ) -> Tuple:
super().__init__()
__lowerCamelCase : int = prefix_length
if prefix_inner_dim != n_embd and prefix_hidden_dim is None:
raise ValueError(
f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and'
f' `n_embd`: {n_embd} are not equal.' )
__lowerCamelCase : List[Any] = prefix_inner_dim
__lowerCamelCase : Any = prefix_hidden_dim
__lowerCamelCase : Dict = (
nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim )
if self.prefix_hidden_dim is not None
else nn.Identity()
)
__lowerCamelCase : Dict = (
nn.Linear(self.prefix_hidden_dim , SCREAMING_SNAKE_CASE_ ) if self.prefix_hidden_dim is not None else nn.Identity()
)
__lowerCamelCase : str = GPTaConfig(
vocab_size=SCREAMING_SNAKE_CASE_ , n_positions=SCREAMING_SNAKE_CASE_ , n_embd=SCREAMING_SNAKE_CASE_ , n_layer=SCREAMING_SNAKE_CASE_ , n_head=SCREAMING_SNAKE_CASE_ , n_inner=SCREAMING_SNAKE_CASE_ , activation_function=SCREAMING_SNAKE_CASE_ , resid_pdrop=SCREAMING_SNAKE_CASE_ , embd_pdrop=SCREAMING_SNAKE_CASE_ , attn_pdrop=SCREAMING_SNAKE_CASE_ , layer_norm_epsilon=SCREAMING_SNAKE_CASE_ , initializer_range=SCREAMING_SNAKE_CASE_ , scale_attn_weights=SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ , scale_attn_by_inverse_layer_idx=SCREAMING_SNAKE_CASE_ , reorder_and_upcast_attn=SCREAMING_SNAKE_CASE_ , )
__lowerCamelCase : Dict = GPTaLMHeadModel(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , ) -> List[str]:
__lowerCamelCase : Any = self.transformer.transformer.wte(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = self.encode_prefix(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[str] = self.decode_prefix(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = torch.cat((prefix_embeds, embedding_text) , dim=1 )
if labels is not None:
__lowerCamelCase : Union[str, Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device )
__lowerCamelCase : Optional[Any] = torch.cat((dummy_token, input_ids) , dim=1 )
__lowerCamelCase : Union[str, Any] = self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )
if self.prefix_hidden_dim is not None:
return out, hidden
else:
return out
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> torch.Tensor:
return torch.zeros(SCREAMING_SNAKE_CASE_ , self.prefix_length , dtype=torch.intaa , device=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
return self.encode_prefix(SCREAMING_SNAKE_CASE_ )
@torch.no_grad()
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
__lowerCamelCase : int = torch.split(SCREAMING_SNAKE_CASE_ , 1 , dim=0 )
__lowerCamelCase : List[str] = []
__lowerCamelCase : Tuple = []
for feature in features:
__lowerCamelCase : List[str] = self.decode_prefix(feature.to(SCREAMING_SNAKE_CASE_ ) ) # back to the clip feature
# Only support beam search for now
__lowerCamelCase , __lowerCamelCase : int = self.generate_beam(
input_embeds=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ )
generated_tokens.append(output_tokens[0] )
generated_seq_lengths.append(seq_lengths[0] )
__lowerCamelCase : Optional[Any] = torch.stack(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = torch.stack(SCREAMING_SNAKE_CASE_ )
return generated_tokens, generated_seq_lengths
@torch.no_grad()
def lowercase_ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = 5 , SCREAMING_SNAKE_CASE_ = 67 , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = None , ) -> Union[str, Any]:
__lowerCamelCase : Dict = eos_token_id
__lowerCamelCase : Dict = None
__lowerCamelCase : List[str] = None
__lowerCamelCase : Tuple = torch.ones(SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , dtype=torch.int )
__lowerCamelCase : Dict = torch.zeros(SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , dtype=torch.bool )
if input_embeds is not None:
__lowerCamelCase : Any = input_embeds
else:
__lowerCamelCase : Dict = self.transformer.transformer.wte(SCREAMING_SNAKE_CASE_ )
for i in range(SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Tuple = self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = outputs.logits
__lowerCamelCase : Tuple = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
__lowerCamelCase : Optional[int] = logits.softmax(-1 ).log()
if scores is None:
__lowerCamelCase , __lowerCamelCase : Dict = logits.topk(SCREAMING_SNAKE_CASE_ , -1 )
__lowerCamelCase : Union[str, Any] = generated.expand(SCREAMING_SNAKE_CASE_ , *generated.shape[1:] )
__lowerCamelCase , __lowerCamelCase : Union[str, Any] = next_tokens.permute(1 , 0 ), scores.squeeze(0 )
if tokens is None:
__lowerCamelCase : Optional[int] = next_tokens
else:
__lowerCamelCase : int = tokens.expand(SCREAMING_SNAKE_CASE_ , *tokens.shape[1:] )
__lowerCamelCase : Any = torch.cat((tokens, next_tokens) , dim=1 )
else:
__lowerCamelCase : Optional[int] = -float(np.inf )
__lowerCamelCase : Union[str, Any] = 0
__lowerCamelCase : str = scores[:, None] + logits
seq_lengths[~is_stopped] += 1
__lowerCamelCase : int = scores_sum / seq_lengths[:, None]
__lowerCamelCase , __lowerCamelCase : Optional[int] = scores_sum_average.view(-1 ).topk(SCREAMING_SNAKE_CASE_ , -1 )
__lowerCamelCase : int = next_tokens // scores_sum.shape[1]
__lowerCamelCase : List[str] = seq_lengths[next_tokens_source]
__lowerCamelCase : Optional[int] = next_tokens % scores_sum.shape[1]
__lowerCamelCase : Tuple = next_tokens.unsqueeze(1 )
__lowerCamelCase : List[str] = tokens[next_tokens_source]
__lowerCamelCase : Tuple = torch.cat((tokens, next_tokens) , dim=1 )
__lowerCamelCase : int = generated[next_tokens_source]
__lowerCamelCase : Optional[Any] = scores_sum_average * seq_lengths
__lowerCamelCase : str = is_stopped[next_tokens_source]
__lowerCamelCase : List[Any] = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 )
__lowerCamelCase : Any = torch.cat((generated, next_token_embed) , dim=1 )
__lowerCamelCase : Dict = is_stopped + next_tokens.eq(SCREAMING_SNAKE_CASE_ ).squeeze()
if is_stopped.all():
break
__lowerCamelCase : Tuple = scores / seq_lengths
__lowerCamelCase : Tuple = scores.argsort(descending=SCREAMING_SNAKE_CASE_ )
# tokens tensors are already padded to max_seq_length
__lowerCamelCase : Union[str, Any] = [tokens[i] for i in order]
__lowerCamelCase : List[Any] = torch.stack(SCREAMING_SNAKE_CASE_ , dim=0 )
__lowerCamelCase : int = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype )
return output_texts, seq_lengths
| 13 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Optional[int]:
__lowerCamelCase : Optional[int] = parent
__lowerCamelCase : Dict = batch_size
__lowerCamelCase : int = image_size
__lowerCamelCase : List[str] = patch_size
__lowerCamelCase : Optional[int] = num_channels
__lowerCamelCase : Any = is_training
__lowerCamelCase : Dict = use_labels
__lowerCamelCase : List[Any] = hidden_size
__lowerCamelCase : List[Any] = num_hidden_layers
__lowerCamelCase : Optional[Any] = num_attention_heads
__lowerCamelCase : Dict = intermediate_size
__lowerCamelCase : Union[str, Any] = hidden_act
__lowerCamelCase : Optional[int] = hidden_dropout_prob
__lowerCamelCase : Tuple = attention_probs_dropout_prob
__lowerCamelCase : str = type_sequence_label_size
__lowerCamelCase : List[str] = initializer_range
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__lowerCamelCase : str = (image_size // patch_size) ** 2
__lowerCamelCase : Optional[int] = num_patches + 1
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowerCamelCase : Optional[int] = ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , )
return config, pixel_values
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
__lowerCamelCase : Union[str, Any] = FlaxViTModel(config=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = model(SCREAMING_SNAKE_CASE_ )
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
__lowerCamelCase : str = (self.image_size, self.image_size)
__lowerCamelCase : str = (self.patch_size, self.patch_size)
__lowerCamelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str:
__lowerCamelCase : Tuple = self.type_sequence_label_size
__lowerCamelCase : Any = FlaxViTForImageClassification(config=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__lowerCamelCase : List[str] = 1
__lowerCamelCase : List[Any] = FlaxViTForImageClassification(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : List[Any] = self.prepare_config_and_inputs()
(
(
__lowerCamelCase
) , (
__lowerCamelCase
) ,
) : int = config_and_inputs
__lowerCamelCase : Union[str, Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_flax
class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : str = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()
def lowercase_ ( self ) -> None:
__lowerCamelCase : str = FlaxViTModelTester(self )
__lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 )
def lowercase_ ( self ) -> List[Any]:
self.config_tester.run_common_tests()
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase : List[str] = [*signature.parameters.keys()]
__lowerCamelCase : Optional[int] = ['pixel_values']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowerCamelCase : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ )
@jax.jit
def model_jitted(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return model(pixel_values=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
with self.subTest('JIT Enabled' ):
__lowerCamelCase : Optional[int] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
__lowerCamelCase : Union[str, Any] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) )
for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowercase_ ( self ) -> List[Any]:
for model_class_name in self.all_model_classes:
__lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained('google/vit-base-patch16-224' )
__lowerCamelCase : Union[str, Any] = model(np.ones((1, 3, 2_24, 2_24) ) )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
| 13 | 1 |
'''simple docstring'''
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_tensorflow_text_available():
from transformers.models.bert import TFBertTokenizer
A__ : str = ["""bert-base-uncased""", """bert-base-cased"""]
A__ : Union[str, Any] = """hf-internal-testing/tiny-bert-tf-only"""
if is_tf_available():
class UpperCAmelCase_ (tf.keras.Model ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
super().__init__()
__lowerCamelCase : Union[str, Any] = tokenizer
__lowerCamelCase : int = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = TFAutoModel.from_config(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> int:
__lowerCamelCase : str = self.tokenizer(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = self.bert(**SCREAMING_SNAKE_CASE_ )
return out["pooler_output"]
@require_tf
@require_tensorflow_text
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ) -> Any:
super().setUp()
__lowerCamelCase : List[str] = [
BertTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2)
] # repeat for when fast_bert_tokenizer=false
__lowerCamelCase : Union[str, Any] = [TFBertTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [
TFBertTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ , use_fast_bert_tokenizer=SCREAMING_SNAKE_CASE_ )
for checkpoint in TOKENIZER_CHECKPOINTS
]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
__lowerCamelCase : Optional[Any] = [
'This is a straightforward English test sentence.',
'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.',
'Now we\'re going to add some Chinese: 一 二 三 一二三',
'And some much more rare Chinese: 齉 堃 齉堃',
'Je vais aussi écrire en français pour tester les accents',
'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ',
]
__lowerCamelCase : str = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def lowercase_ ( self ) -> Optional[int]:
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in (self.test_sentences, self.paired_sentences):
__lowerCamelCase : Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='tf' , padding='longest' )
__lowerCamelCase : Any = tf_tokenizer(SCREAMING_SNAKE_CASE_ )
for key in python_outputs.keys():
self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) )
self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) )
@slow
def lowercase_ ( self ) -> List[str]:
for tf_tokenizer in self.tf_tokenizers:
__lowerCamelCase : Any = tf_tokenizer(self.paired_sentences )
__lowerCamelCase : int = tf_tokenizer(
text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , )
for key in merged_outputs.keys():
self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) )
@slow
def lowercase_ ( self ) -> int:
for tf_tokenizer in self.tf_tokenizers:
__lowerCamelCase : Optional[int] = tf.function(SCREAMING_SNAKE_CASE_ )
for test_inputs in (self.test_sentences, self.paired_sentences):
__lowerCamelCase : Dict = tf.constant(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = compiled_tokenizer(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = tf_tokenizer(SCREAMING_SNAKE_CASE_ )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def lowercase_ ( self ) -> Any:
for tf_tokenizer in self.tf_tokenizers:
__lowerCamelCase : Union[str, Any] = ModelToSave(tokenizer=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[str] = tf.convert_to_tensor(self.test_sentences )
__lowerCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
__lowerCamelCase : List[Any] = Path(SCREAMING_SNAKE_CASE_ ) / 'saved.model'
model.save(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = tf.keras.models.load_model(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = loaded_model(SCREAMING_SNAKE_CASE_ )
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
| 13 |
'''simple docstring'''
import argparse
A__ : Optional[Any] = """docs/source/_static/js/custom.js"""
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> int:
with open(UpperCAmelCase_ , encoding='utf-8' , newline='\n' ) as f:
__lowerCamelCase : Dict = f.readlines()
__lowerCamelCase : Tuple = 0
# First let's put the right version
while not lines[index].startswith('const stableVersion =' ):
index += 1
__lowerCamelCase : Dict = F'const stableVersion = "v{version}"\n'
# Then update the dictionary
while not lines[index].startswith('const versionMapping = {' ):
index += 1
# We go until the end
while not lines[index].startswith('}' ):
index += 1
# We add the new version at the end
lines[index - 1] += F' "v{version}": "v{version}",\n'
with open(UpperCAmelCase_ , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(UpperCAmelCase_ )
if __name__ == "__main__":
A__ : str = argparse.ArgumentParser()
parser.add_argument("""--version""", help="""Release version.""")
A__ : Any = parser.parse_args()
update_custom_js(args.version)
| 13 | 1 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] ) -> float:
if not nums: # Makes sure that the list is not empty
raise ValueError('List is empty' )
__lowerCamelCase : Union[str, Any] = sum(UpperCAmelCase_ ) / len(UpperCAmelCase_ ) # Calculate the average
return sum(abs(x - average ) for x in nums ) / len(UpperCAmelCase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
import flax.linen as nn
import jax
import jax.numpy as jnp
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : Optional[Any] = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> Any:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = hidden_states.shape
__lowerCamelCase : Dict = jax.image.resize(
SCREAMING_SNAKE_CASE_ , shape=(batch, height * 2, width * 2, channels) , method='nearest' , )
__lowerCamelCase : Optional[Any] = self.conv(SCREAMING_SNAKE_CASE_ )
return hidden_states
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : str = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]:
# pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
# hidden_states = jnp.pad(hidden_states, pad_width=pad)
__lowerCamelCase : str = self.conv(SCREAMING_SNAKE_CASE_ )
return hidden_states
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : int = None
lowerCamelCase : float = 0.0
lowerCamelCase : bool = None
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels
__lowerCamelCase : Optional[Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 )
__lowerCamelCase : Tuple = nn.Conv(
SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__lowerCamelCase : List[str] = nn.Dense(SCREAMING_SNAKE_CASE_ , dtype=self.dtype )
__lowerCamelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1E-5 )
__lowerCamelCase : int = nn.Dropout(self.dropout_prob )
__lowerCamelCase : Union[str, Any] = nn.Conv(
SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__lowerCamelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
__lowerCamelCase : List[Any] = None
if use_nin_shortcut:
__lowerCamelCase : Any = nn.Conv(
SCREAMING_SNAKE_CASE_ , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , )
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Tuple:
__lowerCamelCase : List[Any] = hidden_states
__lowerCamelCase : str = self.norma(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = nn.swish(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = self.conva(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = self.time_emb_proj(nn.swish(SCREAMING_SNAKE_CASE_ ) )
__lowerCamelCase : List[str] = jnp.expand_dims(jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , 1 )
__lowerCamelCase : Optional[int] = hidden_states + temb
__lowerCamelCase : List[Any] = self.norma(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = nn.swish(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self.dropout(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self.conva(SCREAMING_SNAKE_CASE_ )
if self.conv_shortcut is not None:
__lowerCamelCase : List[str] = self.conv_shortcut(SCREAMING_SNAKE_CASE_ )
return hidden_states + residual
| 13 | 1 |
'''simple docstring'''
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : List[str] = logging.get_logger(__name__)
# TODO Update this
A__ : Tuple = {
"""facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""",
# See all ESM models at https://huggingface.co/models?filter=esm
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Tuple = 'esm'
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10_26 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]:
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , mask_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = vocab_size
__lowerCamelCase : List[Any] = hidden_size
__lowerCamelCase : str = num_hidden_layers
__lowerCamelCase : List[str] = num_attention_heads
__lowerCamelCase : Any = intermediate_size
__lowerCamelCase : Optional[Any] = hidden_dropout_prob
__lowerCamelCase : Tuple = attention_probs_dropout_prob
__lowerCamelCase : Optional[int] = max_position_embeddings
__lowerCamelCase : str = initializer_range
__lowerCamelCase : Optional[int] = layer_norm_eps
__lowerCamelCase : List[str] = position_embedding_type
__lowerCamelCase : int = use_cache
__lowerCamelCase : Optional[Any] = emb_layer_norm_before
__lowerCamelCase : Optional[Any] = token_dropout
__lowerCamelCase : str = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info('No esmfold_config supplied for folding model, using default values.' )
__lowerCamelCase : Dict = EsmFoldConfig()
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Optional[int] = EsmFoldConfig(**SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = esmfold_config
if vocab_list is None:
logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' )
__lowerCamelCase : List[str] = get_default_vocab_list()
else:
__lowerCamelCase : Optional[Any] = vocab_list
else:
__lowerCamelCase : Dict = None
__lowerCamelCase : Optional[Any] = None
if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , SCREAMING_SNAKE_CASE_ ):
raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : Any = super().to_dict()
if isinstance(self.esmfold_config , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : int = self.esmfold_config.to_dict()
return output
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : str = None
lowerCamelCase : bool = True
lowerCamelCase : bool = False
lowerCamelCase : bool = False
lowerCamelCase : bool = False
lowerCamelCase : float = 0
lowerCamelCase : bool = True
lowerCamelCase : bool = False
lowerCamelCase : int = 1_2_8
lowerCamelCase : "TrunkConfig" = None
def lowercase_ ( self ) -> Any:
if self.trunk is None:
__lowerCamelCase : List[str] = TrunkConfig()
elif isinstance(self.trunk , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Any = TrunkConfig(**self.trunk )
def lowercase_ ( self ) -> int:
__lowerCamelCase : Optional[int] = asdict(self )
__lowerCamelCase : str = self.trunk.to_dict()
return output
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : int = 4_8
lowerCamelCase : int = 1_0_2_4
lowerCamelCase : int = 1_2_8
lowerCamelCase : int = 3_2
lowerCamelCase : int = 3_2
lowerCamelCase : int = 3_2
lowerCamelCase : float = 0
lowerCamelCase : float = 0
lowerCamelCase : bool = False
lowerCamelCase : int = 4
lowerCamelCase : Optional[int] = 1_2_8
lowerCamelCase : "StructureModuleConfig" = None
def lowercase_ ( self ) -> Optional[int]:
if self.structure_module is None:
__lowerCamelCase : Dict = StructureModuleConfig()
elif isinstance(self.structure_module , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Optional[Any] = StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
'`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got'
f' {self.sequence_state_dim} and {self.sequence_state_dim}.' )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
'`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got'
f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' )
__lowerCamelCase : Tuple = self.sequence_state_dim // self.sequence_head_width
__lowerCamelCase : str = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
'`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got'
f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
'`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got'
f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' )
if self.dropout >= 0.4:
raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' )
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : List[str] = asdict(self )
__lowerCamelCase : int = self.structure_module.to_dict()
return output
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : int = 3_8_4
lowerCamelCase : int = 1_2_8
lowerCamelCase : int = 1_6
lowerCamelCase : int = 1_2_8
lowerCamelCase : int = 1_2
lowerCamelCase : int = 4
lowerCamelCase : int = 8
lowerCamelCase : float = 0.1
lowerCamelCase : int = 8
lowerCamelCase : int = 1
lowerCamelCase : int = 2
lowerCamelCase : int = 7
lowerCamelCase : int = 1_0
lowerCamelCase : float = 1e-8
lowerCamelCase : float = 1e5
def lowercase_ ( self ) -> Any:
return asdict(self )
def UpperCAmelCase__ ( ) -> Optional[Any]:
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 13 |
'''simple docstring'''
from __future__ import annotations
A__ : int = 10
def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] ) -> list[int]:
__lowerCamelCase : List[Any] = 1
__lowerCamelCase : Any = max(UpperCAmelCase_ )
while placement <= max_digit:
# declare and initialize empty buckets
__lowerCamelCase : list[list] = [[] for _ in range(UpperCAmelCase_ )]
# split list_of_ints between the buckets
for i in list_of_ints:
__lowerCamelCase : List[Any] = int((i / placement) % RADIX )
buckets[tmp].append(UpperCAmelCase_ )
# put each buckets' contents into list_of_ints
__lowerCamelCase : Tuple = 0
for b in range(UpperCAmelCase_ ):
for i in buckets[b]:
__lowerCamelCase : List[Any] = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=18 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , SCREAMING_SNAKE_CASE_=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , SCREAMING_SNAKE_CASE_=True , ) -> Optional[Any]:
__lowerCamelCase : int = size if size is not None else {'height': 2_24, 'width': 2_24}
__lowerCamelCase : Optional[Any] = crop_size if crop_size is not None else {'height': 18, 'width': 18}
__lowerCamelCase : Tuple = parent
__lowerCamelCase : int = batch_size
__lowerCamelCase : Dict = num_channels
__lowerCamelCase : Any = image_size
__lowerCamelCase : Dict = min_resolution
__lowerCamelCase : List[Any] = max_resolution
__lowerCamelCase : str = do_resize
__lowerCamelCase : Union[str, Any] = size
__lowerCamelCase : Any = do_center_crop
__lowerCamelCase : List[str] = crop_size
__lowerCamelCase : Union[str, Any] = do_normalize
__lowerCamelCase : Optional[int] = image_mean
__lowerCamelCase : int = image_std
__lowerCamelCase : List[str] = do_convert_rgb
def lowercase_ ( self ) -> List[str]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False ) -> Dict:
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
if equal_resolution:
__lowerCamelCase : Dict = []
for i in range(self.batch_size ):
image_inputs.append(
np.random.randint(
2_55 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) )
else:
__lowerCamelCase : int = []
for i in range(self.batch_size ):
__lowerCamelCase , __lowerCamelCase : Tuple = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 )
image_inputs.append(np.random.randint(2_55 , size=(self.num_channels, width, height) , dtype=np.uinta ) )
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
__lowerCamelCase : int = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) for x in image_inputs]
if torchify:
__lowerCamelCase : Dict = [torch.from_numpy(SCREAMING_SNAKE_CASE_ ) for x in image_inputs]
return image_inputs
@require_torch
@require_vision
class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Dict = ChineseCLIPImageProcessor if is_vision_available() else None
def lowercase_ ( self ) -> int:
__lowerCamelCase : Any = ChineseCLIPImageProcessingTester(self , do_center_crop=SCREAMING_SNAKE_CASE_ )
@property
def lowercase_ ( self ) -> Tuple:
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : int = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'do_resize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'size' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'do_center_crop' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'center_crop' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'do_normalize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'image_mean' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'image_std' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'do_convert_rgb' ) )
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 2_24, 'width': 2_24} )
self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} )
__lowerCamelCase : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def lowercase_ ( self ) -> str:
pass
def lowercase_ ( self ) -> str:
# Initialize image_processing
__lowerCamelCase : int = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowerCamelCase : Any = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE_ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image )
# Test not batched input
__lowerCamelCase : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
__lowerCamelCase : Tuple = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def lowercase_ ( self ) -> Tuple:
# Initialize image_processing
__lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowerCamelCase : Optional[int] = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray )
# Test not batched input
__lowerCamelCase : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
__lowerCamelCase : int = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def lowercase_ ( self ) -> int:
# Initialize image_processing
__lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowerCamelCase : Optional[int] = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor )
# Test not batched input
__lowerCamelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
__lowerCamelCase : List[str] = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
@require_torch
@require_vision
class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : int = ChineseCLIPImageProcessor if is_vision_available() else None
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : str = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[str] = 3
@property
def lowercase_ ( self ) -> str:
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'do_resize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'size' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'do_center_crop' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'center_crop' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'do_normalize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'image_mean' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'image_std' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'do_convert_rgb' ) )
def lowercase_ ( self ) -> Union[str, Any]:
pass
def lowercase_ ( self ) -> Dict:
# Initialize image_processing
__lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowerCamelCase : Dict = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE_ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image )
# Test not batched input
__lowerCamelCase : Any = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
__lowerCamelCase : List[Any] = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
| 13 |
'''simple docstring'''
from collections import defaultdict
from math import gcd
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_50_00_00 ) -> int:
__lowerCamelCase : defaultdict = defaultdict(UpperCAmelCase_ )
__lowerCamelCase : Any = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , UpperCAmelCase_ , 2 ):
if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) > 1:
continue
__lowerCamelCase : Any = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(UpperCAmelCase_ , limit + 1 , UpperCAmelCase_ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DetaImageProcessor
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=1 / 2_55 , SCREAMING_SNAKE_CASE_=True , ) -> int:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
__lowerCamelCase : int = size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33}
__lowerCamelCase : Optional[int] = parent
__lowerCamelCase : Union[str, Any] = batch_size
__lowerCamelCase : str = num_channels
__lowerCamelCase : Union[str, Any] = min_resolution
__lowerCamelCase : int = max_resolution
__lowerCamelCase : str = do_resize
__lowerCamelCase : Tuple = size
__lowerCamelCase : str = do_normalize
__lowerCamelCase : Optional[int] = image_mean
__lowerCamelCase : int = image_std
__lowerCamelCase : Union[str, Any] = do_rescale
__lowerCamelCase : Optional[Any] = rescale_factor
__lowerCamelCase : Optional[int] = do_pad
def lowercase_ ( self ) -> str:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> Any:
if not batched:
__lowerCamelCase : str = image_inputs[0]
if isinstance(SCREAMING_SNAKE_CASE_ , Image.Image ):
__lowerCamelCase , __lowerCamelCase : Union[str, Any] = image.size
else:
__lowerCamelCase , __lowerCamelCase : Optional[int] = image.shape[1], image.shape[2]
if w < h:
__lowerCamelCase : List[Any] = int(self.size['shortest_edge'] * h / w )
__lowerCamelCase : str = self.size['shortest_edge']
elif w > h:
__lowerCamelCase : Optional[int] = self.size['shortest_edge']
__lowerCamelCase : List[str] = int(self.size['shortest_edge'] * w / h )
else:
__lowerCamelCase : Any = self.size['shortest_edge']
__lowerCamelCase : List[str] = self.size['shortest_edge']
else:
__lowerCamelCase : Optional[Any] = []
for image in image_inputs:
__lowerCamelCase , __lowerCamelCase : Dict = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__lowerCamelCase : Any = max(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : item[0] )[0]
__lowerCamelCase : Any = max(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = DetaImageProcessor if is_vision_available() else None
def lowercase_ ( self ) -> str:
__lowerCamelCase : Dict = DetaImageProcessingTester(self )
@property
def lowercase_ ( self ) -> Tuple:
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase_ ( self ) -> str:
__lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'image_mean' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'image_std' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'do_normalize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'do_resize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'do_rescale' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'do_pad' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'size' ) )
def lowercase_ ( self ) -> int:
__lowerCamelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} )
self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> List[str]:
pass
def lowercase_ ( self ) -> Union[str, Any]:
# Initialize image_processing
__lowerCamelCase : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowerCamelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image )
# Test not batched input
__lowerCamelCase : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
__lowerCamelCase , __lowerCamelCase : List[str] = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCamelCase , __lowerCamelCase : Optional[int] = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def lowercase_ ( self ) -> Tuple:
# Initialize image_processing
__lowerCamelCase : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowerCamelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray )
# Test not batched input
__lowerCamelCase : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
__lowerCamelCase , __lowerCamelCase : int = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCamelCase : Tuple = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).pixel_values
__lowerCamelCase , __lowerCamelCase : List[str] = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def lowercase_ ( self ) -> Optional[Any]:
# Initialize image_processing
__lowerCamelCase : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowerCamelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor )
# Test not batched input
__lowerCamelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
__lowerCamelCase , __lowerCamelCase : Optional[Any] = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowerCamelCase : Optional[Any] = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).pixel_values
__lowerCamelCase , __lowerCamelCase : str = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def lowercase_ ( self ) -> List[Any]:
# prepare image and target
__lowerCamelCase : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
__lowerCamelCase : List[Any] = json.loads(f.read() )
__lowerCamelCase : List[str] = {'image_id': 3_97_69, 'annotations': target}
# encode them
__lowerCamelCase : Union[str, Any] = DetaImageProcessor()
__lowerCamelCase : int = image_processing(images=SCREAMING_SNAKE_CASE_ , annotations=SCREAMING_SNAKE_CASE_ , return_tensors='pt' )
# verify pixel values
__lowerCamelCase : Optional[int] = torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
# verify area
__lowerCamelCase : Optional[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE_ ) )
# verify boxes
__lowerCamelCase : Optional[Any] = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) )
# verify image_id
__lowerCamelCase : Union[str, Any] = torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE_ ) )
# verify is_crowd
__lowerCamelCase : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE_ ) )
# verify class_labels
__lowerCamelCase : Optional[int] = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE_ ) )
# verify orig_size
__lowerCamelCase : List[Any] = torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE_ ) )
# verify size
__lowerCamelCase : Optional[Any] = torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE_ ) )
@slow
def lowercase_ ( self ) -> Optional[Any]:
# prepare image, target and masks_path
__lowerCamelCase : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
__lowerCamelCase : Any = json.loads(f.read() )
__lowerCamelCase : int = {'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target}
__lowerCamelCase : List[Any] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
__lowerCamelCase : Union[str, Any] = DetaImageProcessor(format='coco_panoptic' )
__lowerCamelCase : Optional[Any] = image_processing(images=SCREAMING_SNAKE_CASE_ , annotations=SCREAMING_SNAKE_CASE_ , masks_path=SCREAMING_SNAKE_CASE_ , return_tensors='pt' )
# verify pixel values
__lowerCamelCase : List[str] = torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
# verify area
__lowerCamelCase : Optional[Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE_ ) )
# verify boxes
__lowerCamelCase : int = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) )
# verify image_id
__lowerCamelCase : Optional[int] = torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE_ ) )
# verify is_crowd
__lowerCamelCase : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE_ ) )
# verify class_labels
__lowerCamelCase : Optional[Any] = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE_ ) )
# verify masks
__lowerCamelCase : Any = 82_28_73
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , SCREAMING_SNAKE_CASE_ )
# verify orig_size
__lowerCamelCase : Tuple = torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE_ ) )
# verify size
__lowerCamelCase : Tuple = torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE_ ) )
| 13 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
A__ : str = logging.get_logger(__name__)
A__ : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
A__ : Tuple = {
"""vocab_file""": {
"""junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""",
"""junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""",
"""junnyu/roformer_chinese_char_small""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt"""
),
"""junnyu/roformer_chinese_char_base""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt"""
),
"""junnyu/roformer_small_discriminator""": (
"""https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt"""
),
"""junnyu/roformer_small_generator""": (
"""https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt"""
),
}
}
A__ : str = {
"""junnyu/roformer_chinese_small""": 1536,
"""junnyu/roformer_chinese_base""": 1536,
"""junnyu/roformer_chinese_char_small""": 512,
"""junnyu/roformer_chinese_char_base""": 512,
"""junnyu/roformer_small_discriminator""": 128,
"""junnyu/roformer_small_generator""": 128,
}
A__ : Tuple = {
"""junnyu/roformer_chinese_small""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_base""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True},
"""junnyu/roformer_small_discriminator""": {"""do_lower_case""": True},
"""junnyu/roformer_small_generator""": {"""do_lower_case""": True},
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES
lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION
lowerCamelCase : Dict = RoFormerTokenizer
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]:
super().__init__(
SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
__lowerCamelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case
or pre_tok_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents
):
__lowerCamelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) )
__lowerCamelCase : Union[str, Any] = do_lower_case
__lowerCamelCase : str = strip_accents
__lowerCamelCase : Optional[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = do_lower_case
def __getstate__( self ) -> List[str]:
__lowerCamelCase : Union[str, Any] = self.__dict__.copy()
__lowerCamelCase : Dict = BertPreTokenizer()
return state
def __setstate__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = d
__lowerCamelCase : List[Any] = self.__dict__['_tokenizer'].get_vocab()
__lowerCamelCase : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(SCREAMING_SNAKE_CASE_ ) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str:
__lowerCamelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
__lowerCamelCase : List[str] = [self.sep_token_id]
__lowerCamelCase : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]:
__lowerCamelCase : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ )
return tuple(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Any:
__lowerCamelCase : Tuple = BertPreTokenizer()
return super().save_pretrained(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 13 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
A__ : List[Any] = {
"""configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : List[str] = [
"""FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FalconForCausalLM""",
"""FalconModel""",
"""FalconPreTrainedModel""",
"""FalconForSequenceClassification""",
"""FalconForTokenClassification""",
"""FalconForQuestionAnswering""",
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
A__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 13 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
A__ : int = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
A__ : Dict = TaTokenizerFast
A__ : Dict = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Any = [
"""MT5EncoderModel""",
"""MT5ForConditionalGeneration""",
"""MT5ForQuestionAnswering""",
"""MT5Model""",
"""MT5PreTrainedModel""",
"""MT5Stack""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : str = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : str = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
A__ : Union[str, Any] = _LazyModule(
__name__,
globals()["""__file__"""],
_import_structure,
extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast},
module_spec=__spec__,
)
| 13 | 1 |
'''simple docstring'''
import argparse
import torch
from torch import nn
from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] ) -> Dict:
__lowerCamelCase : Any = [
'encoder.version',
'decoder.version',
'model.encoder.version',
'model.decoder.version',
'decoder.output_projection.weight',
'_float_tensor',
'encoder.embed_positions._float_tensor',
'decoder.embed_positions._float_tensor',
]
for k in ignore_keys:
state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ )
def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple ) -> Optional[Any]:
__lowerCamelCase : Optional[Any] = list(s_dict.keys() )
for key in keys:
if "transformer_layers" in key:
__lowerCamelCase : List[str] = s_dict.pop(UpperCAmelCase_ )
elif "subsample" in key:
__lowerCamelCase : Optional[int] = s_dict.pop(UpperCAmelCase_ )
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] ) -> int:
__lowerCamelCase , __lowerCamelCase : List[str] = emb.weight.shape
__lowerCamelCase : List[str] = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ , bias=UpperCAmelCase_ )
__lowerCamelCase : int = emb.weight.data
return lin_layer
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Any ) -> List[Any]:
__lowerCamelCase : Tuple = torch.load(UpperCAmelCase_ , map_location='cpu' )
__lowerCamelCase : Any = mam_aaa['args']
__lowerCamelCase : Any = mam_aaa['model']
__lowerCamelCase : Optional[Any] = state_dict['decoder.output_projection.weight']
remove_ignore_keys_(UpperCAmelCase_ )
rename_keys(UpperCAmelCase_ )
__lowerCamelCase : Tuple = state_dict['decoder.embed_tokens.weight'].shape[0]
__lowerCamelCase : Optional[int] = args.share_decoder_input_output_embed
__lowerCamelCase : Optional[int] = [int(UpperCAmelCase_ ) for i in args.conv_kernel_sizes.split(',' )]
__lowerCamelCase : int = SpeechaTextConfig(
vocab_size=UpperCAmelCase_ , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , num_conv_layers=len(UpperCAmelCase_ ) , conv_channels=args.conv_channels , conv_kernel_sizes=UpperCAmelCase_ , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=UpperCAmelCase_ , num_beams=5 , max_length=2_00 , use_cache=UpperCAmelCase_ , decoder_start_token_id=2 , early_stopping=UpperCAmelCase_ , )
__lowerCamelCase : str = SpeechaTextForConditionalGeneration(UpperCAmelCase_ )
__lowerCamelCase , __lowerCamelCase : Optional[int] = model.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ )
if len(UpperCAmelCase_ ) > 0 and not set(UpperCAmelCase_ ) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,'
F' but all the following weights are missing {missing}' )
if tie_embeds:
__lowerCamelCase : List[Any] = make_linear_from_emb(model.model.decoder.embed_tokens )
else:
__lowerCamelCase : int = lm_head_weights
model.save_pretrained(UpperCAmelCase_ )
if __name__ == "__main__":
A__ : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""--fairseq_path""", type=str, help="""Path to the fairseq model (.pt) file.""")
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
A__ : List[str] = parser.parse_args()
convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
| 13 |
'''simple docstring'''
import re
from typing import Callable, List, Optional, Union
import tensorflow as tf
try:
from tensorflow.keras.optimizers.legacy import Adam
except ImportError:
from tensorflow.keras.optimizers import Adam
class UpperCAmelCase_ (tf.keras.optimizers.schedules.LearningRateSchedule ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = None , ) -> Any:
super().__init__()
__lowerCamelCase : Optional[Any] = initial_learning_rate
__lowerCamelCase : Optional[Any] = warmup_steps
__lowerCamelCase : Union[str, Any] = power
__lowerCamelCase : Optional[int] = decay_schedule_fn
__lowerCamelCase : Any = name
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str:
with tf.name_scope(self.name or 'WarmUp' ) as name:
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
__lowerCamelCase : str = tf.cast(SCREAMING_SNAKE_CASE_ , tf.floataa )
__lowerCamelCase : Optional[int] = tf.cast(self.warmup_steps , tf.floataa )
__lowerCamelCase : List[Any] = global_step_float / warmup_steps_float
__lowerCamelCase : Optional[Any] = self.initial_learning_rate * tf.math.pow(SCREAMING_SNAKE_CASE_ , self.power )
return tf.cond(
global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=SCREAMING_SNAKE_CASE_ , )
def lowercase_ ( self ) -> Optional[Any]:
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_schedule_fn": self.decay_schedule_fn,
"warmup_steps": self.warmup_steps,
"power": self.power,
"name": self.name,
}
def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 0.9 , UpperCAmelCase_ : float = 0.999 , UpperCAmelCase_ : float = 1e-8 , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : Optional[List[str]] = None , ) -> int:
__lowerCamelCase : int = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=UpperCAmelCase_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCAmelCase_ , )
if num_warmup_steps:
__lowerCamelCase : str = WarmUp(
initial_learning_rate=UpperCAmelCase_ , decay_schedule_fn=UpperCAmelCase_ , warmup_steps=UpperCAmelCase_ , )
if weight_decay_rate > 0.0:
__lowerCamelCase : List[Any] = AdamWeightDecay(
learning_rate=UpperCAmelCase_ , weight_decay_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=UpperCAmelCase_ , )
else:
__lowerCamelCase : Tuple = tf.keras.optimizers.Adam(
learning_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , )
# We return the optimizer and the LR scheduler in order to better track the
# evolution of the LR independently of the optimizer.
return optimizer, lr_schedule
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ = 0.0_0_1 , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = 0.9_9_9 , SCREAMING_SNAKE_CASE_ = 1E-7 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "AdamWeightDecay" , **SCREAMING_SNAKE_CASE_ , ) -> int:
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = weight_decay_rate
__lowerCamelCase : str = include_in_weight_decay
__lowerCamelCase : List[Any] = exclude_from_weight_decay
@classmethod
def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> Dict:
__lowerCamelCase : Any = {'WarmUp': WarmUp}
return super(SCREAMING_SNAKE_CASE_ , cls ).from_config(SCREAMING_SNAKE_CASE_ , custom_objects=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
super(SCREAMING_SNAKE_CASE_ , self )._prepare_local(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tf.constant(
self.weight_decay_rate , name='adam_weight_decay_rate' )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
__lowerCamelCase : Tuple = self._do_use_weight_decay(var.name )
if do_decay:
return var.assign_sub(
learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , )
return tf.no_op()
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase , __lowerCamelCase : Optional[Any] = list(zip(*SCREAMING_SNAKE_CASE_ ) )
return super(SCREAMING_SNAKE_CASE_ , self ).apply_gradients(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , name=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str:
if apply_state is None:
return self._decayed_lr_t[var_dtype], {}
__lowerCamelCase : Optional[int] = apply_state or {}
__lowerCamelCase : Dict = apply_state.get((var_device, var_dtype) )
if coefficients is None:
__lowerCamelCase : List[Any] = self._fallback_apply_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = coefficients
return coefficients["lr_t"], {"apply_state": apply_state}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str:
__lowerCamelCase , __lowerCamelCase : Dict = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
with tf.control_dependencies([decay] ):
return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_dense(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Union[str, Any]:
__lowerCamelCase , __lowerCamelCase : Tuple = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
with tf.control_dependencies([decay] ):
return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_sparse(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : Any = super().get_config()
config.update({'weight_decay_rate': self.weight_decay_rate} )
return config
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict:
if self.weight_decay_rate == 0:
return False
if self._include_in_weight_decay:
for r in self._include_in_weight_decay:
if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None:
return True
if self._exclude_from_weight_decay:
for r in self._exclude_from_weight_decay:
if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None:
return False
return True
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self ) -> Tuple:
__lowerCamelCase : Tuple = []
__lowerCamelCase : Optional[Any] = None
@property
def lowercase_ ( self ) -> List[str]:
if self._accum_steps is None:
__lowerCamelCase : Tuple = tf.Variable(
tf.constant(0 , dtype=tf.intaa ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
return self._accum_steps.value()
@property
def lowercase_ ( self ) -> List[str]:
if not self._gradients:
raise ValueError('The accumulator should be called first to initialize the gradients' )
return [gradient.value() if gradient is not None else gradient for gradient in self._gradients]
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str:
if not self._gradients:
__lowerCamelCase : List[str] = self.step # Create the step variable.
self._gradients.extend(
[
tf.Variable(
tf.zeros_like(SCREAMING_SNAKE_CASE_ ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
if gradient is not None
else gradient
for gradient in gradients
] )
if len(SCREAMING_SNAKE_CASE_ ) != len(self._gradients ):
raise ValueError(f'Expected {len(self._gradients )} gradients, but got {len(SCREAMING_SNAKE_CASE_ )}' )
for accum_gradient, gradient in zip(self._gradients , SCREAMING_SNAKE_CASE_ ):
if accum_gradient is not None and gradient is not None:
accum_gradient.assign_add(SCREAMING_SNAKE_CASE_ )
self._accum_steps.assign_add(1 )
def lowercase_ ( self ) -> int:
if not self._gradients:
return
self._accum_steps.assign(0 )
for gradient in self._gradients:
if gradient is not None:
gradient.assign(tf.zeros_like(SCREAMING_SNAKE_CASE_ ) )
| 13 | 1 |
'''simple docstring'''
from collections.abc import Generator
from math import sin
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
if len(UpperCAmelCase_ ) != 32:
raise ValueError('Input must be of length 32' )
__lowerCamelCase : Dict = B''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bytes:
if i < 0:
raise ValueError('Input must be non-negative' )
__lowerCamelCase : Union[str, Any] = format(UpperCAmelCase_ , '08x' )[-8:]
__lowerCamelCase : str = B''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' )
return little_endian_hex
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
__lowerCamelCase : Optional[Any] = B''
for char in message:
bit_string += format(UpperCAmelCase_ , '08b' ).encode('utf-8' )
__lowerCamelCase : List[str] = format(len(UpperCAmelCase_ ) , '064b' ).encode('utf-8' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(UpperCAmelCase_ ) % 5_12 != 4_48:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> Generator[list[int], None, None]:
if len(UpperCAmelCase_ ) % 5_12 != 0:
raise ValueError('Input must have length that\'s a multiple of 512' )
for pos in range(0 , len(UpperCAmelCase_ ) , 5_12 ):
__lowerCamelCase : Any = bit_string[pos : pos + 5_12]
__lowerCamelCase : Optional[int] = []
for i in range(0 , 5_12 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int:
if i < 0:
raise ValueError('Input must be non-negative' )
__lowerCamelCase : List[Any] = format(UpperCAmelCase_ , '032b' )
__lowerCamelCase : Optional[int] = ''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(UpperCAmelCase_ , 2 )
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
return (a + b) % 2**32
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
if i < 0:
raise ValueError('Input must be non-negative' )
if shift < 0:
raise ValueError('Shift must be non-negative' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
__lowerCamelCase : Optional[Any] = preprocess(UpperCAmelCase_ )
__lowerCamelCase : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
__lowerCamelCase : Dict = 0x67_45_23_01
__lowerCamelCase : Union[str, Any] = 0xef_cd_ab_89
__lowerCamelCase : Optional[Any] = 0x98_ba_dc_fe
__lowerCamelCase : Union[str, Any] = 0x10_32_54_76
__lowerCamelCase : List[str] = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(UpperCAmelCase_ ):
__lowerCamelCase : Dict = aa
__lowerCamelCase : Tuple = ba
__lowerCamelCase : List[Any] = ca
__lowerCamelCase : Dict = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
__lowerCamelCase : List[str] = d ^ (b & (c ^ d))
__lowerCamelCase : Optional[int] = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
__lowerCamelCase : Optional[int] = c ^ (d & (b ^ c))
__lowerCamelCase : Tuple = (5 * i + 1) % 16
elif i <= 47:
__lowerCamelCase : str = b ^ c ^ d
__lowerCamelCase : Any = (3 * i + 5) % 16
else:
__lowerCamelCase : Union[str, Any] = c ^ (b | not_aa(UpperCAmelCase_ ))
__lowerCamelCase : int = (7 * i) % 16
__lowerCamelCase : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**32
__lowerCamelCase : Optional[Any] = d
__lowerCamelCase : Tuple = c
__lowerCamelCase : Optional[int] = b
__lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , left_rotate_aa(UpperCAmelCase_ , shift_amounts[i] ) )
# Add hashed chunk to running total
__lowerCamelCase : int = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : str = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : List[Any] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : Dict = reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=[1, 2, 1] , SCREAMING_SNAKE_CASE_=[2, 2, 4] , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=["stage1", "stage2", "stage3"] , SCREAMING_SNAKE_CASE_=[1, 2, 3] , ) -> Any:
__lowerCamelCase : Optional[Any] = parent
__lowerCamelCase : int = batch_size
__lowerCamelCase : Optional[int] = image_size
__lowerCamelCase : Optional[int] = patch_size
__lowerCamelCase : Optional[Any] = num_channels
__lowerCamelCase : Dict = embed_dim
__lowerCamelCase : List[Any] = depths
__lowerCamelCase : int = num_heads
__lowerCamelCase : Optional[Any] = window_size
__lowerCamelCase : Optional[Any] = mlp_ratio
__lowerCamelCase : List[str] = qkv_bias
__lowerCamelCase : List[str] = hidden_dropout_prob
__lowerCamelCase : int = attention_probs_dropout_prob
__lowerCamelCase : List[Any] = drop_path_rate
__lowerCamelCase : Any = hidden_act
__lowerCamelCase : Union[str, Any] = use_absolute_embeddings
__lowerCamelCase : Any = patch_norm
__lowerCamelCase : Optional[Any] = layer_norm_eps
__lowerCamelCase : str = initializer_range
__lowerCamelCase : Dict = is_training
__lowerCamelCase : Optional[Any] = scope
__lowerCamelCase : Dict = use_labels
__lowerCamelCase : List[str] = type_sequence_label_size
__lowerCamelCase : Dict = encoder_stride
__lowerCamelCase : Union[str, Any] = out_features
__lowerCamelCase : str = out_indices
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowerCamelCase : List[str] = None
if self.use_labels:
__lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowerCamelCase : List[str] = self.get_config()
return config, pixel_values, labels
def lowercase_ ( self ) -> Optional[int]:
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
__lowerCamelCase : Dict = MaskFormerSwinModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__lowerCamelCase : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
__lowerCamelCase : Tuple = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , [16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : str = ['stem']
__lowerCamelCase : Optional[Any] = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : Optional[int] = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = config_and_inputs
__lowerCamelCase : Optional[int] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : List[Any] = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase : int = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {}
lowerCamelCase : int = False
lowerCamelCase : int = False
lowerCamelCase : str = False
lowerCamelCase : int = False
lowerCamelCase : Union[str, Any] = False
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : Optional[Any] = MaskFormerSwinModelTester(self )
__lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
'`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with'
' `nn.DataParallel`'
) )
def lowercase_ ( self ) -> int:
pass
def lowercase_ ( self ) -> Union[str, Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase_ ( self ) -> Tuple:
return
def lowercase_ ( self ) -> Dict:
__lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ )
@unittest.skip('Swin does not use inputs_embeds' )
def lowercase_ ( self ) -> Optional[int]:
pass
@unittest.skip('Swin does not support feedforward chunking' )
def lowercase_ ( self ) -> Dict:
pass
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__lowerCamelCase : Optional[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase , __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase : str = [*signature.parameters.keys()]
__lowerCamelCase : Any = ['pixel_values']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ )
@unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' )
def lowercase_ ( self ) -> Any:
pass
@unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' )
def lowercase_ ( self ) -> List[Any]:
pass
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
with torch.no_grad():
__lowerCamelCase : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
__lowerCamelCase : int = outputs.hidden_states
__lowerCamelCase : Tuple = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
# Swin has a different seq_length
__lowerCamelCase : Optional[Any] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase : List[Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
__lowerCamelCase : Dict = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowerCamelCase : Optional[int] = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase : Union[str, Any] = 3
__lowerCamelCase : Dict = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__lowerCamelCase : str = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__lowerCamelCase : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__lowerCamelCase : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
__lowerCamelCase : str = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowerCamelCase : Tuple = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) )
@unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' )
def lowercase_ ( self ) -> Optional[Any]:
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def lowercase_ ( self ) -> Any:
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def lowercase_ ( self ) -> Union[str, Any]:
pass
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Any = 0
return t
def check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_={} ):
with torch.no_grad():
__lowerCamelCase : Optional[int] = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).to_tuple()
def recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if isinstance(SCREAMING_SNAKE_CASE_ , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values() ):
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , atol=1E-5 ) , msg=(
'Tuple and dict output are not equal. Difference:'
f' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:'
f' {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}. Dict has'
f' `nan`: {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}.'
) , )
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
for model_class in self.all_model_classes:
__lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} )
__lowerCamelCase : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} )
@require_torch
class UpperCAmelCase_ (unittest.TestCase , _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else ()
lowerCamelCase : List[str] = MaskFormerSwinConfig
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : List[str] = MaskFormerSwinModelTester(self )
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase : Any = inputs_dict['pixel_values'].shape[0]
for backbone_class in self.all_model_classes:
__lowerCamelCase : Optional[Any] = backbone_class(SCREAMING_SNAKE_CASE_ )
backbone.to(SCREAMING_SNAKE_CASE_ )
backbone.eval()
__lowerCamelCase : int = backbone(**SCREAMING_SNAKE_CASE_ )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , SCREAMING_SNAKE_CASE_ )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
__lowerCamelCase : Union[str, Any] = backbone(**SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
__lowerCamelCase : Optional[int] = backbone(**SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(outputs.attentions )
| 13 | 1 |
'''simple docstring'''
import math
import os
import sys
def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> str:
__lowerCamelCase : List[str] = ''
try:
with open(UpperCAmelCase_ , 'rb' ) as binary_file:
__lowerCamelCase : Union[str, Any] = binary_file.read()
for dat in data:
__lowerCamelCase : Union[str, Any] = F'{dat:08b}'
result += curr_byte
return result
except OSError:
print('File not accessible' )
sys.exit()
def UpperCAmelCase__ ( UpperCAmelCase_ : dict[str, str] , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : str ) -> None:
lexicon.pop(UpperCAmelCase_ )
__lowerCamelCase : Optional[int] = last_match_id
if math.loga(UpperCAmelCase_ ).is_integer():
for curr_key in lexicon:
__lowerCamelCase : Dict = '0' + lexicon[curr_key]
__lowerCamelCase : Optional[Any] = bin(UpperCAmelCase_ )[2:]
def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> str:
__lowerCamelCase : List[str] = {'0': '0', '1': '1'}
__lowerCamelCase , __lowerCamelCase : Dict = '', ''
__lowerCamelCase : Optional[int] = len(UpperCAmelCase_ )
for i in range(len(UpperCAmelCase_ ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
__lowerCamelCase : Optional[Any] = lexicon[curr_string]
result += last_match_id
add_key_to_lexicon(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
index += 1
__lowerCamelCase : List[str] = ''
while curr_string != "" and curr_string not in lexicon:
curr_string += "0"
if curr_string != "":
__lowerCamelCase : Any = lexicon[curr_string]
result += last_match_id
return result
def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> str:
__lowerCamelCase : Union[str, Any] = os.path.getsize(UpperCAmelCase_ )
__lowerCamelCase : Union[str, Any] = bin(UpperCAmelCase_ )[2:]
__lowerCamelCase : str = len(UpperCAmelCase_ )
return "0" * (length_length - 1) + file_length_binary + compressed
def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> None:
__lowerCamelCase : Tuple = 8
try:
with open(UpperCAmelCase_ , 'wb' ) as opened_file:
__lowerCamelCase : Optional[Any] = [
to_write[i : i + byte_length]
for i in range(0 , len(UpperCAmelCase_ ) , UpperCAmelCase_ )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append('10000000' )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array:
opened_file.write(int(UpperCAmelCase_ , 2 ).to_bytes(1 , byteorder='big' ) )
except OSError:
print('File not accessible' )
sys.exit()
def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> None:
__lowerCamelCase : List[Any] = read_file_binary(UpperCAmelCase_ )
__lowerCamelCase : Dict = compress_data(UpperCAmelCase_ )
__lowerCamelCase : Optional[Any] = add_file_length(UpperCAmelCase_ , UpperCAmelCase_ )
write_file_binary(UpperCAmelCase_ , UpperCAmelCase_ )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 13 |
'''simple docstring'''
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
A__ : Dict = [
"""python""",
"""tqdm""",
"""regex""",
"""requests""",
"""packaging""",
"""filelock""",
"""numpy""",
"""tokenizers""",
"""huggingface-hub""",
"""safetensors""",
"""accelerate""",
"""pyyaml""",
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''')
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=None ) -> List[Any]:
require_version(deps[pkg] , UpperCAmelCase_ )
| 13 | 1 |
'''simple docstring'''
from math import asin, atan, cos, radians, sin, sqrt, tan
A__ : List[Any] = 6_3_7_8_1_3_7.0
A__ : Any = 6_3_5_6_7_5_2.3_1_4_2_4_5
A__ : Optional[Any] = 6378137
def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float:
__lowerCamelCase : Tuple = (AXIS_A - AXIS_B) / AXIS_A
__lowerCamelCase : str = atan((1 - flattening) * tan(radians(UpperCAmelCase_ ) ) )
__lowerCamelCase : Union[str, Any] = atan((1 - flattening) * tan(radians(UpperCAmelCase_ ) ) )
__lowerCamelCase : Union[str, Any] = radians(UpperCAmelCase_ )
__lowerCamelCase : str = radians(UpperCAmelCase_ )
# Equation
__lowerCamelCase : Union[str, Any] = sin((phi_a - phi_a) / 2 )
__lowerCamelCase : int = sin((lambda_a - lambda_a) / 2 )
# Square both values
sin_sq_phi *= sin_sq_phi
sin_sq_lambda *= sin_sq_lambda
__lowerCamelCase : Any = sqrt(sin_sq_phi + (cos(UpperCAmelCase_ ) * cos(UpperCAmelCase_ ) * sin_sq_lambda) )
return 2 * RADIUS * asin(UpperCAmelCase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import platform
import sys
A__ : List[str] = """3"""
print("""Python version:""", sys.version)
print("""OS platform:""", platform.platform())
print("""OS architecture:""", platform.machine())
try:
import torch
print("""Torch version:""", torch.__version__)
print("""Cuda available:""", torch.cuda.is_available())
print("""Cuda version:""", torch.version.cuda)
print("""CuDNN version:""", torch.backends.cudnn.version())
print("""Number of GPUs available:""", torch.cuda.device_count())
except ImportError:
print("""Torch version:""", None)
try:
import transformers
print("""transformers version:""", transformers.__version__)
except ImportError:
print("""transformers version:""", None)
| 13 | 1 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Tuple = ['image_processor', 'tokenizer']
lowerCamelCase : Union[str, Any] = 'CLIPImageProcessor'
lowerCamelCase : Union[str, Any] = ('CLIPTokenizer', 'CLIPTokenizerFast')
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
__lowerCamelCase : List[Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , SCREAMING_SNAKE_CASE_ , )
__lowerCamelCase : Dict = kwargs.pop('feature_extractor' )
__lowerCamelCase : List[Any] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> Dict:
if text is None and images is None:
raise ValueError('You have to specify either text or images. Both cannot be none.' )
if text is not None:
__lowerCamelCase : Dict = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if images is not None:
__lowerCamelCase : List[str] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if text is not None and images is not None:
__lowerCamelCase : str = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_ ) , tensor_type=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[str]:
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Dict:
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
@property
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : List[str] = self.tokenizer.model_input_names
__lowerCamelCase : List[Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def lowercase_ ( self ) -> Dict:
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , SCREAMING_SNAKE_CASE_ , )
return self.image_processor_class
@property
def lowercase_ ( self ) -> List[str]:
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , SCREAMING_SNAKE_CASE_ , )
return self.image_processor
| 13 |
'''simple docstring'''
from collections import namedtuple
import requests
from lxml import html # type: ignore
A__ : Tuple = namedtuple("""covid_data""", """cases deaths recovered""")
def UpperCAmelCase__ ( UpperCAmelCase_ : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data:
__lowerCamelCase : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()'
return covid_data(*html.fromstring(requests.get(UpperCAmelCase_ ).content ).xpath(UpperCAmelCase_ ) )
A__ : str = """Total COVID-19 cases in the world: {}
Total deaths due to COVID-19 in the world: {}
Total COVID-19 patients recovered in the world: {}"""
print(fmt.format(*covid_stats()))
| 13 | 1 |
'''simple docstring'''
import json
import os
import pickle
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers import is_faiss_available
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bart.tokenization_bart import BartTokenizer
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch
if is_faiss_available():
import faiss
@require_faiss
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def lowercase_ ( self ) -> int:
__lowerCamelCase : Union[str, Any] = tempfile.mkdtemp()
__lowerCamelCase : List[str] = 8
# DPR tok
__lowerCamelCase : List[str] = [
'[UNK]',
'[CLS]',
'[SEP]',
'[PAD]',
'[MASK]',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
__lowerCamelCase : Dict = os.path.join(self.tmpdirname , 'dpr_tokenizer' )
os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = os.path.join(SCREAMING_SNAKE_CASE_ , DPR_VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
# BART tok
__lowerCamelCase : List[str] = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
]
__lowerCamelCase : Dict = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
__lowerCamelCase : Optional[int] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
__lowerCamelCase : List[Any] = {'unk_token': '<unk>'}
__lowerCamelCase : int = os.path.join(self.tmpdirname , 'bart_tokenizer' )
os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = os.path.join(SCREAMING_SNAKE_CASE_ , BART_VOCAB_FILES_NAMES['vocab_file'] )
__lowerCamelCase : Tuple = os.path.join(SCREAMING_SNAKE_CASE_ , BART_VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(SCREAMING_SNAKE_CASE_ ) )
def lowercase_ ( self ) -> DPRQuestionEncoderTokenizer:
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) )
def lowercase_ ( self ) -> DPRContextEncoderTokenizer:
return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) )
def lowercase_ ( self ) -> BartTokenizer:
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) )
def lowercase_ ( self ) -> Dict:
shutil.rmtree(self.tmpdirname )
def lowercase_ ( self ) -> int:
__lowerCamelCase : int = Dataset.from_dict(
{
'id': ['0', '1'],
'text': ['foo', 'bar'],
'title': ['Foo', 'Bar'],
'embeddings': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )],
} )
dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT )
return dataset
def lowercase_ ( self ) -> int:
__lowerCamelCase : Optional[Any] = self.get_dummy_dataset()
__lowerCamelCase : Any = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , )
with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset:
__lowerCamelCase : int = dataset
__lowerCamelCase : str = RagRetriever(
SCREAMING_SNAKE_CASE_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
return retriever
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> int:
__lowerCamelCase : int = self.get_dummy_dataset()
__lowerCamelCase : str = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='custom' , )
if from_disk:
__lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , 'dataset' )
__lowerCamelCase : Any = os.path.join(self.tmpdirname , 'index.faiss' )
dataset.get_index('embeddings' ).save(os.path.join(self.tmpdirname , 'index.faiss' ) )
dataset.drop_index('embeddings' )
dataset.save_to_disk(os.path.join(self.tmpdirname , 'dataset' ) )
del dataset
__lowerCamelCase : int = RagRetriever(
SCREAMING_SNAKE_CASE_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
else:
__lowerCamelCase : Optional[Any] = RagRetriever(
SCREAMING_SNAKE_CASE_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , SCREAMING_SNAKE_CASE_ ) , )
return retriever
def lowercase_ ( self ) -> int:
__lowerCamelCase : Optional[int] = Dataset.from_dict(
{
'id': ['0', '1'],
'text': ['foo', 'bar'],
'title': ['Foo', 'Bar'],
'embeddings': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )],
} )
dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT )
__lowerCamelCase : Optional[int] = os.path.join(self.tmpdirname , 'hf_bert_base.hnswSQ8_correct_phi_128.c_index' )
dataset.save_faiss_index('embeddings' , index_file_name + '.index.dpr' )
pickle.dump(dataset['id'] , open(index_file_name + '.index_meta.dpr' , 'wb' ) )
__lowerCamelCase : Optional[int] = os.path.join(self.tmpdirname , 'psgs_w100.tsv.pkl' )
__lowerCamelCase : int = {sample['id']: [sample['text'], sample['title']] for sample in dataset}
pickle.dump(SCREAMING_SNAKE_CASE_ , open(SCREAMING_SNAKE_CASE_ , 'wb' ) )
__lowerCamelCase : Optional[int] = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='legacy' , index_path=self.tmpdirname , )
__lowerCamelCase : Optional[Any] = RagRetriever(
SCREAMING_SNAKE_CASE_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() )
return retriever
def lowercase_ ( self ) -> Dict:
__lowerCamelCase : Optional[Any] = 1
__lowerCamelCase : Optional[int] = self.get_dummy_canonical_hf_index_retriever()
__lowerCamelCase : Tuple = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=SCREAMING_SNAKE_CASE_ )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] )
self.assertEqual(len(doc_dicts[0]['id'] ) , SCREAMING_SNAKE_CASE_ )
self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def lowercase_ ( self ) -> str:
__lowerCamelCase : str = self.get_dummy_canonical_hf_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset:
__lowerCamelCase : Tuple = self.get_dummy_dataset()
retriever.save_pretrained(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__lowerCamelCase : int = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=1 )
self.assertTrue(out is not None )
def lowercase_ ( self ) -> int:
__lowerCamelCase : str = 1
__lowerCamelCase : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[str] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=SCREAMING_SNAKE_CASE_ )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] )
self.assertEqual(len(doc_dicts[0]['id'] ) , SCREAMING_SNAKE_CASE_ )
self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def lowercase_ ( self ) -> Dict:
__lowerCamelCase : int = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE_ )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[str] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__lowerCamelCase : Dict = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=1 )
self.assertTrue(out is not None )
def lowercase_ ( self ) -> int:
__lowerCamelCase : str = 1
__lowerCamelCase : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=SCREAMING_SNAKE_CASE_ )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] )
self.assertEqual(len(doc_dicts[0]['id'] ) , SCREAMING_SNAKE_CASE_ )
self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE_ )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__lowerCamelCase : Tuple = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=1 )
self.assertTrue(out is not None )
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : Union[str, Any] = 1
__lowerCamelCase : Tuple = self.get_dummy_legacy_index_retriever()
__lowerCamelCase : List[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Tuple = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=SCREAMING_SNAKE_CASE_ )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['text', 'title'] )
self.assertEqual(len(doc_dicts[0]['text'] ) , SCREAMING_SNAKE_CASE_ )
self.assertEqual(doc_dicts[0]['text'][0] , 'bar' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['text'][0] , 'foo' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : Union[str, Any] = self.get_dummy_legacy_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__lowerCamelCase : List[str] = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=1 )
self.assertTrue(out is not None )
@require_torch
@require_tokenizers
@require_sentencepiece
def lowercase_ ( self ) -> List[Any]:
import torch
__lowerCamelCase : Union[str, Any] = 1
__lowerCamelCase : Union[str, Any] = self.get_dummy_canonical_hf_index_retriever()
__lowerCamelCase : int = [[5, 7], [10, 11]]
__lowerCamelCase : Optional[int] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__lowerCamelCase : Optional[int] = retriever(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = (
out['context_input_ids'],
out['context_attention_mask'],
out['retrieved_doc_embeds'],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray )
__lowerCamelCase : Dict = retriever(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE_ , return_tensors='pt' , )
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = ( # noqa: F841
out['context_input_ids'],
out['context_attention_mask'],
out['retrieved_doc_embeds'],
out['doc_ids'],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor )
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor )
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor )
@require_torch
@require_tokenizers
@require_sentencepiece
def lowercase_ ( self ) -> str:
__lowerCamelCase : Dict = self.get_dpr_ctx_encoder_tokenizer()
__lowerCamelCase : str = 1
__lowerCamelCase : int = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE_ )
retriever.set_ctx_encoder_tokenizer(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = [[5, 7], [10, 11]]
__lowerCamelCase : List[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
__lowerCamelCase : str = retriever(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE_ )
self.assertEqual(
len(SCREAMING_SNAKE_CASE_ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs
self.assertEqual(
all(k in out for k in ('tokenized_doc_ids', 'tokenized_doc_attention_mask') ) , SCREAMING_SNAKE_CASE_ ) # check for doc token related keys in dictionary.
| 13 |
'''simple docstring'''
from __future__ import annotations
import os
from collections.abc import Mapping
A__ : Optional[Any] = tuple[int, int]
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
__lowerCamelCase : set[int] = vertices
__lowerCamelCase : dict[EdgeT, int] = {
(min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ )): weight for edge, weight in edges.items()
}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
__lowerCamelCase : Union[str, Any] = weight
def lowercase_ ( self ) -> Graph:
__lowerCamelCase : Graph = Graph({min(self.vertices )} , {} )
__lowerCamelCase : EdgeT
__lowerCamelCase : int
__lowerCamelCase : EdgeT
__lowerCamelCase : int
while len(subgraph.vertices ) < len(self.vertices ):
__lowerCamelCase : Any = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
__lowerCamelCase : Optional[int] = edge
__lowerCamelCase : List[str] = weight
subgraph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return subgraph
def UpperCAmelCase__ ( UpperCAmelCase_ : str = "p107_network.txt" ) -> int:
__lowerCamelCase : str = os.path.abspath(os.path.dirname(UpperCAmelCase_ ) )
__lowerCamelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : dict[EdgeT, int] = {}
__lowerCamelCase : list[str]
__lowerCamelCase : int
__lowerCamelCase : int
with open(UpperCAmelCase_ ) as f:
__lowerCamelCase : Any = f.read().strip().split('\n' )
__lowerCamelCase : Any = [line.split(',' ) for line in data]
for edgea in range(1 , len(UpperCAmelCase_ ) ):
for edgea in range(UpperCAmelCase_ ):
if adjaceny_matrix[edgea][edgea] != "-":
__lowerCamelCase : int = int(adjaceny_matrix[edgea][edgea] )
__lowerCamelCase : Graph = Graph(set(range(len(UpperCAmelCase_ ) ) ) , UpperCAmelCase_ )
__lowerCamelCase : Graph = graph.prims_algorithm()
__lowerCamelCase : int = sum(graph.edges.values() )
__lowerCamelCase : int = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
from decimal import Decimal, getcontext
from math import ceil, factorial
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> str:
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
raise TypeError('Undefined for non-integers' )
elif precision < 1:
raise ValueError('Undefined for non-natural numbers' )
__lowerCamelCase : List[Any] = precision
__lowerCamelCase : Tuple = ceil(precision / 14 )
__lowerCamelCase : Union[str, Any] = 42_68_80 * Decimal(1_00_05 ).sqrt()
__lowerCamelCase : List[str] = 1
__lowerCamelCase : Dict = 13_59_14_09
__lowerCamelCase : Union[str, Any] = Decimal(UpperCAmelCase_ )
for k in range(1 , UpperCAmelCase_ ):
__lowerCamelCase : List[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(UpperCAmelCase_ ) ** 3)
linear_term += 5_45_14_01_34
exponential_term *= -26_25_37_41_26_40_76_80_00
partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term
return str(constant_term / partial_sum )[:-1]
if __name__ == "__main__":
A__ : Any = 50
print(f'''The first {n} digits of pi is: {pi(n)}''')
| 13 |
'''simple docstring'''
from collections.abc import Generator
from math import sin
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
if len(UpperCAmelCase_ ) != 32:
raise ValueError('Input must be of length 32' )
__lowerCamelCase : Dict = B''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bytes:
if i < 0:
raise ValueError('Input must be non-negative' )
__lowerCamelCase : Union[str, Any] = format(UpperCAmelCase_ , '08x' )[-8:]
__lowerCamelCase : str = B''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' )
return little_endian_hex
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
__lowerCamelCase : Optional[Any] = B''
for char in message:
bit_string += format(UpperCAmelCase_ , '08b' ).encode('utf-8' )
__lowerCamelCase : List[str] = format(len(UpperCAmelCase_ ) , '064b' ).encode('utf-8' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(UpperCAmelCase_ ) % 5_12 != 4_48:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> Generator[list[int], None, None]:
if len(UpperCAmelCase_ ) % 5_12 != 0:
raise ValueError('Input must have length that\'s a multiple of 512' )
for pos in range(0 , len(UpperCAmelCase_ ) , 5_12 ):
__lowerCamelCase : Any = bit_string[pos : pos + 5_12]
__lowerCamelCase : Optional[int] = []
for i in range(0 , 5_12 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int:
if i < 0:
raise ValueError('Input must be non-negative' )
__lowerCamelCase : List[Any] = format(UpperCAmelCase_ , '032b' )
__lowerCamelCase : Optional[int] = ''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(UpperCAmelCase_ , 2 )
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
return (a + b) % 2**32
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
if i < 0:
raise ValueError('Input must be non-negative' )
if shift < 0:
raise ValueError('Shift must be non-negative' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
__lowerCamelCase : Optional[Any] = preprocess(UpperCAmelCase_ )
__lowerCamelCase : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
__lowerCamelCase : Dict = 0x67_45_23_01
__lowerCamelCase : Union[str, Any] = 0xef_cd_ab_89
__lowerCamelCase : Optional[Any] = 0x98_ba_dc_fe
__lowerCamelCase : Union[str, Any] = 0x10_32_54_76
__lowerCamelCase : List[str] = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(UpperCAmelCase_ ):
__lowerCamelCase : Dict = aa
__lowerCamelCase : Tuple = ba
__lowerCamelCase : List[Any] = ca
__lowerCamelCase : Dict = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
__lowerCamelCase : List[str] = d ^ (b & (c ^ d))
__lowerCamelCase : Optional[int] = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
__lowerCamelCase : Optional[int] = c ^ (d & (b ^ c))
__lowerCamelCase : Tuple = (5 * i + 1) % 16
elif i <= 47:
__lowerCamelCase : str = b ^ c ^ d
__lowerCamelCase : Any = (3 * i + 5) % 16
else:
__lowerCamelCase : Union[str, Any] = c ^ (b | not_aa(UpperCAmelCase_ ))
__lowerCamelCase : int = (7 * i) % 16
__lowerCamelCase : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**32
__lowerCamelCase : Optional[Any] = d
__lowerCamelCase : Tuple = c
__lowerCamelCase : Optional[int] = b
__lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , left_rotate_aa(UpperCAmelCase_ , shift_amounts[i] ) )
# Add hashed chunk to running total
__lowerCamelCase : int = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : str = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : List[Any] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : Dict = reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 | 1 |
'''simple docstring'''
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def UpperCAmelCase__ ( ) -> List[Any]:
__lowerCamelCase : List[Any] = ArgumentParser(
description=(
'PyTorch TPU distributed training launch '
'helper utility that will spawn up '
'multiple distributed processes'
) )
# Optional arguments for the launch helper
parser.add_argument('--num_cores' , type=UpperCAmelCase_ , default=1 , help='Number of TPU cores to use (1 or 8).' )
# positional
parser.add_argument(
'training_script' , type=UpperCAmelCase_ , help=(
'The full path to the single TPU training '
'program/script to be launched in parallel, '
'followed by all the arguments for the '
'training script'
) , )
# rest from the training program
parser.add_argument('training_script_args' , nargs=UpperCAmelCase_ )
return parser.parse_args()
def UpperCAmelCase__ ( ) -> Optional[Any]:
__lowerCamelCase : str = parse_args()
# Import training_script as a module.
__lowerCamelCase : Optional[int] = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
__lowerCamelCase : Optional[Any] = script_fpath.stem
__lowerCamelCase : Dict = importlib.import_module(UpperCAmelCase_ )
# Patch sys.argv
__lowerCamelCase : Tuple = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 13 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : Tuple = logging.get_logger(__name__)
A__ : Dict = {
"""RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""",
"""RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""",
"""RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""",
"""RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""",
"""RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""",
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : List[Any] = 'rwkv'
lowerCamelCase : Any = {'max_position_embeddings': 'context_length'}
def __init__( self , SCREAMING_SNAKE_CASE_=5_02_77 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = vocab_size
__lowerCamelCase : Tuple = context_length
__lowerCamelCase : str = hidden_size
__lowerCamelCase : List[str] = num_hidden_layers
__lowerCamelCase : Any = attention_hidden_size if attention_hidden_size is not None else hidden_size
__lowerCamelCase : Optional[int] = intermediate_size if intermediate_size is not None else 4 * hidden_size
__lowerCamelCase : Optional[Any] = layer_norm_epsilon
__lowerCamelCase : int = rescale_every
__lowerCamelCase : Tuple = use_cache
__lowerCamelCase : int = bos_token_id
__lowerCamelCase : Optional[Any] = eos_token_id
super().__init__(
tie_word_embeddings=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 13 | 1 |
'''simple docstring'''
import random
from .binary_exp_mod import bin_exp_mod
def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any]=10_00 ) -> Union[str, Any]:
if n < 2:
return False
if n % 2 == 0:
return n == 2
# this means n is odd
__lowerCamelCase : Any = n - 1
__lowerCamelCase : Tuple = 0
while d % 2 == 0:
d /= 2
exp += 1
# n - 1=d*(2**exp)
__lowerCamelCase : Tuple = 0
while count < prec:
__lowerCamelCase : List[str] = random.randint(2 , n - 1 )
__lowerCamelCase : Tuple = bin_exp_mod(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
if b != 1:
__lowerCamelCase : Optional[Any] = True
for _ in range(UpperCAmelCase_ ):
if b == n - 1:
__lowerCamelCase : Any = False
break
__lowerCamelCase : List[str] = b * b
b %= n
if flag:
return False
count += 1
return True
if __name__ == "__main__":
A__ : Tuple = abs(int(input("""Enter bound : """).strip()))
print("""Here's the list of primes:""")
print(""", """.join(str(i) for i in range(n + 1) if is_prime_big(i)))
| 13 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 10_00 ) -> int:
__lowerCamelCase : Union[str, Any] = 3
__lowerCamelCase : Dict = 0
while a < n:
if a % 3 == 0 or a % 5 == 0:
result += a
elif a % 15 == 0:
result -= a
a += 1
return result
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor
from ..utils import is_datasets_available
from .base import PipelineTool
if is_datasets_available():
from datasets import load_dataset
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Optional[int] = 'microsoft/speecht5_tts'
lowerCamelCase : List[str] = (
'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the '
'text to read (in English) and returns a waveform object containing the sound.'
)
lowerCamelCase : Tuple = 'text_reader'
lowerCamelCase : Tuple = SpeechTaProcessor
lowerCamelCase : Any = SpeechTaForTextToSpeech
lowerCamelCase : List[str] = SpeechTaHifiGan
lowerCamelCase : Union[str, Any] = ['text']
lowerCamelCase : List[Any] = ['audio']
def lowercase_ ( self ) -> Dict:
if self.post_processor is None:
__lowerCamelCase : str = 'microsoft/speecht5_hifigan'
super().setup()
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> int:
__lowerCamelCase : str = self.pre_processor(text=SCREAMING_SNAKE_CASE_ , return_tensors='pt' , truncation=SCREAMING_SNAKE_CASE_ )
if speaker_embeddings is None:
if not is_datasets_available():
raise ImportError('Datasets needs to be installed if not passing speaker embeddings.' )
__lowerCamelCase : List[str] = load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation' )
__lowerCamelCase : List[str] = torch.tensor(embeddings_dataset[73_05]['xvector'] ).unsqueeze(0 )
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> str:
with torch.no_grad():
return self.model.generate_speech(**SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> str:
with torch.no_grad():
return self.post_processor(SCREAMING_SNAKE_CASE_ ).cpu().detach()
| 13 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Dict = XGLMConfig
lowerCamelCase : List[str] = {}
lowerCamelCase : Union[str, Any] = 'gelu'
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Any:
__lowerCamelCase : int = parent
__lowerCamelCase : Optional[int] = batch_size
__lowerCamelCase : Optional[Any] = seq_length
__lowerCamelCase : Optional[int] = is_training
__lowerCamelCase : str = use_input_mask
__lowerCamelCase : Dict = use_labels
__lowerCamelCase : Union[str, Any] = vocab_size
__lowerCamelCase : List[Any] = d_model
__lowerCamelCase : List[Any] = num_hidden_layers
__lowerCamelCase : List[Any] = num_attention_heads
__lowerCamelCase : Optional[Any] = ffn_dim
__lowerCamelCase : List[Any] = activation_function
__lowerCamelCase : List[Any] = activation_dropout
__lowerCamelCase : List[Any] = attention_dropout
__lowerCamelCase : Union[str, Any] = max_position_embeddings
__lowerCamelCase : Tuple = initializer_range
__lowerCamelCase : int = None
__lowerCamelCase : int = 0
__lowerCamelCase : Tuple = 2
__lowerCamelCase : Tuple = 1
def lowercase_ ( self ) -> Any:
return XGLMConfig.from_pretrained('facebook/xglm-564M' )
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : Optional[Any] = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
__lowerCamelCase : Optional[int] = None
if self.use_input_mask:
__lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCamelCase : str = self.get_config()
__lowerCamelCase : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def lowercase_ ( self ) -> Optional[int]:
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=SCREAMING_SNAKE_CASE_ , )
def lowercase_ ( self ) -> str:
__lowerCamelCase : List[Any] = self.prepare_config_and_inputs()
(
(
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) ,
) : str = config_and_inputs
__lowerCamelCase : Union[str, Any] = {
'input_ids': input_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_tf
class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
lowerCamelCase : List[Any] = (TFXGLMForCausalLM,) if is_tf_available() else ()
lowerCamelCase : Any = (
{'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {}
)
lowerCamelCase : List[Any] = False
lowerCamelCase : Dict = False
lowerCamelCase : Union[str, Any] = False
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : str = TFXGLMModelTester(self )
__lowerCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , n_embd=37 )
def lowercase_ ( self ) -> Dict:
self.config_tester.run_common_tests()
@slow
def lowercase_ ( self ) -> Optional[int]:
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCamelCase : Optional[Any] = TFXGLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' )
def lowercase_ ( self ) -> Any:
super().test_resize_token_embeddings()
@require_tf
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
@slow
def lowercase_ ( self , SCREAMING_SNAKE_CASE_=True ) -> List[str]:
__lowerCamelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : int = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
__lowerCamelCase : Optional[int] = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81]
# fmt: on
__lowerCamelCase : Any = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE_ )
@slow
def lowercase_ ( self ) -> int:
__lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
tf.random.set_seed(0 )
__lowerCamelCase : List[Any] = tokenizer('Today is a nice day and' , return_tensors='tf' )
__lowerCamelCase : int = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(':/CPU:0' ):
__lowerCamelCase : Tuple = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , seed=[7, 0] )
__lowerCamelCase : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = (
'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due'
)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@slow
def lowercase_ ( self ) -> int:
__lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : Any = 'left'
# use different length sentences to test batching
__lowerCamelCase : Any = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When',
'Hello, my dog is a little',
]
__lowerCamelCase : Any = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='tf' , padding=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = inputs['input_ids']
__lowerCamelCase : str = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 )
__lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids
__lowerCamelCase : int = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 )
__lowerCamelCase : Optional[Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids
__lowerCamelCase : Optional[Any] = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 )
__lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be '
'a single',
'Hello, my dog is a little bit of a shy one, but he is very friendly',
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [non_padded_sentence, padded_sentence] )
| 13 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
A__ : Dict = logging.get_logger(__name__)
A__ : Union[str, Any] = {
"""EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""",
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : str = 'gpt_neo'
lowerCamelCase : str = ['past_key_values']
lowerCamelCase : Optional[int] = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'}
def __init__( self , SCREAMING_SNAKE_CASE_=5_02_57 , SCREAMING_SNAKE_CASE_=20_48 , SCREAMING_SNAKE_CASE_=20_48 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=[[["global", "local"], 12]] , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=2_56 , SCREAMING_SNAKE_CASE_="gelu_new" , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=5_02_56 , SCREAMING_SNAKE_CASE_=5_02_56 , **SCREAMING_SNAKE_CASE_ , ) -> Any:
__lowerCamelCase : List[Any] = vocab_size
__lowerCamelCase : Union[str, Any] = max_position_embeddings
__lowerCamelCase : Union[str, Any] = hidden_size
__lowerCamelCase : List[Any] = num_layers
__lowerCamelCase : Optional[Any] = num_heads
__lowerCamelCase : int = intermediate_size
__lowerCamelCase : int = window_size
__lowerCamelCase : Optional[Any] = activation_function
__lowerCamelCase : List[str] = resid_dropout
__lowerCamelCase : Any = embed_dropout
__lowerCamelCase : Union[str, Any] = attention_dropout
__lowerCamelCase : Union[str, Any] = classifier_dropout
__lowerCamelCase : Optional[int] = layer_norm_epsilon
__lowerCamelCase : int = initializer_range
__lowerCamelCase : Union[str, Any] = use_cache
__lowerCamelCase : Dict = bos_token_id
__lowerCamelCase : List[Any] = eos_token_id
__lowerCamelCase : List[str] = attention_types
__lowerCamelCase : Dict = self.expand_attention_types_params(SCREAMING_SNAKE_CASE_ )
if len(self.attention_layers ) != self.num_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.attention_layers)` == `config.num_layers` '
f'but is `len(config.attention_layers) = {len(self.attention_layers )}`, '
f'`config.num_layers = {self.num_layers}`. '
'`config.attention_layers` is prepared using `config.attention_types`. '
'Please verify the value of `config.attention_types` argument.' )
super().__init__(bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
@staticmethod
def lowercase_ ( SCREAMING_SNAKE_CASE_ ) -> int:
__lowerCamelCase : Dict = []
for item in attention_types:
for _ in range(item[1] ):
attentions.extend(item[0] )
return attentions
def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) -> Union[str, Any]:
import torch
__lowerCamelCase : Optional[Any] = input.size()
__lowerCamelCase : Dict = len(UpperCAmelCase_ )
__lowerCamelCase : Any = shape[dimension]
__lowerCamelCase : Tuple = torch.arange(0 , UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : Union[str, Any] = torch.div(sizedim - size , UpperCAmelCase_ , rounding_mode='floor' ) + 1
__lowerCamelCase : int = torch.arange(UpperCAmelCase_ ) + low_indices[:min_length][:, None]
__lowerCamelCase : Tuple = [slice(UpperCAmelCase_ )] * rank
__lowerCamelCase : Union[str, Any] = indices
__lowerCamelCase : Optional[int] = input[s]
__lowerCamelCase : Optional[Any] = list(range(0 , rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(UpperCAmelCase_ )
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int ) -> Dict:
import torch
__lowerCamelCase : Optional[Any] = torch.arange(1 , UpperCAmelCase_ )
__lowerCamelCase : List[Any] = torch.remainder(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : List[Any] = remainders == 0
__lowerCamelCase : Dict = candidates[divisor_indices]
__lowerCamelCase : Dict = torch.max(UpperCAmelCase_ )
return largest_divisor, torch.div(UpperCAmelCase_ , UpperCAmelCase_ , rounding_mode='floor' )
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
@property
def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]:
__lowerCamelCase : List[Any] = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} )
if self.use_past:
self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction='inputs' )
__lowerCamelCase : Optional[int] = {0: 'batch', 1: 'past_sequence + sequence'}
else:
__lowerCamelCase : Any = {0: 'batch', 1: 'sequence'}
return common_inputs
@property
def lowercase_ ( self ) -> int:
return self._config.num_heads
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , ) -> Mapping[str, Any]:
__lowerCamelCase : List[Any] = super(SCREAMING_SNAKE_CASE_ , self ).generate_dummy_inputs(
SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , seq_length=SCREAMING_SNAKE_CASE_ , is_pair=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ )
# We need to order the input in the way they appears in the forward()
__lowerCamelCase : str = OrderedDict({'input_ids': common_inputs['input_ids']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' )
else:
import torch
__lowerCamelCase , __lowerCamelCase : Any = common_inputs['input_ids'].shape
# Not using the same length for past_key_values
__lowerCamelCase : Optional[int] = seqlen + 2
__lowerCamelCase : Tuple = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__lowerCamelCase : List[Any] = [
(torch.zeros(SCREAMING_SNAKE_CASE_ ), torch.zeros(SCREAMING_SNAKE_CASE_ )) for _ in range(self.num_layers )
]
__lowerCamelCase : List[Any] = common_inputs['attention_mask']
if self.use_past:
__lowerCamelCase : Any = ordered_inputs['attention_mask'].dtype
__lowerCamelCase : Union[str, Any] = torch.cat(
[ordered_inputs['attention_mask'], torch.ones(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ )] , dim=1 )
return ordered_inputs
@property
def lowercase_ ( self ) -> int:
return 13
| 13 |
'''simple docstring'''
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : List[str] = logging.get_logger(__name__)
# TODO Update this
A__ : Tuple = {
"""facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""",
# See all ESM models at https://huggingface.co/models?filter=esm
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Tuple = 'esm'
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10_26 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]:
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , mask_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = vocab_size
__lowerCamelCase : List[Any] = hidden_size
__lowerCamelCase : str = num_hidden_layers
__lowerCamelCase : List[str] = num_attention_heads
__lowerCamelCase : Any = intermediate_size
__lowerCamelCase : Optional[Any] = hidden_dropout_prob
__lowerCamelCase : Tuple = attention_probs_dropout_prob
__lowerCamelCase : Optional[int] = max_position_embeddings
__lowerCamelCase : str = initializer_range
__lowerCamelCase : Optional[int] = layer_norm_eps
__lowerCamelCase : List[str] = position_embedding_type
__lowerCamelCase : int = use_cache
__lowerCamelCase : Optional[Any] = emb_layer_norm_before
__lowerCamelCase : Optional[Any] = token_dropout
__lowerCamelCase : str = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info('No esmfold_config supplied for folding model, using default values.' )
__lowerCamelCase : Dict = EsmFoldConfig()
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Optional[int] = EsmFoldConfig(**SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = esmfold_config
if vocab_list is None:
logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' )
__lowerCamelCase : List[str] = get_default_vocab_list()
else:
__lowerCamelCase : Optional[Any] = vocab_list
else:
__lowerCamelCase : Dict = None
__lowerCamelCase : Optional[Any] = None
if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , SCREAMING_SNAKE_CASE_ ):
raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : Any = super().to_dict()
if isinstance(self.esmfold_config , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : int = self.esmfold_config.to_dict()
return output
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : str = None
lowerCamelCase : bool = True
lowerCamelCase : bool = False
lowerCamelCase : bool = False
lowerCamelCase : bool = False
lowerCamelCase : float = 0
lowerCamelCase : bool = True
lowerCamelCase : bool = False
lowerCamelCase : int = 1_2_8
lowerCamelCase : "TrunkConfig" = None
def lowercase_ ( self ) -> Any:
if self.trunk is None:
__lowerCamelCase : List[str] = TrunkConfig()
elif isinstance(self.trunk , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Any = TrunkConfig(**self.trunk )
def lowercase_ ( self ) -> int:
__lowerCamelCase : Optional[int] = asdict(self )
__lowerCamelCase : str = self.trunk.to_dict()
return output
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : int = 4_8
lowerCamelCase : int = 1_0_2_4
lowerCamelCase : int = 1_2_8
lowerCamelCase : int = 3_2
lowerCamelCase : int = 3_2
lowerCamelCase : int = 3_2
lowerCamelCase : float = 0
lowerCamelCase : float = 0
lowerCamelCase : bool = False
lowerCamelCase : int = 4
lowerCamelCase : Optional[int] = 1_2_8
lowerCamelCase : "StructureModuleConfig" = None
def lowercase_ ( self ) -> Optional[int]:
if self.structure_module is None:
__lowerCamelCase : Dict = StructureModuleConfig()
elif isinstance(self.structure_module , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Optional[Any] = StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
'`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got'
f' {self.sequence_state_dim} and {self.sequence_state_dim}.' )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
'`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got'
f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' )
__lowerCamelCase : Tuple = self.sequence_state_dim // self.sequence_head_width
__lowerCamelCase : str = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
'`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got'
f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
'`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got'
f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' )
if self.dropout >= 0.4:
raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' )
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : List[str] = asdict(self )
__lowerCamelCase : int = self.structure_module.to_dict()
return output
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : int = 3_8_4
lowerCamelCase : int = 1_2_8
lowerCamelCase : int = 1_6
lowerCamelCase : int = 1_2_8
lowerCamelCase : int = 1_2
lowerCamelCase : int = 4
lowerCamelCase : int = 8
lowerCamelCase : float = 0.1
lowerCamelCase : int = 8
lowerCamelCase : int = 1
lowerCamelCase : int = 2
lowerCamelCase : int = 7
lowerCamelCase : int = 1_0
lowerCamelCase : float = 1e-8
lowerCamelCase : float = 1e5
def lowercase_ ( self ) -> Any:
return asdict(self )
def UpperCAmelCase__ ( ) -> Optional[Any]:
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 13 | 1 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> bool:
__lowerCamelCase : Dict = [int(UpperCAmelCase_ ) for i in ip_va_address.split('.' ) if i.isdigit()]
return len(UpperCAmelCase_ ) == 4 and all(0 <= int(UpperCAmelCase_ ) <= 2_54 for octet in octets )
if __name__ == "__main__":
A__ : Optional[Any] = input().strip()
A__ : Tuple = """valid""" if is_ip_va_address_valid(ip) else """invalid"""
print(f'''{ip} is a {valid_or_invalid} IP v4 address.''')
| 13 |
'''simple docstring'''
A__ : dict[tuple[int, int, int], int] = {}
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
# if we are absent twice, or late 3 consecutive days,
# no further prize strings are possible
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
__lowerCamelCase : List[Any] = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
__lowerCamelCase : Tuple = _calculate(days - 1 , UpperCAmelCase_ , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
__lowerCamelCase : int = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
__lowerCamelCase : List[Any] = _calculate(days - 1 , UpperCAmelCase_ , 0 )
__lowerCamelCase : Optional[int] = state_late + state_absent + state_ontime
__lowerCamelCase : Union[str, Any] = prizestrings
return prizestrings
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 30 ) -> int:
return _calculate(UpperCAmelCase_ , absent=0 , late=0 )
if __name__ == "__main__":
print(solution())
| 13 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A__ : List[str] = {"""configuration_opt""": ["""OPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OPTConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Dict = [
"""OPT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""OPTForCausalLM""",
"""OPTModel""",
"""OPTPreTrainedModel""",
"""OPTForSequenceClassification""",
"""OPTForQuestionAnswering""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : str = ["""TFOPTForCausalLM""", """TFOPTModel""", """TFOPTPreTrainedModel"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Dict = [
"""FlaxOPTForCausalLM""",
"""FlaxOPTModel""",
"""FlaxOPTPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_opt import (
OPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OPTForCausalLM,
OPTForQuestionAnswering,
OPTForSequenceClassification,
OPTModel,
OPTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel
else:
import sys
A__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 13 |
'''simple docstring'''
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
A__ : Any = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""")
@total_ordering
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : str
lowerCamelCase : Optional[str] = None
lowerCamelCase : Optional[Union[str, int]] = None
lowerCamelCase : Optional[Union[str, int]] = None
lowerCamelCase : Optional[Union[str, int]] = None
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = _str_to_version_tuple(self.version_str )
def __repr__( self ) -> Any:
return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}'
@property
def lowercase_ ( self ) -> int:
return self.major, self.minor, self.patch
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return Version(SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return other
raise TypeError(f'{other} (type {type(SCREAMING_SNAKE_CASE_ )}) cannot be compared to version.' )
def __eq__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
try:
__lowerCamelCase : Union[str, Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
__lowerCamelCase : List[Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ )
return self.tuple < other.tuple
def __hash__( self ) -> List[str]:
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase : str = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def lowercase_ ( self ) -> str:
return self.version_str
def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> str:
__lowerCamelCase : str = _VERSION_REG.match(UpperCAmelCase_ )
if not res:
raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' )
return tuple(int(UpperCAmelCase_ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] )
def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] ) -> Dict:
return ".".join(str(UpperCAmelCase_ ) for v in version_tuple )
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
A__ : Dict = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
A__ : Optional[Any] = typing.Union[np.floataa, int, float] # noqa: UP007
def UpperCAmelCase__ ( UpperCAmelCase_ : Vector , UpperCAmelCase_ : Vector ) -> VectorOut:
return np.sqrt(np.sum((np.asarray(UpperCAmelCase_ ) - np.asarray(UpperCAmelCase_ )) ** 2 ) )
def UpperCAmelCase__ ( UpperCAmelCase_ : Vector , UpperCAmelCase_ : Vector ) -> VectorOut:
return sum((va - va) ** 2 for va, va in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ** (1 / 2)
if __name__ == "__main__":
def UpperCAmelCase__ ( ) -> None:
from timeit import timeit
print('Without Numpy' )
print(
timeit(
'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=1_00_00 , globals=globals() , ) )
print('With Numpy' )
print(
timeit(
'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=1_00_00 , globals=globals() , ) )
benchmark()
| 13 |
'''simple docstring'''
import sys
from collections import defaultdict
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self ) -> int:
__lowerCamelCase : Any = []
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Any:
return self.node_position[vertex]
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple:
__lowerCamelCase : Optional[int] = pos
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
__lowerCamelCase : str = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
__lowerCamelCase : Optional[Any] = 2 * start + 1
else:
__lowerCamelCase : int = 2 * start + 2
if heap[smallest_child] < heap[start]:
__lowerCamelCase , __lowerCamelCase : Optional[Any] = heap[smallest_child], positions[smallest_child]
__lowerCamelCase , __lowerCamelCase : int = (
heap[start],
positions[start],
)
__lowerCamelCase , __lowerCamelCase : str = temp, tempa
__lowerCamelCase : Dict = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , SCREAMING_SNAKE_CASE_ )
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any:
__lowerCamelCase : Any = position[index]
while index != 0:
__lowerCamelCase : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
__lowerCamelCase : Union[str, Any] = heap[parent]
__lowerCamelCase : Any = position[parent]
self.set_position(position[parent] , SCREAMING_SNAKE_CASE_ )
else:
__lowerCamelCase : Tuple = val
__lowerCamelCase : List[str] = temp
self.set_position(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
break
__lowerCamelCase : Tuple = parent
else:
__lowerCamelCase : Union[str, Any] = val
__lowerCamelCase : Tuple = temp
self.set_position(SCREAMING_SNAKE_CASE_ , 0 )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
__lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) // 2 - 1
for i in range(SCREAMING_SNAKE_CASE_ , -1 , -1 ):
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
__lowerCamelCase : Any = positions[0]
__lowerCamelCase : Union[str, Any] = sys.maxsize
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
return temp
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> str:
__lowerCamelCase : List[Any] = Heap()
__lowerCamelCase : Optional[int] = [0] * len(UpperCAmelCase_ )
__lowerCamelCase : str = [-1] * len(UpperCAmelCase_ ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
__lowerCamelCase : List[str] = [] # Heap of Distance of vertices from their neighboring vertex
__lowerCamelCase : Tuple = []
for vertex in range(len(UpperCAmelCase_ ) ):
distance_tv.append(sys.maxsize )
positions.append(UpperCAmelCase_ )
heap.node_position.append(UpperCAmelCase_ )
__lowerCamelCase : Tuple = []
__lowerCamelCase : Dict = 1
__lowerCamelCase : str = sys.maxsize
for neighbor, distance in adjacency_list[0]:
__lowerCamelCase : Any = 0
__lowerCamelCase : Any = distance
heap.heapify(UpperCAmelCase_ , UpperCAmelCase_ )
for _ in range(1 , len(UpperCAmelCase_ ) ):
__lowerCamelCase : List[Any] = heap.delete_minimum(UpperCAmelCase_ , UpperCAmelCase_ )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
__lowerCamelCase : Union[str, Any] = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(UpperCAmelCase_ )]
):
__lowerCamelCase : Dict = distance
heap.bottom_to_top(
UpperCAmelCase_ , heap.get_position(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : str = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
A__ : Tuple = int(input("""Enter number of edges: """).strip())
A__ : str = defaultdict(list)
for _ in range(edges_number):
A__ : Optional[int] = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 13 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A__ : Dict = logging.get_logger(__name__)
A__ : List[str] = {
"""google/vit-base-patch16-224""": """https://huggingface.co/vit-base-patch16-224/resolve/main/config.json""",
# See all ViT models at https://huggingface.co/models?filter=vit
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Optional[Any] = 'vit'
def __init__( self , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=16 , **SCREAMING_SNAKE_CASE_ , ) -> Tuple:
super().__init__(**SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[str] = hidden_size
__lowerCamelCase : Any = num_hidden_layers
__lowerCamelCase : Union[str, Any] = num_attention_heads
__lowerCamelCase : Optional[int] = intermediate_size
__lowerCamelCase : Union[str, Any] = hidden_act
__lowerCamelCase : Dict = hidden_dropout_prob
__lowerCamelCase : int = attention_probs_dropout_prob
__lowerCamelCase : Any = initializer_range
__lowerCamelCase : str = layer_norm_eps
__lowerCamelCase : List[str] = image_size
__lowerCamelCase : int = patch_size
__lowerCamelCase : List[Any] = num_channels
__lowerCamelCase : List[Any] = qkv_bias
__lowerCamelCase : Union[str, Any] = encoder_stride
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Optional[Any] = version.parse('1.11' )
@property
def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def lowercase_ ( self ) -> float:
return 1E-4
| 13 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00 ) -> int:
__lowerCamelCase : Union[str, Any] = n * (n + 1) * (2 * n + 1) / 6
__lowerCamelCase : Union[str, Any] = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
import collections
import json
import os
import re
from typing import TYPE_CHECKING, List, Optional, Tuple
import numpy as np
from ...tokenization_utils_fast import PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
A__ : Optional[int] = logging.get_logger(__name__)
A__ : int = {"""vocab_file""": """vocab.txt""", """emoji_file""": """emoji.json"""}
A__ : int = {
"""vocab_file""": {
"""abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt""",
},
"""emoji_file""": {
"""abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json""",
},
}
A__ : List[Any] = {
"""abeja/gpt-neox-japanese-2.7b""": 2048,
}
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple ) -> int:
with open(UpperCAmelCase_ , 'r' , encoding='utf-8' ) as f:
__lowerCamelCase : Optional[int] = json.loads(f.read() )
__lowerCamelCase : Union[str, Any] = collections.OrderedDict()
__lowerCamelCase : Union[str, Any] = collections.OrderedDict()
__lowerCamelCase : Optional[Any] = collections.OrderedDict()
with open(UpperCAmelCase_ , 'r' , encoding='utf-8' ) as f:
__lowerCamelCase : Any = f.readlines()
__lowerCamelCase : Tuple = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token]
for idx, b in enumerate(UpperCAmelCase_ ):
__lowerCamelCase : int = b
__lowerCamelCase : Any = idx
for wd in b:
__lowerCamelCase : Union[str, Any] = idx
return vocab, raw_vocab, ids_to_tokens, emoji
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : List[str] = VOCAB_FILES_NAMES
lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : Union[str, Any] = ['input_ids', 'attention_mask']
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="<|endoftext|>" , SCREAMING_SNAKE_CASE_="<|endoftext|>" , SCREAMING_SNAKE_CASE_="<|startoftext|>" , SCREAMING_SNAKE_CASE_="<|endoftext|>" , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Tuple:
super().__init__(
unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , do_clean_text=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
if not os.path.isfile(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
f'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained'
' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' )
if not os.path.isfile(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
f'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google'
' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' )
__lowerCamelCase : int = do_clean_text
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = load_vocab_and_emoji(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = SubWordJapaneseTokenizer(
vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji )
@property
def lowercase_ ( self ) -> List[str]:
# self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab
return len(self.raw_vocab )
def lowercase_ ( self ) -> Any:
return dict(self.raw_vocab , **self.added_tokens_encoder )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
return self.subword_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ , clean=self.do_clean_text )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
return self.vocab.get(SCREAMING_SNAKE_CASE_ , self.vocab.get(self.unk_token ) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> int:
return self.subword_tokenizer.convert_id_to_token(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
__lowerCamelCase : Any = ''.join(SCREAMING_SNAKE_CASE_ ).strip()
return out_string
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[int]:
__lowerCamelCase : int = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) + [self.eos_token_id] )
if len(SCREAMING_SNAKE_CASE_ ) > self.model_max_length:
__lowerCamelCase : List[Any] = input_ids[-self.model_max_length :]
return input_ids
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]:
__lowerCamelCase : List[Any] = 0
if os.path.isdir(SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Tuple = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
__lowerCamelCase : Union[str, Any] = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] )
else:
__lowerCamelCase : List[Any] = (
(filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file']
)
__lowerCamelCase : Any = (
(filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file']
)
with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as writer:
for token_index, token in self.ids_to_tokens.items():
if index != token_index:
logger.warning(
f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'
' Please check that the vocabulary is not corrupted!' )
__lowerCamelCase : Dict = token_index
writer.write(','.join(SCREAMING_SNAKE_CASE_ ) + '\n' )
index += 1
with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as writer:
json.dump(self.emoji , SCREAMING_SNAKE_CASE_ )
return vocab_file, emoji_file
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase : Optional[int] = vocab # same as swe
__lowerCamelCase : Dict = ids_to_tokens # same as bpe
__lowerCamelCase : str = emoji
__lowerCamelCase : str = np.max([len(SCREAMING_SNAKE_CASE_ ) for w in self.vocab.keys()] )
__lowerCamelCase : Union[str, Any] = re.compile(r'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' )
__lowerCamelCase : Optional[Any] = re.compile(r'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' )
__lowerCamelCase : List[Any] = re.compile(r'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' )
__lowerCamelCase : Dict = re.compile(
r'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' )
__lowerCamelCase : int = re.compile(
r'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' )
__lowerCamelCase : List[str] = re.compile(
r'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' )
__lowerCamelCase : Optional[int] = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿'
__lowerCamelCase : Any = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟'
__lowerCamelCase : Optional[Any] = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} )
def __len__( self ) -> Any:
return len(self.ids_to_tokens )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
__lowerCamelCase : Any = self.content_repattera.sub('<URL>' , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = self.content_repattera.sub('<EMAIL>' , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = self.content_repattera.sub('<TEL>' , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = self.content_repattera.sub('<DATE>' , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = self.content_repattera.sub('<DATE>' , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = self.content_repattera.sub('<PRICE>' , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = content.translate(self.content_transa )
while "<BLOCK><BLOCK>" in content:
__lowerCamelCase : Optional[int] = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' )
return content
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> Tuple:
__lowerCamelCase : Tuple = text.replace(' ' , '<SP>' )
__lowerCamelCase : Optional[Any] = text.replace(' ' , '<SP>' )
__lowerCamelCase : str = text.replace('\r\n' , '<BR>' )
__lowerCamelCase : List[Any] = text.replace('\n' , '<BR>' )
__lowerCamelCase : Tuple = text.replace('\r' , '<BR>' )
__lowerCamelCase : int = text.replace('\t' , '<TAB>' )
__lowerCamelCase : Optional[int] = text.replace('—' , 'ー' )
__lowerCamelCase : List[Any] = text.replace('−' , 'ー' )
for k, v in self.emoji["emoji"].items():
if k in text:
__lowerCamelCase : Tuple = text.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if clean:
__lowerCamelCase : Union[str, Any] = self.clean_text(SCREAMING_SNAKE_CASE_ )
def check_simbol(SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : List[Any] = x.encode()
if len(SCREAMING_SNAKE_CASE_ ) == 1 and len(SCREAMING_SNAKE_CASE_ ) == 2:
__lowerCamelCase : Dict = (int(e[0] ) << 8) + int(e[1] )
if (
(c >= 0Xc2_a1 and c <= 0Xc2_bf)
or (c >= 0Xc7_80 and c <= 0Xc7_83)
or (c >= 0Xca_b9 and c <= 0Xcb_bf)
or (c >= 0Xcc_80 and c <= 0Xcd_a2)
):
return True
return False
def checkuae(SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : str = x.encode()
if len(SCREAMING_SNAKE_CASE_ ) == 1 and len(SCREAMING_SNAKE_CASE_ ) == 3:
__lowerCamelCase : List[Any] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] )
if c >= 0Xe2_80_80 and c <= 0Xe2_b0_7f:
return True
return False
__lowerCamelCase : Any = 0
__lowerCamelCase : Union[str, Any] = []
while pos < len(SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Dict = min(len(SCREAMING_SNAKE_CASE_ ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3
__lowerCamelCase : Dict = [] # (token_id, token, pos)
for e in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , -1 ):
__lowerCamelCase : List[str] = text[pos:e]
if wd in self.vocab:
if wd[0] == "<" and len(SCREAMING_SNAKE_CASE_ ) > 2:
__lowerCamelCase : str = [(self.vocab[wd], wd, e)]
break
else:
candidates.append((self.vocab[wd], wd, e) )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
# the smallest token_id is adopted
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x[0] )[0]
result.append(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = e
else:
__lowerCamelCase : List[Any] = pos + 1
__lowerCamelCase : int = text[pos:end]
if check_simbol(SCREAMING_SNAKE_CASE_ ):
result.append('<KIGOU>' )
elif checkuae(SCREAMING_SNAKE_CASE_ ):
result.append('<U2000U2BFF>' )
else:
for i in wd.encode('utf-8' ):
result.append('<|byte%d|>' % i )
__lowerCamelCase : str = end
return result
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="\n" ) -> Union[str, Any]:
__lowerCamelCase : Dict = []
__lowerCamelCase : int = []
__lowerCamelCase : Optional[Any] = self.ids_to_tokens[index][0]
if word[:6] == "<|byte" and word[-2:] == "|>":
byte_tokens.append(int(word[6:-2] ) )
else:
if len(SCREAMING_SNAKE_CASE_ ) > 0:
words.append(bytearray(SCREAMING_SNAKE_CASE_ ).decode('utf-8' , errors='replace' ) )
__lowerCamelCase : Union[str, Any] = []
if word[:7] == "<|emoji" and word[-2:] == "|>":
words.append(self.emoji['emoji_inv'][word] )
elif word == "<SP>":
words.append(' ' )
elif word == "<BR>":
words.append(SCREAMING_SNAKE_CASE_ )
elif word == "<TAB>":
words.append('\t' )
elif word == "<BLOCK>":
words.append('▀' )
elif word == "<KIGOU>":
words.append('ǀ' )
elif word == "<U2000U2BFF>":
words.append('‖' )
else:
words.append(SCREAMING_SNAKE_CASE_ )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
words.append(bytearray(SCREAMING_SNAKE_CASE_ ).decode('utf-8' , errors='replace' ) )
__lowerCamelCase : Dict = ''.join(SCREAMING_SNAKE_CASE_ )
return text
| 13 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Optional[int]:
__lowerCamelCase : Optional[int] = parent
__lowerCamelCase : Dict = batch_size
__lowerCamelCase : int = image_size
__lowerCamelCase : List[str] = patch_size
__lowerCamelCase : Optional[int] = num_channels
__lowerCamelCase : Any = is_training
__lowerCamelCase : Dict = use_labels
__lowerCamelCase : List[Any] = hidden_size
__lowerCamelCase : List[Any] = num_hidden_layers
__lowerCamelCase : Optional[Any] = num_attention_heads
__lowerCamelCase : Dict = intermediate_size
__lowerCamelCase : Union[str, Any] = hidden_act
__lowerCamelCase : Optional[int] = hidden_dropout_prob
__lowerCamelCase : Tuple = attention_probs_dropout_prob
__lowerCamelCase : str = type_sequence_label_size
__lowerCamelCase : List[str] = initializer_range
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__lowerCamelCase : str = (image_size // patch_size) ** 2
__lowerCamelCase : Optional[int] = num_patches + 1
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowerCamelCase : Optional[int] = ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , )
return config, pixel_values
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
__lowerCamelCase : Union[str, Any] = FlaxViTModel(config=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = model(SCREAMING_SNAKE_CASE_ )
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
__lowerCamelCase : str = (self.image_size, self.image_size)
__lowerCamelCase : str = (self.patch_size, self.patch_size)
__lowerCamelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str:
__lowerCamelCase : Tuple = self.type_sequence_label_size
__lowerCamelCase : Any = FlaxViTForImageClassification(config=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__lowerCamelCase : List[str] = 1
__lowerCamelCase : List[Any] = FlaxViTForImageClassification(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : List[Any] = self.prepare_config_and_inputs()
(
(
__lowerCamelCase
) , (
__lowerCamelCase
) ,
) : int = config_and_inputs
__lowerCamelCase : Union[str, Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_flax
class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : str = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()
def lowercase_ ( self ) -> None:
__lowerCamelCase : str = FlaxViTModelTester(self )
__lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 )
def lowercase_ ( self ) -> List[Any]:
self.config_tester.run_common_tests()
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase : List[str] = [*signature.parameters.keys()]
__lowerCamelCase : Optional[int] = ['pixel_values']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowerCamelCase : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ )
@jax.jit
def model_jitted(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return model(pixel_values=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
with self.subTest('JIT Enabled' ):
__lowerCamelCase : Optional[int] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
__lowerCamelCase : Union[str, Any] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) )
for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowercase_ ( self ) -> List[Any]:
for model_class_name in self.all_model_classes:
__lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained('google/vit-base-patch16-224' )
__lowerCamelCase : Union[str, Any] = model(np.ones((1, 3, 2_24, 2_24) ) )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
| 13 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import _LazyModule
A__ : str = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]}
if TYPE_CHECKING:
from .tokenization_byta import ByTaTokenizer
else:
import sys
A__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 13 |
'''simple docstring'''
import argparse
A__ : Optional[Any] = """docs/source/_static/js/custom.js"""
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> int:
with open(UpperCAmelCase_ , encoding='utf-8' , newline='\n' ) as f:
__lowerCamelCase : Dict = f.readlines()
__lowerCamelCase : Tuple = 0
# First let's put the right version
while not lines[index].startswith('const stableVersion =' ):
index += 1
__lowerCamelCase : Dict = F'const stableVersion = "v{version}"\n'
# Then update the dictionary
while not lines[index].startswith('const versionMapping = {' ):
index += 1
# We go until the end
while not lines[index].startswith('}' ):
index += 1
# We add the new version at the end
lines[index - 1] += F' "v{version}": "v{version}",\n'
with open(UpperCAmelCase_ , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(UpperCAmelCase_ )
if __name__ == "__main__":
A__ : str = argparse.ArgumentParser()
parser.add_argument("""--version""", help="""Release version.""")
A__ : Any = parser.parse_args()
update_custom_js(args.version)
| 13 | 1 |
'''simple docstring'''
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
A__ : Union[str, Any] = get_logger(__name__)
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : int = 'dummy_data'
lowerCamelCase : Tuple = 'datasets'
lowerCamelCase : Union[str, Any] = False
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , ) -> str:
__lowerCamelCase : Optional[Any] = 0
__lowerCamelCase : List[str] = dataset_name
__lowerCamelCase : Any = cache_dir
__lowerCamelCase : List[str] = use_local_dummy_data
__lowerCamelCase : Any = config
# download_callbacks take a single url as input
__lowerCamelCase : List[Callable] = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
__lowerCamelCase : Any = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
__lowerCamelCase : List[Any] = str(SCREAMING_SNAKE_CASE_ )
# to be downloaded
__lowerCamelCase : int = None
__lowerCamelCase : List[Any] = None
@property
def lowercase_ ( self ) -> Union[str, Any]:
if self._dummy_file is None:
__lowerCamelCase : Dict = self.download_dummy_data()
return self._dummy_file
@property
def lowercase_ ( self ) -> int:
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join('dummy' , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join('dummy' , self.version_name )
@property
def lowercase_ ( self ) -> Any:
return os.path.join(self.dummy_data_folder , 'dummy_data.zip' )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : int = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
__lowerCamelCase : Union[str, Any] = cached_path(
SCREAMING_SNAKE_CASE_ , cache_dir=self.cache_dir , extract_compressed_file=SCREAMING_SNAKE_CASE_ , force_extract=SCREAMING_SNAKE_CASE_ )
return os.path.join(SCREAMING_SNAKE_CASE_ , self.dummy_file_name )
@property
def lowercase_ ( self ) -> List[Any]:
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def lowercase_ ( self ) -> Optional[Any]:
if self._bucket_url is None:
__lowerCamelCase : Dict = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) )
return self._bucket_url
@property
def lowercase_ ( self ) -> str:
# return full path if its a dir
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) -> List[str]:
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
__lowerCamelCase : Optional[Any] = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
__lowerCamelCase : Any = self.dummy_file_name
# special case when data_url is a dict
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return self.create_dummy_data_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ):
return self.create_dummy_data_list(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
else:
return self.create_dummy_data_single(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) -> Any:
return self.download_and_extract(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]:
return self.download_and_extract(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[Any]:
return path
def lowercase_ ( self ) -> List[str]:
return {}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
__lowerCamelCase : Optional[Any] = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
for single_url in single_urls:
download_callback(SCREAMING_SNAKE_CASE_ )
else:
__lowerCamelCase : Union[str, Any] = single_urls
download_callback(SCREAMING_SNAKE_CASE_ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : int = [os.path.join(SCREAMING_SNAKE_CASE_ , urllib.parse.quote_plus(Path(SCREAMING_SNAKE_CASE_ ).name ) ) for x in single_urls]
else:
__lowerCamelCase : str = single_urls
__lowerCamelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE_ , urllib.parse.quote_plus(Path(SCREAMING_SNAKE_CASE_ ).name ) )
__lowerCamelCase : List[Any] = value
# make sure that values are unique
if all(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
__lowerCamelCase : int = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any:
__lowerCamelCase : Tuple = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
__lowerCamelCase : Optional[Any] = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , SCREAMING_SNAKE_CASE_ ) ) for url in data_url )
__lowerCamelCase : Dict = all(
url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
__lowerCamelCase : Dict = [data_url[0]] * len(SCREAMING_SNAKE_CASE_ )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(SCREAMING_SNAKE_CASE_ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowerCamelCase : str = os.path.join(SCREAMING_SNAKE_CASE_ , urllib.parse.quote_plus(single_url.split('/' )[-1] ) )
dummy_data_list.append(SCREAMING_SNAKE_CASE_ )
return dummy_data_list
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
for download_callback in self.download_callbacks:
download_callback(SCREAMING_SNAKE_CASE_ )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowerCamelCase : Tuple = os.path.join(SCREAMING_SNAKE_CASE_ , urllib.parse.quote_plus(data_url.split('/' )[-1] ) )
if os.path.exists(SCREAMING_SNAKE_CASE_ ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def lowercase_ ( self ) -> Union[str, Any]:
pass
def lowercase_ ( self ) -> Tuple:
pass
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Tuple:
def _iter_archive_members(SCREAMING_SNAKE_CASE_ ):
# this preserves the order of the members inside the ZIP archive
__lowerCamelCase : List[Any] = Path(self.dummy_file ).parent
__lowerCamelCase : str = path.relative_to(SCREAMING_SNAKE_CASE_ )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
__lowerCamelCase : Tuple = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = Path(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = _iter_archive_members(SCREAMING_SNAKE_CASE_ ) if self.use_local_dummy_data else path.rglob('*' )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith(('.', '__') ):
yield file_path.relative_to(SCREAMING_SNAKE_CASE_ ).as_posix(), file_path.open('rb' )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : List[Any] = [paths]
for path in paths:
if os.path.isfile(SCREAMING_SNAKE_CASE_ ):
if os.path.basename(SCREAMING_SNAKE_CASE_ ).startswith(('.', '__') ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(SCREAMING_SNAKE_CASE_ ):
if os.path.basename(SCREAMING_SNAKE_CASE_ ).startswith(('.', '__') ):
continue
dirnames.sort()
for filename in sorted(SCREAMING_SNAKE_CASE_ ):
if filename.startswith(('.', '__') ):
continue
yield os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
| 13 |
'''simple docstring'''
import flax.linen as nn
import jax
import jax.numpy as jnp
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : Optional[Any] = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> Any:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = hidden_states.shape
__lowerCamelCase : Dict = jax.image.resize(
SCREAMING_SNAKE_CASE_ , shape=(batch, height * 2, width * 2, channels) , method='nearest' , )
__lowerCamelCase : Optional[Any] = self.conv(SCREAMING_SNAKE_CASE_ )
return hidden_states
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : str = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]:
# pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
# hidden_states = jnp.pad(hidden_states, pad_width=pad)
__lowerCamelCase : str = self.conv(SCREAMING_SNAKE_CASE_ )
return hidden_states
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : int = None
lowerCamelCase : float = 0.0
lowerCamelCase : bool = None
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels
__lowerCamelCase : Optional[Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 )
__lowerCamelCase : Tuple = nn.Conv(
SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__lowerCamelCase : List[str] = nn.Dense(SCREAMING_SNAKE_CASE_ , dtype=self.dtype )
__lowerCamelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1E-5 )
__lowerCamelCase : int = nn.Dropout(self.dropout_prob )
__lowerCamelCase : Union[str, Any] = nn.Conv(
SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__lowerCamelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
__lowerCamelCase : List[Any] = None
if use_nin_shortcut:
__lowerCamelCase : Any = nn.Conv(
SCREAMING_SNAKE_CASE_ , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , )
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Tuple:
__lowerCamelCase : List[Any] = hidden_states
__lowerCamelCase : str = self.norma(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = nn.swish(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = self.conva(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = self.time_emb_proj(nn.swish(SCREAMING_SNAKE_CASE_ ) )
__lowerCamelCase : List[str] = jnp.expand_dims(jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , 1 )
__lowerCamelCase : Optional[int] = hidden_states + temb
__lowerCamelCase : List[Any] = self.norma(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = nn.swish(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self.dropout(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self.conva(SCREAMING_SNAKE_CASE_ )
if self.conv_shortcut is not None:
__lowerCamelCase : List[str] = self.conv_shortcut(SCREAMING_SNAKE_CASE_ )
return hidden_states + residual
| 13 | 1 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, reduce
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
A__ : int = 8
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int=BITS ) -> int:
__lowerCamelCase : List[Any] = x.device
__lowerCamelCase : Union[str, Any] = (x * 2_55).int().clamp(0 , 2_55 )
__lowerCamelCase : str = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCAmelCase_ )
__lowerCamelCase : List[str] = rearrange(UpperCAmelCase_ , 'd -> d 1 1' )
__lowerCamelCase : Optional[int] = rearrange(UpperCAmelCase_ , 'b c h w -> b c 1 h w' )
__lowerCamelCase : int = ((x & mask) != 0).float()
__lowerCamelCase : List[Any] = rearrange(UpperCAmelCase_ , 'b c d h w -> b (c d) h w' )
__lowerCamelCase : str = bits * 2 - 1
return bits
def UpperCAmelCase__ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : str=BITS ) -> Tuple:
__lowerCamelCase : int = x.device
__lowerCamelCase : Tuple = (x > 0).int()
__lowerCamelCase : Optional[int] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCAmelCase_ , dtype=torch.intaa )
__lowerCamelCase : Tuple = rearrange(UpperCAmelCase_ , 'd -> d 1 1' )
__lowerCamelCase : List[Any] = rearrange(UpperCAmelCase_ , 'b (c d) h w -> b c d h w' , d=8 )
__lowerCamelCase : Dict = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' )
return (dec / 2_55).clamp(0.0 , 1.0 )
def UpperCAmelCase__ ( self : str , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : int , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]:
if self.num_inference_steps is None:
raise ValueError(
'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' )
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
__lowerCamelCase : Tuple = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
__lowerCamelCase : Any = self.alphas_cumprod[timestep]
__lowerCamelCase : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
__lowerCamelCase : Dict = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__lowerCamelCase : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
# 4. Clip "predicted x_0"
__lowerCamelCase : Any = self.bit_scale
if self.config.clip_sample:
__lowerCamelCase : Tuple = torch.clamp(UpperCAmelCase_ , -scale , UpperCAmelCase_ )
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
__lowerCamelCase : int = self._get_variance(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : Any = eta * variance ** 0.5
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
__lowerCamelCase : Any = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__lowerCamelCase : List[Any] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__lowerCamelCase : List[Any] = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
__lowerCamelCase : int = model_output.device if torch.is_tensor(UpperCAmelCase_ ) else 'cpu'
__lowerCamelCase : List[Any] = torch.randn(model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase_ ).to(UpperCAmelCase_ )
__lowerCamelCase : int = self._get_variance(UpperCAmelCase_ , UpperCAmelCase_ ) ** 0.5 * eta * noise
__lowerCamelCase : Tuple = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=UpperCAmelCase_ , pred_original_sample=UpperCAmelCase_ )
def UpperCAmelCase__ ( self : Optional[Any] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : int , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : int="epsilon" , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : bool = True , ) -> Union[DDPMSchedulerOutput, Tuple]:
__lowerCamelCase : Tuple = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
__lowerCamelCase , __lowerCamelCase : int = torch.split(UpperCAmelCase_ , sample.shape[1] , dim=1 )
else:
__lowerCamelCase : Union[str, Any] = None
# 1. compute alphas, betas
__lowerCamelCase : Tuple = self.alphas_cumprod[t]
__lowerCamelCase : Optional[Any] = self.alphas_cumprod[t - 1] if t > 0 else self.one
__lowerCamelCase : Optional[Any] = 1 - alpha_prod_t
__lowerCamelCase : int = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if prediction_type == "epsilon":
__lowerCamelCase : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif prediction_type == "sample":
__lowerCamelCase : Union[str, Any] = model_output
else:
raise ValueError(F'Unsupported prediction_type {prediction_type}.' )
# 3. Clip "predicted x_0"
__lowerCamelCase : List[Any] = self.bit_scale
if self.config.clip_sample:
__lowerCamelCase : List[Any] = torch.clamp(UpperCAmelCase_ , -scale , UpperCAmelCase_ )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
__lowerCamelCase : List[str] = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t
__lowerCamelCase : Dict = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
__lowerCamelCase : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
__lowerCamelCase : Any = 0
if t > 0:
__lowerCamelCase : str = torch.randn(
model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=UpperCAmelCase_ ).to(model_output.device )
__lowerCamelCase : str = (self._get_variance(UpperCAmelCase_ , predicted_variance=UpperCAmelCase_ ) ** 0.5) * noise
__lowerCamelCase : List[Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=UpperCAmelCase_ , pred_original_sample=UpperCAmelCase_ )
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1.0 , ) -> Dict:
super().__init__()
__lowerCamelCase : Tuple = bit_scale
__lowerCamelCase : str = (
ddim_bit_scheduler_step if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ddpm_bit_scheduler_step
)
self.register_modules(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ )
@torch.no_grad()
def __call__( self , SCREAMING_SNAKE_CASE_ = 2_56 , SCREAMING_SNAKE_CASE_ = 2_56 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , **SCREAMING_SNAKE_CASE_ , ) -> Union[Tuple, ImagePipelineOutput]:
__lowerCamelCase : Optional[Any] = torch.randn(
(batch_size, self.unet.config.in_channels, height, width) , generator=SCREAMING_SNAKE_CASE_ , )
__lowerCamelCase : Optional[Any] = decimal_to_bits(SCREAMING_SNAKE_CASE_ ) * self.bit_scale
__lowerCamelCase : Optional[int] = latents.to(self.device )
self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# predict the noise residual
__lowerCamelCase : List[str] = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample
# compute the previous noisy sample x_t -> x_t-1
__lowerCamelCase : Tuple = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample
__lowerCamelCase : Dict = bits_to_decimal(SCREAMING_SNAKE_CASE_ )
if output_type == "pil":
__lowerCamelCase : Tuple = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ )
| 13 |
'''simple docstring'''
from __future__ import annotations
A__ : int = 10
def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] ) -> list[int]:
__lowerCamelCase : List[Any] = 1
__lowerCamelCase : Any = max(UpperCAmelCase_ )
while placement <= max_digit:
# declare and initialize empty buckets
__lowerCamelCase : list[list] = [[] for _ in range(UpperCAmelCase_ )]
# split list_of_ints between the buckets
for i in list_of_ints:
__lowerCamelCase : List[Any] = int((i / placement) % RADIX )
buckets[tmp].append(UpperCAmelCase_ )
# put each buckets' contents into list_of_ints
__lowerCamelCase : Tuple = 0
for b in range(UpperCAmelCase_ ):
for i in buckets[b]:
__lowerCamelCase : List[Any] = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.