code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
from collections.abc import Sequence
from queue import Queue
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) -> int:
__lowerCamelCase : str = start
__lowerCamelCase : Union[str, Any] = end
__lowerCamelCase : Any = val
__lowerCamelCase : int = (start + end) // 2
__lowerCamelCase : str = left
__lowerCamelCase : Tuple = right
def __repr__( self ) -> List[str]:
return f'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})'
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
__lowerCamelCase : Optional[Any] = collection
__lowerCamelCase : Tuple = function
if self.collection:
__lowerCamelCase : List[str] = self._build_tree(0 , len(SCREAMING_SNAKE_CASE_ ) - 1 )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
self._update_tree(self.root , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
return self._query_range(self.root , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
if start == end:
return SegmentTreeNode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.collection[start] )
__lowerCamelCase : Optional[int] = (start + end) // 2
__lowerCamelCase : str = self._build_tree(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self._build_tree(mid + 1 , SCREAMING_SNAKE_CASE_ )
return SegmentTreeNode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.fn(left.val , right.val ) , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]:
if node.start == i and node.end == i:
__lowerCamelCase : Any = val
return
if i <= node.mid:
self._update_tree(node.left , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
else:
self._update_tree(node.right , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = self.fn(node.left.val , node.right.val )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
if node.start == i and node.end == j:
return node.val
if i <= node.mid:
if j <= node.mid:
# range in left child tree
return self._query_range(node.left , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
else:
# range in left child tree and right child tree
return self.fn(
self._query_range(node.left , SCREAMING_SNAKE_CASE_ , node.mid ) , self._query_range(node.right , node.mid + 1 , SCREAMING_SNAKE_CASE_ ) , )
else:
# range in right child tree
return self._query_range(node.right , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Dict:
if self.root is not None:
__lowerCamelCase : Any = Queue()
queue.put(self.root )
while not queue.empty():
__lowerCamelCase : List[str] = queue.get()
yield node
if node.left is not None:
queue.put(node.left )
if node.right is not None:
queue.put(node.right )
if __name__ == "__main__":
import operator
for fn in [operator.add, max, min]:
print("""*""" * 50)
A__ : List[Any] = SegmentTree([2, 1, 5, 3, 4], fn)
for node in arr.traverse():
print(node)
print()
arr.update(1, 5)
for node in arr.traverse():
print(node)
print()
print(arr.query_range(3, 4)) # 7
print(arr.query_range(2, 2)) # 5
print(arr.query_range(1, 3)) # 13
print()
| 13 |
'''simple docstring'''
from collections import defaultdict
from math import gcd
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_50_00_00 ) -> int:
__lowerCamelCase : defaultdict = defaultdict(UpperCAmelCase_ )
__lowerCamelCase : Any = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , UpperCAmelCase_ , 2 ):
if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) > 1:
continue
__lowerCamelCase : Any = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(UpperCAmelCase_ , limit + 1 , UpperCAmelCase_ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
import uuid
from typing import Any, Dict, List, Optional, Union
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
A__ : Tuple = logging.get_logger(__name__)
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) -> Dict:
if not conversation_id:
__lowerCamelCase : int = uuid.uuida()
if past_user_inputs is None:
__lowerCamelCase : List[str] = []
if generated_responses is None:
__lowerCamelCase : Any = []
__lowerCamelCase : uuid.UUID = conversation_id
__lowerCamelCase : List[str] = past_user_inputs
__lowerCamelCase : List[str] = generated_responses
__lowerCamelCase : Optional[str] = text
def __eq__( self , SCREAMING_SNAKE_CASE_ ) -> int:
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return False
if self.uuid == other.uuid:
return True
return (
self.new_user_input == other.new_user_input
and self.past_user_inputs == other.past_user_inputs
and self.generated_responses == other.generated_responses
)
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False ) -> Tuple:
if self.new_user_input:
if overwrite:
logger.warning(
f'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten '
f'with: "{text}".' )
__lowerCamelCase : Optional[Any] = text
else:
logger.warning(
f'User input added while unprocessed input was existing: "{self.new_user_input}" new input '
f'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' )
else:
__lowerCamelCase : List[str] = text
def lowercase_ ( self ) -> str:
if self.new_user_input:
self.past_user_inputs.append(self.new_user_input )
__lowerCamelCase : Any = None
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
self.generated_responses.append(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> List[Any]:
for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ):
yield True, user_input
yield False, generated_response
if self.new_user_input:
yield True, self.new_user_input
def __repr__( self ) -> List[str]:
__lowerCamelCase : Union[str, Any] = f'Conversation id: {self.uuid} \n'
for is_user, text in self.iter_texts():
__lowerCamelCase : Union[str, Any] = 'user' if is_user else 'bot'
output += f'{name} >> {text} \n'
return output
@add_end_docstrings(
_UpperCAmelCase , r'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , )
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if self.tokenizer.pad_token_id is None:
__lowerCamelCase : Tuple = self.tokenizer.eos_token
def lowercase_ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> str:
__lowerCamelCase : Union[str, Any] = {}
__lowerCamelCase : int = {}
__lowerCamelCase : Dict = {}
if min_length_for_response is not None:
__lowerCamelCase : Union[str, Any] = min_length_for_response
if minimum_tokens is not None:
__lowerCamelCase : Any = minimum_tokens
if "max_length" in generate_kwargs:
__lowerCamelCase : List[str] = generate_kwargs['max_length']
# self.max_length = generate_kwargs.get("max_length", self.model.config.max_length)
if clean_up_tokenization_spaces is not None:
__lowerCamelCase : str = clean_up_tokenization_spaces
if generate_kwargs:
forward_params.update(SCREAMING_SNAKE_CASE_ )
return preprocess_params, forward_params, postprocess_params
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 , **SCREAMING_SNAKE_CASE_ ) -> Any:
__lowerCamelCase : int = super().__call__(SCREAMING_SNAKE_CASE_ , num_workers=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) == 1:
return outputs[0]
return outputs
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=32 ) -> Dict[str, Any]:
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
raise ValueError('ConversationalPipeline, expects Conversation as inputs' )
if conversation.new_user_input is None:
raise ValueError(
f'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. '
'Add user inputs with the conversation\'s `add_user_input` method' )
if hasattr(self.tokenizer , '_build_conversation_input_ids' ):
__lowerCamelCase : Optional[Any] = self.tokenizer._build_conversation_input_ids(SCREAMING_SNAKE_CASE_ )
else:
# If the tokenizer cannot handle conversations, we default to only the old version
__lowerCamelCase : Union[str, Any] = self._legacy_parse_and_tokenize(SCREAMING_SNAKE_CASE_ )
if self.framework == "pt":
__lowerCamelCase : Optional[int] = torch.LongTensor([input_ids] )
elif self.framework == "tf":
__lowerCamelCase : Tuple = tf.constant([input_ids] )
return {"input_ids": input_ids, "conversation": conversation}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=10 , **SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase : Dict = generate_kwargs.get('max_length' , self.model.config.max_length )
__lowerCamelCase : Optional[int] = model_inputs['input_ids'].shape[1]
if max_length - minimum_tokens < n:
logger.warning(f'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' )
__lowerCamelCase : List[Any] = max_length - minimum_tokens
__lowerCamelCase : Tuple = model_inputs['input_ids'][:, -trim:]
if "attention_mask" in model_inputs:
__lowerCamelCase : Optional[int] = model_inputs['attention_mask'][:, -trim:]
__lowerCamelCase : Tuple = model_inputs.pop('conversation' )
__lowerCamelCase : Any = max_length
__lowerCamelCase : int = self.model.generate(**SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if self.model.config.is_encoder_decoder:
__lowerCamelCase : int = 1
else:
__lowerCamelCase : List[Any] = n
return {"output_ids": output_ids[:, start_position:], "conversation": conversation}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Dict:
__lowerCamelCase : Any = model_outputs['output_ids']
__lowerCamelCase : Optional[int] = self.tokenizer.decode(
output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ , )
__lowerCamelCase : int = model_outputs['conversation']
conversation.mark_processed()
conversation.append_response(SCREAMING_SNAKE_CASE_ )
return conversation
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict:
__lowerCamelCase : Tuple = self.tokenizer.eos_token_id
__lowerCamelCase : List[str] = []
for is_user, text in conversation.iter_texts():
if eos_token_id is not None:
input_ids.extend(self.tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) + [eos_token_id] )
else:
input_ids.extend(self.tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) )
if len(SCREAMING_SNAKE_CASE_ ) > self.tokenizer.model_max_length:
__lowerCamelCase : Any = input_ids[-self.tokenizer.model_max_length :]
return input_ids
| 13 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
A__ : str = logging.get_logger(__name__)
A__ : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
A__ : Tuple = {
"""vocab_file""": {
"""junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""",
"""junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""",
"""junnyu/roformer_chinese_char_small""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt"""
),
"""junnyu/roformer_chinese_char_base""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt"""
),
"""junnyu/roformer_small_discriminator""": (
"""https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt"""
),
"""junnyu/roformer_small_generator""": (
"""https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt"""
),
}
}
A__ : str = {
"""junnyu/roformer_chinese_small""": 1536,
"""junnyu/roformer_chinese_base""": 1536,
"""junnyu/roformer_chinese_char_small""": 512,
"""junnyu/roformer_chinese_char_base""": 512,
"""junnyu/roformer_small_discriminator""": 128,
"""junnyu/roformer_small_generator""": 128,
}
A__ : Tuple = {
"""junnyu/roformer_chinese_small""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_base""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True},
"""junnyu/roformer_small_discriminator""": {"""do_lower_case""": True},
"""junnyu/roformer_small_generator""": {"""do_lower_case""": True},
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES
lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION
lowerCamelCase : Dict = RoFormerTokenizer
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]:
super().__init__(
SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
__lowerCamelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case
or pre_tok_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents
):
__lowerCamelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) )
__lowerCamelCase : Union[str, Any] = do_lower_case
__lowerCamelCase : str = strip_accents
__lowerCamelCase : Optional[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = do_lower_case
def __getstate__( self ) -> List[str]:
__lowerCamelCase : Union[str, Any] = self.__dict__.copy()
__lowerCamelCase : Dict = BertPreTokenizer()
return state
def __setstate__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = d
__lowerCamelCase : List[Any] = self.__dict__['_tokenizer'].get_vocab()
__lowerCamelCase : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(SCREAMING_SNAKE_CASE_ ) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str:
__lowerCamelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
__lowerCamelCase : List[str] = [self.sep_token_id]
__lowerCamelCase : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]:
__lowerCamelCase : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ )
return tuple(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Any:
__lowerCamelCase : Tuple = BertPreTokenizer()
return super().save_pretrained(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 13 | 1 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def UpperCAmelCase__ ( UpperCAmelCase_ : str = "AAPL" ) -> str:
__lowerCamelCase : str = F'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}'
__lowerCamelCase : Optional[int] = BeautifulSoup(requests.get(UpperCAmelCase_ ).text , 'html.parser' )
__lowerCamelCase : Optional[Any] = 'My(6px) Pos(r) smartphone_Mt(6px)'
return soup.find('div' , class_=class_ ).find('span' ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
| 13 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
A__ : int = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
A__ : Dict = TaTokenizerFast
A__ : Dict = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Any = [
"""MT5EncoderModel""",
"""MT5ForConditionalGeneration""",
"""MT5ForQuestionAnswering""",
"""MT5Model""",
"""MT5PreTrainedModel""",
"""MT5Stack""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : str = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : str = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
A__ : Union[str, Any] = _LazyModule(
__name__,
globals()["""__file__"""],
_import_structure,
extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast},
module_spec=__spec__,
)
| 13 | 1 |
'''simple docstring'''
import os
import unittest
from transformers import FunnelTokenizer, FunnelTokenizerFast
from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Tuple = FunnelTokenizer
lowerCamelCase : str = FunnelTokenizerFast
lowerCamelCase : Tuple = True
lowerCamelCase : Dict = True
def lowercase_ ( self ) -> Optional[Any]:
super().setUp()
__lowerCamelCase : List[str] = [
'<unk>',
'<cls>',
'<sep>',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
__lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> str:
return FunnelTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> List[str]:
return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
__lowerCamelCase : Any = 'UNwant\u00E9d,running'
__lowerCamelCase : Dict = 'unwanted, running'
return input_text, output_text
def lowercase_ ( self ) -> Any:
__lowerCamelCase : List[str] = self.tokenizer_class(self.vocab_file )
__lowerCamelCase : Dict = tokenizer.tokenize('UNwant\u00E9d,running' )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [7, 4, 5, 10, 8, 9] )
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : Optional[int] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_ )
for tokenizer in tokenizers:
__lowerCamelCase : Union[str, Any] = tokenizer('UNwant\u00E9d,running' )
__lowerCamelCase : Union[str, Any] = len(inputs['input_ids'] ) - 1
self.assertListEqual(inputs['token_type_ids'] , [2] + [0] * sentence_len )
__lowerCamelCase : Optional[Any] = tokenizer('UNwant\u00E9d,running' , 'UNwant\u00E9d,running' )
self.assertListEqual(inputs['token_type_ids'] , [2] + [0] * sentence_len + [1] * sentence_len )
| 13 |
'''simple docstring'''
import re
from typing import Callable, List, Optional, Union
import tensorflow as tf
try:
from tensorflow.keras.optimizers.legacy import Adam
except ImportError:
from tensorflow.keras.optimizers import Adam
class UpperCAmelCase_ (tf.keras.optimizers.schedules.LearningRateSchedule ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = None , ) -> Any:
super().__init__()
__lowerCamelCase : Optional[Any] = initial_learning_rate
__lowerCamelCase : Optional[Any] = warmup_steps
__lowerCamelCase : Union[str, Any] = power
__lowerCamelCase : Optional[int] = decay_schedule_fn
__lowerCamelCase : Any = name
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str:
with tf.name_scope(self.name or 'WarmUp' ) as name:
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
__lowerCamelCase : str = tf.cast(SCREAMING_SNAKE_CASE_ , tf.floataa )
__lowerCamelCase : Optional[int] = tf.cast(self.warmup_steps , tf.floataa )
__lowerCamelCase : List[Any] = global_step_float / warmup_steps_float
__lowerCamelCase : Optional[Any] = self.initial_learning_rate * tf.math.pow(SCREAMING_SNAKE_CASE_ , self.power )
return tf.cond(
global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=SCREAMING_SNAKE_CASE_ , )
def lowercase_ ( self ) -> Optional[Any]:
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_schedule_fn": self.decay_schedule_fn,
"warmup_steps": self.warmup_steps,
"power": self.power,
"name": self.name,
}
def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 0.9 , UpperCAmelCase_ : float = 0.999 , UpperCAmelCase_ : float = 1e-8 , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : Optional[List[str]] = None , ) -> int:
__lowerCamelCase : int = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=UpperCAmelCase_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCAmelCase_ , )
if num_warmup_steps:
__lowerCamelCase : str = WarmUp(
initial_learning_rate=UpperCAmelCase_ , decay_schedule_fn=UpperCAmelCase_ , warmup_steps=UpperCAmelCase_ , )
if weight_decay_rate > 0.0:
__lowerCamelCase : List[Any] = AdamWeightDecay(
learning_rate=UpperCAmelCase_ , weight_decay_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=UpperCAmelCase_ , )
else:
__lowerCamelCase : Tuple = tf.keras.optimizers.Adam(
learning_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , )
# We return the optimizer and the LR scheduler in order to better track the
# evolution of the LR independently of the optimizer.
return optimizer, lr_schedule
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ = 0.0_0_1 , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = 0.9_9_9 , SCREAMING_SNAKE_CASE_ = 1E-7 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "AdamWeightDecay" , **SCREAMING_SNAKE_CASE_ , ) -> int:
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = weight_decay_rate
__lowerCamelCase : str = include_in_weight_decay
__lowerCamelCase : List[Any] = exclude_from_weight_decay
@classmethod
def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> Dict:
__lowerCamelCase : Any = {'WarmUp': WarmUp}
return super(SCREAMING_SNAKE_CASE_ , cls ).from_config(SCREAMING_SNAKE_CASE_ , custom_objects=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
super(SCREAMING_SNAKE_CASE_ , self )._prepare_local(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tf.constant(
self.weight_decay_rate , name='adam_weight_decay_rate' )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
__lowerCamelCase : Tuple = self._do_use_weight_decay(var.name )
if do_decay:
return var.assign_sub(
learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , )
return tf.no_op()
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase , __lowerCamelCase : Optional[Any] = list(zip(*SCREAMING_SNAKE_CASE_ ) )
return super(SCREAMING_SNAKE_CASE_ , self ).apply_gradients(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , name=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str:
if apply_state is None:
return self._decayed_lr_t[var_dtype], {}
__lowerCamelCase : Optional[int] = apply_state or {}
__lowerCamelCase : Dict = apply_state.get((var_device, var_dtype) )
if coefficients is None:
__lowerCamelCase : List[Any] = self._fallback_apply_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = coefficients
return coefficients["lr_t"], {"apply_state": apply_state}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str:
__lowerCamelCase , __lowerCamelCase : Dict = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
with tf.control_dependencies([decay] ):
return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_dense(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Union[str, Any]:
__lowerCamelCase , __lowerCamelCase : Tuple = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
with tf.control_dependencies([decay] ):
return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_sparse(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : Any = super().get_config()
config.update({'weight_decay_rate': self.weight_decay_rate} )
return config
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict:
if self.weight_decay_rate == 0:
return False
if self._include_in_weight_decay:
for r in self._include_in_weight_decay:
if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None:
return True
if self._exclude_from_weight_decay:
for r in self._exclude_from_weight_decay:
if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None:
return False
return True
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self ) -> Tuple:
__lowerCamelCase : Tuple = []
__lowerCamelCase : Optional[Any] = None
@property
def lowercase_ ( self ) -> List[str]:
if self._accum_steps is None:
__lowerCamelCase : Tuple = tf.Variable(
tf.constant(0 , dtype=tf.intaa ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
return self._accum_steps.value()
@property
def lowercase_ ( self ) -> List[str]:
if not self._gradients:
raise ValueError('The accumulator should be called first to initialize the gradients' )
return [gradient.value() if gradient is not None else gradient for gradient in self._gradients]
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str:
if not self._gradients:
__lowerCamelCase : List[str] = self.step # Create the step variable.
self._gradients.extend(
[
tf.Variable(
tf.zeros_like(SCREAMING_SNAKE_CASE_ ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
if gradient is not None
else gradient
for gradient in gradients
] )
if len(SCREAMING_SNAKE_CASE_ ) != len(self._gradients ):
raise ValueError(f'Expected {len(self._gradients )} gradients, but got {len(SCREAMING_SNAKE_CASE_ )}' )
for accum_gradient, gradient in zip(self._gradients , SCREAMING_SNAKE_CASE_ ):
if accum_gradient is not None and gradient is not None:
accum_gradient.assign_add(SCREAMING_SNAKE_CASE_ )
self._accum_steps.assign_add(1 )
def lowercase_ ( self ) -> int:
if not self._gradients:
return
self._accum_steps.assign(0 )
for gradient in self._gradients:
if gradient is not None:
gradient.assign(tf.zeros_like(SCREAMING_SNAKE_CASE_ ) )
| 13 | 1 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : list[list[int | float]] ) -> int:
__lowerCamelCase : Tuple = len(UpperCAmelCase_ )
__lowerCamelCase : Union[str, Any] = len(matrix[0] )
__lowerCamelCase : Dict = min(UpperCAmelCase_ , UpperCAmelCase_ )
for row in range(UpperCAmelCase_ ):
# Check if diagonal element is not zero
if matrix[row][row] != 0:
# Eliminate all the elements below the diagonal
for col in range(row + 1 , UpperCAmelCase_ ):
__lowerCamelCase : Optional[int] = matrix[col][row] / matrix[row][row]
for i in range(UpperCAmelCase_ , UpperCAmelCase_ ):
matrix[col][i] -= multiplier * matrix[row][i]
else:
# Find a non-zero diagonal element to swap rows
__lowerCamelCase : Optional[Any] = True
for i in range(row + 1 , UpperCAmelCase_ ):
if matrix[i][row] != 0:
__lowerCamelCase , __lowerCamelCase : List[str] = matrix[i], matrix[row]
__lowerCamelCase : str = False
break
if reduce:
rank -= 1
for i in range(UpperCAmelCase_ ):
__lowerCamelCase : str = matrix[i][rank]
# Reduce the row pointer by one to stay on the same row
row -= 1
return rank
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=[1, 2, 1] , SCREAMING_SNAKE_CASE_=[2, 2, 4] , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=["stage1", "stage2", "stage3"] , SCREAMING_SNAKE_CASE_=[1, 2, 3] , ) -> Any:
__lowerCamelCase : Optional[Any] = parent
__lowerCamelCase : int = batch_size
__lowerCamelCase : Optional[int] = image_size
__lowerCamelCase : Optional[int] = patch_size
__lowerCamelCase : Optional[Any] = num_channels
__lowerCamelCase : Dict = embed_dim
__lowerCamelCase : List[Any] = depths
__lowerCamelCase : int = num_heads
__lowerCamelCase : Optional[Any] = window_size
__lowerCamelCase : Optional[Any] = mlp_ratio
__lowerCamelCase : List[str] = qkv_bias
__lowerCamelCase : List[str] = hidden_dropout_prob
__lowerCamelCase : int = attention_probs_dropout_prob
__lowerCamelCase : List[Any] = drop_path_rate
__lowerCamelCase : Any = hidden_act
__lowerCamelCase : Union[str, Any] = use_absolute_embeddings
__lowerCamelCase : Any = patch_norm
__lowerCamelCase : Optional[Any] = layer_norm_eps
__lowerCamelCase : str = initializer_range
__lowerCamelCase : Dict = is_training
__lowerCamelCase : Optional[Any] = scope
__lowerCamelCase : Dict = use_labels
__lowerCamelCase : List[str] = type_sequence_label_size
__lowerCamelCase : Dict = encoder_stride
__lowerCamelCase : Union[str, Any] = out_features
__lowerCamelCase : str = out_indices
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowerCamelCase : List[str] = None
if self.use_labels:
__lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowerCamelCase : List[str] = self.get_config()
return config, pixel_values, labels
def lowercase_ ( self ) -> Optional[int]:
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
__lowerCamelCase : Dict = MaskFormerSwinModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__lowerCamelCase : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
__lowerCamelCase : Tuple = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , [16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : str = ['stem']
__lowerCamelCase : Optional[Any] = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : Optional[int] = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = config_and_inputs
__lowerCamelCase : Optional[int] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : List[Any] = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase : int = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {}
lowerCamelCase : int = False
lowerCamelCase : int = False
lowerCamelCase : str = False
lowerCamelCase : int = False
lowerCamelCase : Union[str, Any] = False
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : Optional[Any] = MaskFormerSwinModelTester(self )
__lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
'`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with'
' `nn.DataParallel`'
) )
def lowercase_ ( self ) -> int:
pass
def lowercase_ ( self ) -> Union[str, Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase_ ( self ) -> Tuple:
return
def lowercase_ ( self ) -> Dict:
__lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ )
@unittest.skip('Swin does not use inputs_embeds' )
def lowercase_ ( self ) -> Optional[int]:
pass
@unittest.skip('Swin does not support feedforward chunking' )
def lowercase_ ( self ) -> Dict:
pass
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__lowerCamelCase : Optional[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase , __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase : str = [*signature.parameters.keys()]
__lowerCamelCase : Any = ['pixel_values']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ )
@unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' )
def lowercase_ ( self ) -> Any:
pass
@unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' )
def lowercase_ ( self ) -> List[Any]:
pass
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
with torch.no_grad():
__lowerCamelCase : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
__lowerCamelCase : int = outputs.hidden_states
__lowerCamelCase : Tuple = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
# Swin has a different seq_length
__lowerCamelCase : Optional[Any] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase : List[Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
__lowerCamelCase : Dict = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowerCamelCase : Optional[int] = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase : Union[str, Any] = 3
__lowerCamelCase : Dict = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__lowerCamelCase : str = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__lowerCamelCase : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__lowerCamelCase : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
__lowerCamelCase : str = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowerCamelCase : Tuple = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) )
@unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' )
def lowercase_ ( self ) -> Optional[Any]:
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def lowercase_ ( self ) -> Any:
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def lowercase_ ( self ) -> Union[str, Any]:
pass
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Any = 0
return t
def check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_={} ):
with torch.no_grad():
__lowerCamelCase : Optional[int] = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).to_tuple()
def recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if isinstance(SCREAMING_SNAKE_CASE_ , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values() ):
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , atol=1E-5 ) , msg=(
'Tuple and dict output are not equal. Difference:'
f' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:'
f' {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}. Dict has'
f' `nan`: {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}.'
) , )
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
for model_class in self.all_model_classes:
__lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} )
__lowerCamelCase : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} )
@require_torch
class UpperCAmelCase_ (unittest.TestCase , _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else ()
lowerCamelCase : List[str] = MaskFormerSwinConfig
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : List[str] = MaskFormerSwinModelTester(self )
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase : Any = inputs_dict['pixel_values'].shape[0]
for backbone_class in self.all_model_classes:
__lowerCamelCase : Optional[Any] = backbone_class(SCREAMING_SNAKE_CASE_ )
backbone.to(SCREAMING_SNAKE_CASE_ )
backbone.eval()
__lowerCamelCase : int = backbone(**SCREAMING_SNAKE_CASE_ )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , SCREAMING_SNAKE_CASE_ )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
__lowerCamelCase : Union[str, Any] = backbone(**SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
__lowerCamelCase : Optional[int] = backbone(**SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(outputs.attentions )
| 13 | 1 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bool:
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
__lowerCamelCase : Union[str, Any] = F'Input value of [number={number}] must be an integer'
raise TypeError(UpperCAmelCase_ )
if number < 0:
return False
__lowerCamelCase : Tuple = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
A__ : Dict = [
"""python""",
"""tqdm""",
"""regex""",
"""requests""",
"""packaging""",
"""filelock""",
"""numpy""",
"""tokenizers""",
"""huggingface-hub""",
"""safetensors""",
"""accelerate""",
"""pyyaml""",
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''')
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=None ) -> List[Any]:
require_version(deps[pkg] , UpperCAmelCase_ )
| 13 | 1 |
'''simple docstring'''
import numpy
# List of input, output pairs
A__ : Any = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
A__ : Union[str, Any] = (((515, 22, 13), 555), ((61, 35, 49), 150))
A__ : str = [2, 4, 1, 5]
A__ : Dict = len(train_data)
A__ : Tuple = 0.0_0_9
def UpperCAmelCase__ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any]="train" ) -> str:
return calculate_hypothesis_value(UpperCAmelCase_ , UpperCAmelCase_ ) - output(
UpperCAmelCase_ , UpperCAmelCase_ )
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] ) -> str:
__lowerCamelCase : Optional[int] = 0
for i in range(len(UpperCAmelCase_ ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] ) -> Union[str, Any]:
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple ) -> Tuple:
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int=m ) -> Dict:
__lowerCamelCase : List[str] = 0
for i in range(UpperCAmelCase_ ):
if index == -1:
summation_value += _error(UpperCAmelCase_ )
else:
summation_value += _error(UpperCAmelCase_ ) * train_data[i][0][index]
return summation_value
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> Optional[int]:
__lowerCamelCase : str = summation_of_cost_derivative(UpperCAmelCase_ , UpperCAmelCase_ ) / m
return cost_derivative_value
def UpperCAmelCase__ ( ) -> Optional[int]:
global parameter_vector
# Tune these values to set a tolerance value for predicted output
__lowerCamelCase : List[str] = 0.000_002
__lowerCamelCase : str = 0
__lowerCamelCase : int = 0
while True:
j += 1
__lowerCamelCase : List[Any] = [0, 0, 0, 0]
for i in range(0 , len(UpperCAmelCase_ ) ):
__lowerCamelCase : Any = get_cost_derivative(i - 1 )
__lowerCamelCase : Tuple = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
UpperCAmelCase_ , UpperCAmelCase_ , atol=UpperCAmelCase_ , rtol=UpperCAmelCase_ , ):
break
__lowerCamelCase : Tuple = temp_parameter_vector
print(('Number of iterations:', j) )
def UpperCAmelCase__ ( ) -> Tuple:
for i in range(len(UpperCAmelCase_ ) ):
print(('Actual output value:', output(UpperCAmelCase_ , 'test' )) )
print(('Hypothesis output:', calculate_hypothesis_value(UpperCAmelCase_ , 'test' )) )
if __name__ == "__main__":
run_gradient_descent()
print("""\nTesting gradient descent for a linear hypothesis function.\n""")
test_gradient_descent()
| 13 |
'''simple docstring'''
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import platform
import sys
A__ : List[str] = """3"""
print("""Python version:""", sys.version)
print("""OS platform:""", platform.platform())
print("""OS architecture:""", platform.machine())
try:
import torch
print("""Torch version:""", torch.__version__)
print("""Cuda available:""", torch.cuda.is_available())
print("""Cuda version:""", torch.version.cuda)
print("""CuDNN version:""", torch.backends.cudnn.version())
print("""Number of GPUs available:""", torch.cuda.device_count())
except ImportError:
print("""Torch version:""", None)
try:
import transformers
print("""transformers version:""", transformers.__version__)
except ImportError:
print("""transformers version:""", None)
| 13 | 1 |
'''simple docstring'''
from math import pi, sqrt, tan
def UpperCAmelCase__ ( UpperCAmelCase_ : float ) -> float:
if side_length < 0:
raise ValueError('surface_area_cube() only accepts non-negative values' )
return 6 * side_length**2
def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float:
if length < 0 or breadth < 0 or height < 0:
raise ValueError('surface_area_cuboid() only accepts non-negative values' )
return 2 * ((length * breadth) + (breadth * height) + (length * height))
def UpperCAmelCase__ ( UpperCAmelCase_ : float ) -> float:
if radius < 0:
raise ValueError('surface_area_sphere() only accepts non-negative values' )
return 4 * pi * radius**2
def UpperCAmelCase__ ( UpperCAmelCase_ : float ) -> float:
if radius < 0:
raise ValueError('surface_area_hemisphere() only accepts non-negative values' )
return 3 * pi * radius**2
def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float:
if radius < 0 or height < 0:
raise ValueError('surface_area_cone() only accepts non-negative values' )
return pi * radius * (radius + (height**2 + radius**2) ** 0.5)
def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float:
if radius_a < 0 or radius_a < 0 or height < 0:
raise ValueError(
'surface_area_conical_frustum() only accepts non-negative values' )
__lowerCamelCase : int = (height**2 + (radius_a - radius_a) ** 2) ** 0.5
return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2)
def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float:
if radius < 0 or height < 0:
raise ValueError('surface_area_cylinder() only accepts non-negative values' )
return 2 * pi * radius * (height + radius)
def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float:
if torus_radius < 0 or tube_radius < 0:
raise ValueError('surface_area_torus() only accepts non-negative values' )
if torus_radius < tube_radius:
raise ValueError(
'surface_area_torus() does not support spindle or self intersecting tori' )
return 4 * pow(UpperCAmelCase_ , 2 ) * torus_radius * tube_radius
def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float:
if length < 0 or width < 0:
raise ValueError('area_rectangle() only accepts non-negative values' )
return length * width
def UpperCAmelCase__ ( UpperCAmelCase_ : float ) -> float:
if side_length < 0:
raise ValueError('area_square() only accepts non-negative values' )
return side_length**2
def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float:
if base < 0 or height < 0:
raise ValueError('area_triangle() only accepts non-negative values' )
return (base * height) / 2
def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float:
if sidea < 0 or sidea < 0 or sidea < 0:
raise ValueError('area_triangle_three_sides() only accepts non-negative values' )
elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea:
raise ValueError('Given three sides do not form a triangle' )
__lowerCamelCase : List[str] = (sidea + sidea + sidea) / 2
__lowerCamelCase : Optional[int] = sqrt(
semi_perimeter
* (semi_perimeter - sidea)
* (semi_perimeter - sidea)
* (semi_perimeter - sidea) )
return area
def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float:
if base < 0 or height < 0:
raise ValueError('area_parallelogram() only accepts non-negative values' )
return base * height
def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float:
if basea < 0 or basea < 0 or height < 0:
raise ValueError('area_trapezium() only accepts non-negative values' )
return 1 / 2 * (basea + basea) * height
def UpperCAmelCase__ ( UpperCAmelCase_ : float ) -> float:
if radius < 0:
raise ValueError('area_circle() only accepts non-negative values' )
return pi * radius**2
def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float:
if radius_x < 0 or radius_y < 0:
raise ValueError('area_ellipse() only accepts non-negative values' )
return pi * radius_x * radius_y
def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float:
if diagonal_a < 0 or diagonal_a < 0:
raise ValueError('area_rhombus() only accepts non-negative values' )
return 1 / 2 * diagonal_a * diagonal_a
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : float ) -> float:
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or sides < 3:
raise ValueError(
'area_reg_polygon() only accepts integers greater than or \
equal to three as number of sides' )
elif length < 0:
raise ValueError(
'area_reg_polygon() only accepts non-negative values as \
length of a side' )
return (sides * length**2) / (4 * tan(pi / sides ))
return (sides * length**2) / (4 * tan(pi / sides ))
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) # verbose so we can see methods missing tests
print("""[DEMO] Areas of various geometric shapes: \n""")
print(f'''Rectangle: {area_rectangle(10, 20) = }''')
print(f'''Square: {area_square(10) = }''')
print(f'''Triangle: {area_triangle(10, 10) = }''')
print(f'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''')
print(f'''Parallelogram: {area_parallelogram(10, 20) = }''')
print(f'''Rhombus: {area_rhombus(10, 20) = }''')
print(f'''Trapezium: {area_trapezium(10, 20, 30) = }''')
print(f'''Circle: {area_circle(20) = }''')
print(f'''Ellipse: {area_ellipse(10, 20) = }''')
print("""\nSurface Areas of various geometric shapes: \n""")
print(f'''Cube: {surface_area_cube(20) = }''')
print(f'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''')
print(f'''Sphere: {surface_area_sphere(20) = }''')
print(f'''Hemisphere: {surface_area_hemisphere(20) = }''')
print(f'''Cone: {surface_area_cone(10, 20) = }''')
print(f'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''')
print(f'''Cylinder: {surface_area_cylinder(10, 20) = }''')
print(f'''Torus: {surface_area_torus(20, 10) = }''')
print(f'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''')
print(f'''Square: {area_reg_polygon(4, 10) = }''')
print(f'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
| 13 |
'''simple docstring'''
from collections import namedtuple
import requests
from lxml import html # type: ignore
A__ : Tuple = namedtuple("""covid_data""", """cases deaths recovered""")
def UpperCAmelCase__ ( UpperCAmelCase_ : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data:
__lowerCamelCase : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()'
return covid_data(*html.fromstring(requests.get(UpperCAmelCase_ ).content ).xpath(UpperCAmelCase_ ) )
A__ : str = """Total COVID-19 cases in the world: {}
Total deaths due to COVID-19 in the world: {}
Total COVID-19 patients recovered in the world: {}"""
print(fmt.format(*covid_stats()))
| 13 | 1 |
'''simple docstring'''
from collections import defaultdict
from math import gcd
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_50_00_00 ) -> int:
__lowerCamelCase : defaultdict = defaultdict(UpperCAmelCase_ )
__lowerCamelCase : Any = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , UpperCAmelCase_ , 2 ):
if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) > 1:
continue
__lowerCamelCase : Any = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(UpperCAmelCase_ , limit + 1 , UpperCAmelCase_ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 |
'''simple docstring'''
from __future__ import annotations
import os
from collections.abc import Mapping
A__ : Optional[Any] = tuple[int, int]
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
__lowerCamelCase : set[int] = vertices
__lowerCamelCase : dict[EdgeT, int] = {
(min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ )): weight for edge, weight in edges.items()
}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
__lowerCamelCase : Union[str, Any] = weight
def lowercase_ ( self ) -> Graph:
__lowerCamelCase : Graph = Graph({min(self.vertices )} , {} )
__lowerCamelCase : EdgeT
__lowerCamelCase : int
__lowerCamelCase : EdgeT
__lowerCamelCase : int
while len(subgraph.vertices ) < len(self.vertices ):
__lowerCamelCase : Any = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
__lowerCamelCase : Optional[int] = edge
__lowerCamelCase : List[str] = weight
subgraph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return subgraph
def UpperCAmelCase__ ( UpperCAmelCase_ : str = "p107_network.txt" ) -> int:
__lowerCamelCase : str = os.path.abspath(os.path.dirname(UpperCAmelCase_ ) )
__lowerCamelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : dict[EdgeT, int] = {}
__lowerCamelCase : list[str]
__lowerCamelCase : int
__lowerCamelCase : int
with open(UpperCAmelCase_ ) as f:
__lowerCamelCase : Any = f.read().strip().split('\n' )
__lowerCamelCase : Any = [line.split(',' ) for line in data]
for edgea in range(1 , len(UpperCAmelCase_ ) ):
for edgea in range(UpperCAmelCase_ ):
if adjaceny_matrix[edgea][edgea] != "-":
__lowerCamelCase : int = int(adjaceny_matrix[edgea][edgea] )
__lowerCamelCase : Graph = Graph(set(range(len(UpperCAmelCase_ ) ) ) , UpperCAmelCase_ )
__lowerCamelCase : Graph = graph.prims_algorithm()
__lowerCamelCase : int = sum(graph.edges.values() )
__lowerCamelCase : int = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : list , UpperCAmelCase_ : list ) -> float:
_validate_point(UpperCAmelCase_ )
_validate_point(UpperCAmelCase_ )
if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ):
raise ValueError('Both points must be in the same n-dimensional space' )
return float(sum(abs(a - b ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) )
def UpperCAmelCase__ ( UpperCAmelCase_ : list[float] ) -> None:
if point:
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
for item in point:
if not isinstance(UpperCAmelCase_ , (int, float) ):
__lowerCamelCase : Optional[int] = (
'Expected a list of numbers as input, found '
F'{type(UpperCAmelCase_ ).__name__}'
)
raise TypeError(UpperCAmelCase_ )
else:
__lowerCamelCase : int = F'Expected a list of numbers as input, found {type(UpperCAmelCase_ ).__name__}'
raise TypeError(UpperCAmelCase_ )
else:
raise ValueError('Missing an input' )
def UpperCAmelCase__ ( UpperCAmelCase_ : list , UpperCAmelCase_ : list ) -> float:
_validate_point(UpperCAmelCase_ )
_validate_point(UpperCAmelCase_ )
if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ):
raise ValueError('Both points must be in the same n-dimensional space' )
return float(sum(abs(x - y ) for x, y in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
from collections.abc import Generator
from math import sin
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
if len(UpperCAmelCase_ ) != 32:
raise ValueError('Input must be of length 32' )
__lowerCamelCase : Dict = B''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bytes:
if i < 0:
raise ValueError('Input must be non-negative' )
__lowerCamelCase : Union[str, Any] = format(UpperCAmelCase_ , '08x' )[-8:]
__lowerCamelCase : str = B''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' )
return little_endian_hex
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
__lowerCamelCase : Optional[Any] = B''
for char in message:
bit_string += format(UpperCAmelCase_ , '08b' ).encode('utf-8' )
__lowerCamelCase : List[str] = format(len(UpperCAmelCase_ ) , '064b' ).encode('utf-8' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(UpperCAmelCase_ ) % 5_12 != 4_48:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> Generator[list[int], None, None]:
if len(UpperCAmelCase_ ) % 5_12 != 0:
raise ValueError('Input must have length that\'s a multiple of 512' )
for pos in range(0 , len(UpperCAmelCase_ ) , 5_12 ):
__lowerCamelCase : Any = bit_string[pos : pos + 5_12]
__lowerCamelCase : Optional[int] = []
for i in range(0 , 5_12 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int:
if i < 0:
raise ValueError('Input must be non-negative' )
__lowerCamelCase : List[Any] = format(UpperCAmelCase_ , '032b' )
__lowerCamelCase : Optional[int] = ''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(UpperCAmelCase_ , 2 )
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
return (a + b) % 2**32
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
if i < 0:
raise ValueError('Input must be non-negative' )
if shift < 0:
raise ValueError('Shift must be non-negative' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
__lowerCamelCase : Optional[Any] = preprocess(UpperCAmelCase_ )
__lowerCamelCase : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
__lowerCamelCase : Dict = 0x67_45_23_01
__lowerCamelCase : Union[str, Any] = 0xef_cd_ab_89
__lowerCamelCase : Optional[Any] = 0x98_ba_dc_fe
__lowerCamelCase : Union[str, Any] = 0x10_32_54_76
__lowerCamelCase : List[str] = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(UpperCAmelCase_ ):
__lowerCamelCase : Dict = aa
__lowerCamelCase : Tuple = ba
__lowerCamelCase : List[Any] = ca
__lowerCamelCase : Dict = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
__lowerCamelCase : List[str] = d ^ (b & (c ^ d))
__lowerCamelCase : Optional[int] = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
__lowerCamelCase : Optional[int] = c ^ (d & (b ^ c))
__lowerCamelCase : Tuple = (5 * i + 1) % 16
elif i <= 47:
__lowerCamelCase : str = b ^ c ^ d
__lowerCamelCase : Any = (3 * i + 5) % 16
else:
__lowerCamelCase : Union[str, Any] = c ^ (b | not_aa(UpperCAmelCase_ ))
__lowerCamelCase : int = (7 * i) % 16
__lowerCamelCase : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**32
__lowerCamelCase : Optional[Any] = d
__lowerCamelCase : Tuple = c
__lowerCamelCase : Optional[int] = b
__lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , left_rotate_aa(UpperCAmelCase_ , shift_amounts[i] ) )
# Add hashed chunk to running total
__lowerCamelCase : int = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : str = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : List[Any] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : Dict = reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 | 1 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
from multiprocessing import get_context
from pathlib import Path
import datasets
import numpy as np
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoProcessor
from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available
from ..wavaveca.test_feature_extraction_wavaveca import floats_list
if is_pyctcdecode_available():
from huggingface_hub import snapshot_download
from pyctcdecode import BeamSearchDecoderCTC
from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM
from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput
if is_torch_available():
from transformers import WavaVecaForCTC
@require_pyctcdecode
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : Union[str, Any] = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split()
__lowerCamelCase : Optional[Any] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
__lowerCamelCase : str = {
'unk_token': '<unk>',
'bos_token': '<s>',
'eos_token': '</s>',
}
__lowerCamelCase : List[Any] = {
'feature_size': 1,
'padding_value': 0.0,
'sampling_rate': 1_60_00,
'return_attention_mask': False,
'do_normalize': True,
}
__lowerCamelCase : List[str] = tempfile.mkdtemp()
__lowerCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
__lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' )
with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' )
# load decoder from hub
__lowerCamelCase : List[str] = 'hf-internal-testing/ngram-beam-search-decoder'
def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
__lowerCamelCase : Dict = self.add_kwargs_tokens_map.copy()
kwargs.update(SCREAMING_SNAKE_CASE_ )
return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> str:
return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> str:
return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Optional[int]:
shutil.rmtree(self.tmpdirname )
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : str = self.get_tokenizer()
__lowerCamelCase : Dict = self.get_feature_extractor()
__lowerCamelCase : List[Any] = self.get_decoder()
__lowerCamelCase : List[Any] = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ )
processor.save_pretrained(self.tmpdirname )
__lowerCamelCase : Optional[int] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname )
# tokenizer
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ )
# feature extractor
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , SCREAMING_SNAKE_CASE_ )
# decoder
self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels )
self.assertEqual(
processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , )
self.assertIsInstance(processor.decoder , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : Union[str, Any] = WavaVecaProcessorWithLM(
tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
processor.save_pretrained(self.tmpdirname )
# make sure that error is thrown when decoder alphabet doesn't match
__lowerCamelCase : Dict = WavaVecaProcessorWithLM.from_pretrained(
self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 )
# decoder
self.assertEqual(processor.language_model.alpha , 5.0 )
self.assertEqual(processor.language_model.beta , 3.0 )
self.assertEqual(processor.language_model.score_boundary , -7.0 )
self.assertEqual(processor.language_model.unk_score_offset , 3 )
def lowercase_ ( self ) -> int:
__lowerCamelCase : Optional[Any] = self.get_tokenizer()
# add token to trigger raise
tokenizer.add_tokens(['xx'] )
with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , 'include' ):
WavaVecaProcessorWithLM(
tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
def lowercase_ ( self ) -> int:
__lowerCamelCase : Dict = self.get_feature_extractor()
__lowerCamelCase : Any = self.get_tokenizer()
__lowerCamelCase : Any = self.get_decoder()
__lowerCamelCase : Optional[int] = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = floats_list((3, 10_00) )
__lowerCamelCase : Union[str, Any] = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' )
__lowerCamelCase : Union[str, Any] = processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : Union[str, Any] = self.get_feature_extractor()
__lowerCamelCase : Optional[int] = self.get_tokenizer()
__lowerCamelCase : Optional[Any] = self.get_decoder()
__lowerCamelCase : str = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = 'This is a test string'
__lowerCamelCase : Any = processor(text=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = tokenizer(SCREAMING_SNAKE_CASE_ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_=(2, 10, 16) , SCREAMING_SNAKE_CASE_=77 ) -> List[Any]:
np.random.seed(SCREAMING_SNAKE_CASE_ )
return np.random.rand(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : str = self.get_feature_extractor()
__lowerCamelCase : Union[str, Any] = self.get_tokenizer()
__lowerCamelCase : Optional[Any] = self.get_decoder()
__lowerCamelCase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = self._get_dummy_logits(shape=(10, 16) , seed=13 )
__lowerCamelCase : Optional[int] = processor.decode(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[str] = decoder.decode_beams(SCREAMING_SNAKE_CASE_ )[0]
self.assertEqual(decoded_decoder[0] , decoded_processor.text )
self.assertEqual('</s> <s> </s>' , decoded_processor.text )
self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score )
self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score )
@parameterized.expand([[None], ['fork'], ['spawn']] )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> str:
__lowerCamelCase : Optional[int] = self.get_feature_extractor()
__lowerCamelCase : Any = self.get_tokenizer()
__lowerCamelCase : List[Any] = self.get_decoder()
__lowerCamelCase : str = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = self._get_dummy_logits()
# note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM.
# otherwise, the LM won't be available to the pool's sub-processes.
# manual logic used to allow parameterized test for both pool=None and pool=Pool(...)
if pool_context is None:
__lowerCamelCase : List[str] = processor.batch_decode(SCREAMING_SNAKE_CASE_ )
else:
with get_context(SCREAMING_SNAKE_CASE_ ).Pool() as pool:
__lowerCamelCase : str = processor.batch_decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = list(SCREAMING_SNAKE_CASE_ )
with get_context('fork' ).Pool() as p:
__lowerCamelCase : Dict = decoder.decode_beams_batch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = [], [], []
for beams in decoded_beams:
texts_decoder.append(beams[0][0] )
logit_scores_decoder.append(beams[0][-2] )
lm_scores_decoder.append(beams[0][-1] )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.text )
self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.logit_score )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.lm_score )
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : str = self.get_feature_extractor()
__lowerCamelCase : str = self.get_tokenizer()
__lowerCamelCase : Any = self.get_decoder()
__lowerCamelCase : str = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = self._get_dummy_logits()
__lowerCamelCase : int = 15
__lowerCamelCase : Dict = -2_0.0
__lowerCamelCase : Optional[Any] = -4.0
__lowerCamelCase : List[Any] = processor.batch_decode(
SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , )
__lowerCamelCase : List[Any] = decoded_processor_out.text
__lowerCamelCase : Optional[int] = list(SCREAMING_SNAKE_CASE_ )
with get_context('fork' ).Pool() as pool:
__lowerCamelCase : List[Any] = decoder.decode_beams_batch(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , )
__lowerCamelCase : Union[str, Any] = [d[0][0] for d in decoded_decoder_out]
__lowerCamelCase : Tuple = [d[0][2] for d in decoded_decoder_out]
__lowerCamelCase : List[Any] = [d[0][3] for d in decoded_decoder_out]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , SCREAMING_SNAKE_CASE_ )
self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.logit_score ) )
self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) )
self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.lm_score ) )
self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) )
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : List[Any] = self.get_feature_extractor()
__lowerCamelCase : int = self.get_tokenizer()
__lowerCamelCase : int = self.get_decoder()
__lowerCamelCase : Dict = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = self._get_dummy_logits()
__lowerCamelCase : Union[str, Any] = 2.0
__lowerCamelCase : str = 5.0
__lowerCamelCase : int = -2_0.0
__lowerCamelCase : Optional[Any] = True
__lowerCamelCase : str = processor.batch_decode(
SCREAMING_SNAKE_CASE_ , alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , )
__lowerCamelCase : Any = decoded_processor_out.text
__lowerCamelCase : int = list(SCREAMING_SNAKE_CASE_ )
decoder.reset_params(
alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , )
with get_context('fork' ).Pool() as pool:
__lowerCamelCase : Union[str, Any] = decoder.decode_beams_batch(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , )
__lowerCamelCase : Tuple = [d[0][0] for d in decoded_decoder_out]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key]
self.assertEqual(lm_model.alpha , 2.0 )
self.assertEqual(lm_model.beta , 5.0 )
self.assertEqual(lm_model.unk_score_offset , -2_0.0 )
self.assertEqual(lm_model.score_boundary , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : Any = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' )
__lowerCamelCase : Dict = processor.decoder.model_container[processor.decoder._model_key]
__lowerCamelCase : str = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute()
__lowerCamelCase : Optional[int] = os.listdir(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = ['alphabet.json', 'language_model']
downloaded_decoder_files.sort()
expected_decoder_files.sort()
# test that only decoder relevant files from
# https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main
# are downloaded and none of the rest (e.g. README.md, ...)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : Union[str, Any] = snapshot_download('hf-internal-testing/processor_with_lm' )
__lowerCamelCase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = processor.decoder.model_container[processor.decoder._model_key]
__lowerCamelCase : int = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute()
__lowerCamelCase : str = os.listdir(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = os.listdir(SCREAMING_SNAKE_CASE_ )
local_decoder_files.sort()
expected_decoder_files.sort()
# test that both decoder form hub and local files in cache are the same
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> str:
__lowerCamelCase : Optional[int] = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' )
__lowerCamelCase : Dict = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' )
__lowerCamelCase : Tuple = floats_list((3, 10_00) )
__lowerCamelCase : Optional[Any] = processor_wavaveca(SCREAMING_SNAKE_CASE_ , return_tensors='np' )
__lowerCamelCase : Optional[int] = processor_auto(SCREAMING_SNAKE_CASE_ , return_tensors='np' )
for key in input_wavaveca.keys():
self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 )
__lowerCamelCase : int = self._get_dummy_logits()
__lowerCamelCase : Tuple = processor_wavaveca.batch_decode(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = processor_auto.batch_decode(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(decoded_wavaveca.text , decoded_auto.text )
def lowercase_ ( self ) -> int:
__lowerCamelCase : Optional[int] = self.get_feature_extractor()
__lowerCamelCase : List[str] = self.get_tokenizer()
__lowerCamelCase : List[Any] = self.get_decoder()
__lowerCamelCase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
@staticmethod
def lowercase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
__lowerCamelCase : int = [d[key] for d in offsets]
return retrieved_list
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : str = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' )
__lowerCamelCase : Optional[Any] = self._get_dummy_logits()[0]
__lowerCamelCase : Dict = processor.decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue('text' in outputs )
self.assertTrue('word_offsets' in outputs )
self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] )
self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] )
def lowercase_ ( self ) -> int:
__lowerCamelCase : Tuple = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' )
__lowerCamelCase : Union[str, Any] = self._get_dummy_logits()
__lowerCamelCase : Tuple = processor.batch_decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue('text' in outputs )
self.assertTrue('word_offsets' in outputs )
self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
self.assertListEqual(
[' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) for o in outputs['word_offsets']] , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] )
self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] )
@slow
@require_torch
@require_torchaudio
def lowercase_ ( self ) -> Union[str, Any]:
import torch
__lowerCamelCase : Optional[Any] = load_dataset('common_voice' , 'en' , split='train' , streaming=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_60_00 ) )
__lowerCamelCase : List[str] = iter(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = next(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' )
__lowerCamelCase : Tuple = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' )
# compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train
__lowerCamelCase : List[Any] = processor(sample['audio']['array'] , return_tensors='pt' ).input_values
with torch.no_grad():
__lowerCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE_ ).logits.cpu().numpy()
__lowerCamelCase : Optional[int] = processor.decode(logits[0] , output_word_offsets=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate
__lowerCamelCase : Optional[int] = [
{
'start_time': d['start_offset'] * time_offset,
'end_time': d['end_offset'] * time_offset,
'word': d['word'],
}
for d in output['word_offsets']
]
__lowerCamelCase : Optional[Any] = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL'
# output words
self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , SCREAMING_SNAKE_CASE_ )
self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , output.text )
# output times
__lowerCamelCase : str = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'start_time' ) )
__lowerCamelCase : Tuple = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'end_time' ) )
# fmt: off
__lowerCamelCase : Any = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] )
__lowerCamelCase : str = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] )
# fmt: on
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) )
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) )
| 13 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : Tuple = logging.get_logger(__name__)
A__ : Dict = {
"""RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""",
"""RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""",
"""RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""",
"""RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""",
"""RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""",
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : List[Any] = 'rwkv'
lowerCamelCase : Any = {'max_position_embeddings': 'context_length'}
def __init__( self , SCREAMING_SNAKE_CASE_=5_02_77 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = vocab_size
__lowerCamelCase : Tuple = context_length
__lowerCamelCase : str = hidden_size
__lowerCamelCase : List[str] = num_hidden_layers
__lowerCamelCase : Any = attention_hidden_size if attention_hidden_size is not None else hidden_size
__lowerCamelCase : Optional[int] = intermediate_size if intermediate_size is not None else 4 * hidden_size
__lowerCamelCase : Optional[Any] = layer_norm_epsilon
__lowerCamelCase : int = rescale_every
__lowerCamelCase : Tuple = use_cache
__lowerCamelCase : int = bos_token_id
__lowerCamelCase : Optional[Any] = eos_token_id
super().__init__(
tie_word_embeddings=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 13 | 1 |
'''simple docstring'''
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
A__ : List[str] = logging.get_logger(__name__)
A__ : Optional[Any] = OrderedDict(
[
# Base model mapping
("""albert""", """FlaxAlbertModel"""),
("""bart""", """FlaxBartModel"""),
("""beit""", """FlaxBeitModel"""),
("""bert""", """FlaxBertModel"""),
("""big_bird""", """FlaxBigBirdModel"""),
("""blenderbot""", """FlaxBlenderbotModel"""),
("""blenderbot-small""", """FlaxBlenderbotSmallModel"""),
("""clip""", """FlaxCLIPModel"""),
("""distilbert""", """FlaxDistilBertModel"""),
("""electra""", """FlaxElectraModel"""),
("""gpt-sw3""", """FlaxGPT2Model"""),
("""gpt2""", """FlaxGPT2Model"""),
("""gpt_neo""", """FlaxGPTNeoModel"""),
("""gptj""", """FlaxGPTJModel"""),
("""longt5""", """FlaxLongT5Model"""),
("""marian""", """FlaxMarianModel"""),
("""mbart""", """FlaxMBartModel"""),
("""mt5""", """FlaxMT5Model"""),
("""opt""", """FlaxOPTModel"""),
("""pegasus""", """FlaxPegasusModel"""),
("""regnet""", """FlaxRegNetModel"""),
("""resnet""", """FlaxResNetModel"""),
("""roberta""", """FlaxRobertaModel"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""),
("""roformer""", """FlaxRoFormerModel"""),
("""t5""", """FlaxT5Model"""),
("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""),
("""vit""", """FlaxViTModel"""),
("""wav2vec2""", """FlaxWav2Vec2Model"""),
("""whisper""", """FlaxWhisperModel"""),
("""xglm""", """FlaxXGLMModel"""),
("""xlm-roberta""", """FlaxXLMRobertaModel"""),
]
)
A__ : List[str] = OrderedDict(
[
# Model for pre-training mapping
("""albert""", """FlaxAlbertForPreTraining"""),
("""bart""", """FlaxBartForConditionalGeneration"""),
("""bert""", """FlaxBertForPreTraining"""),
("""big_bird""", """FlaxBigBirdForPreTraining"""),
("""electra""", """FlaxElectraForPreTraining"""),
("""longt5""", """FlaxLongT5ForConditionalGeneration"""),
("""mbart""", """FlaxMBartForConditionalGeneration"""),
("""mt5""", """FlaxMT5ForConditionalGeneration"""),
("""roberta""", """FlaxRobertaForMaskedLM"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""),
("""roformer""", """FlaxRoFormerForMaskedLM"""),
("""t5""", """FlaxT5ForConditionalGeneration"""),
("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""),
("""whisper""", """FlaxWhisperForConditionalGeneration"""),
("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""),
]
)
A__ : Dict = OrderedDict(
[
# Model for Masked LM mapping
("""albert""", """FlaxAlbertForMaskedLM"""),
("""bart""", """FlaxBartForConditionalGeneration"""),
("""bert""", """FlaxBertForMaskedLM"""),
("""big_bird""", """FlaxBigBirdForMaskedLM"""),
("""distilbert""", """FlaxDistilBertForMaskedLM"""),
("""electra""", """FlaxElectraForMaskedLM"""),
("""mbart""", """FlaxMBartForConditionalGeneration"""),
("""roberta""", """FlaxRobertaForMaskedLM"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""),
("""roformer""", """FlaxRoFormerForMaskedLM"""),
("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""),
]
)
A__ : int = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
("""bart""", """FlaxBartForConditionalGeneration"""),
("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""),
("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""),
("""encoder-decoder""", """FlaxEncoderDecoderModel"""),
("""longt5""", """FlaxLongT5ForConditionalGeneration"""),
("""marian""", """FlaxMarianMTModel"""),
("""mbart""", """FlaxMBartForConditionalGeneration"""),
("""mt5""", """FlaxMT5ForConditionalGeneration"""),
("""pegasus""", """FlaxPegasusForConditionalGeneration"""),
("""t5""", """FlaxT5ForConditionalGeneration"""),
]
)
A__ : Optional[Any] = OrderedDict(
[
# Model for Image-classsification
("""beit""", """FlaxBeitForImageClassification"""),
("""regnet""", """FlaxRegNetForImageClassification"""),
("""resnet""", """FlaxResNetForImageClassification"""),
("""vit""", """FlaxViTForImageClassification"""),
]
)
A__ : Optional[int] = OrderedDict(
[
("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""),
]
)
A__ : str = OrderedDict(
[
# Model for Causal LM mapping
("""bart""", """FlaxBartForCausalLM"""),
("""bert""", """FlaxBertForCausalLM"""),
("""big_bird""", """FlaxBigBirdForCausalLM"""),
("""electra""", """FlaxElectraForCausalLM"""),
("""gpt-sw3""", """FlaxGPT2LMHeadModel"""),
("""gpt2""", """FlaxGPT2LMHeadModel"""),
("""gpt_neo""", """FlaxGPTNeoForCausalLM"""),
("""gptj""", """FlaxGPTJForCausalLM"""),
("""opt""", """FlaxOPTForCausalLM"""),
("""roberta""", """FlaxRobertaForCausalLM"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""),
("""xglm""", """FlaxXGLMForCausalLM"""),
("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""),
]
)
A__ : Dict = OrderedDict(
[
# Model for Sequence Classification mapping
("""albert""", """FlaxAlbertForSequenceClassification"""),
("""bart""", """FlaxBartForSequenceClassification"""),
("""bert""", """FlaxBertForSequenceClassification"""),
("""big_bird""", """FlaxBigBirdForSequenceClassification"""),
("""distilbert""", """FlaxDistilBertForSequenceClassification"""),
("""electra""", """FlaxElectraForSequenceClassification"""),
("""mbart""", """FlaxMBartForSequenceClassification"""),
("""roberta""", """FlaxRobertaForSequenceClassification"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""),
("""roformer""", """FlaxRoFormerForSequenceClassification"""),
("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""),
]
)
A__ : Optional[Any] = OrderedDict(
[
# Model for Question Answering mapping
("""albert""", """FlaxAlbertForQuestionAnswering"""),
("""bart""", """FlaxBartForQuestionAnswering"""),
("""bert""", """FlaxBertForQuestionAnswering"""),
("""big_bird""", """FlaxBigBirdForQuestionAnswering"""),
("""distilbert""", """FlaxDistilBertForQuestionAnswering"""),
("""electra""", """FlaxElectraForQuestionAnswering"""),
("""mbart""", """FlaxMBartForQuestionAnswering"""),
("""roberta""", """FlaxRobertaForQuestionAnswering"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""),
("""roformer""", """FlaxRoFormerForQuestionAnswering"""),
("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""),
]
)
A__ : Optional[Any] = OrderedDict(
[
# Model for Token Classification mapping
("""albert""", """FlaxAlbertForTokenClassification"""),
("""bert""", """FlaxBertForTokenClassification"""),
("""big_bird""", """FlaxBigBirdForTokenClassification"""),
("""distilbert""", """FlaxDistilBertForTokenClassification"""),
("""electra""", """FlaxElectraForTokenClassification"""),
("""roberta""", """FlaxRobertaForTokenClassification"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""),
("""roformer""", """FlaxRoFormerForTokenClassification"""),
("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""),
]
)
A__ : str = OrderedDict(
[
# Model for Multiple Choice mapping
("""albert""", """FlaxAlbertForMultipleChoice"""),
("""bert""", """FlaxBertForMultipleChoice"""),
("""big_bird""", """FlaxBigBirdForMultipleChoice"""),
("""distilbert""", """FlaxDistilBertForMultipleChoice"""),
("""electra""", """FlaxElectraForMultipleChoice"""),
("""roberta""", """FlaxRobertaForMultipleChoice"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""),
("""roformer""", """FlaxRoFormerForMultipleChoice"""),
("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""),
]
)
A__ : str = OrderedDict(
[
("""bert""", """FlaxBertForNextSentencePrediction"""),
]
)
A__ : Optional[Any] = OrderedDict(
[
("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""),
("""whisper""", """FlaxWhisperForConditionalGeneration"""),
]
)
A__ : Dict = OrderedDict(
[
("""whisper""", """FlaxWhisperForAudioClassification"""),
]
)
A__ : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
A__ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
A__ : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
A__ : Optional[Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
A__ : Tuple = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
A__ : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
A__ : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
A__ : Union[str, Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
A__ : List[Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
A__ : Any = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
A__ : Optional[int] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
A__ : List[Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
A__ : Tuple = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
A__ : List[str] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class UpperCAmelCase_ (_BaseAutoModelClass ):
"""simple docstring"""
lowerCamelCase : Tuple = FLAX_MODEL_MAPPING
A__ : str = auto_class_update(FlaxAutoModel)
class UpperCAmelCase_ (_BaseAutoModelClass ):
"""simple docstring"""
lowerCamelCase : List[str] = FLAX_MODEL_FOR_PRETRAINING_MAPPING
A__ : Optional[int] = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""")
class UpperCAmelCase_ (_BaseAutoModelClass ):
"""simple docstring"""
lowerCamelCase : int = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
A__ : List[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""")
class UpperCAmelCase_ (_BaseAutoModelClass ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = FLAX_MODEL_FOR_MASKED_LM_MAPPING
A__ : str = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""")
class UpperCAmelCase_ (_BaseAutoModelClass ):
"""simple docstring"""
lowerCamelCase : Optional[Any] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
A__ : Any = auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base"""
)
class UpperCAmelCase_ (_BaseAutoModelClass ):
"""simple docstring"""
lowerCamelCase : List[Any] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
A__ : Dict = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc="""sequence classification"""
)
class UpperCAmelCase_ (_BaseAutoModelClass ):
"""simple docstring"""
lowerCamelCase : Any = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
A__ : Tuple = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""")
class UpperCAmelCase_ (_BaseAutoModelClass ):
"""simple docstring"""
lowerCamelCase : Optional[Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
A__ : List[Any] = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc="""token classification"""
)
class UpperCAmelCase_ (_BaseAutoModelClass ):
"""simple docstring"""
lowerCamelCase : Optional[Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
A__ : Optional[int] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""")
class UpperCAmelCase_ (_BaseAutoModelClass ):
"""simple docstring"""
lowerCamelCase : Optional[Any] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
A__ : Union[str, Any] = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction"""
)
class UpperCAmelCase_ (_BaseAutoModelClass ):
"""simple docstring"""
lowerCamelCase : str = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
A__ : int = auto_class_update(
FlaxAutoModelForImageClassification, head_doc="""image classification"""
)
class UpperCAmelCase_ (_BaseAutoModelClass ):
"""simple docstring"""
lowerCamelCase : Optional[Any] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
A__ : str = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""")
class UpperCAmelCase_ (_BaseAutoModelClass ):
"""simple docstring"""
lowerCamelCase : Optional[int] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
A__ : Any = auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling"""
)
| 13 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 10_00 ) -> int:
__lowerCamelCase : Union[str, Any] = 3
__lowerCamelCase : Dict = 0
while a < n:
if a % 3 == 0 or a % 5 == 0:
result += a
elif a % 15 == 0:
result -= a
a += 1
return result
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import DiffusionPipeline
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import logging
A__ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]:
super().__init__()
self.register_modules(
vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ = "auto" ) -> int:
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__lowerCamelCase : Optional[int] = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> List[str]:
self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ )
@torch.no_grad()
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> Any:
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Any = 1
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : List[str] = len(SCREAMING_SNAKE_CASE_ )
else:
raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE_ )}' )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or callback_steps <= 0)
):
raise ValueError(
f'`callback_steps` has to be a positive integer but is {callback_steps} of type'
f' {type(SCREAMING_SNAKE_CASE_ )}.' )
# get prompt text embeddings
__lowerCamelCase : str = self.tokenizer(
SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , )
__lowerCamelCase : Optional[int] = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
__lowerCamelCase : Optional[int] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
'The following part of your input was truncated because CLIP can only handle sequences up to'
f' {self.tokenizer.model_max_length} tokens: {removed_text}' )
__lowerCamelCase : int = text_input_ids[:, : self.tokenizer.model_max_length]
if text_embeddings is None:
__lowerCamelCase : Optional[Any] = self.text_encoder(text_input_ids.to(self.device ) )[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = text_embeddings.shape
__lowerCamelCase : Tuple = text_embeddings.repeat(1 , SCREAMING_SNAKE_CASE_ , 1 )
__lowerCamelCase : Tuple = text_embeddings.view(bs_embed * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
__lowerCamelCase : Optional[Any] = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
__lowerCamelCase : List[str]
if negative_prompt is None:
__lowerCamelCase : Union[str, Any] = ['']
elif type(SCREAMING_SNAKE_CASE_ ) is not type(SCREAMING_SNAKE_CASE_ ):
raise TypeError(
f'`negative_prompt` should be the same type to `prompt`, but got {type(SCREAMING_SNAKE_CASE_ )} !='
f' {type(SCREAMING_SNAKE_CASE_ )}.' )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : int = [negative_prompt]
elif batch_size != len(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
f'`negative_prompt`: {negative_prompt} has batch size {len(SCREAMING_SNAKE_CASE_ )}, but `prompt`:'
f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches'
' the batch size of `prompt`.' )
else:
__lowerCamelCase : Tuple = negative_prompt
__lowerCamelCase : str = text_input_ids.shape[-1]
__lowerCamelCase : Optional[Any] = self.tokenizer(
SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='pt' , )
__lowerCamelCase : Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
__lowerCamelCase : int = uncond_embeddings.shape[1]
__lowerCamelCase : Any = uncond_embeddings.repeat(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 )
__lowerCamelCase : int = uncond_embeddings.view(batch_size * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__lowerCamelCase : Dict = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
__lowerCamelCase : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
__lowerCamelCase : List[str] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64)
__lowerCamelCase : Any = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
__lowerCamelCase : Any = torch.randn(
SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device='cpu' , dtype=SCREAMING_SNAKE_CASE_ ).to(self.device )
__lowerCamelCase : Optional[int] = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device='cpu' , dtype=SCREAMING_SNAKE_CASE_ ).to(
self.device )
else:
__lowerCamelCase : int = torch.randn(
SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ )
else:
if latents_reference.shape != latents_shape:
raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' )
__lowerCamelCase : Optional[int] = latents_reference.to(self.device )
__lowerCamelCase : Optional[Any] = latents.to(self.device )
# This is the key part of the pipeline where we
# try to ensure that the generated images w/ the same seed
# but different sizes actually result in similar images
__lowerCamelCase : List[str] = (latents_shape[3] - latents_shape_reference[3]) // 2
__lowerCamelCase : str = (latents_shape[2] - latents_shape_reference[2]) // 2
__lowerCamelCase : str = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx
__lowerCamelCase : Any = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy
__lowerCamelCase : Dict = 0 if dx < 0 else dx
__lowerCamelCase : Dict = 0 if dy < 0 else dy
__lowerCamelCase : int = max(-dx , 0 )
__lowerCamelCase : List[Any] = max(-dy , 0 )
# import pdb
# pdb.set_trace()
__lowerCamelCase : List[str] = latents_reference[:, :, dy : dy + h, dx : dx + w]
# set timesteps
self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
__lowerCamelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
__lowerCamelCase : Tuple = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__lowerCamelCase : str = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__lowerCamelCase : Any = {}
if accepts_eta:
__lowerCamelCase : List[Any] = eta
for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ):
# expand the latents if we are doing classifier free guidance
__lowerCamelCase : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__lowerCamelCase : Dict = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# predict the noise residual
__lowerCamelCase : List[Any] = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ ).sample
# perform guidance
if do_classifier_free_guidance:
__lowerCamelCase , __lowerCamelCase : int = noise_pred.chunk(2 )
__lowerCamelCase : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
__lowerCamelCase : int = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = 1 / 0.1_8_2_1_5 * latents
__lowerCamelCase : str = self.vae.decode(SCREAMING_SNAKE_CASE_ ).sample
__lowerCamelCase : Optional[Any] = (image / 2 + 0.5).clamp(0 , 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
__lowerCamelCase : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if self.safety_checker is not None:
__lowerCamelCase : List[str] = self.feature_extractor(self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) , return_tensors='pt' ).to(
self.device )
__lowerCamelCase , __lowerCamelCase : List[Any] = self.safety_checker(
images=SCREAMING_SNAKE_CASE_ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) )
else:
__lowerCamelCase : str = None
if output_type == "pil":
__lowerCamelCase : Union[str, Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ )
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=SCREAMING_SNAKE_CASE_ , nsfw_content_detected=SCREAMING_SNAKE_CASE_ )
| 13 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Dict = XGLMConfig
lowerCamelCase : List[str] = {}
lowerCamelCase : Union[str, Any] = 'gelu'
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Any:
__lowerCamelCase : int = parent
__lowerCamelCase : Optional[int] = batch_size
__lowerCamelCase : Optional[Any] = seq_length
__lowerCamelCase : Optional[int] = is_training
__lowerCamelCase : str = use_input_mask
__lowerCamelCase : Dict = use_labels
__lowerCamelCase : Union[str, Any] = vocab_size
__lowerCamelCase : List[Any] = d_model
__lowerCamelCase : List[Any] = num_hidden_layers
__lowerCamelCase : List[Any] = num_attention_heads
__lowerCamelCase : Optional[Any] = ffn_dim
__lowerCamelCase : List[Any] = activation_function
__lowerCamelCase : List[Any] = activation_dropout
__lowerCamelCase : List[Any] = attention_dropout
__lowerCamelCase : Union[str, Any] = max_position_embeddings
__lowerCamelCase : Tuple = initializer_range
__lowerCamelCase : int = None
__lowerCamelCase : int = 0
__lowerCamelCase : Tuple = 2
__lowerCamelCase : Tuple = 1
def lowercase_ ( self ) -> Any:
return XGLMConfig.from_pretrained('facebook/xglm-564M' )
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : Optional[Any] = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
__lowerCamelCase : Optional[int] = None
if self.use_input_mask:
__lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCamelCase : str = self.get_config()
__lowerCamelCase : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def lowercase_ ( self ) -> Optional[int]:
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=SCREAMING_SNAKE_CASE_ , )
def lowercase_ ( self ) -> str:
__lowerCamelCase : List[Any] = self.prepare_config_and_inputs()
(
(
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) ,
) : str = config_and_inputs
__lowerCamelCase : Union[str, Any] = {
'input_ids': input_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_tf
class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
lowerCamelCase : List[Any] = (TFXGLMForCausalLM,) if is_tf_available() else ()
lowerCamelCase : Any = (
{'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {}
)
lowerCamelCase : List[Any] = False
lowerCamelCase : Dict = False
lowerCamelCase : Union[str, Any] = False
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : str = TFXGLMModelTester(self )
__lowerCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , n_embd=37 )
def lowercase_ ( self ) -> Dict:
self.config_tester.run_common_tests()
@slow
def lowercase_ ( self ) -> Optional[int]:
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCamelCase : Optional[Any] = TFXGLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' )
def lowercase_ ( self ) -> Any:
super().test_resize_token_embeddings()
@require_tf
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
@slow
def lowercase_ ( self , SCREAMING_SNAKE_CASE_=True ) -> List[str]:
__lowerCamelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : int = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
__lowerCamelCase : Optional[int] = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81]
# fmt: on
__lowerCamelCase : Any = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE_ )
@slow
def lowercase_ ( self ) -> int:
__lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
tf.random.set_seed(0 )
__lowerCamelCase : List[Any] = tokenizer('Today is a nice day and' , return_tensors='tf' )
__lowerCamelCase : int = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(':/CPU:0' ):
__lowerCamelCase : Tuple = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , seed=[7, 0] )
__lowerCamelCase : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = (
'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due'
)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@slow
def lowercase_ ( self ) -> int:
__lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : Any = 'left'
# use different length sentences to test batching
__lowerCamelCase : Any = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When',
'Hello, my dog is a little',
]
__lowerCamelCase : Any = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='tf' , padding=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = inputs['input_ids']
__lowerCamelCase : str = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 )
__lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids
__lowerCamelCase : int = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 )
__lowerCamelCase : Optional[Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids
__lowerCamelCase : Optional[Any] = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 )
__lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be '
'a single',
'Hello, my dog is a little bit of a shy one, but he is very friendly',
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [non_padded_sentence, padded_sentence] )
| 13 | 1 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
A__ : str = logging.get_logger(__name__)
A__ : Tuple = torch.device("""cpu""")
def UpperCAmelCase__ ( ) -> Any:
__lowerCamelCase : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__lowerCamelCase : int = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw )
return im
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] ) -> Tuple:
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.1_703e00, 2.1_107e00, -2.0_811e00, 8.8_685e-01, 2.4_360e-01] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.9_636e-01, 2.3_478e-01, -1.6_963e00, -1.7_381e00, -8.6_337e-01] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.2_768e-01, -4.7_429e-01, -1.0_897e00, -1.0_248e00, 3.5_523e-02] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.5_330e-01, 2.4_211e-01, -6.0_185e-01, -8.2_789e-01, -6.0_446e-02] )
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] ) -> int:
__lowerCamelCase : Optional[Any] = dct.pop(UpperCAmelCase_ )
__lowerCamelCase : List[str] = val
def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple ) -> Dict:
__lowerCamelCase : str = []
for k in state_dict.keys():
__lowerCamelCase : Optional[Any] = k
if ".pwconv" in k:
__lowerCamelCase : int = k_new.replace('.pwconv' , '.point_wise_conv' )
if ".dwconv" in k:
__lowerCamelCase : Any = k_new.replace('.dwconv' , '.depth_wise_conv' )
if ".Proj." in k:
__lowerCamelCase : List[Any] = k_new.replace('.Proj.' , '.proj.' )
if "patch_embed" in k_new:
__lowerCamelCase : Union[str, Any] = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' )
if "network" in k_new:
__lowerCamelCase : Optional[Any] = k_new.split('.' )
if ls[2].isdigit():
__lowerCamelCase : int = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] )
else:
__lowerCamelCase : List[Any] = k_new.replace('network' , 'swiftformer.encoder.network' )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any ) -> Optional[int]:
__lowerCamelCase : Any = SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
__lowerCamelCase : Optional[Any] = 10_00
__lowerCamelCase : Optional[Any] = 'huggingface/label-files'
__lowerCamelCase : Optional[int] = 'imagenet-1k-id2label.json'
__lowerCamelCase : Any = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ , repo_type='dataset' ) , 'r' ) )
__lowerCamelCase : Optional[Any] = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()}
__lowerCamelCase : Any = idalabel
__lowerCamelCase : Dict = {v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
__lowerCamelCase : Tuple = [3, 3, 6, 4]
__lowerCamelCase : Optional[Any] = [48, 56, 1_12, 2_20]
elif swiftformer_name == "swiftformer_s":
__lowerCamelCase : Any = [3, 3, 9, 6]
__lowerCamelCase : Any = [48, 64, 1_68, 2_24]
elif swiftformer_name == "swiftformer_l1":
__lowerCamelCase : List[str] = [4, 3, 10, 5]
__lowerCamelCase : Union[str, Any] = [48, 96, 1_92, 3_84]
elif swiftformer_name == "swiftformer_l3":
__lowerCamelCase : Union[str, Any] = [4, 4, 12, 6]
__lowerCamelCase : Dict = [64, 1_28, 3_20, 5_12]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith('https' ):
__lowerCamelCase : int = torch.hub.load_state_dict_from_url(UpperCAmelCase_ , map_location='cpu' , check_hash=UpperCAmelCase_ )
else:
__lowerCamelCase : Tuple = torch.load(UpperCAmelCase_ , map_location='cpu' )
__lowerCamelCase : Tuple = checkpoint
__lowerCamelCase : Any = create_rename_keys(UpperCAmelCase_ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# load HuggingFace model
__lowerCamelCase : List[str] = SwiftFormerForImageClassification(UpperCAmelCase_ ).eval()
hf_model.load_state_dict(UpperCAmelCase_ )
# prepare test inputs
__lowerCamelCase : Dict = prepare_img()
__lowerCamelCase : Tuple = ViTImageProcessor.from_pretrained('preprocessor_config' )
__lowerCamelCase : Any = processor(images=UpperCAmelCase_ , return_tensors='pt' )
# compare outputs from both models
__lowerCamelCase : List[Any] = get_expected_output(UpperCAmelCase_ )
__lowerCamelCase : Dict = hf_model(inputs['pixel_values'] ).logits
assert hf_logits.shape == torch.Size([1, 10_00] )
assert torch.allclose(hf_logits[0, 0:5] , UpperCAmelCase_ , atol=1e-3 )
Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ )
print(F'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' )
hf_model.save_pretrained(UpperCAmelCase_ )
if __name__ == "__main__":
A__ : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--swiftformer_name""",
default="""swiftformer_xs""",
choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""],
type=str,
help="""Name of the SwiftFormer model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""./converted_outputs/""",
type=str,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""")
A__ : Union[str, Any] = parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
| 13 |
'''simple docstring'''
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : List[str] = logging.get_logger(__name__)
# TODO Update this
A__ : Tuple = {
"""facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""",
# See all ESM models at https://huggingface.co/models?filter=esm
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Tuple = 'esm'
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10_26 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]:
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , mask_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = vocab_size
__lowerCamelCase : List[Any] = hidden_size
__lowerCamelCase : str = num_hidden_layers
__lowerCamelCase : List[str] = num_attention_heads
__lowerCamelCase : Any = intermediate_size
__lowerCamelCase : Optional[Any] = hidden_dropout_prob
__lowerCamelCase : Tuple = attention_probs_dropout_prob
__lowerCamelCase : Optional[int] = max_position_embeddings
__lowerCamelCase : str = initializer_range
__lowerCamelCase : Optional[int] = layer_norm_eps
__lowerCamelCase : List[str] = position_embedding_type
__lowerCamelCase : int = use_cache
__lowerCamelCase : Optional[Any] = emb_layer_norm_before
__lowerCamelCase : Optional[Any] = token_dropout
__lowerCamelCase : str = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info('No esmfold_config supplied for folding model, using default values.' )
__lowerCamelCase : Dict = EsmFoldConfig()
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Optional[int] = EsmFoldConfig(**SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = esmfold_config
if vocab_list is None:
logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' )
__lowerCamelCase : List[str] = get_default_vocab_list()
else:
__lowerCamelCase : Optional[Any] = vocab_list
else:
__lowerCamelCase : Dict = None
__lowerCamelCase : Optional[Any] = None
if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , SCREAMING_SNAKE_CASE_ ):
raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : Any = super().to_dict()
if isinstance(self.esmfold_config , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : int = self.esmfold_config.to_dict()
return output
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : str = None
lowerCamelCase : bool = True
lowerCamelCase : bool = False
lowerCamelCase : bool = False
lowerCamelCase : bool = False
lowerCamelCase : float = 0
lowerCamelCase : bool = True
lowerCamelCase : bool = False
lowerCamelCase : int = 1_2_8
lowerCamelCase : "TrunkConfig" = None
def lowercase_ ( self ) -> Any:
if self.trunk is None:
__lowerCamelCase : List[str] = TrunkConfig()
elif isinstance(self.trunk , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Any = TrunkConfig(**self.trunk )
def lowercase_ ( self ) -> int:
__lowerCamelCase : Optional[int] = asdict(self )
__lowerCamelCase : str = self.trunk.to_dict()
return output
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : int = 4_8
lowerCamelCase : int = 1_0_2_4
lowerCamelCase : int = 1_2_8
lowerCamelCase : int = 3_2
lowerCamelCase : int = 3_2
lowerCamelCase : int = 3_2
lowerCamelCase : float = 0
lowerCamelCase : float = 0
lowerCamelCase : bool = False
lowerCamelCase : int = 4
lowerCamelCase : Optional[int] = 1_2_8
lowerCamelCase : "StructureModuleConfig" = None
def lowercase_ ( self ) -> Optional[int]:
if self.structure_module is None:
__lowerCamelCase : Dict = StructureModuleConfig()
elif isinstance(self.structure_module , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Optional[Any] = StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
'`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got'
f' {self.sequence_state_dim} and {self.sequence_state_dim}.' )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
'`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got'
f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' )
__lowerCamelCase : Tuple = self.sequence_state_dim // self.sequence_head_width
__lowerCamelCase : str = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
'`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got'
f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
'`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got'
f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' )
if self.dropout >= 0.4:
raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' )
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : List[str] = asdict(self )
__lowerCamelCase : int = self.structure_module.to_dict()
return output
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : int = 3_8_4
lowerCamelCase : int = 1_2_8
lowerCamelCase : int = 1_6
lowerCamelCase : int = 1_2_8
lowerCamelCase : int = 1_2
lowerCamelCase : int = 4
lowerCamelCase : int = 8
lowerCamelCase : float = 0.1
lowerCamelCase : int = 8
lowerCamelCase : int = 1
lowerCamelCase : int = 2
lowerCamelCase : int = 7
lowerCamelCase : int = 1_0
lowerCamelCase : float = 1e-8
lowerCamelCase : float = 1e5
def lowercase_ ( self ) -> Any:
return asdict(self )
def UpperCAmelCase__ ( ) -> Optional[Any]:
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 13 | 1 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bool:
if num < 0:
return False
__lowerCamelCase : int = num
__lowerCamelCase : int = 0
while num > 0:
__lowerCamelCase : int = rev_num * 10 + (num % 10)
num //= 10
return num_copy == rev_num
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
A__ : dict[tuple[int, int, int], int] = {}
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
# if we are absent twice, or late 3 consecutive days,
# no further prize strings are possible
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
__lowerCamelCase : List[Any] = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
__lowerCamelCase : Tuple = _calculate(days - 1 , UpperCAmelCase_ , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
__lowerCamelCase : int = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
__lowerCamelCase : List[Any] = _calculate(days - 1 , UpperCAmelCase_ , 0 )
__lowerCamelCase : Optional[int] = state_late + state_absent + state_ontime
__lowerCamelCase : Union[str, Any] = prizestrings
return prizestrings
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 30 ) -> int:
return _calculate(UpperCAmelCase_ , absent=0 , late=0 )
if __name__ == "__main__":
print(solution())
| 13 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A__ : Optional[int] = {
"""configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""],
"""tokenization_electra""": ["""ElectraTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Dict = ["""ElectraTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : int = [
"""ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ElectraForCausalLM""",
"""ElectraForMaskedLM""",
"""ElectraForMultipleChoice""",
"""ElectraForPreTraining""",
"""ElectraForQuestionAnswering""",
"""ElectraForSequenceClassification""",
"""ElectraForTokenClassification""",
"""ElectraModel""",
"""ElectraPreTrainedModel""",
"""load_tf_weights_in_electra""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Optional[Any] = [
"""TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFElectraForMaskedLM""",
"""TFElectraForMultipleChoice""",
"""TFElectraForPreTraining""",
"""TFElectraForQuestionAnswering""",
"""TFElectraForSequenceClassification""",
"""TFElectraForTokenClassification""",
"""TFElectraModel""",
"""TFElectraPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Optional[int] = [
"""FlaxElectraForCausalLM""",
"""FlaxElectraForMaskedLM""",
"""FlaxElectraForMultipleChoice""",
"""FlaxElectraForPreTraining""",
"""FlaxElectraForQuestionAnswering""",
"""FlaxElectraForSequenceClassification""",
"""FlaxElectraForTokenClassification""",
"""FlaxElectraModel""",
"""FlaxElectraPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
from .tokenization_electra import ElectraTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_electra_fast import ElectraTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
ElectraPreTrainedModel,
load_tf_weights_in_electra,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
TFElectraForMultipleChoice,
TFElectraForPreTraining,
TFElectraForQuestionAnswering,
TFElectraForSequenceClassification,
TFElectraForTokenClassification,
TFElectraModel,
TFElectraPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice,
FlaxElectraForPreTraining,
FlaxElectraForQuestionAnswering,
FlaxElectraForSequenceClassification,
FlaxElectraForTokenClassification,
FlaxElectraModel,
FlaxElectraPreTrainedModel,
)
else:
import sys
A__ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 13 |
'''simple docstring'''
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
A__ : Any = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""")
@total_ordering
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : str
lowerCamelCase : Optional[str] = None
lowerCamelCase : Optional[Union[str, int]] = None
lowerCamelCase : Optional[Union[str, int]] = None
lowerCamelCase : Optional[Union[str, int]] = None
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = _str_to_version_tuple(self.version_str )
def __repr__( self ) -> Any:
return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}'
@property
def lowercase_ ( self ) -> int:
return self.major, self.minor, self.patch
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return Version(SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return other
raise TypeError(f'{other} (type {type(SCREAMING_SNAKE_CASE_ )}) cannot be compared to version.' )
def __eq__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
try:
__lowerCamelCase : Union[str, Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
__lowerCamelCase : List[Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ )
return self.tuple < other.tuple
def __hash__( self ) -> List[str]:
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase : str = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def lowercase_ ( self ) -> str:
return self.version_str
def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> str:
__lowerCamelCase : str = _VERSION_REG.match(UpperCAmelCase_ )
if not res:
raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' )
return tuple(int(UpperCAmelCase_ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] )
def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] ) -> Dict:
return ".".join(str(UpperCAmelCase_ ) for v in version_tuple )
| 13 | 1 |
'''simple docstring'''
import warnings
from typing import Dict
import numpy as np
from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] ) -> Union[str, Any]:
return 1.0 / (1.0 + np.exp(-_outputs ))
def UpperCAmelCase__ ( UpperCAmelCase_ : Any ) -> str:
__lowerCamelCase : int = np.max(_outputs , axis=-1 , keepdims=UpperCAmelCase_ )
__lowerCamelCase : Dict = np.exp(_outputs - maxes )
return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=UpperCAmelCase_ )
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : int = 'sigmoid'
lowerCamelCase : List[Any] = 'softmax'
lowerCamelCase : Optional[Any] = 'none'
@add_end_docstrings(
_UpperCAmelCase , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , )
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Any = False
lowerCamelCase : Any = ClassificationFunction.NONE
def __init__( self , **SCREAMING_SNAKE_CASE_ ) -> str:
super().__init__(**SCREAMING_SNAKE_CASE_ )
self.check_model_type(
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if self.framework == 'tf'
else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="" , **SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
# Using "" as default argument because we're going to use `top_k=None` in user code to declare
# "No top_k"
__lowerCamelCase : Optional[Any] = tokenizer_kwargs
__lowerCamelCase : Optional[int] = {}
if hasattr(self.model.config , 'return_all_scores' ) and return_all_scores is None:
__lowerCamelCase : List[Any] = self.model.config.return_all_scores
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or top_k is None:
__lowerCamelCase : List[str] = top_k
__lowerCamelCase : List[Any] = False
elif return_all_scores is not None:
warnings.warn(
'`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of'
' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.' , SCREAMING_SNAKE_CASE_ , )
if return_all_scores:
__lowerCamelCase : List[str] = None
else:
__lowerCamelCase : str = 1
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Union[str, Any] = ClassificationFunction[function_to_apply.upper()]
if function_to_apply is not None:
__lowerCamelCase : Any = function_to_apply
return preprocess_params, {}, postprocess_params
def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Dict:
__lowerCamelCase : Any = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
# TODO try and retrieve it in a nicer way from _sanitize_parameters.
__lowerCamelCase : Dict = 'top_k' not in kwargs
if isinstance(args[0] , SCREAMING_SNAKE_CASE_ ) and _legacy:
# This pipeline is odd, and return a list when single item is run
return [result]
else:
return result
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Dict[str, GenericTensor]:
__lowerCamelCase : int = self.framework
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return self.tokenizer(**SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) == 1 and isinstance(inputs[0] , SCREAMING_SNAKE_CASE_ ) and len(inputs[0] ) == 2:
# It used to be valid to use a list of list of list for text pairs, keeping this path for BC
return self.tokenizer(
text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
# This is likely an invalid usage of the pipeline attempting to pass text pairs.
raise ValueError(
'The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a'
' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.' )
return self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
return self.model(**SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=True ) -> Optional[Any]:
# `_legacy` is used to determine if we're running the naked pipeline and in backward
# compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running
# the more natural result containing the list.
# Default value before `set_parameters`
if function_to_apply is None:
if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1:
__lowerCamelCase : Any = ClassificationFunction.SIGMOID
elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1:
__lowerCamelCase : Dict = ClassificationFunction.SOFTMAX
elif hasattr(self.model.config , 'function_to_apply' ) and function_to_apply is None:
__lowerCamelCase : int = self.model.config.function_to_apply
else:
__lowerCamelCase : Optional[Any] = ClassificationFunction.NONE
__lowerCamelCase : Dict = model_outputs['logits'][0]
__lowerCamelCase : Any = outputs.numpy()
if function_to_apply == ClassificationFunction.SIGMOID:
__lowerCamelCase : Optional[Any] = sigmoid(SCREAMING_SNAKE_CASE_ )
elif function_to_apply == ClassificationFunction.SOFTMAX:
__lowerCamelCase : int = softmax(SCREAMING_SNAKE_CASE_ )
elif function_to_apply == ClassificationFunction.NONE:
__lowerCamelCase : List[str] = outputs
else:
raise ValueError(f'Unrecognized `function_to_apply` argument: {function_to_apply}' )
if top_k == 1 and _legacy:
return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()}
__lowerCamelCase : List[str] = [
{'label': self.model.config.idalabel[i], 'score': score.item()} for i, score in enumerate(SCREAMING_SNAKE_CASE_ )
]
if not _legacy:
dict_scores.sort(key=lambda SCREAMING_SNAKE_CASE_ : x["score"] , reverse=SCREAMING_SNAKE_CASE_ )
if top_k is not None:
__lowerCamelCase : int = dict_scores[:top_k]
return dict_scores
| 13 |
'''simple docstring'''
import sys
from collections import defaultdict
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self ) -> int:
__lowerCamelCase : Any = []
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Any:
return self.node_position[vertex]
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple:
__lowerCamelCase : Optional[int] = pos
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
__lowerCamelCase : str = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
__lowerCamelCase : Optional[Any] = 2 * start + 1
else:
__lowerCamelCase : int = 2 * start + 2
if heap[smallest_child] < heap[start]:
__lowerCamelCase , __lowerCamelCase : Optional[Any] = heap[smallest_child], positions[smallest_child]
__lowerCamelCase , __lowerCamelCase : int = (
heap[start],
positions[start],
)
__lowerCamelCase , __lowerCamelCase : str = temp, tempa
__lowerCamelCase : Dict = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , SCREAMING_SNAKE_CASE_ )
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any:
__lowerCamelCase : Any = position[index]
while index != 0:
__lowerCamelCase : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
__lowerCamelCase : Union[str, Any] = heap[parent]
__lowerCamelCase : Any = position[parent]
self.set_position(position[parent] , SCREAMING_SNAKE_CASE_ )
else:
__lowerCamelCase : Tuple = val
__lowerCamelCase : List[str] = temp
self.set_position(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
break
__lowerCamelCase : Tuple = parent
else:
__lowerCamelCase : Union[str, Any] = val
__lowerCamelCase : Tuple = temp
self.set_position(SCREAMING_SNAKE_CASE_ , 0 )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
__lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) // 2 - 1
for i in range(SCREAMING_SNAKE_CASE_ , -1 , -1 ):
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
__lowerCamelCase : Any = positions[0]
__lowerCamelCase : Union[str, Any] = sys.maxsize
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
return temp
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> str:
__lowerCamelCase : List[Any] = Heap()
__lowerCamelCase : Optional[int] = [0] * len(UpperCAmelCase_ )
__lowerCamelCase : str = [-1] * len(UpperCAmelCase_ ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
__lowerCamelCase : List[str] = [] # Heap of Distance of vertices from their neighboring vertex
__lowerCamelCase : Tuple = []
for vertex in range(len(UpperCAmelCase_ ) ):
distance_tv.append(sys.maxsize )
positions.append(UpperCAmelCase_ )
heap.node_position.append(UpperCAmelCase_ )
__lowerCamelCase : Tuple = []
__lowerCamelCase : Dict = 1
__lowerCamelCase : str = sys.maxsize
for neighbor, distance in adjacency_list[0]:
__lowerCamelCase : Any = 0
__lowerCamelCase : Any = distance
heap.heapify(UpperCAmelCase_ , UpperCAmelCase_ )
for _ in range(1 , len(UpperCAmelCase_ ) ):
__lowerCamelCase : List[Any] = heap.delete_minimum(UpperCAmelCase_ , UpperCAmelCase_ )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
__lowerCamelCase : Union[str, Any] = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(UpperCAmelCase_ )]
):
__lowerCamelCase : Dict = distance
heap.bottom_to_top(
UpperCAmelCase_ , heap.get_position(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : str = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
A__ : Tuple = int(input("""Enter number of edges: """).strip())
A__ : str = defaultdict(list)
for _ in range(edges_number):
A__ : Optional[int] = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 13 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A__ : List[str] = {
"""configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""],
"""feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""],
"""processing_mctct""": ["""MCTCTProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Dict = [
"""MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MCTCTForCTC""",
"""MCTCTModel""",
"""MCTCTPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
A__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 13 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00 ) -> int:
__lowerCamelCase : Union[str, Any] = n * (n + 1) * (2 * n + 1) / 6
__lowerCamelCase : Union[str, Any] = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
A__ : Any = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""")
@total_ordering
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : str
lowerCamelCase : Optional[str] = None
lowerCamelCase : Optional[Union[str, int]] = None
lowerCamelCase : Optional[Union[str, int]] = None
lowerCamelCase : Optional[Union[str, int]] = None
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = _str_to_version_tuple(self.version_str )
def __repr__( self ) -> Any:
return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}'
@property
def lowercase_ ( self ) -> int:
return self.major, self.minor, self.patch
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return Version(SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return other
raise TypeError(f'{other} (type {type(SCREAMING_SNAKE_CASE_ )}) cannot be compared to version.' )
def __eq__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
try:
__lowerCamelCase : Union[str, Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
__lowerCamelCase : List[Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ )
return self.tuple < other.tuple
def __hash__( self ) -> List[str]:
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase : str = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def lowercase_ ( self ) -> str:
return self.version_str
def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> str:
__lowerCamelCase : str = _VERSION_REG.match(UpperCAmelCase_ )
if not res:
raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' )
return tuple(int(UpperCAmelCase_ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] )
def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] ) -> Dict:
return ".".join(str(UpperCAmelCase_ ) for v in version_tuple )
| 13 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Optional[int]:
__lowerCamelCase : Optional[int] = parent
__lowerCamelCase : Dict = batch_size
__lowerCamelCase : int = image_size
__lowerCamelCase : List[str] = patch_size
__lowerCamelCase : Optional[int] = num_channels
__lowerCamelCase : Any = is_training
__lowerCamelCase : Dict = use_labels
__lowerCamelCase : List[Any] = hidden_size
__lowerCamelCase : List[Any] = num_hidden_layers
__lowerCamelCase : Optional[Any] = num_attention_heads
__lowerCamelCase : Dict = intermediate_size
__lowerCamelCase : Union[str, Any] = hidden_act
__lowerCamelCase : Optional[int] = hidden_dropout_prob
__lowerCamelCase : Tuple = attention_probs_dropout_prob
__lowerCamelCase : str = type_sequence_label_size
__lowerCamelCase : List[str] = initializer_range
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__lowerCamelCase : str = (image_size // patch_size) ** 2
__lowerCamelCase : Optional[int] = num_patches + 1
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowerCamelCase : Optional[int] = ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , )
return config, pixel_values
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
__lowerCamelCase : Union[str, Any] = FlaxViTModel(config=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = model(SCREAMING_SNAKE_CASE_ )
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
__lowerCamelCase : str = (self.image_size, self.image_size)
__lowerCamelCase : str = (self.patch_size, self.patch_size)
__lowerCamelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str:
__lowerCamelCase : Tuple = self.type_sequence_label_size
__lowerCamelCase : Any = FlaxViTForImageClassification(config=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__lowerCamelCase : List[str] = 1
__lowerCamelCase : List[Any] = FlaxViTForImageClassification(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : List[Any] = self.prepare_config_and_inputs()
(
(
__lowerCamelCase
) , (
__lowerCamelCase
) ,
) : int = config_and_inputs
__lowerCamelCase : Union[str, Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_flax
class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : str = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()
def lowercase_ ( self ) -> None:
__lowerCamelCase : str = FlaxViTModelTester(self )
__lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 )
def lowercase_ ( self ) -> List[Any]:
self.config_tester.run_common_tests()
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase : List[str] = [*signature.parameters.keys()]
__lowerCamelCase : Optional[int] = ['pixel_values']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowerCamelCase : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ )
@jax.jit
def model_jitted(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return model(pixel_values=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
with self.subTest('JIT Enabled' ):
__lowerCamelCase : Optional[int] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
__lowerCamelCase : Union[str, Any] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) )
for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowercase_ ( self ) -> List[Any]:
for model_class_name in self.all_model_classes:
__lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained('google/vit-base-patch16-224' )
__lowerCamelCase : Union[str, Any] = model(np.ones((1, 3, 2_24, 2_24) ) )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
| 13 | 1 |
'''simple docstring'''
import math
from datetime import datetime, timedelta
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> datetime:
__lowerCamelCase : Union[str, Any] = year % 19
__lowerCamelCase : List[str] = year % 4
__lowerCamelCase : Union[str, Any] = year % 7
__lowerCamelCase : Tuple = math.floor(year / 1_00 )
__lowerCamelCase : str = math.floor((13 + 8 * leap_day_inhibits) / 25 )
__lowerCamelCase : Dict = leap_day_inhibits / 4
__lowerCamelCase : Optional[Any] = (
15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 30
__lowerCamelCase : int = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
__lowerCamelCase : Dict = (19 * metonic_cycle + secular_moon_shift) % 30
# PHM -> Paschal Full Moon
__lowerCamelCase : Union[str, Any] = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 29 and days_from_phm_to_sunday == 6:
return datetime(UpperCAmelCase_ , 4 , 19 )
elif days_to_add == 28 and days_from_phm_to_sunday == 6:
return datetime(UpperCAmelCase_ , 4 , 18 )
else:
return datetime(UpperCAmelCase_ , 3 , 22 ) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday ) )
if __name__ == "__main__":
for year in (1994, 2000, 2010, 2021, 2023):
A__ : Optional[int] = """will be""" if year > datetime.now().year else """was"""
print(f'''Easter in {year} {tense} {gauss_easter(year)}''')
| 13 |
'''simple docstring'''
import argparse
A__ : Optional[Any] = """docs/source/_static/js/custom.js"""
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> int:
with open(UpperCAmelCase_ , encoding='utf-8' , newline='\n' ) as f:
__lowerCamelCase : Dict = f.readlines()
__lowerCamelCase : Tuple = 0
# First let's put the right version
while not lines[index].startswith('const stableVersion =' ):
index += 1
__lowerCamelCase : Dict = F'const stableVersion = "v{version}"\n'
# Then update the dictionary
while not lines[index].startswith('const versionMapping = {' ):
index += 1
# We go until the end
while not lines[index].startswith('}' ):
index += 1
# We add the new version at the end
lines[index - 1] += F' "v{version}": "v{version}",\n'
with open(UpperCAmelCase_ , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(UpperCAmelCase_ )
if __name__ == "__main__":
A__ : str = argparse.ArgumentParser()
parser.add_argument("""--version""", help="""Release version.""")
A__ : Any = parser.parse_args()
update_custom_js(args.version)
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
A__ : int = 10
def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] ) -> list[int]:
__lowerCamelCase : List[Any] = 1
__lowerCamelCase : Any = max(UpperCAmelCase_ )
while placement <= max_digit:
# declare and initialize empty buckets
__lowerCamelCase : list[list] = [[] for _ in range(UpperCAmelCase_ )]
# split list_of_ints between the buckets
for i in list_of_ints:
__lowerCamelCase : List[Any] = int((i / placement) % RADIX )
buckets[tmp].append(UpperCAmelCase_ )
# put each buckets' contents into list_of_ints
__lowerCamelCase : Tuple = 0
for b in range(UpperCAmelCase_ ):
for i in buckets[b]:
__lowerCamelCase : List[Any] = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
import flax.linen as nn
import jax
import jax.numpy as jnp
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : Optional[Any] = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> Any:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = hidden_states.shape
__lowerCamelCase : Dict = jax.image.resize(
SCREAMING_SNAKE_CASE_ , shape=(batch, height * 2, width * 2, channels) , method='nearest' , )
__lowerCamelCase : Optional[Any] = self.conv(SCREAMING_SNAKE_CASE_ )
return hidden_states
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : str = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]:
# pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
# hidden_states = jnp.pad(hidden_states, pad_width=pad)
__lowerCamelCase : str = self.conv(SCREAMING_SNAKE_CASE_ )
return hidden_states
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : int = None
lowerCamelCase : float = 0.0
lowerCamelCase : bool = None
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels
__lowerCamelCase : Optional[Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 )
__lowerCamelCase : Tuple = nn.Conv(
SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__lowerCamelCase : List[str] = nn.Dense(SCREAMING_SNAKE_CASE_ , dtype=self.dtype )
__lowerCamelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1E-5 )
__lowerCamelCase : int = nn.Dropout(self.dropout_prob )
__lowerCamelCase : Union[str, Any] = nn.Conv(
SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__lowerCamelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
__lowerCamelCase : List[Any] = None
if use_nin_shortcut:
__lowerCamelCase : Any = nn.Conv(
SCREAMING_SNAKE_CASE_ , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , )
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Tuple:
__lowerCamelCase : List[Any] = hidden_states
__lowerCamelCase : str = self.norma(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = nn.swish(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = self.conva(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = self.time_emb_proj(nn.swish(SCREAMING_SNAKE_CASE_ ) )
__lowerCamelCase : List[str] = jnp.expand_dims(jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , 1 )
__lowerCamelCase : Optional[int] = hidden_states + temb
__lowerCamelCase : List[Any] = self.norma(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = nn.swish(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self.dropout(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self.conva(SCREAMING_SNAKE_CASE_ )
if self.conv_shortcut is not None:
__lowerCamelCase : List[str] = self.conv_shortcut(SCREAMING_SNAKE_CASE_ )
return hidden_states + residual
| 13 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A__ : Tuple = {
"""configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""],
"""tokenization_convbert""": ["""ConvBertTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Union[str, Any] = ["""ConvBertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : str = [
"""CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ConvBertForMaskedLM""",
"""ConvBertForMultipleChoice""",
"""ConvBertForQuestionAnswering""",
"""ConvBertForSequenceClassification""",
"""ConvBertForTokenClassification""",
"""ConvBertLayer""",
"""ConvBertModel""",
"""ConvBertPreTrainedModel""",
"""load_tf_weights_in_convbert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Any = [
"""TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFConvBertForMaskedLM""",
"""TFConvBertForMultipleChoice""",
"""TFConvBertForQuestionAnswering""",
"""TFConvBertForSequenceClassification""",
"""TFConvBertForTokenClassification""",
"""TFConvBertLayer""",
"""TFConvBertModel""",
"""TFConvBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
A__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 13 |
'''simple docstring'''
from __future__ import annotations
A__ : int = 10
def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] ) -> list[int]:
__lowerCamelCase : List[Any] = 1
__lowerCamelCase : Any = max(UpperCAmelCase_ )
while placement <= max_digit:
# declare and initialize empty buckets
__lowerCamelCase : list[list] = [[] for _ in range(UpperCAmelCase_ )]
# split list_of_ints between the buckets
for i in list_of_ints:
__lowerCamelCase : List[Any] = int((i / placement) % RADIX )
buckets[tmp].append(UpperCAmelCase_ )
# put each buckets' contents into list_of_ints
__lowerCamelCase : Tuple = 0
for b in range(UpperCAmelCase_ ):
for i in buckets[b]:
__lowerCamelCase : List[Any] = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 | 1 |
'''simple docstring'''
import flax.linen as nn
import jax
import jax.numpy as jnp
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : Optional[Any] = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> Any:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = hidden_states.shape
__lowerCamelCase : Dict = jax.image.resize(
SCREAMING_SNAKE_CASE_ , shape=(batch, height * 2, width * 2, channels) , method='nearest' , )
__lowerCamelCase : Optional[Any] = self.conv(SCREAMING_SNAKE_CASE_ )
return hidden_states
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : str = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]:
# pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
# hidden_states = jnp.pad(hidden_states, pad_width=pad)
__lowerCamelCase : str = self.conv(SCREAMING_SNAKE_CASE_ )
return hidden_states
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : int = None
lowerCamelCase : float = 0.0
lowerCamelCase : bool = None
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels
__lowerCamelCase : Optional[Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 )
__lowerCamelCase : Tuple = nn.Conv(
SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__lowerCamelCase : List[str] = nn.Dense(SCREAMING_SNAKE_CASE_ , dtype=self.dtype )
__lowerCamelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1E-5 )
__lowerCamelCase : int = nn.Dropout(self.dropout_prob )
__lowerCamelCase : Union[str, Any] = nn.Conv(
SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__lowerCamelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
__lowerCamelCase : List[Any] = None
if use_nin_shortcut:
__lowerCamelCase : Any = nn.Conv(
SCREAMING_SNAKE_CASE_ , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , )
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Tuple:
__lowerCamelCase : List[Any] = hidden_states
__lowerCamelCase : str = self.norma(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = nn.swish(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = self.conva(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = self.time_emb_proj(nn.swish(SCREAMING_SNAKE_CASE_ ) )
__lowerCamelCase : List[str] = jnp.expand_dims(jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , 1 )
__lowerCamelCase : Optional[int] = hidden_states + temb
__lowerCamelCase : List[Any] = self.norma(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = nn.swish(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self.dropout(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self.conva(SCREAMING_SNAKE_CASE_ )
if self.conv_shortcut is not None:
__lowerCamelCase : List[str] = self.conv_shortcut(SCREAMING_SNAKE_CASE_ )
return hidden_states + residual
| 13 |
'''simple docstring'''
from collections import defaultdict
from math import gcd
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_50_00_00 ) -> int:
__lowerCamelCase : defaultdict = defaultdict(UpperCAmelCase_ )
__lowerCamelCase : Any = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , UpperCAmelCase_ , 2 ):
if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) > 1:
continue
__lowerCamelCase : Any = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(UpperCAmelCase_ , limit + 1 , UpperCAmelCase_ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
A__ : dict[tuple[int, int, int], int] = {}
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
# if we are absent twice, or late 3 consecutive days,
# no further prize strings are possible
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
__lowerCamelCase : List[Any] = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
__lowerCamelCase : Tuple = _calculate(days - 1 , UpperCAmelCase_ , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
__lowerCamelCase : int = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
__lowerCamelCase : List[Any] = _calculate(days - 1 , UpperCAmelCase_ , 0 )
__lowerCamelCase : Optional[int] = state_late + state_absent + state_ontime
__lowerCamelCase : Union[str, Any] = prizestrings
return prizestrings
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 30 ) -> int:
return _calculate(UpperCAmelCase_ , absent=0 , late=0 )
if __name__ == "__main__":
print(solution())
| 13 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
A__ : str = logging.get_logger(__name__)
A__ : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
A__ : Tuple = {
"""vocab_file""": {
"""junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""",
"""junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""",
"""junnyu/roformer_chinese_char_small""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt"""
),
"""junnyu/roformer_chinese_char_base""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt"""
),
"""junnyu/roformer_small_discriminator""": (
"""https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt"""
),
"""junnyu/roformer_small_generator""": (
"""https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt"""
),
}
}
A__ : str = {
"""junnyu/roformer_chinese_small""": 1536,
"""junnyu/roformer_chinese_base""": 1536,
"""junnyu/roformer_chinese_char_small""": 512,
"""junnyu/roformer_chinese_char_base""": 512,
"""junnyu/roformer_small_discriminator""": 128,
"""junnyu/roformer_small_generator""": 128,
}
A__ : Tuple = {
"""junnyu/roformer_chinese_small""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_base""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True},
"""junnyu/roformer_small_discriminator""": {"""do_lower_case""": True},
"""junnyu/roformer_small_generator""": {"""do_lower_case""": True},
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES
lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION
lowerCamelCase : Dict = RoFormerTokenizer
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]:
super().__init__(
SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
__lowerCamelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case
or pre_tok_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents
):
__lowerCamelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) )
__lowerCamelCase : Union[str, Any] = do_lower_case
__lowerCamelCase : str = strip_accents
__lowerCamelCase : Optional[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = do_lower_case
def __getstate__( self ) -> List[str]:
__lowerCamelCase : Union[str, Any] = self.__dict__.copy()
__lowerCamelCase : Dict = BertPreTokenizer()
return state
def __setstate__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = d
__lowerCamelCase : List[Any] = self.__dict__['_tokenizer'].get_vocab()
__lowerCamelCase : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(SCREAMING_SNAKE_CASE_ ) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str:
__lowerCamelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
__lowerCamelCase : List[str] = [self.sep_token_id]
__lowerCamelCase : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]:
__lowerCamelCase : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ )
return tuple(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Any:
__lowerCamelCase : Tuple = BertPreTokenizer()
return super().save_pretrained(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 13 | 1 |
'''simple docstring'''
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> Optional[int]:
__lowerCamelCase : int = {}
__lowerCamelCase : int = tokenizer(example['content'] , truncation=UpperCAmelCase_ )['input_ids']
__lowerCamelCase : List[str] = len(example['content'] ) / len(output['input_ids'] )
return output
A__ : Tuple = HfArgumentParser(PretokenizationArguments)
A__ : Dict = parser.parse_args()
if args.num_workers is None:
A__ : Any = multiprocessing.cpu_count()
A__ : Optional[Any] = AutoTokenizer.from_pretrained(args.tokenizer_dir)
A__ : Union[str, Any] = time.time()
A__ : List[Any] = load_dataset(args.dataset_name, split="""train""")
print(f'''Dataset loaded in {time.time()-t_start:.2f}s''')
A__ : Optional[Any] = time.time()
A__ : Optional[Any] = ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
"""repo_name""",
"""path""",
"""copies""",
"""size""",
"""content""",
"""license""",
"""hash""",
"""line_mean""",
"""line_max""",
"""alpha_frac""",
"""autogenerated""",
],
)
print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''')
A__ : Optional[int] = time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
| 13 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
A__ : int = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
A__ : Dict = TaTokenizerFast
A__ : Dict = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Any = [
"""MT5EncoderModel""",
"""MT5ForConditionalGeneration""",
"""MT5ForQuestionAnswering""",
"""MT5Model""",
"""MT5PreTrainedModel""",
"""MT5Stack""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : str = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : str = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
A__ : Union[str, Any] = _LazyModule(
__name__,
globals()["""__file__"""],
_import_structure,
extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast},
module_spec=__spec__,
)
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Dict = XGLMConfig
lowerCamelCase : List[str] = {}
lowerCamelCase : Union[str, Any] = 'gelu'
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Any:
__lowerCamelCase : int = parent
__lowerCamelCase : Optional[int] = batch_size
__lowerCamelCase : Optional[Any] = seq_length
__lowerCamelCase : Optional[int] = is_training
__lowerCamelCase : str = use_input_mask
__lowerCamelCase : Dict = use_labels
__lowerCamelCase : Union[str, Any] = vocab_size
__lowerCamelCase : List[Any] = d_model
__lowerCamelCase : List[Any] = num_hidden_layers
__lowerCamelCase : List[Any] = num_attention_heads
__lowerCamelCase : Optional[Any] = ffn_dim
__lowerCamelCase : List[Any] = activation_function
__lowerCamelCase : List[Any] = activation_dropout
__lowerCamelCase : List[Any] = attention_dropout
__lowerCamelCase : Union[str, Any] = max_position_embeddings
__lowerCamelCase : Tuple = initializer_range
__lowerCamelCase : int = None
__lowerCamelCase : int = 0
__lowerCamelCase : Tuple = 2
__lowerCamelCase : Tuple = 1
def lowercase_ ( self ) -> Any:
return XGLMConfig.from_pretrained('facebook/xglm-564M' )
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : Optional[Any] = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
__lowerCamelCase : Optional[int] = None
if self.use_input_mask:
__lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCamelCase : str = self.get_config()
__lowerCamelCase : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def lowercase_ ( self ) -> Optional[int]:
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=SCREAMING_SNAKE_CASE_ , )
def lowercase_ ( self ) -> str:
__lowerCamelCase : List[Any] = self.prepare_config_and_inputs()
(
(
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) ,
) : str = config_and_inputs
__lowerCamelCase : Union[str, Any] = {
'input_ids': input_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_tf
class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
lowerCamelCase : List[Any] = (TFXGLMForCausalLM,) if is_tf_available() else ()
lowerCamelCase : Any = (
{'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {}
)
lowerCamelCase : List[Any] = False
lowerCamelCase : Dict = False
lowerCamelCase : Union[str, Any] = False
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : str = TFXGLMModelTester(self )
__lowerCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , n_embd=37 )
def lowercase_ ( self ) -> Dict:
self.config_tester.run_common_tests()
@slow
def lowercase_ ( self ) -> Optional[int]:
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCamelCase : Optional[Any] = TFXGLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' )
def lowercase_ ( self ) -> Any:
super().test_resize_token_embeddings()
@require_tf
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
@slow
def lowercase_ ( self , SCREAMING_SNAKE_CASE_=True ) -> List[str]:
__lowerCamelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : int = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
__lowerCamelCase : Optional[int] = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81]
# fmt: on
__lowerCamelCase : Any = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE_ )
@slow
def lowercase_ ( self ) -> int:
__lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
tf.random.set_seed(0 )
__lowerCamelCase : List[Any] = tokenizer('Today is a nice day and' , return_tensors='tf' )
__lowerCamelCase : int = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(':/CPU:0' ):
__lowerCamelCase : Tuple = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , seed=[7, 0] )
__lowerCamelCase : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = (
'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due'
)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@slow
def lowercase_ ( self ) -> int:
__lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : Any = 'left'
# use different length sentences to test batching
__lowerCamelCase : Any = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When',
'Hello, my dog is a little',
]
__lowerCamelCase : Any = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='tf' , padding=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = inputs['input_ids']
__lowerCamelCase : str = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 )
__lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids
__lowerCamelCase : int = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 )
__lowerCamelCase : Optional[Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids
__lowerCamelCase : Optional[Any] = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 )
__lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be '
'a single',
'Hello, my dog is a little bit of a shy one, but he is very friendly',
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [non_padded_sentence, padded_sentence] )
| 13 |
'''simple docstring'''
import re
from typing import Callable, List, Optional, Union
import tensorflow as tf
try:
from tensorflow.keras.optimizers.legacy import Adam
except ImportError:
from tensorflow.keras.optimizers import Adam
class UpperCAmelCase_ (tf.keras.optimizers.schedules.LearningRateSchedule ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = None , ) -> Any:
super().__init__()
__lowerCamelCase : Optional[Any] = initial_learning_rate
__lowerCamelCase : Optional[Any] = warmup_steps
__lowerCamelCase : Union[str, Any] = power
__lowerCamelCase : Optional[int] = decay_schedule_fn
__lowerCamelCase : Any = name
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str:
with tf.name_scope(self.name or 'WarmUp' ) as name:
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
__lowerCamelCase : str = tf.cast(SCREAMING_SNAKE_CASE_ , tf.floataa )
__lowerCamelCase : Optional[int] = tf.cast(self.warmup_steps , tf.floataa )
__lowerCamelCase : List[Any] = global_step_float / warmup_steps_float
__lowerCamelCase : Optional[Any] = self.initial_learning_rate * tf.math.pow(SCREAMING_SNAKE_CASE_ , self.power )
return tf.cond(
global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=SCREAMING_SNAKE_CASE_ , )
def lowercase_ ( self ) -> Optional[Any]:
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_schedule_fn": self.decay_schedule_fn,
"warmup_steps": self.warmup_steps,
"power": self.power,
"name": self.name,
}
def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 0.9 , UpperCAmelCase_ : float = 0.999 , UpperCAmelCase_ : float = 1e-8 , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : Optional[List[str]] = None , ) -> int:
__lowerCamelCase : int = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=UpperCAmelCase_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCAmelCase_ , )
if num_warmup_steps:
__lowerCamelCase : str = WarmUp(
initial_learning_rate=UpperCAmelCase_ , decay_schedule_fn=UpperCAmelCase_ , warmup_steps=UpperCAmelCase_ , )
if weight_decay_rate > 0.0:
__lowerCamelCase : List[Any] = AdamWeightDecay(
learning_rate=UpperCAmelCase_ , weight_decay_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=UpperCAmelCase_ , )
else:
__lowerCamelCase : Tuple = tf.keras.optimizers.Adam(
learning_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , )
# We return the optimizer and the LR scheduler in order to better track the
# evolution of the LR independently of the optimizer.
return optimizer, lr_schedule
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ = 0.0_0_1 , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = 0.9_9_9 , SCREAMING_SNAKE_CASE_ = 1E-7 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "AdamWeightDecay" , **SCREAMING_SNAKE_CASE_ , ) -> int:
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = weight_decay_rate
__lowerCamelCase : str = include_in_weight_decay
__lowerCamelCase : List[Any] = exclude_from_weight_decay
@classmethod
def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> Dict:
__lowerCamelCase : Any = {'WarmUp': WarmUp}
return super(SCREAMING_SNAKE_CASE_ , cls ).from_config(SCREAMING_SNAKE_CASE_ , custom_objects=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
super(SCREAMING_SNAKE_CASE_ , self )._prepare_local(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tf.constant(
self.weight_decay_rate , name='adam_weight_decay_rate' )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
__lowerCamelCase : Tuple = self._do_use_weight_decay(var.name )
if do_decay:
return var.assign_sub(
learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , )
return tf.no_op()
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase , __lowerCamelCase : Optional[Any] = list(zip(*SCREAMING_SNAKE_CASE_ ) )
return super(SCREAMING_SNAKE_CASE_ , self ).apply_gradients(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , name=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str:
if apply_state is None:
return self._decayed_lr_t[var_dtype], {}
__lowerCamelCase : Optional[int] = apply_state or {}
__lowerCamelCase : Dict = apply_state.get((var_device, var_dtype) )
if coefficients is None:
__lowerCamelCase : List[Any] = self._fallback_apply_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = coefficients
return coefficients["lr_t"], {"apply_state": apply_state}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str:
__lowerCamelCase , __lowerCamelCase : Dict = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
with tf.control_dependencies([decay] ):
return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_dense(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Union[str, Any]:
__lowerCamelCase , __lowerCamelCase : Tuple = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
with tf.control_dependencies([decay] ):
return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_sparse(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : Any = super().get_config()
config.update({'weight_decay_rate': self.weight_decay_rate} )
return config
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict:
if self.weight_decay_rate == 0:
return False
if self._include_in_weight_decay:
for r in self._include_in_weight_decay:
if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None:
return True
if self._exclude_from_weight_decay:
for r in self._exclude_from_weight_decay:
if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None:
return False
return True
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self ) -> Tuple:
__lowerCamelCase : Tuple = []
__lowerCamelCase : Optional[Any] = None
@property
def lowercase_ ( self ) -> List[str]:
if self._accum_steps is None:
__lowerCamelCase : Tuple = tf.Variable(
tf.constant(0 , dtype=tf.intaa ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
return self._accum_steps.value()
@property
def lowercase_ ( self ) -> List[str]:
if not self._gradients:
raise ValueError('The accumulator should be called first to initialize the gradients' )
return [gradient.value() if gradient is not None else gradient for gradient in self._gradients]
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str:
if not self._gradients:
__lowerCamelCase : List[str] = self.step # Create the step variable.
self._gradients.extend(
[
tf.Variable(
tf.zeros_like(SCREAMING_SNAKE_CASE_ ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
if gradient is not None
else gradient
for gradient in gradients
] )
if len(SCREAMING_SNAKE_CASE_ ) != len(self._gradients ):
raise ValueError(f'Expected {len(self._gradients )} gradients, but got {len(SCREAMING_SNAKE_CASE_ )}' )
for accum_gradient, gradient in zip(self._gradients , SCREAMING_SNAKE_CASE_ ):
if accum_gradient is not None and gradient is not None:
accum_gradient.assign_add(SCREAMING_SNAKE_CASE_ )
self._accum_steps.assign_add(1 )
def lowercase_ ( self ) -> int:
if not self._gradients:
return
self._accum_steps.assign(0 )
for gradient in self._gradients:
if gradient is not None:
gradient.assign(tf.zeros_like(SCREAMING_SNAKE_CASE_ ) )
| 13 | 1 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
A__ : List[Any] = logging.get_logger(__name__)
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Optional[int] = ['input_values', 'padding_mask']
def __init__( self , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 2_40_00 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> str:
super().__init__(feature_size=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , padding_value=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[str] = chunk_length_s
__lowerCamelCase : Union[str, Any] = overlap
@property
def lowercase_ ( self ) -> Optional[int]:
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def lowercase_ ( self ) -> Optional[int]:
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , ) -> BatchFeature:
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of'
f' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'
f' {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
if padding and truncation:
raise ValueError('Both padding and truncation were set. Make sure you only set one.' )
elif padding is None:
# by default let's pad the inputs
__lowerCamelCase : Tuple = True
__lowerCamelCase : Tuple = bool(
isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) )
if is_batched:
__lowerCamelCase : Tuple = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ).T for audio in raw_audio]
elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ):
__lowerCamelCase : List[Any] = np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa )
elif isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ):
__lowerCamelCase : List[Any] = raw_audio.astype(np.floataa )
# always return batch
if not is_batched:
__lowerCamelCase : str = [np.asarray(SCREAMING_SNAKE_CASE_ ).T]
# verify inputs are valid
for idx, example in enumerate(SCREAMING_SNAKE_CASE_ ):
if example.ndim > 2:
raise ValueError(f'Expected input shape (channels, length) but got shape {example.shape}' )
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(f'Expected mono audio but example has {example.shape[-1]} channels' )
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(f'Expected stereo audio but example has {example.shape[-1]} channels' )
__lowerCamelCase : Any = None
__lowerCamelCase : Dict = BatchFeature({'input_values': raw_audio} )
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
__lowerCamelCase : Optional[Any] = min(array.shape[0] for array in raw_audio )
__lowerCamelCase : List[str] = int(np.floor(max_length / self.chunk_stride ) )
__lowerCamelCase : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
__lowerCamelCase : List[Any] = max(array.shape[0] for array in raw_audio )
__lowerCamelCase : int = int(np.ceil(max_length / self.chunk_stride ) )
__lowerCamelCase : Union[str, Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length
__lowerCamelCase : Union[str, Any] = 'max_length'
else:
__lowerCamelCase : Union[str, Any] = input_values
# normal padding on batch
if padded_inputs is None:
__lowerCamelCase : Any = self.pad(
SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , )
if padding:
__lowerCamelCase : List[str] = padded_inputs.pop('attention_mask' )
__lowerCamelCase : str = []
for example in padded_inputs.pop('input_values' ):
if self.feature_size == 1:
__lowerCamelCase : Any = example[..., None]
input_values.append(example.T )
__lowerCamelCase : List[str] = input_values
if return_tensors is not None:
__lowerCamelCase : Union[str, Any] = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE_ )
return padded_inputs
| 13 |
'''simple docstring'''
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=[1, 2, 1] , SCREAMING_SNAKE_CASE_=[2, 2, 4] , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=["stage1", "stage2", "stage3"] , SCREAMING_SNAKE_CASE_=[1, 2, 3] , ) -> Any:
__lowerCamelCase : Optional[Any] = parent
__lowerCamelCase : int = batch_size
__lowerCamelCase : Optional[int] = image_size
__lowerCamelCase : Optional[int] = patch_size
__lowerCamelCase : Optional[Any] = num_channels
__lowerCamelCase : Dict = embed_dim
__lowerCamelCase : List[Any] = depths
__lowerCamelCase : int = num_heads
__lowerCamelCase : Optional[Any] = window_size
__lowerCamelCase : Optional[Any] = mlp_ratio
__lowerCamelCase : List[str] = qkv_bias
__lowerCamelCase : List[str] = hidden_dropout_prob
__lowerCamelCase : int = attention_probs_dropout_prob
__lowerCamelCase : List[Any] = drop_path_rate
__lowerCamelCase : Any = hidden_act
__lowerCamelCase : Union[str, Any] = use_absolute_embeddings
__lowerCamelCase : Any = patch_norm
__lowerCamelCase : Optional[Any] = layer_norm_eps
__lowerCamelCase : str = initializer_range
__lowerCamelCase : Dict = is_training
__lowerCamelCase : Optional[Any] = scope
__lowerCamelCase : Dict = use_labels
__lowerCamelCase : List[str] = type_sequence_label_size
__lowerCamelCase : Dict = encoder_stride
__lowerCamelCase : Union[str, Any] = out_features
__lowerCamelCase : str = out_indices
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowerCamelCase : List[str] = None
if self.use_labels:
__lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowerCamelCase : List[str] = self.get_config()
return config, pixel_values, labels
def lowercase_ ( self ) -> Optional[int]:
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
__lowerCamelCase : Dict = MaskFormerSwinModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__lowerCamelCase : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
__lowerCamelCase : Tuple = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , [16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : str = ['stem']
__lowerCamelCase : Optional[Any] = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : Optional[int] = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = config_and_inputs
__lowerCamelCase : Optional[int] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : List[Any] = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase : int = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {}
lowerCamelCase : int = False
lowerCamelCase : int = False
lowerCamelCase : str = False
lowerCamelCase : int = False
lowerCamelCase : Union[str, Any] = False
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : Optional[Any] = MaskFormerSwinModelTester(self )
__lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
'`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with'
' `nn.DataParallel`'
) )
def lowercase_ ( self ) -> int:
pass
def lowercase_ ( self ) -> Union[str, Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase_ ( self ) -> Tuple:
return
def lowercase_ ( self ) -> Dict:
__lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ )
@unittest.skip('Swin does not use inputs_embeds' )
def lowercase_ ( self ) -> Optional[int]:
pass
@unittest.skip('Swin does not support feedforward chunking' )
def lowercase_ ( self ) -> Dict:
pass
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__lowerCamelCase : Optional[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase , __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase : str = [*signature.parameters.keys()]
__lowerCamelCase : Any = ['pixel_values']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ )
@unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' )
def lowercase_ ( self ) -> Any:
pass
@unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' )
def lowercase_ ( self ) -> List[Any]:
pass
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
with torch.no_grad():
__lowerCamelCase : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
__lowerCamelCase : int = outputs.hidden_states
__lowerCamelCase : Tuple = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
# Swin has a different seq_length
__lowerCamelCase : Optional[Any] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase : List[Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
__lowerCamelCase : Dict = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowerCamelCase : Optional[int] = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase : Union[str, Any] = 3
__lowerCamelCase : Dict = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__lowerCamelCase : str = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__lowerCamelCase : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__lowerCamelCase : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
__lowerCamelCase : str = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowerCamelCase : Tuple = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) )
@unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' )
def lowercase_ ( self ) -> Optional[Any]:
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def lowercase_ ( self ) -> Any:
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def lowercase_ ( self ) -> Union[str, Any]:
pass
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Any = 0
return t
def check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_={} ):
with torch.no_grad():
__lowerCamelCase : Optional[int] = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).to_tuple()
def recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if isinstance(SCREAMING_SNAKE_CASE_ , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values() ):
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , atol=1E-5 ) , msg=(
'Tuple and dict output are not equal. Difference:'
f' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:'
f' {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}. Dict has'
f' `nan`: {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}.'
) , )
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
for model_class in self.all_model_classes:
__lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} )
__lowerCamelCase : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} )
@require_torch
class UpperCAmelCase_ (unittest.TestCase , _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else ()
lowerCamelCase : List[str] = MaskFormerSwinConfig
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : List[str] = MaskFormerSwinModelTester(self )
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase : Any = inputs_dict['pixel_values'].shape[0]
for backbone_class in self.all_model_classes:
__lowerCamelCase : Optional[Any] = backbone_class(SCREAMING_SNAKE_CASE_ )
backbone.to(SCREAMING_SNAKE_CASE_ )
backbone.eval()
__lowerCamelCase : int = backbone(**SCREAMING_SNAKE_CASE_ )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , SCREAMING_SNAKE_CASE_ )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
__lowerCamelCase : Union[str, Any] = backbone(**SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
__lowerCamelCase : Optional[int] = backbone(**SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(outputs.attentions )
| 13 | 1 |
'''simple docstring'''
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any]=7 ) -> Dict:
__lowerCamelCase : Dict = None
if token is not None:
__lowerCamelCase : Dict = {'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'}
# The id of a workflow (not of a workflow run)
__lowerCamelCase : List[str] = '636036'
__lowerCamelCase : Optional[int] = F'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs'
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += F'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}'
__lowerCamelCase : List[str] = requests.get(UpperCAmelCase_ , headers=UpperCAmelCase_ ).json()
return result["workflow_runs"]
def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> List[str]:
__lowerCamelCase : Optional[Any] = get_daily_ci_runs(UpperCAmelCase_ )
__lowerCamelCase : Dict = None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
__lowerCamelCase : List[Any] = workflow_run['id']
break
return workflow_run_id
def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict ) -> List[str]:
__lowerCamelCase : Any = get_last_daily_ci_runs(UpperCAmelCase_ )
if workflow_run_id is not None:
__lowerCamelCase : Union[str, Any] = get_artifacts_links(worflow_run_id=UpperCAmelCase_ , token=UpperCAmelCase_ )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
__lowerCamelCase : Optional[int] = artifacts_links[artifact_name]
download_artifact(
artifact_name=UpperCAmelCase_ , artifact_url=UpperCAmelCase_ , output_dir=UpperCAmelCase_ , token=UpperCAmelCase_ )
def UpperCAmelCase__ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) -> str:
get_last_daily_ci_artifacts(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : List[str] = {}
for artifact_name in artifact_names:
__lowerCamelCase : List[str] = os.path.join(UpperCAmelCase_ , F'{artifact_name}.zip' )
if os.path.isfile(UpperCAmelCase_ ):
__lowerCamelCase : Any = {}
with zipfile.ZipFile(UpperCAmelCase_ ) as z:
for filename in z.namelist():
if not os.path.isdir(UpperCAmelCase_ ):
# read the file
with z.open(UpperCAmelCase_ ) as f:
__lowerCamelCase : str = f.read().decode('UTF-8' )
return results
| 13 |
'''simple docstring'''
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
A__ : Dict = [
"""python""",
"""tqdm""",
"""regex""",
"""requests""",
"""packaging""",
"""filelock""",
"""numpy""",
"""tokenizers""",
"""huggingface-hub""",
"""safetensors""",
"""accelerate""",
"""pyyaml""",
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''')
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=None ) -> List[Any]:
require_version(deps[pkg] , UpperCAmelCase_ )
| 13 | 1 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
A__ : List[Any] = logging.get_logger(__name__)
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] ) -> Union[str, Any]:
__lowerCamelCase : Optional[int] = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
__lowerCamelCase : Any = [1_44, 1_92, 2_40]
__lowerCamelCase : str = [16, 32, 64, 96, 1_28, 1_60, 6_40]
elif "mobilevit_xs" in mobilevit_name:
__lowerCamelCase : int = [96, 1_20, 1_44]
__lowerCamelCase : Tuple = [16, 32, 48, 64, 80, 96, 3_84]
elif "mobilevit_xxs" in mobilevit_name:
__lowerCamelCase : Union[str, Any] = [64, 80, 96]
__lowerCamelCase : List[str] = [16, 16, 24, 48, 64, 80, 3_20]
__lowerCamelCase : Union[str, Any] = 0.05
__lowerCamelCase : List[str] = 2.0
if mobilevit_name.startswith('deeplabv3_' ):
__lowerCamelCase : Union[str, Any] = 5_12
__lowerCamelCase : Any = 16
__lowerCamelCase : Union[str, Any] = 21
__lowerCamelCase : Tuple = 'pascal-voc-id2label.json'
else:
__lowerCamelCase : Dict = 10_00
__lowerCamelCase : Union[str, Any] = 'imagenet-1k-id2label.json'
__lowerCamelCase : List[Any] = 'huggingface/label-files'
__lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ , repo_type='dataset' ) , 'r' ) )
__lowerCamelCase : List[str] = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()}
__lowerCamelCase : Union[str, Any] = idalabel
__lowerCamelCase : Any = {v: k for k, v in idalabel.items()}
return config
def UpperCAmelCase__ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : str=False ) -> Optional[int]:
for i in range(1 , 6 ):
if F'layer_{i}.' in name:
__lowerCamelCase : Optional[Any] = name.replace(F'layer_{i}.' , F'encoder.layer.{i - 1}.' )
if "conv_1." in name:
__lowerCamelCase : int = name.replace('conv_1.' , 'conv_stem.' )
if ".block." in name:
__lowerCamelCase : int = name.replace('.block.' , '.' )
if "exp_1x1" in name:
__lowerCamelCase : Optional[Any] = name.replace('exp_1x1' , 'expand_1x1' )
if "red_1x1" in name:
__lowerCamelCase : Tuple = name.replace('red_1x1' , 'reduce_1x1' )
if ".local_rep.conv_3x3." in name:
__lowerCamelCase : List[str] = name.replace('.local_rep.conv_3x3.' , '.conv_kxk.' )
if ".local_rep.conv_1x1." in name:
__lowerCamelCase : Union[str, Any] = name.replace('.local_rep.conv_1x1.' , '.conv_1x1.' )
if ".norm." in name:
__lowerCamelCase : Optional[int] = name.replace('.norm.' , '.normalization.' )
if ".conv." in name:
__lowerCamelCase : str = name.replace('.conv.' , '.convolution.' )
if ".conv_proj." in name:
__lowerCamelCase : Optional[int] = name.replace('.conv_proj.' , '.conv_projection.' )
for i in range(0 , 2 ):
for j in range(0 , 4 ):
if F'.{i}.{j}.' in name:
__lowerCamelCase : Tuple = name.replace(F'.{i}.{j}.' , F'.{i}.layer.{j}.' )
for i in range(2 , 6 ):
for j in range(0 , 4 ):
if F'.{i}.{j}.' in name:
__lowerCamelCase : Tuple = name.replace(F'.{i}.{j}.' , F'.{i}.' )
if "expand_1x1" in name:
__lowerCamelCase : Union[str, Any] = name.replace('expand_1x1' , 'downsampling_layer.expand_1x1' )
if "conv_3x3" in name:
__lowerCamelCase : Optional[Any] = name.replace('conv_3x3' , 'downsampling_layer.conv_3x3' )
if "reduce_1x1" in name:
__lowerCamelCase : Optional[Any] = name.replace('reduce_1x1' , 'downsampling_layer.reduce_1x1' )
for i in range(2 , 5 ):
if F'.global_rep.{i}.weight' in name:
__lowerCamelCase : List[Any] = name.replace(F'.global_rep.{i}.weight' , '.layernorm.weight' )
if F'.global_rep.{i}.bias' in name:
__lowerCamelCase : Tuple = name.replace(F'.global_rep.{i}.bias' , '.layernorm.bias' )
if ".global_rep." in name:
__lowerCamelCase : int = name.replace('.global_rep.' , '.transformer.' )
if ".pre_norm_mha.0." in name:
__lowerCamelCase : Optional[int] = name.replace('.pre_norm_mha.0.' , '.layernorm_before.' )
if ".pre_norm_mha.1.out_proj." in name:
__lowerCamelCase : Union[str, Any] = name.replace('.pre_norm_mha.1.out_proj.' , '.attention.output.dense.' )
if ".pre_norm_ffn.0." in name:
__lowerCamelCase : Tuple = name.replace('.pre_norm_ffn.0.' , '.layernorm_after.' )
if ".pre_norm_ffn.1." in name:
__lowerCamelCase : str = name.replace('.pre_norm_ffn.1.' , '.intermediate.dense.' )
if ".pre_norm_ffn.4." in name:
__lowerCamelCase : int = name.replace('.pre_norm_ffn.4.' , '.output.dense.' )
if ".transformer." in name:
__lowerCamelCase : Optional[Any] = name.replace('.transformer.' , '.transformer.layer.' )
if ".aspp_layer." in name:
__lowerCamelCase : int = name.replace('.aspp_layer.' , '.' )
if ".aspp_pool." in name:
__lowerCamelCase : Any = name.replace('.aspp_pool.' , '.' )
if "seg_head." in name:
__lowerCamelCase : str = name.replace('seg_head.' , 'segmentation_head.' )
if "segmentation_head.classifier.classifier." in name:
__lowerCamelCase : Any = name.replace('segmentation_head.classifier.classifier.' , 'segmentation_head.classifier.' )
if "classifier.fc." in name:
__lowerCamelCase : Optional[Any] = name.replace('classifier.fc.' , 'classifier.' )
elif (not base_model) and ("segmentation_head." not in name):
__lowerCamelCase : Tuple = 'mobilevit.' + name
return name
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=False ) -> Union[str, Any]:
if base_model:
__lowerCamelCase : Optional[int] = ''
else:
__lowerCamelCase : Union[str, Any] = 'mobilevit.'
for key in orig_state_dict.copy().keys():
__lowerCamelCase : List[Any] = orig_state_dict.pop(UpperCAmelCase_ )
if key[:8] == "encoder.":
__lowerCamelCase : Any = key[8:]
if "qkv" in key:
__lowerCamelCase : Any = key.split('.' )
__lowerCamelCase : Optional[int] = int(key_split[0][6:] ) - 1
__lowerCamelCase : Optional[Any] = int(key_split[3] )
__lowerCamelCase : Union[str, Any] = model.get_submodule(F'{model_prefix}encoder.layer.{layer_num}' )
__lowerCamelCase : int = layer.transformer.layer[transformer_num].attention.attention.all_head_size
__lowerCamelCase : Union[str, Any] = (
F'{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.'
)
if "weight" in key:
__lowerCamelCase : str = val[:dim, :]
__lowerCamelCase : Tuple = val[dim : dim * 2, :]
__lowerCamelCase : str = val[-dim:, :]
else:
__lowerCamelCase : str = val[:dim]
__lowerCamelCase : Dict = val[dim : dim * 2]
__lowerCamelCase : List[Any] = val[-dim:]
else:
__lowerCamelCase : List[Any] = val
return orig_state_dict
def UpperCAmelCase__ ( ) -> Union[str, Any]:
__lowerCamelCase : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__lowerCamelCase : Any = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw )
return im
@torch.no_grad()
def UpperCAmelCase__ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple=False ) -> List[Any]:
__lowerCamelCase : Tuple = get_mobilevit_config(UpperCAmelCase_ )
# load original state_dict
__lowerCamelCase : Dict = torch.load(UpperCAmelCase_ , map_location='cpu' )
# load 🤗 model
if mobilevit_name.startswith('deeplabv3_' ):
__lowerCamelCase : int = MobileViTForSemanticSegmentation(UpperCAmelCase_ ).eval()
else:
__lowerCamelCase : Any = MobileViTForImageClassification(UpperCAmelCase_ ).eval()
__lowerCamelCase : Any = convert_state_dict(UpperCAmelCase_ , UpperCAmelCase_ )
model.load_state_dict(UpperCAmelCase_ )
# Check outputs on an image, prepared by MobileViTImageProcessor
__lowerCamelCase : Union[str, Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
__lowerCamelCase : List[str] = image_processor(images=prepare_img() , return_tensors='pt' )
__lowerCamelCase : List[Any] = model(**UpperCAmelCase_ )
__lowerCamelCase : List[Any] = outputs.logits
if mobilevit_name.startswith('deeplabv3_' ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
__lowerCamelCase : List[str] = torch.tensor(
[
[[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]],
[[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]],
[[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
__lowerCamelCase : str = torch.tensor(
[
[[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]],
[[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]],
[[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
__lowerCamelCase : int = torch.tensor(
[
[[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]],
[[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]],
[[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]],
] )
else:
raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}' )
assert torch.allclose(logits[0, :3, :3, :3] , UpperCAmelCase_ , atol=1e-4 )
else:
assert logits.shape == (1, 10_00)
if mobilevit_name == "mobilevit_s":
__lowerCamelCase : Any = torch.tensor([-0.9_866, 0.2_392, -1.1_241] )
elif mobilevit_name == "mobilevit_xs":
__lowerCamelCase : Union[str, Any] = torch.tensor([-2.4_761, -0.9_399, -1.9_587] )
elif mobilevit_name == "mobilevit_xxs":
__lowerCamelCase : List[Any] = torch.tensor([-1.9_364, -1.2_327, -0.4_653] )
else:
raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}' )
assert torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1e-4 )
Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ )
print(F'Saving model {mobilevit_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(UpperCAmelCase_ )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(UpperCAmelCase_ )
if push_to_hub:
__lowerCamelCase : Optional[Any] = {
'mobilevit_s': 'mobilevit-small',
'mobilevit_xs': 'mobilevit-x-small',
'mobilevit_xxs': 'mobilevit-xx-small',
'deeplabv3_mobilevit_s': 'deeplabv3-mobilevit-small',
'deeplabv3_mobilevit_xs': 'deeplabv3-mobilevit-x-small',
'deeplabv3_mobilevit_xxs': 'deeplabv3-mobilevit-xx-small',
}
print('Pushing to the hub...' )
__lowerCamelCase : List[str] = model_mapping[mobilevit_name]
image_processor.push_to_hub(UpperCAmelCase_ , organization='apple' )
model.push_to_hub(UpperCAmelCase_ , organization='apple' )
if __name__ == "__main__":
A__ : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--mobilevit_name""",
default="""mobilevit_s""",
type=str,
help=(
"""Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',"""
""" 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'."""
),
)
parser.add_argument(
"""--checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
A__ : Tuple = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 13 |
'''simple docstring'''
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import platform
import sys
A__ : List[str] = """3"""
print("""Python version:""", sys.version)
print("""OS platform:""", platform.platform())
print("""OS architecture:""", platform.machine())
try:
import torch
print("""Torch version:""", torch.__version__)
print("""Cuda available:""", torch.cuda.is_available())
print("""Cuda version:""", torch.version.cuda)
print("""CuDNN version:""", torch.backends.cudnn.version())
print("""Number of GPUs available:""", torch.cuda.device_count())
except ImportError:
print("""Torch version:""", None)
try:
import transformers
print("""transformers version:""", transformers.__version__)
except ImportError:
print("""transformers version:""", None)
| 13 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : Tuple = logging.get_logger(__name__)
A__ : Dict = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : List[Any] = 'megatron-bert'
def __init__( self , SCREAMING_SNAKE_CASE_=2_90_56 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Any:
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = vocab_size
__lowerCamelCase : Dict = hidden_size
__lowerCamelCase : Optional[int] = num_hidden_layers
__lowerCamelCase : Optional[Any] = num_attention_heads
__lowerCamelCase : str = hidden_act
__lowerCamelCase : Dict = intermediate_size
__lowerCamelCase : Optional[Any] = hidden_dropout_prob
__lowerCamelCase : Any = attention_probs_dropout_prob
__lowerCamelCase : Tuple = max_position_embeddings
__lowerCamelCase : Dict = type_vocab_size
__lowerCamelCase : List[str] = initializer_range
__lowerCamelCase : Tuple = layer_norm_eps
__lowerCamelCase : str = position_embedding_type
__lowerCamelCase : Optional[int] = use_cache
| 13 |
'''simple docstring'''
from collections import namedtuple
import requests
from lxml import html # type: ignore
A__ : Tuple = namedtuple("""covid_data""", """cases deaths recovered""")
def UpperCAmelCase__ ( UpperCAmelCase_ : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data:
__lowerCamelCase : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()'
return covid_data(*html.fromstring(requests.get(UpperCAmelCase_ ).content ).xpath(UpperCAmelCase_ ) )
A__ : str = """Total COVID-19 cases in the world: {}
Total deaths due to COVID-19 in the world: {}
Total COVID-19 patients recovered in the world: {}"""
print(fmt.format(*covid_stats()))
| 13 | 1 |
'''simple docstring'''
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : torch.FloatTensor
lowerCamelCase : Optional[torch.FloatTensor] = None
def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any]=0.999 , UpperCAmelCase_ : Tuple="cosine" , ) -> Optional[Any]:
if alpha_transform_type == "cosine":
def alpha_bar_fn(UpperCAmelCase_ : Optional[int] ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(UpperCAmelCase_ : Tuple ):
return math.exp(t * -12.0 )
else:
raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' )
__lowerCamelCase : List[str] = []
for i in range(UpperCAmelCase_ ):
__lowerCamelCase : int = i / num_diffusion_timesteps
__lowerCamelCase : List[str] = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(UpperCAmelCase_ ) / alpha_bar_fn(UpperCAmelCase_ ) , UpperCAmelCase_ ) )
return torch.tensor(UpperCAmelCase_ , dtype=torch.floataa )
class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase ):
"""simple docstring"""
@register_to_config
def __init__( self , SCREAMING_SNAKE_CASE_ = 10_00 , SCREAMING_SNAKE_CASE_ = "fixed_small_log" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = "epsilon" , SCREAMING_SNAKE_CASE_ = "squaredcos_cap_v2" , ) -> List[str]:
if beta_schedule != "squaredcos_cap_v2":
raise ValueError('UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'' )
__lowerCamelCase : Optional[Any] = betas_for_alpha_bar(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = 1.0 - self.betas
__lowerCamelCase : Union[str, Any] = torch.cumprod(self.alphas , dim=0 )
__lowerCamelCase : Optional[Any] = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
__lowerCamelCase : Optional[Any] = 1.0
# setable values
__lowerCamelCase : Optional[Any] = None
__lowerCamelCase : Optional[int] = torch.from_numpy(np.arange(0 , SCREAMING_SNAKE_CASE_ )[::-1].copy() )
__lowerCamelCase : Optional[int] = variance_type
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> torch.FloatTensor:
return sample
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Optional[int]:
__lowerCamelCase : Optional[int] = num_inference_steps
__lowerCamelCase : Any = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
__lowerCamelCase : str = (np.arange(0 , SCREAMING_SNAKE_CASE_ ) * step_ratio).round()[::-1].copy().astype(np.intaa )
__lowerCamelCase : List[str] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) -> Dict:
if prev_timestep is None:
__lowerCamelCase : Dict = t - 1
__lowerCamelCase : int = self.alphas_cumprod[t]
__lowerCamelCase : str = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
__lowerCamelCase : Optional[int] = 1 - alpha_prod_t
__lowerCamelCase : Dict = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
__lowerCamelCase : List[str] = self.betas[t]
else:
__lowerCamelCase : List[str] = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
__lowerCamelCase : List[str] = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
__lowerCamelCase : str = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
__lowerCamelCase : Optional[Any] = torch.log(torch.clamp(SCREAMING_SNAKE_CASE_ , min=1E-20 ) )
__lowerCamelCase : List[Any] = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
__lowerCamelCase : str = variance.log()
__lowerCamelCase : Dict = beta.log()
__lowerCamelCase : List[str] = (predicted_variance + 1) / 2
__lowerCamelCase : str = frac * max_log + (1 - frac) * min_log
return variance
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]:
__lowerCamelCase : List[str] = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
__lowerCamelCase , __lowerCamelCase : List[Any] = torch.split(SCREAMING_SNAKE_CASE_ , sample.shape[1] , dim=1 )
else:
__lowerCamelCase : Optional[int] = None
# 1. compute alphas, betas
if prev_timestep is None:
__lowerCamelCase : str = t - 1
__lowerCamelCase : int = self.alphas_cumprod[t]
__lowerCamelCase : Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
__lowerCamelCase : int = 1 - alpha_prod_t
__lowerCamelCase : List[Any] = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
__lowerCamelCase : Dict = self.betas[t]
__lowerCamelCase : List[Any] = self.alphas[t]
else:
__lowerCamelCase : Optional[Any] = 1 - alpha_prod_t / alpha_prod_t_prev
__lowerCamelCase : Dict = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
__lowerCamelCase : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
__lowerCamelCase : Optional[Any] = model_output
else:
raise ValueError(
f'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`'
' for the UnCLIPScheduler.' )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
__lowerCamelCase : Dict = torch.clamp(
SCREAMING_SNAKE_CASE_ , -self.config.clip_sample_range , self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
__lowerCamelCase : Any = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
__lowerCamelCase : Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
__lowerCamelCase : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
__lowerCamelCase : Dict = 0
if t > 0:
__lowerCamelCase : Union[str, Any] = randn_tensor(
model_output.shape , dtype=model_output.dtype , generator=SCREAMING_SNAKE_CASE_ , device=model_output.device )
__lowerCamelCase : Union[str, Any] = self._get_variance(
SCREAMING_SNAKE_CASE_ , predicted_variance=SCREAMING_SNAKE_CASE_ , prev_timestep=SCREAMING_SNAKE_CASE_ , )
if self.variance_type == "fixed_small_log":
__lowerCamelCase : Optional[Any] = variance
elif self.variance_type == "learned_range":
__lowerCamelCase : Tuple = (0.5 * variance).exp()
else:
raise ValueError(
f'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`'
' for the UnCLIPScheduler.' )
__lowerCamelCase : Tuple = variance * variance_noise
__lowerCamelCase : List[str] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> torch.FloatTensor:
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
__lowerCamelCase : str = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype )
__lowerCamelCase : Any = timesteps.to(original_samples.device )
__lowerCamelCase : Tuple = alphas_cumprod[timesteps] ** 0.5
__lowerCamelCase : List[Any] = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
__lowerCamelCase : Union[str, Any] = sqrt_alpha_prod.unsqueeze(-1 )
__lowerCamelCase : Optional[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5
__lowerCamelCase : Tuple = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
__lowerCamelCase : str = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
__lowerCamelCase : str = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 13 |
'''simple docstring'''
from __future__ import annotations
import os
from collections.abc import Mapping
A__ : Optional[Any] = tuple[int, int]
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
__lowerCamelCase : set[int] = vertices
__lowerCamelCase : dict[EdgeT, int] = {
(min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ )): weight for edge, weight in edges.items()
}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
__lowerCamelCase : Union[str, Any] = weight
def lowercase_ ( self ) -> Graph:
__lowerCamelCase : Graph = Graph({min(self.vertices )} , {} )
__lowerCamelCase : EdgeT
__lowerCamelCase : int
__lowerCamelCase : EdgeT
__lowerCamelCase : int
while len(subgraph.vertices ) < len(self.vertices ):
__lowerCamelCase : Any = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
__lowerCamelCase : Optional[int] = edge
__lowerCamelCase : List[str] = weight
subgraph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return subgraph
def UpperCAmelCase__ ( UpperCAmelCase_ : str = "p107_network.txt" ) -> int:
__lowerCamelCase : str = os.path.abspath(os.path.dirname(UpperCAmelCase_ ) )
__lowerCamelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : dict[EdgeT, int] = {}
__lowerCamelCase : list[str]
__lowerCamelCase : int
__lowerCamelCase : int
with open(UpperCAmelCase_ ) as f:
__lowerCamelCase : Any = f.read().strip().split('\n' )
__lowerCamelCase : Any = [line.split(',' ) for line in data]
for edgea in range(1 , len(UpperCAmelCase_ ) ):
for edgea in range(UpperCAmelCase_ ):
if adjaceny_matrix[edgea][edgea] != "-":
__lowerCamelCase : int = int(adjaceny_matrix[edgea][edgea] )
__lowerCamelCase : Graph = Graph(set(range(len(UpperCAmelCase_ ) ) ) , UpperCAmelCase_ )
__lowerCamelCase : Graph = graph.prims_algorithm()
__lowerCamelCase : int = sum(graph.edges.values() )
__lowerCamelCase : int = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : Tuple = tempfile.mkdtemp()
# fmt: off
__lowerCamelCase : int = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>']
# fmt: on
__lowerCamelCase : Any = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
__lowerCamelCase : List[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', '']
__lowerCamelCase : Dict = {'unk_token': '<unk>'}
__lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
__lowerCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(SCREAMING_SNAKE_CASE_ ) )
__lowerCamelCase : Tuple = {
'do_resize': True,
'size': 20,
'do_center_crop': True,
'crop_size': 18,
'do_normalize': True,
'image_mean': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
'image_std': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
}
__lowerCamelCase : Optional[int] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ )
with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Any:
return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> int:
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> List[str]:
shutil.rmtree(self.tmpdirname )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : List[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowerCamelCase : List[str] = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : Optional[Any] = self.get_tokenizer()
__lowerCamelCase : int = self.get_rust_tokenizer()
__lowerCamelCase : List[Any] = self.get_image_processor()
__lowerCamelCase : Tuple = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
processor_slow.save_pretrained(self.tmpdirname )
__lowerCamelCase : int = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
processor_fast.save_pretrained(self.tmpdirname )
__lowerCamelCase : Optional[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE_ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : Union[str, Any] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCamelCase : Optional[int] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
__lowerCamelCase : str = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[str] = OwlViTProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=SCREAMING_SNAKE_CASE_ )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : str = self.get_image_processor()
__lowerCamelCase : str = self.get_tokenizer()
__lowerCamelCase : Optional[int] = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = self.prepare_image_inputs()
__lowerCamelCase : Dict = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' )
__lowerCamelCase : Union[str, Any] = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='np' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowercase_ ( self ) -> int:
__lowerCamelCase : Tuple = self.get_image_processor()
__lowerCamelCase : Tuple = self.get_tokenizer()
__lowerCamelCase : List[Any] = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = 'lower newer'
__lowerCamelCase : Optional[int] = processor(text=SCREAMING_SNAKE_CASE_ , return_tensors='np' )
__lowerCamelCase : Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='np' )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() )
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : Optional[int] = self.get_image_processor()
__lowerCamelCase : List[Any] = self.get_tokenizer()
__lowerCamelCase : int = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = 'lower newer'
__lowerCamelCase : Dict = self.prepare_image_inputs()
__lowerCamelCase : int = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE_ ):
processor()
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : int = 'google/owlvit-base-patch32'
__lowerCamelCase : Any = OwlViTProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = ['cat', 'nasa badge']
__lowerCamelCase : Optional[Any] = processor(text=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = 16
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] )
self.assertEqual(inputs['input_ids'].shape , (2, seq_length) )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE_ ):
processor()
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : Tuple = 'google/owlvit-base-patch32'
__lowerCamelCase : List[str] = OwlViTProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = [['cat', 'nasa badge'], ['person']]
__lowerCamelCase : int = processor(text=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = 16
__lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = max([len(SCREAMING_SNAKE_CASE_ ) for texts in input_texts] )
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] )
self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length) )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE_ ):
processor()
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : List[Any] = 'google/owlvit-base-patch32'
__lowerCamelCase : Optional[Any] = OwlViTProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = ['cat', 'nasa badge']
__lowerCamelCase : int = processor(text=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = 16
__lowerCamelCase : Union[str, Any] = inputs['input_ids']
__lowerCamelCase : Any = [
[4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] )
self.assertEqual(inputs['input_ids'].shape , (2, seq_length) )
self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] )
self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] )
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : int = self.get_image_processor()
__lowerCamelCase : List[str] = self.get_tokenizer()
__lowerCamelCase : Union[str, Any] = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = self.prepare_image_inputs()
__lowerCamelCase : Tuple = self.prepare_image_inputs()
__lowerCamelCase : Optional[Any] = processor(images=SCREAMING_SNAKE_CASE_ , query_images=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(list(inputs.keys() ) , ['query_pixel_values', 'pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE_ ):
processor()
def lowercase_ ( self ) -> Any:
__lowerCamelCase : Union[str, Any] = self.get_image_processor()
__lowerCamelCase : Any = self.get_tokenizer()
__lowerCamelCase : Dict = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCamelCase : List[str] = processor.batch_decode(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
| 13 |
'''simple docstring'''
from collections.abc import Generator
from math import sin
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
if len(UpperCAmelCase_ ) != 32:
raise ValueError('Input must be of length 32' )
__lowerCamelCase : Dict = B''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bytes:
if i < 0:
raise ValueError('Input must be non-negative' )
__lowerCamelCase : Union[str, Any] = format(UpperCAmelCase_ , '08x' )[-8:]
__lowerCamelCase : str = B''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' )
return little_endian_hex
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
__lowerCamelCase : Optional[Any] = B''
for char in message:
bit_string += format(UpperCAmelCase_ , '08b' ).encode('utf-8' )
__lowerCamelCase : List[str] = format(len(UpperCAmelCase_ ) , '064b' ).encode('utf-8' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(UpperCAmelCase_ ) % 5_12 != 4_48:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> Generator[list[int], None, None]:
if len(UpperCAmelCase_ ) % 5_12 != 0:
raise ValueError('Input must have length that\'s a multiple of 512' )
for pos in range(0 , len(UpperCAmelCase_ ) , 5_12 ):
__lowerCamelCase : Any = bit_string[pos : pos + 5_12]
__lowerCamelCase : Optional[int] = []
for i in range(0 , 5_12 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int:
if i < 0:
raise ValueError('Input must be non-negative' )
__lowerCamelCase : List[Any] = format(UpperCAmelCase_ , '032b' )
__lowerCamelCase : Optional[int] = ''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(UpperCAmelCase_ , 2 )
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
return (a + b) % 2**32
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
if i < 0:
raise ValueError('Input must be non-negative' )
if shift < 0:
raise ValueError('Shift must be non-negative' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
__lowerCamelCase : Optional[Any] = preprocess(UpperCAmelCase_ )
__lowerCamelCase : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
__lowerCamelCase : Dict = 0x67_45_23_01
__lowerCamelCase : Union[str, Any] = 0xef_cd_ab_89
__lowerCamelCase : Optional[Any] = 0x98_ba_dc_fe
__lowerCamelCase : Union[str, Any] = 0x10_32_54_76
__lowerCamelCase : List[str] = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(UpperCAmelCase_ ):
__lowerCamelCase : Dict = aa
__lowerCamelCase : Tuple = ba
__lowerCamelCase : List[Any] = ca
__lowerCamelCase : Dict = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
__lowerCamelCase : List[str] = d ^ (b & (c ^ d))
__lowerCamelCase : Optional[int] = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
__lowerCamelCase : Optional[int] = c ^ (d & (b ^ c))
__lowerCamelCase : Tuple = (5 * i + 1) % 16
elif i <= 47:
__lowerCamelCase : str = b ^ c ^ d
__lowerCamelCase : Any = (3 * i + 5) % 16
else:
__lowerCamelCase : Union[str, Any] = c ^ (b | not_aa(UpperCAmelCase_ ))
__lowerCamelCase : int = (7 * i) % 16
__lowerCamelCase : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**32
__lowerCamelCase : Optional[Any] = d
__lowerCamelCase : Tuple = c
__lowerCamelCase : Optional[int] = b
__lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , left_rotate_aa(UpperCAmelCase_ , shift_amounts[i] ) )
# Add hashed chunk to running total
__lowerCamelCase : int = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : str = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : List[Any] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : Dict = reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 | 1 |
'''simple docstring'''
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=[1, 2, 1] , SCREAMING_SNAKE_CASE_=[2, 2, 4] , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=["stage1", "stage2", "stage3"] , SCREAMING_SNAKE_CASE_=[1, 2, 3] , ) -> Any:
__lowerCamelCase : Optional[Any] = parent
__lowerCamelCase : int = batch_size
__lowerCamelCase : Optional[int] = image_size
__lowerCamelCase : Optional[int] = patch_size
__lowerCamelCase : Optional[Any] = num_channels
__lowerCamelCase : Dict = embed_dim
__lowerCamelCase : List[Any] = depths
__lowerCamelCase : int = num_heads
__lowerCamelCase : Optional[Any] = window_size
__lowerCamelCase : Optional[Any] = mlp_ratio
__lowerCamelCase : List[str] = qkv_bias
__lowerCamelCase : List[str] = hidden_dropout_prob
__lowerCamelCase : int = attention_probs_dropout_prob
__lowerCamelCase : List[Any] = drop_path_rate
__lowerCamelCase : Any = hidden_act
__lowerCamelCase : Union[str, Any] = use_absolute_embeddings
__lowerCamelCase : Any = patch_norm
__lowerCamelCase : Optional[Any] = layer_norm_eps
__lowerCamelCase : str = initializer_range
__lowerCamelCase : Dict = is_training
__lowerCamelCase : Optional[Any] = scope
__lowerCamelCase : Dict = use_labels
__lowerCamelCase : List[str] = type_sequence_label_size
__lowerCamelCase : Dict = encoder_stride
__lowerCamelCase : Union[str, Any] = out_features
__lowerCamelCase : str = out_indices
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowerCamelCase : List[str] = None
if self.use_labels:
__lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowerCamelCase : List[str] = self.get_config()
return config, pixel_values, labels
def lowercase_ ( self ) -> Optional[int]:
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
__lowerCamelCase : Dict = MaskFormerSwinModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__lowerCamelCase : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
__lowerCamelCase : Tuple = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , [16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : str = ['stem']
__lowerCamelCase : Optional[Any] = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : Optional[int] = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = config_and_inputs
__lowerCamelCase : Optional[int] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : List[Any] = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase : int = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {}
lowerCamelCase : int = False
lowerCamelCase : int = False
lowerCamelCase : str = False
lowerCamelCase : int = False
lowerCamelCase : Union[str, Any] = False
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : Optional[Any] = MaskFormerSwinModelTester(self )
__lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
'`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with'
' `nn.DataParallel`'
) )
def lowercase_ ( self ) -> int:
pass
def lowercase_ ( self ) -> Union[str, Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase_ ( self ) -> Tuple:
return
def lowercase_ ( self ) -> Dict:
__lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ )
@unittest.skip('Swin does not use inputs_embeds' )
def lowercase_ ( self ) -> Optional[int]:
pass
@unittest.skip('Swin does not support feedforward chunking' )
def lowercase_ ( self ) -> Dict:
pass
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__lowerCamelCase : Optional[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase , __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase : str = [*signature.parameters.keys()]
__lowerCamelCase : Any = ['pixel_values']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ )
@unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' )
def lowercase_ ( self ) -> Any:
pass
@unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' )
def lowercase_ ( self ) -> List[Any]:
pass
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
with torch.no_grad():
__lowerCamelCase : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
__lowerCamelCase : int = outputs.hidden_states
__lowerCamelCase : Tuple = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
# Swin has a different seq_length
__lowerCamelCase : Optional[Any] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase : List[Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
__lowerCamelCase : Dict = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowerCamelCase : Optional[int] = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase : Union[str, Any] = 3
__lowerCamelCase : Dict = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__lowerCamelCase : str = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__lowerCamelCase : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__lowerCamelCase : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
__lowerCamelCase : str = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowerCamelCase : Tuple = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) )
@unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' )
def lowercase_ ( self ) -> Optional[Any]:
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def lowercase_ ( self ) -> Any:
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def lowercase_ ( self ) -> Union[str, Any]:
pass
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Any = 0
return t
def check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_={} ):
with torch.no_grad():
__lowerCamelCase : Optional[int] = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).to_tuple()
def recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if isinstance(SCREAMING_SNAKE_CASE_ , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values() ):
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , atol=1E-5 ) , msg=(
'Tuple and dict output are not equal. Difference:'
f' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:'
f' {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}. Dict has'
f' `nan`: {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}.'
) , )
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
for model_class in self.all_model_classes:
__lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} )
__lowerCamelCase : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} )
@require_torch
class UpperCAmelCase_ (unittest.TestCase , _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else ()
lowerCamelCase : List[str] = MaskFormerSwinConfig
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : List[str] = MaskFormerSwinModelTester(self )
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase : Any = inputs_dict['pixel_values'].shape[0]
for backbone_class in self.all_model_classes:
__lowerCamelCase : Optional[Any] = backbone_class(SCREAMING_SNAKE_CASE_ )
backbone.to(SCREAMING_SNAKE_CASE_ )
backbone.eval()
__lowerCamelCase : int = backbone(**SCREAMING_SNAKE_CASE_ )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , SCREAMING_SNAKE_CASE_ )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
__lowerCamelCase : Union[str, Any] = backbone(**SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
__lowerCamelCase : Optional[int] = backbone(**SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(outputs.attentions )
| 13 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : Tuple = logging.get_logger(__name__)
A__ : Dict = {
"""RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""",
"""RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""",
"""RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""",
"""RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""",
"""RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""",
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : List[Any] = 'rwkv'
lowerCamelCase : Any = {'max_position_embeddings': 'context_length'}
def __init__( self , SCREAMING_SNAKE_CASE_=5_02_77 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = vocab_size
__lowerCamelCase : Tuple = context_length
__lowerCamelCase : str = hidden_size
__lowerCamelCase : List[str] = num_hidden_layers
__lowerCamelCase : Any = attention_hidden_size if attention_hidden_size is not None else hidden_size
__lowerCamelCase : Optional[int] = intermediate_size if intermediate_size is not None else 4 * hidden_size
__lowerCamelCase : Optional[Any] = layer_norm_epsilon
__lowerCamelCase : int = rescale_every
__lowerCamelCase : Tuple = use_cache
__lowerCamelCase : int = bos_token_id
__lowerCamelCase : Optional[Any] = eos_token_id
super().__init__(
tie_word_embeddings=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 13 | 1 |
'''simple docstring'''
import argparse
import math
import os
import torch
from neural_compressor.utils.pytorch import load
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel
def UpperCAmelCase__ ( ) -> List[str]:
__lowerCamelCase : int = argparse.ArgumentParser()
parser.add_argument(
'-m' , '--pretrained_model_name_or_path' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , required=UpperCAmelCase_ , help='Path to pretrained model or model identifier from huggingface.co/models.' , )
parser.add_argument(
'-c' , '--caption' , type=UpperCAmelCase_ , default='robotic cat with wings' , help='Text used to generate images.' , )
parser.add_argument(
'-n' , '--images_num' , type=UpperCAmelCase_ , default=4 , help='How much images to generate.' , )
parser.add_argument(
'-s' , '--seed' , type=UpperCAmelCase_ , default=42 , help='Seed for random process.' , )
parser.add_argument(
'-ci' , '--cuda_id' , type=UpperCAmelCase_ , default=0 , help='cuda_id.' , )
__lowerCamelCase : Union[str, Any] = parser.parse_args()
return args
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple ) -> Optional[Any]:
if not len(UpperCAmelCase_ ) == rows * cols:
raise ValueError('The specified number of rows and columns are not correct.' )
__lowerCamelCase , __lowerCamelCase : Tuple = imgs[0].size
__lowerCamelCase : Any = Image.new('RGB' , size=(cols * w, rows * h) )
__lowerCamelCase , __lowerCamelCase : Dict = grid.size
for i, img in enumerate(UpperCAmelCase_ ):
grid.paste(UpperCAmelCase_ , box=(i % cols * w, i // cols * h) )
return grid
def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any]="robotic cat with wings" , UpperCAmelCase_ : Dict=7.5 , UpperCAmelCase_ : Optional[Any]=50 , UpperCAmelCase_ : Optional[int]=1 , UpperCAmelCase_ : Tuple=42 , ) -> str:
__lowerCamelCase : Dict = torch.Generator(pipeline.device ).manual_seed(UpperCAmelCase_ )
__lowerCamelCase : List[str] = pipeline(
UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , ).images
__lowerCamelCase : Dict = int(math.sqrt(UpperCAmelCase_ ) )
__lowerCamelCase : List[Any] = image_grid(UpperCAmelCase_ , rows=_rows , cols=num_images_per_prompt // _rows )
return grid, images
A__ : Any = parse_args()
# Load models and create wrapper for stable diffusion
A__ : List[str] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="""tokenizer""")
A__ : Optional[int] = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""text_encoder""")
A__ : List[Any] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="""vae""")
A__ : List[str] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""unet""")
A__ : Any = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer
)
A__ : Union[str, Any] = lambda images, clip_input: (images, False)
if os.path.exists(os.path.join(args.pretrained_model_name_or_path, """best_model.pt""")):
A__ : Optional[Any] = load(args.pretrained_model_name_or_path, model=unet)
unet.eval()
setattr(pipeline, """unet""", unet)
else:
A__ : List[Any] = unet.to(torch.device("""cuda""", args.cuda_id))
A__ : str = pipeline.to(unet.device)
A__ , A__ : int = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed)
grid.save(os.path.join(args.pretrained_model_name_or_path, """{}.png""".format("""_""".join(args.caption.split()))))
A__ : Union[str, Any] = os.path.join(args.pretrained_model_name_or_path, """_""".join(args.caption.split()))
os.makedirs(dirname, exist_ok=True)
for idx, image in enumerate(images):
image.save(os.path.join(dirname, """{}.png""".format(idx + 1)))
| 13 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 10_00 ) -> int:
__lowerCamelCase : Union[str, Any] = 3
__lowerCamelCase : Dict = 0
while a < n:
if a % 3 == 0 or a % 5 == 0:
result += a
elif a % 15 == 0:
result -= a
a += 1
return result
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
from unittest.mock import Mock, patch
from file_transfer.send_file import send_file
@patch('socket.socket' )
@patch('builtins.open' )
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int ) -> List[Any]:
# ===== initialization =====
__lowerCamelCase : Dict = Mock()
__lowerCamelCase : Union[str, Any] = conn, Mock()
__lowerCamelCase : Dict = iter([1, None] )
__lowerCamelCase : Tuple = lambda UpperCAmelCase_ : next(UpperCAmelCase_ )
# ===== invoke =====
send_file(filename='mytext.txt' , testing=UpperCAmelCase_ )
# ===== ensurance =====
sock.assert_called_once()
sock.return_value.bind.assert_called_once()
sock.return_value.listen.assert_called_once()
sock.return_value.accept.assert_called_once()
conn.recv.assert_called_once()
file.return_value.__enter__.assert_called_once()
file.return_value.__enter__.return_value.read.assert_called()
conn.send.assert_called_once()
conn.close.assert_called_once()
sock.return_value.shutdown.assert_called_once()
sock.return_value.close.assert_called_once()
| 13 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Dict = XGLMConfig
lowerCamelCase : List[str] = {}
lowerCamelCase : Union[str, Any] = 'gelu'
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Any:
__lowerCamelCase : int = parent
__lowerCamelCase : Optional[int] = batch_size
__lowerCamelCase : Optional[Any] = seq_length
__lowerCamelCase : Optional[int] = is_training
__lowerCamelCase : str = use_input_mask
__lowerCamelCase : Dict = use_labels
__lowerCamelCase : Union[str, Any] = vocab_size
__lowerCamelCase : List[Any] = d_model
__lowerCamelCase : List[Any] = num_hidden_layers
__lowerCamelCase : List[Any] = num_attention_heads
__lowerCamelCase : Optional[Any] = ffn_dim
__lowerCamelCase : List[Any] = activation_function
__lowerCamelCase : List[Any] = activation_dropout
__lowerCamelCase : List[Any] = attention_dropout
__lowerCamelCase : Union[str, Any] = max_position_embeddings
__lowerCamelCase : Tuple = initializer_range
__lowerCamelCase : int = None
__lowerCamelCase : int = 0
__lowerCamelCase : Tuple = 2
__lowerCamelCase : Tuple = 1
def lowercase_ ( self ) -> Any:
return XGLMConfig.from_pretrained('facebook/xglm-564M' )
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : Optional[Any] = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
__lowerCamelCase : Optional[int] = None
if self.use_input_mask:
__lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCamelCase : str = self.get_config()
__lowerCamelCase : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def lowercase_ ( self ) -> Optional[int]:
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=SCREAMING_SNAKE_CASE_ , )
def lowercase_ ( self ) -> str:
__lowerCamelCase : List[Any] = self.prepare_config_and_inputs()
(
(
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) ,
) : str = config_and_inputs
__lowerCamelCase : Union[str, Any] = {
'input_ids': input_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_tf
class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
lowerCamelCase : List[Any] = (TFXGLMForCausalLM,) if is_tf_available() else ()
lowerCamelCase : Any = (
{'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {}
)
lowerCamelCase : List[Any] = False
lowerCamelCase : Dict = False
lowerCamelCase : Union[str, Any] = False
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : str = TFXGLMModelTester(self )
__lowerCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , n_embd=37 )
def lowercase_ ( self ) -> Dict:
self.config_tester.run_common_tests()
@slow
def lowercase_ ( self ) -> Optional[int]:
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCamelCase : Optional[Any] = TFXGLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' )
def lowercase_ ( self ) -> Any:
super().test_resize_token_embeddings()
@require_tf
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
@slow
def lowercase_ ( self , SCREAMING_SNAKE_CASE_=True ) -> List[str]:
__lowerCamelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : int = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
__lowerCamelCase : Optional[int] = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81]
# fmt: on
__lowerCamelCase : Any = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE_ )
@slow
def lowercase_ ( self ) -> int:
__lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
tf.random.set_seed(0 )
__lowerCamelCase : List[Any] = tokenizer('Today is a nice day and' , return_tensors='tf' )
__lowerCamelCase : int = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(':/CPU:0' ):
__lowerCamelCase : Tuple = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , seed=[7, 0] )
__lowerCamelCase : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = (
'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due'
)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@slow
def lowercase_ ( self ) -> int:
__lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : Any = 'left'
# use different length sentences to test batching
__lowerCamelCase : Any = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When',
'Hello, my dog is a little',
]
__lowerCamelCase : Any = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='tf' , padding=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = inputs['input_ids']
__lowerCamelCase : str = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 )
__lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids
__lowerCamelCase : int = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 )
__lowerCamelCase : Optional[Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids
__lowerCamelCase : Optional[Any] = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 )
__lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be '
'a single',
'Hello, my dog is a little bit of a shy one, but he is very friendly',
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [non_padded_sentence, padded_sentence] )
| 13 | 1 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...utils import logging, randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
A__ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
super().__init__()
self.register_modules(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ )
@torch.no_grad()
def __call__( self , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 1_00 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , ) -> Union[AudioPipelineOutput, Tuple]:
if audio_length_in_s is None:
__lowerCamelCase : int = self.unet.config.sample_size / self.unet.config.sample_rate
__lowerCamelCase : Any = audio_length_in_s * self.unet.config.sample_rate
__lowerCamelCase : Optional[Any] = 2 ** len(self.unet.up_blocks )
if sample_size < 3 * down_scale_factor:
raise ValueError(
f'{audio_length_in_s} is too small. Make sure it\'s bigger or equal to'
f' {3 * down_scale_factor / self.unet.config.sample_rate}.' )
__lowerCamelCase : Tuple = int(SCREAMING_SNAKE_CASE_ )
if sample_size % down_scale_factor != 0:
__lowerCamelCase : Dict = (
(audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
) * down_scale_factor
logger.info(
f'{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled'
f' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising'
' process.' )
__lowerCamelCase : List[Any] = int(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = next(iter(self.unet.parameters() ) ).dtype
__lowerCamelCase : str = (batch_size, self.unet.config.in_channels, sample_size)
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) != batch_size:
raise ValueError(
f'You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE_ )}, but requested an effective batch'
f' size of {batch_size}. Make sure the batch size matches the length of the generators.' )
__lowerCamelCase : str = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ )
# set step values
self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , device=audio.device )
__lowerCamelCase : Tuple = self.scheduler.timesteps.to(SCREAMING_SNAKE_CASE_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
__lowerCamelCase : Optional[Any] = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample
# 2. compute previous image: x_t -> t_t-1
__lowerCamelCase : Optional[Any] = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample
__lowerCamelCase : List[str] = audio.clamp(-1 , 1 ).float().cpu().numpy()
__lowerCamelCase : Tuple = audio[:, :, :original_sample_size]
if not return_dict:
return (audio,)
return AudioPipelineOutput(audios=SCREAMING_SNAKE_CASE_ )
| 13 |
'''simple docstring'''
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : List[str] = logging.get_logger(__name__)
# TODO Update this
A__ : Tuple = {
"""facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""",
# See all ESM models at https://huggingface.co/models?filter=esm
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Tuple = 'esm'
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10_26 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]:
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , mask_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = vocab_size
__lowerCamelCase : List[Any] = hidden_size
__lowerCamelCase : str = num_hidden_layers
__lowerCamelCase : List[str] = num_attention_heads
__lowerCamelCase : Any = intermediate_size
__lowerCamelCase : Optional[Any] = hidden_dropout_prob
__lowerCamelCase : Tuple = attention_probs_dropout_prob
__lowerCamelCase : Optional[int] = max_position_embeddings
__lowerCamelCase : str = initializer_range
__lowerCamelCase : Optional[int] = layer_norm_eps
__lowerCamelCase : List[str] = position_embedding_type
__lowerCamelCase : int = use_cache
__lowerCamelCase : Optional[Any] = emb_layer_norm_before
__lowerCamelCase : Optional[Any] = token_dropout
__lowerCamelCase : str = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info('No esmfold_config supplied for folding model, using default values.' )
__lowerCamelCase : Dict = EsmFoldConfig()
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Optional[int] = EsmFoldConfig(**SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = esmfold_config
if vocab_list is None:
logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' )
__lowerCamelCase : List[str] = get_default_vocab_list()
else:
__lowerCamelCase : Optional[Any] = vocab_list
else:
__lowerCamelCase : Dict = None
__lowerCamelCase : Optional[Any] = None
if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , SCREAMING_SNAKE_CASE_ ):
raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : Any = super().to_dict()
if isinstance(self.esmfold_config , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : int = self.esmfold_config.to_dict()
return output
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : str = None
lowerCamelCase : bool = True
lowerCamelCase : bool = False
lowerCamelCase : bool = False
lowerCamelCase : bool = False
lowerCamelCase : float = 0
lowerCamelCase : bool = True
lowerCamelCase : bool = False
lowerCamelCase : int = 1_2_8
lowerCamelCase : "TrunkConfig" = None
def lowercase_ ( self ) -> Any:
if self.trunk is None:
__lowerCamelCase : List[str] = TrunkConfig()
elif isinstance(self.trunk , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Any = TrunkConfig(**self.trunk )
def lowercase_ ( self ) -> int:
__lowerCamelCase : Optional[int] = asdict(self )
__lowerCamelCase : str = self.trunk.to_dict()
return output
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : int = 4_8
lowerCamelCase : int = 1_0_2_4
lowerCamelCase : int = 1_2_8
lowerCamelCase : int = 3_2
lowerCamelCase : int = 3_2
lowerCamelCase : int = 3_2
lowerCamelCase : float = 0
lowerCamelCase : float = 0
lowerCamelCase : bool = False
lowerCamelCase : int = 4
lowerCamelCase : Optional[int] = 1_2_8
lowerCamelCase : "StructureModuleConfig" = None
def lowercase_ ( self ) -> Optional[int]:
if self.structure_module is None:
__lowerCamelCase : Dict = StructureModuleConfig()
elif isinstance(self.structure_module , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Optional[Any] = StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
'`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got'
f' {self.sequence_state_dim} and {self.sequence_state_dim}.' )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
'`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got'
f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' )
__lowerCamelCase : Tuple = self.sequence_state_dim // self.sequence_head_width
__lowerCamelCase : str = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
'`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got'
f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
'`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got'
f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' )
if self.dropout >= 0.4:
raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' )
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : List[str] = asdict(self )
__lowerCamelCase : int = self.structure_module.to_dict()
return output
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : int = 3_8_4
lowerCamelCase : int = 1_2_8
lowerCamelCase : int = 1_6
lowerCamelCase : int = 1_2_8
lowerCamelCase : int = 1_2
lowerCamelCase : int = 4
lowerCamelCase : int = 8
lowerCamelCase : float = 0.1
lowerCamelCase : int = 8
lowerCamelCase : int = 1
lowerCamelCase : int = 2
lowerCamelCase : int = 7
lowerCamelCase : int = 1_0
lowerCamelCase : float = 1e-8
lowerCamelCase : float = 1e5
def lowercase_ ( self ) -> Any:
return asdict(self )
def UpperCAmelCase__ ( ) -> Optional[Any]:
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 13 | 1 |
'''simple docstring'''
import re
def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> str:
if len(re.findall('[ATCG]' , UpperCAmelCase_ ) ) != len(UpperCAmelCase_ ):
raise ValueError('Invalid Strand' )
return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
A__ : dict[tuple[int, int, int], int] = {}
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
# if we are absent twice, or late 3 consecutive days,
# no further prize strings are possible
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
__lowerCamelCase : List[Any] = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
__lowerCamelCase : Tuple = _calculate(days - 1 , UpperCAmelCase_ , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
__lowerCamelCase : int = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
__lowerCamelCase : List[Any] = _calculate(days - 1 , UpperCAmelCase_ , 0 )
__lowerCamelCase : Optional[int] = state_late + state_absent + state_ontime
__lowerCamelCase : Union[str, Any] = prizestrings
return prizestrings
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 30 ) -> int:
return _calculate(UpperCAmelCase_ , absent=0 , late=0 )
if __name__ == "__main__":
print(solution())
| 13 | 1 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : str = ['torch', 'torchsde']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
requires_backends(self , ['torch', 'torchsde'] )
@classmethod
def lowercase_ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> str:
requires_backends(cls , ['torch', 'torchsde'] )
@classmethod
def lowercase_ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Dict:
requires_backends(cls , ['torch', 'torchsde'] )
| 13 |
'''simple docstring'''
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
A__ : Any = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""")
@total_ordering
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : str
lowerCamelCase : Optional[str] = None
lowerCamelCase : Optional[Union[str, int]] = None
lowerCamelCase : Optional[Union[str, int]] = None
lowerCamelCase : Optional[Union[str, int]] = None
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = _str_to_version_tuple(self.version_str )
def __repr__( self ) -> Any:
return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}'
@property
def lowercase_ ( self ) -> int:
return self.major, self.minor, self.patch
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return Version(SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return other
raise TypeError(f'{other} (type {type(SCREAMING_SNAKE_CASE_ )}) cannot be compared to version.' )
def __eq__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
try:
__lowerCamelCase : Union[str, Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
__lowerCamelCase : List[Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ )
return self.tuple < other.tuple
def __hash__( self ) -> List[str]:
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase : str = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def lowercase_ ( self ) -> str:
return self.version_str
def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> str:
__lowerCamelCase : str = _VERSION_REG.match(UpperCAmelCase_ )
if not res:
raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' )
return tuple(int(UpperCAmelCase_ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] )
def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] ) -> Dict:
return ".".join(str(UpperCAmelCase_ ) for v in version_tuple )
| 13 | 1 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] = None , ) -> Tuple:
__lowerCamelCase : Any = {}
if train_file is not None:
__lowerCamelCase : int = [train_file]
if eval_file is not None:
__lowerCamelCase : Any = [eval_file]
if test_file is not None:
__lowerCamelCase : Any = [test_file]
__lowerCamelCase : Any = datasets.load_dataset('csv' , data_files=UpperCAmelCase_ )
__lowerCamelCase : Dict = list(ds[list(files.keys() )[0]].features.keys() )
__lowerCamelCase : Union[str, Any] = features_name.pop(UpperCAmelCase_ )
__lowerCamelCase : Optional[Any] = list(set(ds[list(files.keys() )[0]][label_name] ) )
__lowerCamelCase : Union[str, Any] = {label: i for i, label in enumerate(UpperCAmelCase_ )}
__lowerCamelCase : Optional[Any] = tokenizer.model_input_names
__lowerCamelCase : Optional[int] = {}
if len(UpperCAmelCase_ ) == 1:
for k in files.keys():
__lowerCamelCase : str = ds[k].map(
lambda UpperCAmelCase_ : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' ) , batched=UpperCAmelCase_ , )
elif len(UpperCAmelCase_ ) == 2:
for k in files.keys():
__lowerCamelCase : Union[str, Any] = ds[k].map(
lambda UpperCAmelCase_ : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , ) , batched=UpperCAmelCase_ , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
__lowerCamelCase : Any = {k: v for k, v in ex.items() if k in input_names}
__lowerCamelCase : Dict = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
__lowerCamelCase : List[Any] = {k: v for k, v in ex.items() if k in input_names}
__lowerCamelCase : int = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
__lowerCamelCase : Optional[int] = {k: v for k, v in ex.items() if k in input_names}
__lowerCamelCase : List[str] = labelaid[ex[label_name]]
yield (d, label)
__lowerCamelCase : List[Any] = (
tf.data.Dataset.from_generator(
UpperCAmelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
__lowerCamelCase : Optional[Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
__lowerCamelCase : Union[str, Any] = (
tf.data.Dataset.from_generator(
UpperCAmelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
__lowerCamelCase : Optional[int] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
__lowerCamelCase : List[Any] = (
tf.data.Dataset.from_generator(
UpperCAmelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
__lowerCamelCase : List[str] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
A__ : int = logging.getLogger(__name__)
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : int = field(metadata={'help': 'Which column contains the label'} )
lowerCamelCase : str = field(default=_UpperCAmelCase , metadata={'help': 'The path of the training file'} )
lowerCamelCase : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'The path of the development file'} )
lowerCamelCase : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'The path of the test file'} )
lowerCamelCase : int = field(
default=1_2_8 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
lowerCamelCase : bool = field(
default=_UpperCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} )
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : str = field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
lowerCamelCase : Optional[str] = field(
default=_UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
lowerCamelCase : Optional[str] = field(
default=_UpperCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
lowerCamelCase : bool = field(default=_UpperCAmelCase , metadata={'help': 'Set this flag to use fast tokenization.'} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
lowerCamelCase : Optional[str] = field(
default=_UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , )
def UpperCAmelCase__ ( ) -> str:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__lowerCamelCase : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F'Output directory ({training_args.output_dir}) already exists and is not empty. Use'
' --overwrite_output_dir to overcome.' )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , )
logger.info(
F'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, '
F'16-bits training: {training_args.fpaa}' )
logger.info(F'Training/evaluation parameters {training_args}' )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCAmelCase_ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
__lowerCamelCase : Any = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCAmelCase_ ) , labelaid=UpperCAmelCase_ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='text-classification' , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
__lowerCamelCase : Optional[int] = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool('.bin' in model_args.model_name_or_path ) , config=UpperCAmelCase_ , cache_dir=model_args.cache_dir , )
def compute_metrics(UpperCAmelCase_ : EvalPrediction ) -> Dict:
__lowerCamelCase : Any = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
__lowerCamelCase : int = TFTrainer(
model=UpperCAmelCase_ , args=UpperCAmelCase_ , train_dataset=UpperCAmelCase_ , eval_dataset=UpperCAmelCase_ , compute_metrics=UpperCAmelCase_ , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__lowerCamelCase : Optional[Any] = {}
if training_args.do_eval:
logger.info('*** Evaluate ***' )
__lowerCamelCase : List[str] = trainer.evaluate()
__lowerCamelCase : Optional[Any] = os.path.join(training_args.output_dir , 'eval_results.txt' )
with open(UpperCAmelCase_ , 'w' ) as writer:
logger.info('***** Eval results *****' )
for key, value in result.items():
logger.info(F' {key} = {value}' )
writer.write(F'{key} = {value}\n' )
results.update(UpperCAmelCase_ )
return results
if __name__ == "__main__":
main()
| 13 |
'''simple docstring'''
import sys
from collections import defaultdict
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self ) -> int:
__lowerCamelCase : Any = []
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Any:
return self.node_position[vertex]
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple:
__lowerCamelCase : Optional[int] = pos
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
__lowerCamelCase : str = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
__lowerCamelCase : Optional[Any] = 2 * start + 1
else:
__lowerCamelCase : int = 2 * start + 2
if heap[smallest_child] < heap[start]:
__lowerCamelCase , __lowerCamelCase : Optional[Any] = heap[smallest_child], positions[smallest_child]
__lowerCamelCase , __lowerCamelCase : int = (
heap[start],
positions[start],
)
__lowerCamelCase , __lowerCamelCase : str = temp, tempa
__lowerCamelCase : Dict = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , SCREAMING_SNAKE_CASE_ )
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any:
__lowerCamelCase : Any = position[index]
while index != 0:
__lowerCamelCase : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
__lowerCamelCase : Union[str, Any] = heap[parent]
__lowerCamelCase : Any = position[parent]
self.set_position(position[parent] , SCREAMING_SNAKE_CASE_ )
else:
__lowerCamelCase : Tuple = val
__lowerCamelCase : List[str] = temp
self.set_position(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
break
__lowerCamelCase : Tuple = parent
else:
__lowerCamelCase : Union[str, Any] = val
__lowerCamelCase : Tuple = temp
self.set_position(SCREAMING_SNAKE_CASE_ , 0 )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
__lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) // 2 - 1
for i in range(SCREAMING_SNAKE_CASE_ , -1 , -1 ):
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
__lowerCamelCase : Any = positions[0]
__lowerCamelCase : Union[str, Any] = sys.maxsize
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
return temp
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> str:
__lowerCamelCase : List[Any] = Heap()
__lowerCamelCase : Optional[int] = [0] * len(UpperCAmelCase_ )
__lowerCamelCase : str = [-1] * len(UpperCAmelCase_ ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
__lowerCamelCase : List[str] = [] # Heap of Distance of vertices from their neighboring vertex
__lowerCamelCase : Tuple = []
for vertex in range(len(UpperCAmelCase_ ) ):
distance_tv.append(sys.maxsize )
positions.append(UpperCAmelCase_ )
heap.node_position.append(UpperCAmelCase_ )
__lowerCamelCase : Tuple = []
__lowerCamelCase : Dict = 1
__lowerCamelCase : str = sys.maxsize
for neighbor, distance in adjacency_list[0]:
__lowerCamelCase : Any = 0
__lowerCamelCase : Any = distance
heap.heapify(UpperCAmelCase_ , UpperCAmelCase_ )
for _ in range(1 , len(UpperCAmelCase_ ) ):
__lowerCamelCase : List[Any] = heap.delete_minimum(UpperCAmelCase_ , UpperCAmelCase_ )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
__lowerCamelCase : Union[str, Any] = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(UpperCAmelCase_ )]
):
__lowerCamelCase : Dict = distance
heap.bottom_to_top(
UpperCAmelCase_ , heap.get_position(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : str = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
A__ : Tuple = int(input("""Enter number of edges: """).strip())
A__ : str = defaultdict(list)
for _ in range(edges_number):
A__ : Optional[int] = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 13 | 1 |
'''simple docstring'''
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
A__ : List[Any] = """__DUMMY_TRANSFORMERS_USER__"""
A__ : Optional[int] = """Dummy User"""
A__ : List[str] = """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"""
A__ : Dict = """https://hub-ci.huggingface.co"""
A__ : Tuple = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}"""
A__ : Optional[Any] = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}"""
A__ : List[Any] = Path("""~/.huggingface/hub_ci_token""").expanduser()
@pytest.fixture
def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> int:
monkeypatch.setattr(
'huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE' , UpperCAmelCase_ )
@pytest.fixture
def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple ) -> Optional[Any]:
monkeypatch.setattr('datasets.config.HF_ENDPOINT' , UpperCAmelCase_ )
monkeypatch.setattr('datasets.config.HUB_DATASETS_URL' , UpperCAmelCase_ )
@pytest.fixture
def UpperCAmelCase__ ( UpperCAmelCase_ : Any ) -> Any:
monkeypatch.setattr('huggingface_hub.hf_api.HfFolder.path_token' , UpperCAmelCase_ )
@pytest.fixture
def UpperCAmelCase__ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] ) -> Optional[int]:
HfFolder.save_token(UpperCAmelCase_ )
yield
HfFolder.delete_token()
@pytest.fixture(scope='session' )
def UpperCAmelCase__ ( ) -> Any:
return HfApi(endpoint=UpperCAmelCase_ )
@pytest.fixture(scope='session' )
def UpperCAmelCase__ ( UpperCAmelCase_ : HfApi ) -> Optional[Any]:
__lowerCamelCase : List[Any] = HfFolder.get_token()
HfFolder.save_token(UpperCAmelCase_ )
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(UpperCAmelCase_ )
@pytest.fixture
def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> Optional[int]:
def _cleanup_repo(UpperCAmelCase_ : List[str] ):
hf_api.delete_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='dataset' )
return _cleanup_repo
@pytest.fixture
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> List[Any]:
@contextmanager
def _temporary_repo(UpperCAmelCase_ : Union[str, Any] ):
try:
yield repo_id
finally:
cleanup_repo(UpperCAmelCase_ )
return _temporary_repo
@pytest.fixture(scope='session' )
def UpperCAmelCase__ ( UpperCAmelCase_ : HfApi , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] ) -> Optional[Any]:
__lowerCamelCase : int = F'repo_txt_data-{int(time.time() * 10e3 )}'
__lowerCamelCase : Optional[Any] = F'{CI_HUB_USER}/{repo_name}'
hf_api.create_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='dataset' , private=UpperCAmelCase_ )
hf_api.upload_file(
token=UpperCAmelCase_ , path_or_fileobj=str(UpperCAmelCase_ ) , path_in_repo='data/text_data.txt' , repo_id=UpperCAmelCase_ , repo_type='dataset' , )
yield repo_id
try:
hf_api.delete_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='dataset' )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ) -> List[Any]:
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope='session' )
def UpperCAmelCase__ ( UpperCAmelCase_ : HfApi , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any ) -> Optional[Any]:
__lowerCamelCase : List[str] = F'repo_zipped_txt_data-{int(time.time() * 10e3 )}'
__lowerCamelCase : int = F'{CI_HUB_USER}/{repo_name}'
hf_api.create_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='dataset' , private=UpperCAmelCase_ )
hf_api.upload_file(
token=UpperCAmelCase_ , path_or_fileobj=str(UpperCAmelCase_ ) , path_in_repo='data.zip' , repo_id=UpperCAmelCase_ , repo_type='dataset' , )
yield repo_id
try:
hf_api.delete_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='dataset' )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ) -> Dict:
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope='session' )
def UpperCAmelCase__ ( UpperCAmelCase_ : HfApi , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ) -> Union[str, Any]:
__lowerCamelCase : Tuple = F'repo_zipped_img_data-{int(time.time() * 10e3 )}'
__lowerCamelCase : Any = F'{CI_HUB_USER}/{repo_name}'
hf_api.create_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='dataset' , private=UpperCAmelCase_ )
hf_api.upload_file(
token=UpperCAmelCase_ , path_or_fileobj=str(UpperCAmelCase_ ) , path_in_repo='data.zip' , repo_id=UpperCAmelCase_ , repo_type='dataset' , )
yield repo_id
try:
hf_api.delete_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='dataset' )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] ) -> Union[str, Any]:
return hf_private_dataset_repo_zipped_img_data_
| 13 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00 ) -> int:
__lowerCamelCase : Union[str, Any] = n * (n + 1) * (2 * n + 1) / 6
__lowerCamelCase : Union[str, Any] = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
import unittest
from transformers import GPTSwaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
A__ : str = get_tests_dir("""fixtures/test_sentencepiece_with_bytefallback.model""")
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : int = GPTSwaTokenizer
lowerCamelCase : List[str] = False
lowerCamelCase : Optional[Any] = True
lowerCamelCase : int = False
def lowercase_ ( self ) -> Tuple:
super().setUp()
# We have a SentencePiece fixture for testing
__lowerCamelCase : Tuple = GPTSwaTokenizer(SCREAMING_SNAKE_CASE_ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> int:
__lowerCamelCase : int = 'This is a test'
__lowerCamelCase : Tuple = 'This is a test'
return input_text, output_text
def lowercase_ ( self ) -> Dict:
__lowerCamelCase : Any = '<s>'
__lowerCamelCase : List[Any] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<unk>' )
self.assertEqual(vocab_keys[1] , '<s>' )
self.assertEqual(vocab_keys[-1] , 'j' )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 20_00 )
def lowercase_ ( self ) -> List[Any]:
self.assertEqual(self.get_tokenizer().vocab_size , 20_00 )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : int = GPTSwaTokenizer(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = tokenizer.tokenize('This is a test' )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [4_65, 2_87, 2_65, 6_31, 8_42] )
__lowerCamelCase : Optional[int] = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
# fmt: off
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , )
# fmt: on
__lowerCamelCase : Any = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] , )
__lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ )
# fmt: off
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] )
# fmt: on
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : str = GPTSwaTokenizer(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = ['This is a test', 'I was born in 92000, and this is falsé.']
__lowerCamelCase : Tuple = [
[4_65, 2_87, 2_65, 6_31, 8_42],
[2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60],
]
# Test that encode_fast returns the same as tokenize + convert_tokens_to_ids
for text, expected_ids in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
self.assertListEqual(tokenizer.encode_fast(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
# Test that decode_fast returns the input text
for text, token_ids in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
self.assertEqual(tokenizer.decode_fast(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
@slow
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : Union[str, Any] = [
'<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')',
'Hey there, how are you doing this fine day?',
'This is a text with a trailing spaces followed by a dot .',
'Häj sväjs lillebrör! =)',
'Det är inget fel på Mr. Cool',
]
# fmt: off
__lowerCamelCase : Union[str, Any] = {'input_ids': [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=SCREAMING_SNAKE_CASE_ , )
| 13 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Optional[int]:
__lowerCamelCase : Optional[int] = parent
__lowerCamelCase : Dict = batch_size
__lowerCamelCase : int = image_size
__lowerCamelCase : List[str] = patch_size
__lowerCamelCase : Optional[int] = num_channels
__lowerCamelCase : Any = is_training
__lowerCamelCase : Dict = use_labels
__lowerCamelCase : List[Any] = hidden_size
__lowerCamelCase : List[Any] = num_hidden_layers
__lowerCamelCase : Optional[Any] = num_attention_heads
__lowerCamelCase : Dict = intermediate_size
__lowerCamelCase : Union[str, Any] = hidden_act
__lowerCamelCase : Optional[int] = hidden_dropout_prob
__lowerCamelCase : Tuple = attention_probs_dropout_prob
__lowerCamelCase : str = type_sequence_label_size
__lowerCamelCase : List[str] = initializer_range
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__lowerCamelCase : str = (image_size // patch_size) ** 2
__lowerCamelCase : Optional[int] = num_patches + 1
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowerCamelCase : Optional[int] = ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , )
return config, pixel_values
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
__lowerCamelCase : Union[str, Any] = FlaxViTModel(config=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = model(SCREAMING_SNAKE_CASE_ )
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
__lowerCamelCase : str = (self.image_size, self.image_size)
__lowerCamelCase : str = (self.patch_size, self.patch_size)
__lowerCamelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str:
__lowerCamelCase : Tuple = self.type_sequence_label_size
__lowerCamelCase : Any = FlaxViTForImageClassification(config=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__lowerCamelCase : List[str] = 1
__lowerCamelCase : List[Any] = FlaxViTForImageClassification(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : List[Any] = self.prepare_config_and_inputs()
(
(
__lowerCamelCase
) , (
__lowerCamelCase
) ,
) : int = config_and_inputs
__lowerCamelCase : Union[str, Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_flax
class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : str = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()
def lowercase_ ( self ) -> None:
__lowerCamelCase : str = FlaxViTModelTester(self )
__lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 )
def lowercase_ ( self ) -> List[Any]:
self.config_tester.run_common_tests()
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase : List[str] = [*signature.parameters.keys()]
__lowerCamelCase : Optional[int] = ['pixel_values']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowerCamelCase : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ )
@jax.jit
def model_jitted(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return model(pixel_values=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
with self.subTest('JIT Enabled' ):
__lowerCamelCase : Optional[int] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
__lowerCamelCase : Union[str, Any] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) )
for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowercase_ ( self ) -> List[Any]:
for model_class_name in self.all_model_classes:
__lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained('google/vit-base-patch16-224' )
__lowerCamelCase : Union[str, Any] = model(np.ones((1, 3, 2_24, 2_24) ) )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
| 13 | 1 |
'''simple docstring'''
import torch
def UpperCAmelCase__ ( ) -> Any:
if torch.cuda.is_available():
__lowerCamelCase : Optional[int] = torch.cuda.device_count()
else:
__lowerCamelCase : Any = 0
print(F'Successfully ran on {num_gpus} GPUs' )
if __name__ == "__main__":
main()
| 13 |
'''simple docstring'''
import argparse
A__ : Optional[Any] = """docs/source/_static/js/custom.js"""
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> int:
with open(UpperCAmelCase_ , encoding='utf-8' , newline='\n' ) as f:
__lowerCamelCase : Dict = f.readlines()
__lowerCamelCase : Tuple = 0
# First let's put the right version
while not lines[index].startswith('const stableVersion =' ):
index += 1
__lowerCamelCase : Dict = F'const stableVersion = "v{version}"\n'
# Then update the dictionary
while not lines[index].startswith('const versionMapping = {' ):
index += 1
# We go until the end
while not lines[index].startswith('}' ):
index += 1
# We add the new version at the end
lines[index - 1] += F' "v{version}": "v{version}",\n'
with open(UpperCAmelCase_ , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(UpperCAmelCase_ )
if __name__ == "__main__":
A__ : str = argparse.ArgumentParser()
parser.add_argument("""--version""", help="""Release version.""")
A__ : Any = parser.parse_args()
update_custom_js(args.version)
| 13 | 1 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int:
__lowerCamelCase : List[Any] = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00 ) -> int:
__lowerCamelCase : Optional[Any] = 1
__lowerCamelCase : Any = 2
for i in range(2 , max_n + 1 ):
__lowerCamelCase : Any = pre_numerator
__lowerCamelCase : Union[str, Any] = 2 * i // 3 if i % 3 == 0 else 1
__lowerCamelCase : List[Any] = cur_numerator
__lowerCamelCase : Union[str, Any] = e_cont * pre_numerator + temp
return sum_digits(UpperCAmelCase_ )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 |
'''simple docstring'''
import flax.linen as nn
import jax
import jax.numpy as jnp
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : Optional[Any] = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> Any:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = hidden_states.shape
__lowerCamelCase : Dict = jax.image.resize(
SCREAMING_SNAKE_CASE_ , shape=(batch, height * 2, width * 2, channels) , method='nearest' , )
__lowerCamelCase : Optional[Any] = self.conv(SCREAMING_SNAKE_CASE_ )
return hidden_states
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : str = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]:
# pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
# hidden_states = jnp.pad(hidden_states, pad_width=pad)
__lowerCamelCase : str = self.conv(SCREAMING_SNAKE_CASE_ )
return hidden_states
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : int = None
lowerCamelCase : float = 0.0
lowerCamelCase : bool = None
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels
__lowerCamelCase : Optional[Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 )
__lowerCamelCase : Tuple = nn.Conv(
SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__lowerCamelCase : List[str] = nn.Dense(SCREAMING_SNAKE_CASE_ , dtype=self.dtype )
__lowerCamelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1E-5 )
__lowerCamelCase : int = nn.Dropout(self.dropout_prob )
__lowerCamelCase : Union[str, Any] = nn.Conv(
SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__lowerCamelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
__lowerCamelCase : List[Any] = None
if use_nin_shortcut:
__lowerCamelCase : Any = nn.Conv(
SCREAMING_SNAKE_CASE_ , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , )
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Tuple:
__lowerCamelCase : List[Any] = hidden_states
__lowerCamelCase : str = self.norma(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = nn.swish(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = self.conva(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = self.time_emb_proj(nn.swish(SCREAMING_SNAKE_CASE_ ) )
__lowerCamelCase : List[str] = jnp.expand_dims(jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , 1 )
__lowerCamelCase : Optional[int] = hidden_states + temb
__lowerCamelCase : List[Any] = self.norma(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = nn.swish(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self.dropout(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self.conva(SCREAMING_SNAKE_CASE_ )
if self.conv_shortcut is not None:
__lowerCamelCase : List[str] = self.conv_shortcut(SCREAMING_SNAKE_CASE_ )
return hidden_states + residual
| 13 | 1 |
'''simple docstring'''
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def UpperCAmelCase__ ( UpperCAmelCase_ : Features ) -> Optional[int]:
__lowerCamelCase : int = np.inf
def set_batch_size(UpperCAmelCase_ : FeatureType ) -> None:
nonlocal batch_size
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
__lowerCamelCase : Union[str, Any] = min(UpperCAmelCase_ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
__lowerCamelCase : List[Any] = min(UpperCAmelCase_ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and feature.dtype == "binary":
__lowerCamelCase : Optional[Any] = min(UpperCAmelCase_ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(UpperCAmelCase_ , UpperCAmelCase_ )
return None if batch_size is np.inf else batch_size
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> int:
super().__init__(
SCREAMING_SNAKE_CASE_ , split=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ , streaming=SCREAMING_SNAKE_CASE_ , num_proc=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
__lowerCamelCase : Any = path_or_paths if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else {self.split: path_or_paths}
__lowerCamelCase : List[Any] = _PACKAGED_DATASETS_MODULES['parquet'][1]
__lowerCamelCase : Optional[int] = Parquet(
cache_dir=SCREAMING_SNAKE_CASE_ , data_files=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , hash=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
def lowercase_ ( self ) -> int:
# Build iterable dataset
if self.streaming:
__lowerCamelCase : Any = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
__lowerCamelCase : str = None
__lowerCamelCase : int = None
__lowerCamelCase : Optional[Any] = None
__lowerCamelCase : Any = None
self.builder.download_and_prepare(
download_config=SCREAMING_SNAKE_CASE_ , download_mode=SCREAMING_SNAKE_CASE_ , verification_mode=SCREAMING_SNAKE_CASE_ , base_path=SCREAMING_SNAKE_CASE_ , num_proc=self.num_proc , )
__lowerCamelCase : List[str] = self.builder.as_dataset(
split=self.split , verification_mode=SCREAMING_SNAKE_CASE_ , in_memory=self.keep_in_memory )
return dataset
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> Tuple:
__lowerCamelCase : Tuple = dataset
__lowerCamelCase : List[Any] = path_or_buf
__lowerCamelCase : Tuple = batch_size or get_writer_batch_size(dataset.features )
__lowerCamelCase : Any = parquet_writer_kwargs
def lowercase_ ( self ) -> int:
__lowerCamelCase : Union[str, Any] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with open(self.path_or_buf , 'wb+' ) as buffer:
__lowerCamelCase : Union[str, Any] = self._write(file_obj=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , **self.parquet_writer_kwargs )
else:
__lowerCamelCase : Optional[int] = self._write(file_obj=self.path_or_buf , batch_size=SCREAMING_SNAKE_CASE_ , **self.parquet_writer_kwargs )
return written
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> int:
__lowerCamelCase : List[Any] = 0
__lowerCamelCase : Optional[int] = parquet_writer_kwargs.pop('path_or_buf' , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = self.dataset.features.arrow_schema
__lowerCamelCase : Any = pq.ParquetWriter(SCREAMING_SNAKE_CASE_ , schema=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
for offset in logging.tqdm(
range(0 , len(self.dataset ) , SCREAMING_SNAKE_CASE_ ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating parquet from Arrow format' , ):
__lowerCamelCase : Optional[Any] = query_table(
table=self.dataset._data , key=slice(SCREAMING_SNAKE_CASE_ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(SCREAMING_SNAKE_CASE_ )
written += batch.nbytes
writer.close()
return written
| 13 |
'''simple docstring'''
from __future__ import annotations
A__ : int = 10
def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] ) -> list[int]:
__lowerCamelCase : List[Any] = 1
__lowerCamelCase : Any = max(UpperCAmelCase_ )
while placement <= max_digit:
# declare and initialize empty buckets
__lowerCamelCase : list[list] = [[] for _ in range(UpperCAmelCase_ )]
# split list_of_ints between the buckets
for i in list_of_ints:
__lowerCamelCase : List[Any] = int((i / placement) % RADIX )
buckets[tmp].append(UpperCAmelCase_ )
# put each buckets' contents into list_of_ints
__lowerCamelCase : Tuple = 0
for b in range(UpperCAmelCase_ ):
for i in buckets[b]:
__lowerCamelCase : List[Any] = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 | 1 |
'''simple docstring'''
import math
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(UpperCAmelCase_ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00_01 ) -> int:
try:
__lowerCamelCase : List[str] = int(UpperCAmelCase_ )
except (TypeError, ValueError):
raise TypeError('Parameter nth must be int or castable to int.' ) from None
if nth <= 0:
raise ValueError('Parameter nth must be greater than or equal to one.' )
__lowerCamelCase : list[int] = []
__lowerCamelCase : int = 2
while len(UpperCAmelCase_ ) < nth:
if is_prime(UpperCAmelCase_ ):
primes.append(UpperCAmelCase_ )
num += 1
else:
num += 1
return primes[len(UpperCAmelCase_ ) - 1]
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 |
'''simple docstring'''
from collections import defaultdict
from math import gcd
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_50_00_00 ) -> int:
__lowerCamelCase : defaultdict = defaultdict(UpperCAmelCase_ )
__lowerCamelCase : Any = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , UpperCAmelCase_ , 2 ):
if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) > 1:
continue
__lowerCamelCase : Any = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(UpperCAmelCase_ , limit + 1 , UpperCAmelCase_ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
import argparse
A__ : Optional[Any] = """docs/source/_static/js/custom.js"""
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> int:
with open(UpperCAmelCase_ , encoding='utf-8' , newline='\n' ) as f:
__lowerCamelCase : Dict = f.readlines()
__lowerCamelCase : Tuple = 0
# First let's put the right version
while not lines[index].startswith('const stableVersion =' ):
index += 1
__lowerCamelCase : Dict = F'const stableVersion = "v{version}"\n'
# Then update the dictionary
while not lines[index].startswith('const versionMapping = {' ):
index += 1
# We go until the end
while not lines[index].startswith('}' ):
index += 1
# We add the new version at the end
lines[index - 1] += F' "v{version}": "v{version}",\n'
with open(UpperCAmelCase_ , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(UpperCAmelCase_ )
if __name__ == "__main__":
A__ : str = argparse.ArgumentParser()
parser.add_argument("""--version""", help="""Release version.""")
A__ : Any = parser.parse_args()
update_custom_js(args.version)
| 13 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
A__ : str = logging.get_logger(__name__)
A__ : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
A__ : Tuple = {
"""vocab_file""": {
"""junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""",
"""junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""",
"""junnyu/roformer_chinese_char_small""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt"""
),
"""junnyu/roformer_chinese_char_base""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt"""
),
"""junnyu/roformer_small_discriminator""": (
"""https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt"""
),
"""junnyu/roformer_small_generator""": (
"""https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt"""
),
}
}
A__ : str = {
"""junnyu/roformer_chinese_small""": 1536,
"""junnyu/roformer_chinese_base""": 1536,
"""junnyu/roformer_chinese_char_small""": 512,
"""junnyu/roformer_chinese_char_base""": 512,
"""junnyu/roformer_small_discriminator""": 128,
"""junnyu/roformer_small_generator""": 128,
}
A__ : Tuple = {
"""junnyu/roformer_chinese_small""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_base""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True},
"""junnyu/roformer_small_discriminator""": {"""do_lower_case""": True},
"""junnyu/roformer_small_generator""": {"""do_lower_case""": True},
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES
lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION
lowerCamelCase : Dict = RoFormerTokenizer
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]:
super().__init__(
SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
__lowerCamelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case
or pre_tok_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents
):
__lowerCamelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) )
__lowerCamelCase : Union[str, Any] = do_lower_case
__lowerCamelCase : str = strip_accents
__lowerCamelCase : Optional[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = do_lower_case
def __getstate__( self ) -> List[str]:
__lowerCamelCase : Union[str, Any] = self.__dict__.copy()
__lowerCamelCase : Dict = BertPreTokenizer()
return state
def __setstate__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = d
__lowerCamelCase : List[Any] = self.__dict__['_tokenizer'].get_vocab()
__lowerCamelCase : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(SCREAMING_SNAKE_CASE_ ) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str:
__lowerCamelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
__lowerCamelCase : List[str] = [self.sep_token_id]
__lowerCamelCase : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]:
__lowerCamelCase : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ )
return tuple(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Any:
__lowerCamelCase : Tuple = BertPreTokenizer()
return super().save_pretrained(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 13 | 1 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = 10_00 ) -> int:
__lowerCamelCase : Union[str, Any] = 1
__lowerCamelCase : Optional[Any] = 0
for divide_by_number in range(UpperCAmelCase_ , digit + 1 ):
__lowerCamelCase : list[int] = []
__lowerCamelCase : List[str] = numerator
for _ in range(1 , digit + 1 ):
if now_divide in has_been_divided:
if longest_list_length < len(UpperCAmelCase_ ):
__lowerCamelCase : str = len(UpperCAmelCase_ )
__lowerCamelCase : Optional[int] = divide_by_number
else:
has_been_divided.append(UpperCAmelCase_ )
__lowerCamelCase : Optional[int] = now_divide * 10 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
A__ : int = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
A__ : Dict = TaTokenizerFast
A__ : Dict = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Any = [
"""MT5EncoderModel""",
"""MT5ForConditionalGeneration""",
"""MT5ForQuestionAnswering""",
"""MT5Model""",
"""MT5PreTrainedModel""",
"""MT5Stack""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : str = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : str = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
A__ : Union[str, Any] = _LazyModule(
__name__,
globals()["""__file__"""],
_import_structure,
extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast},
module_spec=__spec__,
)
| 13 | 1 |
'''simple docstring'''
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
@slow
@require_torch
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : List[Any] = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' )
__lowerCamelCase : Tuple = BertTokenizer.from_pretrained('bert-base-uncased' )
__lowerCamelCase : Optional[int] = bertabert.config.encoder.vocab_size
__lowerCamelCase : Any = tokenizer.sep_token_id
__lowerCamelCase : List[Any] = tokenizer.cls_token_id
__lowerCamelCase : List[str] = 1_28
__lowerCamelCase : Dict = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' )
__lowerCamelCase : str = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' )
__lowerCamelCase : Dict = train_dataset.select(range(32 ) )
__lowerCamelCase : str = val_dataset.select(range(16 ) )
__lowerCamelCase : Any = 4
def _map_to_encoder_decoder_inputs(SCREAMING_SNAKE_CASE_ ):
# Tokenizer will automatically set [BOS] <text> [EOS]
__lowerCamelCase : int = tokenizer(batch['article'] , padding='max_length' , truncation=SCREAMING_SNAKE_CASE_ , max_length=5_12 )
__lowerCamelCase : List[Any] = tokenizer(batch['highlights'] , padding='max_length' , truncation=SCREAMING_SNAKE_CASE_ , max_length=1_28 )
__lowerCamelCase : str = inputs.input_ids
__lowerCamelCase : List[str] = inputs.attention_mask
__lowerCamelCase : Optional[Any] = outputs.input_ids
__lowerCamelCase : Dict = outputs.input_ids.copy()
__lowerCamelCase : Tuple = [
[-1_00 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels']
]
__lowerCamelCase : Union[str, Any] = outputs.attention_mask
assert all(len(SCREAMING_SNAKE_CASE_ ) == 5_12 for x in inputs.input_ids )
assert all(len(SCREAMING_SNAKE_CASE_ ) == 1_28 for x in outputs.input_ids )
return batch
def _compute_metrics(SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Tuple = pred.label_ids
__lowerCamelCase : Optional[Any] = pred.predictions
# all unnecessary tokens are removed
__lowerCamelCase : List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = sum([int(pred_str[i] == label_str[i] ) for i in range(len(SCREAMING_SNAKE_CASE_ ) )] ) / len(SCREAMING_SNAKE_CASE_ )
return {"accuracy": accuracy}
# map train dataset
__lowerCamelCase : List[Any] = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , remove_columns=['article', 'highlights'] , )
train_dataset.set_format(
type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , )
# same for validation dataset
__lowerCamelCase : List[Any] = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , remove_columns=['article', 'highlights'] , )
val_dataset.set_format(
type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , )
__lowerCamelCase : int = self.get_auto_remove_tmp_dir()
__lowerCamelCase : Dict = SeqaSeqTrainingArguments(
output_dir=SCREAMING_SNAKE_CASE_ , per_device_train_batch_size=SCREAMING_SNAKE_CASE_ , per_device_eval_batch_size=SCREAMING_SNAKE_CASE_ , predict_with_generate=SCREAMING_SNAKE_CASE_ , evaluation_strategy='steps' , do_train=SCREAMING_SNAKE_CASE_ , do_eval=SCREAMING_SNAKE_CASE_ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
__lowerCamelCase : Any = SeqaSeqTrainer(
model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , compute_metrics=_compute_metrics , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , )
# start training
trainer.train()
| 13 |
'''simple docstring'''
import re
from typing import Callable, List, Optional, Union
import tensorflow as tf
try:
from tensorflow.keras.optimizers.legacy import Adam
except ImportError:
from tensorflow.keras.optimizers import Adam
class UpperCAmelCase_ (tf.keras.optimizers.schedules.LearningRateSchedule ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = None , ) -> Any:
super().__init__()
__lowerCamelCase : Optional[Any] = initial_learning_rate
__lowerCamelCase : Optional[Any] = warmup_steps
__lowerCamelCase : Union[str, Any] = power
__lowerCamelCase : Optional[int] = decay_schedule_fn
__lowerCamelCase : Any = name
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str:
with tf.name_scope(self.name or 'WarmUp' ) as name:
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
__lowerCamelCase : str = tf.cast(SCREAMING_SNAKE_CASE_ , tf.floataa )
__lowerCamelCase : Optional[int] = tf.cast(self.warmup_steps , tf.floataa )
__lowerCamelCase : List[Any] = global_step_float / warmup_steps_float
__lowerCamelCase : Optional[Any] = self.initial_learning_rate * tf.math.pow(SCREAMING_SNAKE_CASE_ , self.power )
return tf.cond(
global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=SCREAMING_SNAKE_CASE_ , )
def lowercase_ ( self ) -> Optional[Any]:
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_schedule_fn": self.decay_schedule_fn,
"warmup_steps": self.warmup_steps,
"power": self.power,
"name": self.name,
}
def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 0.9 , UpperCAmelCase_ : float = 0.999 , UpperCAmelCase_ : float = 1e-8 , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : Optional[List[str]] = None , ) -> int:
__lowerCamelCase : int = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=UpperCAmelCase_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCAmelCase_ , )
if num_warmup_steps:
__lowerCamelCase : str = WarmUp(
initial_learning_rate=UpperCAmelCase_ , decay_schedule_fn=UpperCAmelCase_ , warmup_steps=UpperCAmelCase_ , )
if weight_decay_rate > 0.0:
__lowerCamelCase : List[Any] = AdamWeightDecay(
learning_rate=UpperCAmelCase_ , weight_decay_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=UpperCAmelCase_ , )
else:
__lowerCamelCase : Tuple = tf.keras.optimizers.Adam(
learning_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , )
# We return the optimizer and the LR scheduler in order to better track the
# evolution of the LR independently of the optimizer.
return optimizer, lr_schedule
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ = 0.0_0_1 , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = 0.9_9_9 , SCREAMING_SNAKE_CASE_ = 1E-7 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "AdamWeightDecay" , **SCREAMING_SNAKE_CASE_ , ) -> int:
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = weight_decay_rate
__lowerCamelCase : str = include_in_weight_decay
__lowerCamelCase : List[Any] = exclude_from_weight_decay
@classmethod
def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> Dict:
__lowerCamelCase : Any = {'WarmUp': WarmUp}
return super(SCREAMING_SNAKE_CASE_ , cls ).from_config(SCREAMING_SNAKE_CASE_ , custom_objects=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
super(SCREAMING_SNAKE_CASE_ , self )._prepare_local(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tf.constant(
self.weight_decay_rate , name='adam_weight_decay_rate' )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
__lowerCamelCase : Tuple = self._do_use_weight_decay(var.name )
if do_decay:
return var.assign_sub(
learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , )
return tf.no_op()
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase , __lowerCamelCase : Optional[Any] = list(zip(*SCREAMING_SNAKE_CASE_ ) )
return super(SCREAMING_SNAKE_CASE_ , self ).apply_gradients(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , name=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str:
if apply_state is None:
return self._decayed_lr_t[var_dtype], {}
__lowerCamelCase : Optional[int] = apply_state or {}
__lowerCamelCase : Dict = apply_state.get((var_device, var_dtype) )
if coefficients is None:
__lowerCamelCase : List[Any] = self._fallback_apply_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = coefficients
return coefficients["lr_t"], {"apply_state": apply_state}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str:
__lowerCamelCase , __lowerCamelCase : Dict = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
with tf.control_dependencies([decay] ):
return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_dense(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Union[str, Any]:
__lowerCamelCase , __lowerCamelCase : Tuple = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
with tf.control_dependencies([decay] ):
return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_sparse(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : Any = super().get_config()
config.update({'weight_decay_rate': self.weight_decay_rate} )
return config
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict:
if self.weight_decay_rate == 0:
return False
if self._include_in_weight_decay:
for r in self._include_in_weight_decay:
if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None:
return True
if self._exclude_from_weight_decay:
for r in self._exclude_from_weight_decay:
if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None:
return False
return True
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self ) -> Tuple:
__lowerCamelCase : Tuple = []
__lowerCamelCase : Optional[Any] = None
@property
def lowercase_ ( self ) -> List[str]:
if self._accum_steps is None:
__lowerCamelCase : Tuple = tf.Variable(
tf.constant(0 , dtype=tf.intaa ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
return self._accum_steps.value()
@property
def lowercase_ ( self ) -> List[str]:
if not self._gradients:
raise ValueError('The accumulator should be called first to initialize the gradients' )
return [gradient.value() if gradient is not None else gradient for gradient in self._gradients]
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str:
if not self._gradients:
__lowerCamelCase : List[str] = self.step # Create the step variable.
self._gradients.extend(
[
tf.Variable(
tf.zeros_like(SCREAMING_SNAKE_CASE_ ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
if gradient is not None
else gradient
for gradient in gradients
] )
if len(SCREAMING_SNAKE_CASE_ ) != len(self._gradients ):
raise ValueError(f'Expected {len(self._gradients )} gradients, but got {len(SCREAMING_SNAKE_CASE_ )}' )
for accum_gradient, gradient in zip(self._gradients , SCREAMING_SNAKE_CASE_ ):
if accum_gradient is not None and gradient is not None:
accum_gradient.assign_add(SCREAMING_SNAKE_CASE_ )
self._accum_steps.assign_add(1 )
def lowercase_ ( self ) -> int:
if not self._gradients:
return
self._accum_steps.assign(0 )
for gradient in self._gradients:
if gradient is not None:
gradient.assign(tf.zeros_like(SCREAMING_SNAKE_CASE_ ) )
| 13 | 1 |
'''simple docstring'''
import os
import time
import pytest
from datasets.utils.filelock import FileLock, Timeout
def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple ) -> int:
__lowerCamelCase : Dict = FileLock(str(tmpdir / 'foo.lock' ) )
__lowerCamelCase : Optional[Any] = FileLock(str(tmpdir / 'foo.lock' ) )
__lowerCamelCase : Optional[int] = 0.01
with locka.acquire():
with pytest.raises(UpperCAmelCase_ ):
__lowerCamelCase : List[str] = time.time()
locka.acquire(UpperCAmelCase_ )
assert time.time() - _start > timeout
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] ) -> Dict:
__lowerCamelCase : List[Any] = 'a' * 10_00 + '.lock'
__lowerCamelCase : Optional[Any] = FileLock(str(tmpdir / filename ) )
assert locka._lock_file.endswith('.lock' )
assert not locka._lock_file.endswith(UpperCAmelCase_ )
assert len(os.path.basename(locka._lock_file ) ) <= 2_55
__lowerCamelCase : Tuple = FileLock(tmpdir / filename )
with locka.acquire():
with pytest.raises(UpperCAmelCase_ ):
locka.acquire(0 )
| 13 |
'''simple docstring'''
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=[1, 2, 1] , SCREAMING_SNAKE_CASE_=[2, 2, 4] , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=["stage1", "stage2", "stage3"] , SCREAMING_SNAKE_CASE_=[1, 2, 3] , ) -> Any:
__lowerCamelCase : Optional[Any] = parent
__lowerCamelCase : int = batch_size
__lowerCamelCase : Optional[int] = image_size
__lowerCamelCase : Optional[int] = patch_size
__lowerCamelCase : Optional[Any] = num_channels
__lowerCamelCase : Dict = embed_dim
__lowerCamelCase : List[Any] = depths
__lowerCamelCase : int = num_heads
__lowerCamelCase : Optional[Any] = window_size
__lowerCamelCase : Optional[Any] = mlp_ratio
__lowerCamelCase : List[str] = qkv_bias
__lowerCamelCase : List[str] = hidden_dropout_prob
__lowerCamelCase : int = attention_probs_dropout_prob
__lowerCamelCase : List[Any] = drop_path_rate
__lowerCamelCase : Any = hidden_act
__lowerCamelCase : Union[str, Any] = use_absolute_embeddings
__lowerCamelCase : Any = patch_norm
__lowerCamelCase : Optional[Any] = layer_norm_eps
__lowerCamelCase : str = initializer_range
__lowerCamelCase : Dict = is_training
__lowerCamelCase : Optional[Any] = scope
__lowerCamelCase : Dict = use_labels
__lowerCamelCase : List[str] = type_sequence_label_size
__lowerCamelCase : Dict = encoder_stride
__lowerCamelCase : Union[str, Any] = out_features
__lowerCamelCase : str = out_indices
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowerCamelCase : List[str] = None
if self.use_labels:
__lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowerCamelCase : List[str] = self.get_config()
return config, pixel_values, labels
def lowercase_ ( self ) -> Optional[int]:
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
__lowerCamelCase : Dict = MaskFormerSwinModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__lowerCamelCase : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
__lowerCamelCase : Tuple = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , [16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : str = ['stem']
__lowerCamelCase : Optional[Any] = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : Optional[int] = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = config_and_inputs
__lowerCamelCase : Optional[int] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : List[Any] = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase : int = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {}
lowerCamelCase : int = False
lowerCamelCase : int = False
lowerCamelCase : str = False
lowerCamelCase : int = False
lowerCamelCase : Union[str, Any] = False
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : Optional[Any] = MaskFormerSwinModelTester(self )
__lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
'`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with'
' `nn.DataParallel`'
) )
def lowercase_ ( self ) -> int:
pass
def lowercase_ ( self ) -> Union[str, Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase_ ( self ) -> Tuple:
return
def lowercase_ ( self ) -> Dict:
__lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ )
@unittest.skip('Swin does not use inputs_embeds' )
def lowercase_ ( self ) -> Optional[int]:
pass
@unittest.skip('Swin does not support feedforward chunking' )
def lowercase_ ( self ) -> Dict:
pass
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__lowerCamelCase : Optional[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase , __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase : str = [*signature.parameters.keys()]
__lowerCamelCase : Any = ['pixel_values']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ )
@unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' )
def lowercase_ ( self ) -> Any:
pass
@unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' )
def lowercase_ ( self ) -> List[Any]:
pass
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
with torch.no_grad():
__lowerCamelCase : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
__lowerCamelCase : int = outputs.hidden_states
__lowerCamelCase : Tuple = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
# Swin has a different seq_length
__lowerCamelCase : Optional[Any] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase : List[Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
__lowerCamelCase : Dict = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowerCamelCase : Optional[int] = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase : Union[str, Any] = 3
__lowerCamelCase : Dict = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__lowerCamelCase : str = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__lowerCamelCase : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__lowerCamelCase : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
__lowerCamelCase : str = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowerCamelCase : Tuple = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) )
@unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' )
def lowercase_ ( self ) -> Optional[Any]:
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def lowercase_ ( self ) -> Any:
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def lowercase_ ( self ) -> Union[str, Any]:
pass
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Any = 0
return t
def check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_={} ):
with torch.no_grad():
__lowerCamelCase : Optional[int] = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).to_tuple()
def recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if isinstance(SCREAMING_SNAKE_CASE_ , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values() ):
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , atol=1E-5 ) , msg=(
'Tuple and dict output are not equal. Difference:'
f' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:'
f' {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}. Dict has'
f' `nan`: {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}.'
) , )
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
for model_class in self.all_model_classes:
__lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} )
__lowerCamelCase : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} )
@require_torch
class UpperCAmelCase_ (unittest.TestCase , _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else ()
lowerCamelCase : List[str] = MaskFormerSwinConfig
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : List[str] = MaskFormerSwinModelTester(self )
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase : Any = inputs_dict['pixel_values'].shape[0]
for backbone_class in self.all_model_classes:
__lowerCamelCase : Optional[Any] = backbone_class(SCREAMING_SNAKE_CASE_ )
backbone.to(SCREAMING_SNAKE_CASE_ )
backbone.eval()
__lowerCamelCase : int = backbone(**SCREAMING_SNAKE_CASE_ )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , SCREAMING_SNAKE_CASE_ )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
__lowerCamelCase : Union[str, Any] = backbone(**SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
__lowerCamelCase : Optional[int] = backbone(**SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(outputs.attentions )
| 13 | 1 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class UpperCAmelCase_ (metaclass=_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Optional[int] = ['note_seq']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> str:
requires_backends(self , ['note_seq'] )
@classmethod
def lowercase_ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
requires_backends(cls , ['note_seq'] )
@classmethod
def lowercase_ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
requires_backends(cls , ['note_seq'] )
| 13 |
'''simple docstring'''
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
A__ : Dict = [
"""python""",
"""tqdm""",
"""regex""",
"""requests""",
"""packaging""",
"""filelock""",
"""numpy""",
"""tokenizers""",
"""huggingface-hub""",
"""safetensors""",
"""accelerate""",
"""pyyaml""",
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''')
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=None ) -> List[Any]:
require_version(deps[pkg] , UpperCAmelCase_ )
| 13 | 1 |
'''simple docstring'''
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import (
AutoProcessor,
BertTokenizerFast,
BlipImageProcessor,
GPTaTokenizer,
InstructBlipProcessor,
PreTrainedTokenizerFast,
)
@require_vision
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : Any = tempfile.mkdtemp()
__lowerCamelCase : Dict = BlipImageProcessor()
__lowerCamelCase : Tuple = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' )
__lowerCamelCase : List[Any] = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' )
__lowerCamelCase : Any = InstructBlipProcessor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
processor.save_pretrained(self.tmpdirname )
def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ).tokenizer
def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Tuple:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ).image_processor
def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Dict:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ).qformer_tokenizer
def lowercase_ ( self ) -> List[Any]:
shutil.rmtree(self.tmpdirname )
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : Optional[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowerCamelCase : Union[str, Any] = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowercase_ ( self ) -> str:
__lowerCamelCase : int = InstructBlipProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , )
processor.save_pretrained(self.tmpdirname )
__lowerCamelCase : Optional[int] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
__lowerCamelCase : Optional[Any] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 )
__lowerCamelCase : Any = InstructBlipProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(processor.qformer_tokenizer , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : int = self.get_image_processor()
__lowerCamelCase : Optional[int] = self.get_tokenizer()
__lowerCamelCase : Any = self.get_qformer_tokenizer()
__lowerCamelCase : Optional[int] = InstructBlipProcessor(
tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = self.prepare_image_inputs()
__lowerCamelCase : Optional[int] = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' )
__lowerCamelCase : Optional[Any] = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowercase_ ( self ) -> int:
__lowerCamelCase : List[str] = self.get_image_processor()
__lowerCamelCase : Optional[Any] = self.get_tokenizer()
__lowerCamelCase : List[Any] = self.get_qformer_tokenizer()
__lowerCamelCase : Union[str, Any] = InstructBlipProcessor(
tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[str] = 'lower newer'
__lowerCamelCase : str = processor(text=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = tokenizer(SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = qformer_tokenizer(SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ )
for key in encoded_tokens.keys():
self.assertListEqual(encoded_tokens[key] , encoded_processor[key] )
for key in encoded_tokens_qformer.keys():
self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['qformer_' + key] )
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : Dict = self.get_image_processor()
__lowerCamelCase : Optional[Any] = self.get_tokenizer()
__lowerCamelCase : int = self.get_qformer_tokenizer()
__lowerCamelCase : Optional[int] = InstructBlipProcessor(
tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = 'lower newer'
__lowerCamelCase : Dict = self.prepare_image_inputs()
__lowerCamelCase : List[Any] = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE_ ):
processor()
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : Tuple = self.get_image_processor()
__lowerCamelCase : int = self.get_tokenizer()
__lowerCamelCase : List[str] = self.get_qformer_tokenizer()
__lowerCamelCase : str = InstructBlipProcessor(
tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCamelCase : Any = processor.batch_decode(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> str:
__lowerCamelCase : Union[str, Any] = self.get_image_processor()
__lowerCamelCase : str = self.get_tokenizer()
__lowerCamelCase : int = self.get_qformer_tokenizer()
__lowerCamelCase : Union[str, Any] = InstructBlipProcessor(
tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = 'lower newer'
__lowerCamelCase : Optional[int] = self.prepare_image_inputs()
__lowerCamelCase : str = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
| 13 |
'''simple docstring'''
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import platform
import sys
A__ : List[str] = """3"""
print("""Python version:""", sys.version)
print("""OS platform:""", platform.platform())
print("""OS architecture:""", platform.machine())
try:
import torch
print("""Torch version:""", torch.__version__)
print("""Cuda available:""", torch.cuda.is_available())
print("""Cuda version:""", torch.version.cuda)
print("""CuDNN version:""", torch.backends.cudnn.version())
print("""Number of GPUs available:""", torch.cuda.device_count())
except ImportError:
print("""Torch version:""", None)
try:
import transformers
print("""transformers version:""", transformers.__version__)
except ImportError:
print("""transformers version:""", None)
| 13 | 1 |
'''simple docstring'''
A__ : dict[str, float] = {
"km/h": 1.0,
"m/s": 3.6,
"mph": 1.6_0_9_3_4_4,
"knot": 1.8_5_2,
}
A__ : dict[str, float] = {
"km/h": 1.0,
"m/s": 0.2_7_7_7_7_7_7_7_8,
"mph": 0.6_2_1_3_7_1_1_9_2,
"knot": 0.5_3_9_9_5_6_8_0_3,
}
def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> float:
if unit_to not in speed_chart or unit_from not in speed_chart_inverse:
__lowerCamelCase : Union[str, Any] = (
F'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n'
F'Valid values are: {", ".join(UpperCAmelCase_ )}'
)
raise ValueError(UpperCAmelCase_ )
return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
from collections import namedtuple
import requests
from lxml import html # type: ignore
A__ : Tuple = namedtuple("""covid_data""", """cases deaths recovered""")
def UpperCAmelCase__ ( UpperCAmelCase_ : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data:
__lowerCamelCase : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()'
return covid_data(*html.fromstring(requests.get(UpperCAmelCase_ ).content ).xpath(UpperCAmelCase_ ) )
A__ : str = """Total COVID-19 cases in the world: {}
Total deaths due to COVID-19 in the world: {}
Total COVID-19 patients recovered in the world: {}"""
print(fmt.format(*covid_stats()))
| 13 | 1 |
'''simple docstring'''
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
A__ : Optional[int] = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : bool = field(default=_UpperCAmelCase , metadata={'help': 'Whether to use SortishSampler or not.'} )
lowerCamelCase : bool = field(
default=_UpperCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} )
lowerCamelCase : Optional[int] = field(
default=_UpperCAmelCase , metadata={
'help': (
'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default '
'to the `max_length` value of the model configuration.'
)
} , )
lowerCamelCase : Optional[int] = field(
default=_UpperCAmelCase , metadata={
'help': (
'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default '
'to the `num_beams` value of the model configuration.'
)
} , )
lowerCamelCase : Optional[Union[str, Path, GenerationConfig]] = field(
default=_UpperCAmelCase , metadata={
'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.'
} , )
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : int = super().to_dict()
for k, v in d.items():
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Union[str, Any] = v.to_dict()
return d
| 13 |
'''simple docstring'''
from __future__ import annotations
import os
from collections.abc import Mapping
A__ : Optional[Any] = tuple[int, int]
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
__lowerCamelCase : set[int] = vertices
__lowerCamelCase : dict[EdgeT, int] = {
(min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ )): weight for edge, weight in edges.items()
}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
__lowerCamelCase : Union[str, Any] = weight
def lowercase_ ( self ) -> Graph:
__lowerCamelCase : Graph = Graph({min(self.vertices )} , {} )
__lowerCamelCase : EdgeT
__lowerCamelCase : int
__lowerCamelCase : EdgeT
__lowerCamelCase : int
while len(subgraph.vertices ) < len(self.vertices ):
__lowerCamelCase : Any = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
__lowerCamelCase : Optional[int] = edge
__lowerCamelCase : List[str] = weight
subgraph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return subgraph
def UpperCAmelCase__ ( UpperCAmelCase_ : str = "p107_network.txt" ) -> int:
__lowerCamelCase : str = os.path.abspath(os.path.dirname(UpperCAmelCase_ ) )
__lowerCamelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : dict[EdgeT, int] = {}
__lowerCamelCase : list[str]
__lowerCamelCase : int
__lowerCamelCase : int
with open(UpperCAmelCase_ ) as f:
__lowerCamelCase : Any = f.read().strip().split('\n' )
__lowerCamelCase : Any = [line.split(',' ) for line in data]
for edgea in range(1 , len(UpperCAmelCase_ ) ):
for edgea in range(UpperCAmelCase_ ):
if adjaceny_matrix[edgea][edgea] != "-":
__lowerCamelCase : int = int(adjaceny_matrix[edgea][edgea] )
__lowerCamelCase : Graph = Graph(set(range(len(UpperCAmelCase_ ) ) ) , UpperCAmelCase_ )
__lowerCamelCase : Graph = graph.prims_algorithm()
__lowerCamelCase : int = sum(graph.edges.values() )
__lowerCamelCase : int = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import (
SPIECE_UNDERLINE,
AddedToken,
BatchEncoding,
NllbTokenizer,
NllbTokenizerFast,
is_torch_available,
)
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
A__ : Union[str, Any] = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_torch_available():
from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right
A__ : str = 256047
A__ : int = 256145
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : List[Any] = NllbTokenizer
lowerCamelCase : Optional[int] = NllbTokenizerFast
lowerCamelCase : List[Any] = True
lowerCamelCase : Dict = True
lowerCamelCase : int = {}
def lowercase_ ( self ) -> str:
super().setUp()
# We have a SentencePiece fixture for testing
__lowerCamelCase : Union[str, Any] = NllbTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : str = NllbTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = tokenizer.tokenize('This is a test' )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
__lowerCamelCase : Dict = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
__lowerCamelCase : int = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
__lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : Union[str, Any] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
__lowerCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = tempfile.mkdtemp()
__lowerCamelCase : Any = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
__lowerCamelCase : List[str] = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f )
self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Checks everything loads correctly in the same way
__lowerCamelCase : Tuple = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE_ )
# Save tokenizer rust, legacy_format=True
__lowerCamelCase : Any = tempfile.mkdtemp()
__lowerCamelCase : int = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ )
# Checks it save with the same files
self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Checks everything loads correctly in the same way
__lowerCamelCase : Optional[Any] = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE_ )
# Save tokenizer rust, legacy_format=False
__lowerCamelCase : Any = tempfile.mkdtemp()
__lowerCamelCase : int = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__lowerCamelCase : str = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE_ )
@require_torch
def lowercase_ ( self ) -> Optional[int]:
if not self.test_seqaseq:
return
__lowerCamelCase : Optional[int] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'{tokenizer.__class__.__name__}' ):
# Longer text that will definitely require truncation.
__lowerCamelCase : Union[str, Any] = [
' UN Chief Says There Is No Military Solution in Syria',
' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for'
' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons'
' will only worsen the violence and misery for millions of people.',
]
__lowerCamelCase : List[str] = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al'
' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi'
' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.',
]
try:
__lowerCamelCase : Optional[Any] = tokenizer.prepare_seqaseq_batch(
src_texts=SCREAMING_SNAKE_CASE_ , tgt_texts=SCREAMING_SNAKE_CASE_ , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , )
except NotImplementedError:
return
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.labels.shape[1] , 10 )
# max_target_length will default to max_length if not specified
__lowerCamelCase : int = tokenizer.prepare_seqaseq_batch(
SCREAMING_SNAKE_CASE_ , tgt_texts=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors='pt' )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.labels.shape[1] , 3 )
__lowerCamelCase : List[str] = tokenizer.prepare_seqaseq_batch(
src_texts=SCREAMING_SNAKE_CASE_ , max_length=3 , max_target_length=10 , return_tensors='pt' )
self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 )
self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 )
self.assertNotIn('decoder_input_ids' , SCREAMING_SNAKE_CASE_ )
@unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' )
def lowercase_ ( self ) -> Optional[Any]:
pass
def lowercase_ ( self ) -> Tuple:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
__lowerCamelCase : Dict = [AddedToken('<special>' , lstrip=SCREAMING_SNAKE_CASE_ )]
__lowerCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(
SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = tokenizer_r.encode('Hey this is a <special> token' )
__lowerCamelCase : Union[str, Any] = tokenizer_r.encode('<special>' , add_special_tokens=SCREAMING_SNAKE_CASE_ )[0]
self.assertTrue(special_token_id in r_output )
if self.test_slow_tokenizer:
__lowerCamelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(
SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
__lowerCamelCase : Dict = self.tokenizer_class.from_pretrained(
SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = tokenizer_p.encode('Hey this is a <special> token' )
__lowerCamelCase : Union[str, Any] = tokenizer_cr.encode('Hey this is a <special> token' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertTrue(special_token_id in p_output )
self.assertTrue(special_token_id in cr_output )
@require_torch
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Optional[int] = 'facebook/nllb-200-distilled-600M'
lowerCamelCase : List[str] = [
' UN Chief Says There Is No Military Solution in Syria',
' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.',
]
lowerCamelCase : List[str] = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'
' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.',
]
lowerCamelCase : Tuple = [
2_5_6_0_4_7,
1_6_2_9_7,
1_3_4_4_0_8,
8_1_6_5,
2_4_8_0_6_6,
1_4_7_3_4,
9_5_0,
1_1_3_5,
1_0_5_7_2_1,
3_5_7_3,
8_3,
2_7_3_5_2,
1_0_8,
4_9_4_8_6,
2,
]
@classmethod
def lowercase_ ( cls ) -> Union[str, Any]:
__lowerCamelCase : NllbTokenizer = NllbTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' )
__lowerCamelCase : Dict = 1
return cls
def lowercase_ ( self ) -> List[Any]:
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 25_60_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 25_60_02 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 25_60_57 )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : Optional[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> List[Any]:
self.assertIn(SCREAMING_SNAKE_CASE_ , self.tokenizer.all_special_ids )
# fmt: off
__lowerCamelCase : List[Any] = [RO_CODE, 42_54, 9_80_68, 11_29_23, 3_90_72, 39_09, 7_13, 10_27_67, 26, 1_73_14, 3_56_42, 1_46_83, 3_31_18, 20_22, 6_69_87, 2, 25_60_47]
# fmt: on
__lowerCamelCase : Optional[int] = self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> int:
__lowerCamelCase : Tuple = ['this is gunna be a long sentence ' * 20]
assert isinstance(src_text[0] , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = 10
__lowerCamelCase : List[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ ).input_ids[0]
self.assertEqual(ids[-1] , 2 )
self.assertEqual(ids[0] , SCREAMING_SNAKE_CASE_ )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Union[str, Any]:
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_62_03, 3] )
def lowercase_ ( self ) -> str:
__lowerCamelCase : Dict = tempfile.mkdtemp()
__lowerCamelCase : List[Any] = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = NllbTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , SCREAMING_SNAKE_CASE_ )
@require_torch
def lowercase_ ( self ) -> Any:
__lowerCamelCase : Tuple = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , )
__lowerCamelCase : Dict = shift_tokens_right(
batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] )
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual((2, 15) , batch.input_ids.shape )
self.assertEqual((2, 15) , batch.attention_mask.shape )
__lowerCamelCase : List[Any] = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , batch.decoder_input_ids[0, 0] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def lowercase_ ( self ) -> Dict:
__lowerCamelCase : int = self.tokenizer(self.src_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors='pt' )
__lowerCamelCase : Tuple = self.tokenizer(
text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=10 , return_tensors='pt' )
__lowerCamelCase : Optional[int] = targets['input_ids']
__lowerCamelCase : List[Any] = shift_tokens_right(
SCREAMING_SNAKE_CASE_ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : Tuple = self.tokenizer._build_translation_inputs(
'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE_ ) , {
# A, test, EOS, en_XX
'input_ids': [[25_60_47, 70, 73_56, 2]],
'attention_mask': [[1, 1, 1, 1]],
# ar_AR
'forced_bos_token_id': 25_60_57,
} , )
@require_torch
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : List[Any] = True
__lowerCamelCase : Any = self.tokenizer(
'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' )
self.assertEqual(
inputs.input_ids , [1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2, 25_60_47] )
__lowerCamelCase : List[Any] = False
__lowerCamelCase : Union[str, Any] = self.tokenizer(
'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' )
self.assertEqual(
inputs.input_ids , [25_60_47, 1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2] )
| 13 |
'''simple docstring'''
from collections.abc import Generator
from math import sin
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
if len(UpperCAmelCase_ ) != 32:
raise ValueError('Input must be of length 32' )
__lowerCamelCase : Dict = B''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bytes:
if i < 0:
raise ValueError('Input must be non-negative' )
__lowerCamelCase : Union[str, Any] = format(UpperCAmelCase_ , '08x' )[-8:]
__lowerCamelCase : str = B''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' )
return little_endian_hex
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
__lowerCamelCase : Optional[Any] = B''
for char in message:
bit_string += format(UpperCAmelCase_ , '08b' ).encode('utf-8' )
__lowerCamelCase : List[str] = format(len(UpperCAmelCase_ ) , '064b' ).encode('utf-8' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(UpperCAmelCase_ ) % 5_12 != 4_48:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> Generator[list[int], None, None]:
if len(UpperCAmelCase_ ) % 5_12 != 0:
raise ValueError('Input must have length that\'s a multiple of 512' )
for pos in range(0 , len(UpperCAmelCase_ ) , 5_12 ):
__lowerCamelCase : Any = bit_string[pos : pos + 5_12]
__lowerCamelCase : Optional[int] = []
for i in range(0 , 5_12 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int:
if i < 0:
raise ValueError('Input must be non-negative' )
__lowerCamelCase : List[Any] = format(UpperCAmelCase_ , '032b' )
__lowerCamelCase : Optional[int] = ''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(UpperCAmelCase_ , 2 )
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
return (a + b) % 2**32
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
if i < 0:
raise ValueError('Input must be non-negative' )
if shift < 0:
raise ValueError('Shift must be non-negative' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
__lowerCamelCase : Optional[Any] = preprocess(UpperCAmelCase_ )
__lowerCamelCase : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
__lowerCamelCase : Dict = 0x67_45_23_01
__lowerCamelCase : Union[str, Any] = 0xef_cd_ab_89
__lowerCamelCase : Optional[Any] = 0x98_ba_dc_fe
__lowerCamelCase : Union[str, Any] = 0x10_32_54_76
__lowerCamelCase : List[str] = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(UpperCAmelCase_ ):
__lowerCamelCase : Dict = aa
__lowerCamelCase : Tuple = ba
__lowerCamelCase : List[Any] = ca
__lowerCamelCase : Dict = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
__lowerCamelCase : List[str] = d ^ (b & (c ^ d))
__lowerCamelCase : Optional[int] = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
__lowerCamelCase : Optional[int] = c ^ (d & (b ^ c))
__lowerCamelCase : Tuple = (5 * i + 1) % 16
elif i <= 47:
__lowerCamelCase : str = b ^ c ^ d
__lowerCamelCase : Any = (3 * i + 5) % 16
else:
__lowerCamelCase : Union[str, Any] = c ^ (b | not_aa(UpperCAmelCase_ ))
__lowerCamelCase : int = (7 * i) % 16
__lowerCamelCase : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**32
__lowerCamelCase : Optional[Any] = d
__lowerCamelCase : Tuple = c
__lowerCamelCase : Optional[int] = b
__lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , left_rotate_aa(UpperCAmelCase_ , shift_amounts[i] ) )
# Add hashed chunk to running total
__lowerCamelCase : int = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : str = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : List[Any] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : Dict = reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 | 1 |
'''simple docstring'''
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple=False ) -> Union[str, Any]:
__lowerCamelCase : Union[str, Any] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'module.blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((F'module.blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append(
(F'module.blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append((F'module.blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((F'module.blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((F'module.blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append((F'module.blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((F'module.blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((F'module.blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((F'module.blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') )
# projection layer + position embeddings
rename_keys.extend(
[
('module.cls_token', 'vit.embeddings.cls_token'),
('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'),
('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'),
('module.pos_embed', 'vit.embeddings.position_embeddings'),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('module.norm.weight', 'layernorm.weight'),
('module.norm.bias', 'layernorm.bias'),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
__lowerCamelCase : Optional[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
('norm.weight', 'vit.layernorm.weight'),
('norm.bias', 'vit.layernorm.bias'),
('head.weight', 'classifier.weight'),
('head.bias', 'classifier.bias'),
] )
return rename_keys
def UpperCAmelCase__ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any]=False ) -> Optional[int]:
for i in range(config.num_hidden_layers ):
if base_model:
__lowerCamelCase : List[str] = ''
else:
__lowerCamelCase : List[Any] = 'vit.'
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
__lowerCamelCase : Optional[Any] = state_dict.pop(F'module.blocks.{i}.attn.qkv.weight' )
__lowerCamelCase : Optional[Any] = state_dict.pop(F'module.blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
__lowerCamelCase : List[Any] = in_proj_weight[
: config.hidden_size, :
]
__lowerCamelCase : Dict = in_proj_bias[: config.hidden_size]
__lowerCamelCase : str = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
__lowerCamelCase : Any = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
__lowerCamelCase : List[str] = in_proj_weight[
-config.hidden_size :, :
]
__lowerCamelCase : Dict = in_proj_bias[-config.hidden_size :]
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] ) -> List[str]:
__lowerCamelCase : Any = ['head.weight', 'head.bias']
for k in ignore_keys:
state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ )
def UpperCAmelCase__ ( UpperCAmelCase_ : Any ) -> Tuple:
# projection head is used in the self-supervised pre-training in MSN,
# for downstream task it's not needed.
__lowerCamelCase : List[Any] = [
'module.fc.fc1.weight',
'module.fc.fc1.bias',
'module.fc.bn1.weight',
'module.fc.bn1.bias',
'module.fc.bn1.running_mean',
'module.fc.bn1.running_var',
'module.fc.bn1.num_batches_tracked',
'module.fc.fc2.weight',
'module.fc.fc2.bias',
'module.fc.bn2.weight',
'module.fc.bn2.bias',
'module.fc.bn2.running_mean',
'module.fc.bn2.running_var',
'module.fc.bn2.num_batches_tracked',
'module.fc.fc3.weight',
'module.fc.fc3.bias',
]
for k in ignore_keys:
state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ )
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int ) -> str:
__lowerCamelCase : Any = dct.pop(UpperCAmelCase_ )
__lowerCamelCase : Optional[int] = val
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] ) -> str:
__lowerCamelCase : Dict = ViTMSNConfig()
__lowerCamelCase : Dict = 10_00
__lowerCamelCase : Optional[Any] = 'datasets/huggingface/label-files'
__lowerCamelCase : Tuple = 'imagenet-1k-id2label.json'
__lowerCamelCase : List[str] = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ ) , 'r' ) )
__lowerCamelCase : Tuple = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()}
__lowerCamelCase : Any = idalabel
__lowerCamelCase : str = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
__lowerCamelCase : Union[str, Any] = 3_84
__lowerCamelCase : Tuple = 15_36
__lowerCamelCase : int = 6
elif "l16" in checkpoint_url:
__lowerCamelCase : Any = 10_24
__lowerCamelCase : int = 40_96
__lowerCamelCase : int = 24
__lowerCamelCase : Any = 16
__lowerCamelCase : List[str] = 0.1
elif "b4" in checkpoint_url:
__lowerCamelCase : Union[str, Any] = 4
elif "l7" in checkpoint_url:
__lowerCamelCase : str = 7
__lowerCamelCase : Union[str, Any] = 10_24
__lowerCamelCase : List[Any] = 40_96
__lowerCamelCase : Union[str, Any] = 24
__lowerCamelCase : Optional[Any] = 16
__lowerCamelCase : Optional[Any] = 0.1
__lowerCamelCase : Optional[Any] = ViTMSNModel(UpperCAmelCase_ )
__lowerCamelCase : int = torch.hub.load_state_dict_from_url(UpperCAmelCase_ , map_location='cpu' )['target_encoder']
__lowerCamelCase : List[Any] = ViTImageProcessor(size=config.image_size )
remove_projection_head(UpperCAmelCase_ )
__lowerCamelCase : List[Any] = create_rename_keys(UpperCAmelCase_ , base_model=UpperCAmelCase_ )
for src, dest in rename_keys:
rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
read_in_q_k_v(UpperCAmelCase_ , UpperCAmelCase_ , base_model=UpperCAmelCase_ )
model.load_state_dict(UpperCAmelCase_ )
model.eval()
__lowerCamelCase : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__lowerCamelCase : Optional[Any] = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw )
__lowerCamelCase : str = ViTImageProcessor(
size=config.image_size , image_mean=UpperCAmelCase_ , image_std=UpperCAmelCase_ )
__lowerCamelCase : Tuple = image_processor(images=UpperCAmelCase_ , return_tensors='pt' )
# forward pass
torch.manual_seed(2 )
__lowerCamelCase : int = model(**UpperCAmelCase_ )
__lowerCamelCase : Optional[int] = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
__lowerCamelCase : Optional[Any] = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] )
elif "b16" in checkpoint_url:
__lowerCamelCase : List[Any] = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] )
elif "l16" in checkpoint_url:
__lowerCamelCase : str = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] )
elif "b4" in checkpoint_url:
__lowerCamelCase : int = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] )
else:
__lowerCamelCase : Dict = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCAmelCase_ , atol=1e-4 )
print(F'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(UpperCAmelCase_ )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(UpperCAmelCase_ )
if __name__ == "__main__":
A__ : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar""",
type=str,
help="""URL of the checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
A__ : int = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 13 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : Tuple = logging.get_logger(__name__)
A__ : Dict = {
"""RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""",
"""RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""",
"""RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""",
"""RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""",
"""RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""",
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : List[Any] = 'rwkv'
lowerCamelCase : Any = {'max_position_embeddings': 'context_length'}
def __init__( self , SCREAMING_SNAKE_CASE_=5_02_77 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = vocab_size
__lowerCamelCase : Tuple = context_length
__lowerCamelCase : str = hidden_size
__lowerCamelCase : List[str] = num_hidden_layers
__lowerCamelCase : Any = attention_hidden_size if attention_hidden_size is not None else hidden_size
__lowerCamelCase : Optional[int] = intermediate_size if intermediate_size is not None else 4 * hidden_size
__lowerCamelCase : Optional[Any] = layer_norm_epsilon
__lowerCamelCase : int = rescale_every
__lowerCamelCase : Tuple = use_cache
__lowerCamelCase : int = bos_token_id
__lowerCamelCase : Optional[Any] = eos_token_id
super().__init__(
tie_word_embeddings=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 13 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
A__ : int = {"""configuration_speech_encoder_decoder""": ["""SpeechEncoderDecoderConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : int = ["""SpeechEncoderDecoderModel"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Dict = ["""FlaxSpeechEncoderDecoderModel"""]
if TYPE_CHECKING:
from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
else:
import sys
A__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 13 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 10_00 ) -> int:
__lowerCamelCase : Union[str, Any] = 3
__lowerCamelCase : Dict = 0
while a < n:
if a % 3 == 0 or a % 5 == 0:
result += a
elif a % 15 == 0:
result -= a
a += 1
return result
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
import os
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers.models.realm.configuration_realm import RealmConfig
from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever
from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : Union[str, Any] = tempfile.mkdtemp()
__lowerCamelCase : Optional[Any] = 5
# Realm tok
__lowerCamelCase : List[str] = [
'[UNK]',
'[CLS]',
'[SEP]',
'[PAD]',
'[MASK]',
'test',
'question',
'this',
'is',
'the',
'first',
'second',
'third',
'fourth',
'fifth',
'record',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
__lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , 'realm_tokenizer' )
os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = os.path.join(SCREAMING_SNAKE_CASE_ , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
__lowerCamelCase : str = os.path.join(self.tmpdirname , 'realm_block_records' )
os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> RealmTokenizer:
return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'realm_tokenizer' ) )
def lowercase_ ( self ) -> Optional[int]:
shutil.rmtree(self.tmpdirname )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : List[str] = RealmConfig(num_block_records=self.num_block_records )
return config
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : Optional[Any] = Dataset.from_dict(
{
'id': ['0', '1'],
'question': ['foo', 'bar'],
'answers': [['Foo', 'Bar'], ['Bar']],
} )
return dataset
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : Optional[int] = np.array(
[
B'This is the first record',
B'This is the second record',
B'This is the third record',
B'This is the fourth record',
B'This is the fifth record',
B'This is a longer longer longer record',
] , dtype=SCREAMING_SNAKE_CASE_ , )
return block_records
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : Any = RealmRetriever(
block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , )
return retriever
def lowercase_ ( self ) -> str:
__lowerCamelCase : Union[str, Any] = self.get_config()
__lowerCamelCase : int = self.get_dummy_retriever()
__lowerCamelCase : Any = retriever.tokenizer
__lowerCamelCase : List[str] = np.array([0, 3] , dtype='long' )
__lowerCamelCase : Union[str, Any] = tokenizer(['Test question'] ).input_ids
__lowerCamelCase : Optional[Any] = tokenizer(
['the fourth'] , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , ).input_ids
__lowerCamelCase : int = config.reader_seq_len
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Tuple = retriever(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , answer_ids=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors='np' )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 )
self.assertEqual(concat_inputs.input_ids.shape , (2, 10) )
self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) )
self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) )
self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'first', 'record', '[SEP]'] , )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'fourth', 'record', '[SEP]'] , )
def lowercase_ ( self ) -> Dict:
__lowerCamelCase : Optional[Any] = self.get_config()
__lowerCamelCase : Any = self.get_dummy_retriever()
__lowerCamelCase : Optional[int] = retriever.tokenizer
__lowerCamelCase : Any = np.array([0, 3, 5] , dtype='long' )
__lowerCamelCase : Optional[Any] = tokenizer(['Test question'] ).input_ids
__lowerCamelCase : List[str] = tokenizer(
['the fourth', 'longer longer'] , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , ).input_ids
__lowerCamelCase : Union[str, Any] = config.reader_seq_len
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = retriever(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , answer_ids=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors='np' )
self.assertEqual([False, True, True] , SCREAMING_SNAKE_CASE_ )
self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , SCREAMING_SNAKE_CASE_ )
self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : int = self.get_dummy_retriever()
retriever.save_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) )
# Test local path
__lowerCamelCase : List[Any] = retriever.from_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) )
self.assertEqual(retriever.block_records[0] , B'This is the first record' )
# Test mocked remote path
with patch('transformers.models.realm.retrieval_realm.hf_hub_download' ) as mock_hf_hub_download:
__lowerCamelCase : Union[str, Any] = os.path.join(
os.path.join(self.tmpdirname , 'realm_block_records' ) , _REALM_BLOCK_RECORDS_FILENAME )
__lowerCamelCase : str = RealmRetriever.from_pretrained('google/realm-cc-news-pretrained-openqa' )
self.assertEqual(retriever.block_records[0] , B'This is the first record' )
| 13 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Dict = XGLMConfig
lowerCamelCase : List[str] = {}
lowerCamelCase : Union[str, Any] = 'gelu'
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Any:
__lowerCamelCase : int = parent
__lowerCamelCase : Optional[int] = batch_size
__lowerCamelCase : Optional[Any] = seq_length
__lowerCamelCase : Optional[int] = is_training
__lowerCamelCase : str = use_input_mask
__lowerCamelCase : Dict = use_labels
__lowerCamelCase : Union[str, Any] = vocab_size
__lowerCamelCase : List[Any] = d_model
__lowerCamelCase : List[Any] = num_hidden_layers
__lowerCamelCase : List[Any] = num_attention_heads
__lowerCamelCase : Optional[Any] = ffn_dim
__lowerCamelCase : List[Any] = activation_function
__lowerCamelCase : List[Any] = activation_dropout
__lowerCamelCase : List[Any] = attention_dropout
__lowerCamelCase : Union[str, Any] = max_position_embeddings
__lowerCamelCase : Tuple = initializer_range
__lowerCamelCase : int = None
__lowerCamelCase : int = 0
__lowerCamelCase : Tuple = 2
__lowerCamelCase : Tuple = 1
def lowercase_ ( self ) -> Any:
return XGLMConfig.from_pretrained('facebook/xglm-564M' )
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : Optional[Any] = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
__lowerCamelCase : Optional[int] = None
if self.use_input_mask:
__lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCamelCase : str = self.get_config()
__lowerCamelCase : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def lowercase_ ( self ) -> Optional[int]:
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=SCREAMING_SNAKE_CASE_ , )
def lowercase_ ( self ) -> str:
__lowerCamelCase : List[Any] = self.prepare_config_and_inputs()
(
(
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) ,
) : str = config_and_inputs
__lowerCamelCase : Union[str, Any] = {
'input_ids': input_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_tf
class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
lowerCamelCase : List[Any] = (TFXGLMForCausalLM,) if is_tf_available() else ()
lowerCamelCase : Any = (
{'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {}
)
lowerCamelCase : List[Any] = False
lowerCamelCase : Dict = False
lowerCamelCase : Union[str, Any] = False
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : str = TFXGLMModelTester(self )
__lowerCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , n_embd=37 )
def lowercase_ ( self ) -> Dict:
self.config_tester.run_common_tests()
@slow
def lowercase_ ( self ) -> Optional[int]:
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCamelCase : Optional[Any] = TFXGLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' )
def lowercase_ ( self ) -> Any:
super().test_resize_token_embeddings()
@require_tf
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
@slow
def lowercase_ ( self , SCREAMING_SNAKE_CASE_=True ) -> List[str]:
__lowerCamelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : int = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
__lowerCamelCase : Optional[int] = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81]
# fmt: on
__lowerCamelCase : Any = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE_ )
@slow
def lowercase_ ( self ) -> int:
__lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
tf.random.set_seed(0 )
__lowerCamelCase : List[Any] = tokenizer('Today is a nice day and' , return_tensors='tf' )
__lowerCamelCase : int = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(':/CPU:0' ):
__lowerCamelCase : Tuple = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , seed=[7, 0] )
__lowerCamelCase : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = (
'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due'
)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@slow
def lowercase_ ( self ) -> int:
__lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : Any = 'left'
# use different length sentences to test batching
__lowerCamelCase : Any = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When',
'Hello, my dog is a little',
]
__lowerCamelCase : Any = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='tf' , padding=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = inputs['input_ids']
__lowerCamelCase : str = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 )
__lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids
__lowerCamelCase : int = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 )
__lowerCamelCase : Optional[Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids
__lowerCamelCase : Optional[Any] = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 )
__lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be '
'a single',
'Hello, my dog is a little bit of a shy one, but he is very friendly',
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [non_padded_sentence, padded_sentence] )
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=2 , ) -> List[str]:
__lowerCamelCase : Optional[int] = parent
__lowerCamelCase : str = batch_size
__lowerCamelCase : List[Any] = image_size
__lowerCamelCase : Any = patch_size
__lowerCamelCase : Tuple = num_channels
__lowerCamelCase : Dict = is_training
__lowerCamelCase : List[str] = use_labels
__lowerCamelCase : Optional[Any] = hidden_size
__lowerCamelCase : int = num_hidden_layers
__lowerCamelCase : int = num_attention_heads
__lowerCamelCase : str = intermediate_size
__lowerCamelCase : Optional[int] = hidden_act
__lowerCamelCase : List[str] = hidden_dropout_prob
__lowerCamelCase : Tuple = attention_probs_dropout_prob
__lowerCamelCase : Optional[Any] = type_sequence_label_size
__lowerCamelCase : List[str] = initializer_range
__lowerCamelCase : Union[str, Any] = scope
__lowerCamelCase : Union[str, Any] = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
__lowerCamelCase : List[Any] = (image_size // patch_size) ** 2
__lowerCamelCase : Optional[int] = num_patches + 2
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowerCamelCase : List[Any] = None
if self.use_labels:
__lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowerCamelCase : Dict = self.get_config()
return config, pixel_values, labels
def lowercase_ ( self ) -> Tuple:
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str:
__lowerCamelCase : Union[str, Any] = TFDeiTModel(config=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase : Tuple = TFDeiTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__lowerCamelCase : List[str] = 1
__lowerCamelCase : List[Any] = TFDeiTForMaskedImageModeling(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any:
__lowerCamelCase : Dict = self.type_sequence_label_size
__lowerCamelCase : Optional[Any] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__lowerCamelCase : Tuple = 1
__lowerCamelCase : List[Any] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__lowerCamelCase : str = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = config_and_inputs
__lowerCamelCase : Union[str, Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Any = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
lowerCamelCase : List[str] = (
{
'feature-extraction': TFDeiTModel,
'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
lowerCamelCase : Optional[int] = False
lowerCamelCase : List[Any] = False
lowerCamelCase : List[str] = False
lowerCamelCase : Any = False
def lowercase_ ( self ) -> str:
__lowerCamelCase : Any = TFDeiTModelTester(self )
__lowerCamelCase : Any = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 )
def lowercase_ ( self ) -> List[Any]:
self.config_tester.run_common_tests()
@unittest.skip(reason='DeiT does not use inputs_embeds' )
def lowercase_ ( self ) -> Union[str, Any]:
pass
def lowercase_ ( self ) -> int:
__lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : Any = model_class(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
__lowerCamelCase : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , tf.keras.layers.Dense ) )
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase , __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase : Tuple = [*signature.parameters.keys()]
__lowerCamelCase : Optional[int] = ['pixel_values']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Dict:
__lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> Dict:
__lowerCamelCase : Optional[int] = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def lowercase_ ( self ) -> Dict:
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCamelCase : Tuple = TFDeiTModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
def UpperCAmelCase__ ( ) -> Optional[int]:
__lowerCamelCase : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
@cached_property
def lowercase_ ( self ) -> str:
return (
DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' )
if is_vision_available()
else None
)
@slow
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' )
__lowerCamelCase : Union[str, Any] = self.default_image_processor
__lowerCamelCase : Dict = prepare_img()
__lowerCamelCase : Dict = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='tf' )
# forward pass
__lowerCamelCase : Dict = model(**SCREAMING_SNAKE_CASE_ )
# verify the logits
__lowerCamelCase : Union[str, Any] = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[str] = tf.constant([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
| 13 |
'''simple docstring'''
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : List[str] = logging.get_logger(__name__)
# TODO Update this
A__ : Tuple = {
"""facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""",
# See all ESM models at https://huggingface.co/models?filter=esm
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Tuple = 'esm'
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10_26 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]:
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , mask_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = vocab_size
__lowerCamelCase : List[Any] = hidden_size
__lowerCamelCase : str = num_hidden_layers
__lowerCamelCase : List[str] = num_attention_heads
__lowerCamelCase : Any = intermediate_size
__lowerCamelCase : Optional[Any] = hidden_dropout_prob
__lowerCamelCase : Tuple = attention_probs_dropout_prob
__lowerCamelCase : Optional[int] = max_position_embeddings
__lowerCamelCase : str = initializer_range
__lowerCamelCase : Optional[int] = layer_norm_eps
__lowerCamelCase : List[str] = position_embedding_type
__lowerCamelCase : int = use_cache
__lowerCamelCase : Optional[Any] = emb_layer_norm_before
__lowerCamelCase : Optional[Any] = token_dropout
__lowerCamelCase : str = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info('No esmfold_config supplied for folding model, using default values.' )
__lowerCamelCase : Dict = EsmFoldConfig()
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Optional[int] = EsmFoldConfig(**SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = esmfold_config
if vocab_list is None:
logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' )
__lowerCamelCase : List[str] = get_default_vocab_list()
else:
__lowerCamelCase : Optional[Any] = vocab_list
else:
__lowerCamelCase : Dict = None
__lowerCamelCase : Optional[Any] = None
if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , SCREAMING_SNAKE_CASE_ ):
raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : Any = super().to_dict()
if isinstance(self.esmfold_config , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : int = self.esmfold_config.to_dict()
return output
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : str = None
lowerCamelCase : bool = True
lowerCamelCase : bool = False
lowerCamelCase : bool = False
lowerCamelCase : bool = False
lowerCamelCase : float = 0
lowerCamelCase : bool = True
lowerCamelCase : bool = False
lowerCamelCase : int = 1_2_8
lowerCamelCase : "TrunkConfig" = None
def lowercase_ ( self ) -> Any:
if self.trunk is None:
__lowerCamelCase : List[str] = TrunkConfig()
elif isinstance(self.trunk , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Any = TrunkConfig(**self.trunk )
def lowercase_ ( self ) -> int:
__lowerCamelCase : Optional[int] = asdict(self )
__lowerCamelCase : str = self.trunk.to_dict()
return output
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : int = 4_8
lowerCamelCase : int = 1_0_2_4
lowerCamelCase : int = 1_2_8
lowerCamelCase : int = 3_2
lowerCamelCase : int = 3_2
lowerCamelCase : int = 3_2
lowerCamelCase : float = 0
lowerCamelCase : float = 0
lowerCamelCase : bool = False
lowerCamelCase : int = 4
lowerCamelCase : Optional[int] = 1_2_8
lowerCamelCase : "StructureModuleConfig" = None
def lowercase_ ( self ) -> Optional[int]:
if self.structure_module is None:
__lowerCamelCase : Dict = StructureModuleConfig()
elif isinstance(self.structure_module , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Optional[Any] = StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
'`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got'
f' {self.sequence_state_dim} and {self.sequence_state_dim}.' )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
'`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got'
f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' )
__lowerCamelCase : Tuple = self.sequence_state_dim // self.sequence_head_width
__lowerCamelCase : str = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
'`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got'
f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
'`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got'
f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' )
if self.dropout >= 0.4:
raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' )
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : List[str] = asdict(self )
__lowerCamelCase : int = self.structure_module.to_dict()
return output
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : int = 3_8_4
lowerCamelCase : int = 1_2_8
lowerCamelCase : int = 1_6
lowerCamelCase : int = 1_2_8
lowerCamelCase : int = 1_2
lowerCamelCase : int = 4
lowerCamelCase : int = 8
lowerCamelCase : float = 0.1
lowerCamelCase : int = 8
lowerCamelCase : int = 1
lowerCamelCase : int = 2
lowerCamelCase : int = 7
lowerCamelCase : int = 1_0
lowerCamelCase : float = 1e-8
lowerCamelCase : float = 1e5
def lowercase_ ( self ) -> Any:
return asdict(self )
def UpperCAmelCase__ ( ) -> Optional[Any]:
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 13 | 1 |
'''simple docstring'''
import argparse
import json
import os
import re
import torch
from transformers import BloomConfig, BloomModel
from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME
from transformers.utils import logging
logging.set_verbosity_info()
A__ : Union[str, Any] = [
"""word_embeddings_layernorm.weight""",
"""word_embeddings_layernorm.bias""",
"""input_layernorm.weight""",
"""input_layernorm.bias""",
"""post_attention_layernorm.weight""",
"""post_attention_layernorm.bias""",
"""self_attention.dense.bias""",
"""mlp.dense_4h_to_h.bias""",
"""ln_f.weight""",
"""ln_f.bias""",
]
A__ : Tuple = [
"""mlp.dense_4h_to_h.weight""",
"""self_attention.dense.weight""",
]
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ) -> Dict:
__lowerCamelCase : Optional[Any] = {
'word_embeddings.weight': 'word_embeddings.weight',
'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight',
'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias',
'weight': 'ln_f.weight',
'bias': 'ln_f.bias',
}
if key in layer_rename_map:
return layer_rename_map[key]
# Handle transformer blocks
__lowerCamelCase : Optional[int] = int(re.match(R'.*layer_(\d*).*' , UpperCAmelCase_ )[1] )
layer_number -= 3
return F'h.{layer_number}.' + key
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] ) -> int:
if dtype == torch.bool:
return 1 / 8
__lowerCamelCase : Optional[Any] = re.search(R'[^\d](\d+)$' , str(UpperCAmelCase_ ) )
if bit_search is None:
raise ValueError(F'`dtype` is not a valid dtype: {dtype}.' )
__lowerCamelCase : List[str] = int(bit_search.groups()[0] )
return bit_size // 8
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] ) -> Dict:
# Construct model
if bloom_config_file == "":
__lowerCamelCase : Union[str, Any] = BloomConfig()
else:
__lowerCamelCase : List[str] = BloomConfig.from_json_file(UpperCAmelCase_ )
if shard_model:
__lowerCamelCase : Dict = os.listdir(UpperCAmelCase_ )
__lowerCamelCase : Union[str, Any] = sorted(filter(lambda UpperCAmelCase_ : s.startswith('layer' ) and "model_00" in s , UpperCAmelCase_ ) )
__lowerCamelCase : Any = {'weight_map': {}, 'metadata': {}}
__lowerCamelCase : int = 0
__lowerCamelCase : int = None
__lowerCamelCase : Dict = BloomConfig()
for j, file in enumerate(UpperCAmelCase_ ):
print('Processing file: {}'.format(UpperCAmelCase_ ) )
__lowerCamelCase : Optional[Any] = None
for i in range(UpperCAmelCase_ ):
# load all TP files
__lowerCamelCase : Optional[int] = file.replace('model_00' , F'model_0{i}' )
__lowerCamelCase : Any = torch.load(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , map_location='cpu' )
# Rename keys in the transformers names
__lowerCamelCase : Dict = list(temp.keys() )
for key in keys:
__lowerCamelCase : Optional[Any] = temp.pop(UpperCAmelCase_ )
if tensors is None:
__lowerCamelCase : List[str] = temp
else:
for key in tensors.keys():
if any(key.endswith(UpperCAmelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
tensors[key] += temp[key]
else:
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
__lowerCamelCase : Tuple = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0
# We concatenate these weights accross TP ranks
__lowerCamelCase : str = torch.cat([tensors[key], temp[key]] , dim=UpperCAmelCase_ )
# Divide by the number of TP the weights we want to average
for key in tensors.keys():
if any(key.endswith(UpperCAmelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
__lowerCamelCase : List[str] = tensors[key] / pretraining_tp
torch.save(
UpperCAmelCase_ , os.path.join(
UpperCAmelCase_ , 'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ) , str(len(UpperCAmelCase_ ) ).zfill(5 ) ) , ) , )
for key in tensors.keys():
__lowerCamelCase : Tuple = tensors[key]
total_size += value.numel() * get_dtype_size(value.dtype )
if key not in index_dict["weight_map"]:
__lowerCamelCase : str = 'pytorch_model_{}-of-{}.bin'.format(
str(j + 1 ).zfill(5 ) , str(len(UpperCAmelCase_ ) ).zfill(5 ) )
__lowerCamelCase : List[Any] = BloomConfig()
__lowerCamelCase : List[Any] = pytorch_dump_folder_path + '/' + CONFIG_NAME
__lowerCamelCase : str = total_size
with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as f:
f.write(config.to_json_string() )
with open(os.path.join(UpperCAmelCase_ , WEIGHTS_NAME + '.index.json' ) , 'w' , encoding='utf-8' ) as f:
__lowerCamelCase : Tuple = json.dumps(UpperCAmelCase_ , indent=2 , sort_keys=UpperCAmelCase_ ) + '\n'
f.write(UpperCAmelCase_ )
else:
__lowerCamelCase : str = BloomModel(UpperCAmelCase_ )
__lowerCamelCase : List[Any] = os.listdir(UpperCAmelCase_ )
__lowerCamelCase : Tuple = sorted(filter(lambda UpperCAmelCase_ : s.startswith('layer' ) and "model_00" in s , UpperCAmelCase_ ) )
__lowerCamelCase : List[str] = None
for i, file in enumerate(UpperCAmelCase_ ):
__lowerCamelCase : Union[str, Any] = None
for i in range(UpperCAmelCase_ ):
# load all TP files
__lowerCamelCase : Optional[Any] = file.replace('model_00' , F'model_0{i}' )
__lowerCamelCase : List[str] = torch.load(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , map_location='cpu' )
# Rename keys in the transformers names
__lowerCamelCase : List[Any] = list(temp.keys() )
for key in keys:
__lowerCamelCase : int = temp.pop(UpperCAmelCase_ )
if tensors is None:
__lowerCamelCase : List[str] = temp
else:
for key in tensors.keys():
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
if any(key.endswith(UpperCAmelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
tensors[key] += temp[key]
else:
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
__lowerCamelCase : Any = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0
# We concatenate these weights accross TP ranks
__lowerCamelCase : int = torch.cat([tensors[key], temp[key]] , dim=UpperCAmelCase_ )
# Divide by the number of TP the weights we want to average
for key in tensors.keys():
if any(key.endswith(UpperCAmelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
__lowerCamelCase : Union[str, Any] = tensors[key] / pretraining_tp
__lowerCamelCase : int = model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ )
assert not other_keys.unexpected_keys, F'The keys {other_keys.unexpected_keys} are unexpected'
if missing_keys is None:
__lowerCamelCase : str = set(other_keys.missing_keys )
else:
__lowerCamelCase : int = missing_keys.intersection(set(other_keys.missing_keys ) )
assert not missing_keys, F'The keys {missing_keys} are missing'
# Save pytorch-model
os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ )
__lowerCamelCase : Optional[int] = pytorch_dump_folder_path + '/' + WEIGHTS_NAME
__lowerCamelCase : List[str] = pytorch_dump_folder_path + '/' + CONFIG_NAME
print(F'Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}' )
if config.torch_dtype is not None:
__lowerCamelCase : Dict = model.to(config.torch_dtype )
torch.save(model.state_dict() , UpperCAmelCase_ )
print(F'Save configuration file to {pytorch_config_dump_path}' )
with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
A__ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--bloom_checkpoint_path""",
default=None,
type=str,
required=True,
help="""Path to the Megatron-LM checkpoint path.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--bloom_config_file""",
default="""""",
type=str,
help=(
"""An optional config json file corresponding to the pre-trained model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--shard_model""",
action="""store_true""",
help="""An optional setting to shard the output model \nThis enables sharding the converted checkpoint""",
)
parser.add_argument(
"""--pretraining_tp""",
default=4,
type=int,
help="""Pretraining TP rank that has been used when training the model in Megatron-LM \n""",
)
A__ : List[str] = parser.parse_args()
convert_bloom_checkpoint_to_pytorch(
args.bloom_checkpoint_path,
args.bloom_config_file,
args.pytorch_dump_folder_path,
args.shard_model,
args.pretraining_tp,
)
| 13 |
'''simple docstring'''
A__ : dict[tuple[int, int, int], int] = {}
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
# if we are absent twice, or late 3 consecutive days,
# no further prize strings are possible
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
__lowerCamelCase : List[Any] = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
__lowerCamelCase : Tuple = _calculate(days - 1 , UpperCAmelCase_ , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
__lowerCamelCase : int = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
__lowerCamelCase : List[Any] = _calculate(days - 1 , UpperCAmelCase_ , 0 )
__lowerCamelCase : Optional[int] = state_late + state_absent + state_ontime
__lowerCamelCase : Union[str, Any] = prizestrings
return prizestrings
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 30 ) -> int:
return _calculate(UpperCAmelCase_ , absent=0 , late=0 )
if __name__ == "__main__":
print(solution())
| 13 | 1 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : list , UpperCAmelCase_ : list , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
if index == number_of_items:
return 0
__lowerCamelCase : List[str] = 0
__lowerCamelCase : List[str] = 0
__lowerCamelCase : Any = knapsack(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , index + 1 )
if weights[index] <= max_weight:
__lowerCamelCase : Tuple = values[index] + knapsack(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , max_weight - weights[index] , index + 1 )
return max(UpperCAmelCase_ , UpperCAmelCase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 |
'''simple docstring'''
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
A__ : Any = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""")
@total_ordering
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : str
lowerCamelCase : Optional[str] = None
lowerCamelCase : Optional[Union[str, int]] = None
lowerCamelCase : Optional[Union[str, int]] = None
lowerCamelCase : Optional[Union[str, int]] = None
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = _str_to_version_tuple(self.version_str )
def __repr__( self ) -> Any:
return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}'
@property
def lowercase_ ( self ) -> int:
return self.major, self.minor, self.patch
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return Version(SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return other
raise TypeError(f'{other} (type {type(SCREAMING_SNAKE_CASE_ )}) cannot be compared to version.' )
def __eq__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
try:
__lowerCamelCase : Union[str, Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
__lowerCamelCase : List[Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ )
return self.tuple < other.tuple
def __hash__( self ) -> List[str]:
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase : str = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def lowercase_ ( self ) -> str:
return self.version_str
def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> str:
__lowerCamelCase : str = _VERSION_REG.match(UpperCAmelCase_ )
if not res:
raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' )
return tuple(int(UpperCAmelCase_ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] )
def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] ) -> Dict:
return ".".join(str(UpperCAmelCase_ ) for v in version_tuple )
| 13 | 1 |
'''simple docstring'''
# Imports
import numpy as np
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) -> str:
self.set_matricies(red=SCREAMING_SNAKE_CASE_ , green=SCREAMING_SNAKE_CASE_ , blue=SCREAMING_SNAKE_CASE_ , red_edge=SCREAMING_SNAKE_CASE_ , nir=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) -> Any:
if red is not None:
__lowerCamelCase : Dict = red
if green is not None:
__lowerCamelCase : List[Any] = green
if blue is not None:
__lowerCamelCase : int = blue
if red_edge is not None:
__lowerCamelCase : Optional[int] = red_edge
if nir is not None:
__lowerCamelCase : Any = nir
return True
def lowercase_ ( self , SCREAMING_SNAKE_CASE_="" , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) -> Optional[Any]:
self.set_matricies(red=SCREAMING_SNAKE_CASE_ , green=SCREAMING_SNAKE_CASE_ , blue=SCREAMING_SNAKE_CASE_ , red_edge=SCREAMING_SNAKE_CASE_ , nir=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = {
'ARVI2': self.arvaa,
'CCCI': self.ccci,
'CVI': self.cvi,
'GLI': self.gli,
'NDVI': self.ndvi,
'BNDVI': self.bndvi,
'redEdgeNDVI': self.red_edge_ndvi,
'GNDVI': self.gndvi,
'GBNDVI': self.gbndvi,
'GRNDVI': self.grndvi,
'RBNDVI': self.rbndvi,
'PNDVI': self.pndvi,
'ATSAVI': self.atsavi,
'BWDRVI': self.bwdrvi,
'CIgreen': self.ci_green,
'CIrededge': self.ci_rededge,
'CI': self.ci,
'CTVI': self.ctvi,
'GDVI': self.gdvi,
'EVI': self.evi,
'GEMI': self.gemi,
'GOSAVI': self.gosavi,
'GSAVI': self.gsavi,
'Hue': self.hue,
'IVI': self.ivi,
'IPVI': self.ipvi,
'I': self.i,
'RVI': self.rvi,
'MRVI': self.mrvi,
'MSAVI': self.m_savi,
'NormG': self.norm_g,
'NormNIR': self.norm_nir,
'NormR': self.norm_r,
'NGRDI': self.ngrdi,
'RI': self.ri,
'S': self.s,
'IF': self._if,
'DVI': self.dvi,
'TVI': self.tvi,
'NDRE': self.ndre,
}
try:
return funcs[index]()
except KeyError:
print('Index not in the list!' )
return False
def lowercase_ ( self ) -> Optional[Any]:
return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red)))
def lowercase_ ( self ) -> Dict:
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def lowercase_ ( self ) -> Any:
return self.nir * (self.red / (self.green**2))
def lowercase_ ( self ) -> Optional[Any]:
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def lowercase_ ( self ) -> Union[str, Any]:
return (self.nir - self.red) / (self.nir + self.red)
def lowercase_ ( self ) -> Optional[int]:
return (self.nir - self.blue) / (self.nir + self.blue)
def lowercase_ ( self ) -> Optional[int]:
return (self.redEdge - self.red) / (self.redEdge + self.red)
def lowercase_ ( self ) -> Any:
return (self.nir - self.green) / (self.nir + self.green)
def lowercase_ ( self ) -> int:
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def lowercase_ ( self ) -> List[Any]:
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def lowercase_ ( self ) -> List[Any]:
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def lowercase_ ( self ) -> str:
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def lowercase_ ( self , SCREAMING_SNAKE_CASE_=0.0_8 , SCREAMING_SNAKE_CASE_=1.2_2 , SCREAMING_SNAKE_CASE_=0.0_3 ) -> str:
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def lowercase_ ( self ) -> Any:
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def lowercase_ ( self ) -> Optional[Any]:
return (self.nir / self.green) - 1
def lowercase_ ( self ) -> Tuple:
return (self.nir / self.redEdge) - 1
def lowercase_ ( self ) -> List[Any]:
return (self.red - self.blue) / self.red
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : Any = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2))
def lowercase_ ( self ) -> List[str]:
return self.nir - self.green
def lowercase_ ( self ) -> Tuple:
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : str = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red)
def lowercase_ ( self , SCREAMING_SNAKE_CASE_=0.1_6 ) -> Tuple:
return (self.nir - self.green) / (self.nir + self.green + y)
def lowercase_ ( self , SCREAMING_SNAKE_CASE_=0.5 ) -> Optional[int]:
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def lowercase_ ( self ) -> str:
return np.arctan(
((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) -> int:
return (self.nir - b) / (a * self.red)
def lowercase_ ( self ) -> Union[str, Any]:
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def lowercase_ ( self ) -> int:
return (self.red + self.green + self.blue) / 3_0.5
def lowercase_ ( self ) -> Optional[int]:
return self.nir / self.red
def lowercase_ ( self ) -> Dict:
return (self.rvi() - 1) / (self.rvi() + 1)
def lowercase_ ( self ) -> Dict:
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def lowercase_ ( self ) -> Optional[int]:
return self.green / (self.nir + self.red + self.green)
def lowercase_ ( self ) -> List[str]:
return self.nir / (self.nir + self.red + self.green)
def lowercase_ ( self ) -> List[str]:
return self.red / (self.nir + self.red + self.green)
def lowercase_ ( self ) -> List[Any]:
return (self.green - self.red) / (self.green + self.red)
def lowercase_ ( self ) -> List[str]:
return (self.red - self.green) / (self.red + self.green)
def lowercase_ ( self ) -> Any:
__lowerCamelCase : Union[str, Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] )
__lowerCamelCase : Optional[Any] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] )
return (max_value - min_value) / max_value
def lowercase_ ( self ) -> Optional[Any]:
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def lowercase_ ( self ) -> Any:
return self.nir / self.red
def lowercase_ ( self ) -> str:
return (self.ndvi() + 0.5) ** (1 / 2)
def lowercase_ ( self ) -> Optional[int]:
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
| 13 |
'''simple docstring'''
import sys
from collections import defaultdict
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self ) -> int:
__lowerCamelCase : Any = []
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Any:
return self.node_position[vertex]
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple:
__lowerCamelCase : Optional[int] = pos
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
__lowerCamelCase : str = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
__lowerCamelCase : Optional[Any] = 2 * start + 1
else:
__lowerCamelCase : int = 2 * start + 2
if heap[smallest_child] < heap[start]:
__lowerCamelCase , __lowerCamelCase : Optional[Any] = heap[smallest_child], positions[smallest_child]
__lowerCamelCase , __lowerCamelCase : int = (
heap[start],
positions[start],
)
__lowerCamelCase , __lowerCamelCase : str = temp, tempa
__lowerCamelCase : Dict = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , SCREAMING_SNAKE_CASE_ )
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any:
__lowerCamelCase : Any = position[index]
while index != 0:
__lowerCamelCase : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
__lowerCamelCase : Union[str, Any] = heap[parent]
__lowerCamelCase : Any = position[parent]
self.set_position(position[parent] , SCREAMING_SNAKE_CASE_ )
else:
__lowerCamelCase : Tuple = val
__lowerCamelCase : List[str] = temp
self.set_position(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
break
__lowerCamelCase : Tuple = parent
else:
__lowerCamelCase : Union[str, Any] = val
__lowerCamelCase : Tuple = temp
self.set_position(SCREAMING_SNAKE_CASE_ , 0 )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
__lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) // 2 - 1
for i in range(SCREAMING_SNAKE_CASE_ , -1 , -1 ):
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
__lowerCamelCase : Any = positions[0]
__lowerCamelCase : Union[str, Any] = sys.maxsize
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
return temp
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> str:
__lowerCamelCase : List[Any] = Heap()
__lowerCamelCase : Optional[int] = [0] * len(UpperCAmelCase_ )
__lowerCamelCase : str = [-1] * len(UpperCAmelCase_ ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
__lowerCamelCase : List[str] = [] # Heap of Distance of vertices from their neighboring vertex
__lowerCamelCase : Tuple = []
for vertex in range(len(UpperCAmelCase_ ) ):
distance_tv.append(sys.maxsize )
positions.append(UpperCAmelCase_ )
heap.node_position.append(UpperCAmelCase_ )
__lowerCamelCase : Tuple = []
__lowerCamelCase : Dict = 1
__lowerCamelCase : str = sys.maxsize
for neighbor, distance in adjacency_list[0]:
__lowerCamelCase : Any = 0
__lowerCamelCase : Any = distance
heap.heapify(UpperCAmelCase_ , UpperCAmelCase_ )
for _ in range(1 , len(UpperCAmelCase_ ) ):
__lowerCamelCase : List[Any] = heap.delete_minimum(UpperCAmelCase_ , UpperCAmelCase_ )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
__lowerCamelCase : Union[str, Any] = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(UpperCAmelCase_ )]
):
__lowerCamelCase : Dict = distance
heap.bottom_to_top(
UpperCAmelCase_ , heap.get_position(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : str = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
A__ : Tuple = int(input("""Enter number of edges: """).strip())
A__ : str = defaultdict(list)
for _ in range(edges_number):
A__ : Optional[int] = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 13 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A__ : List[str] = {"""configuration_sew""": ["""SEW_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SEWConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Any = [
"""SEW_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""SEWForCTC""",
"""SEWForSequenceClassification""",
"""SEWModel""",
"""SEWPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_sew import (
SEW_PRETRAINED_MODEL_ARCHIVE_LIST,
SEWForCTC,
SEWForSequenceClassification,
SEWModel,
SEWPreTrainedModel,
)
else:
import sys
A__ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 13 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00 ) -> int:
__lowerCamelCase : Union[str, Any] = n * (n + 1) * (2 * n + 1) / 6
__lowerCamelCase : Union[str, Any] = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
A__ : Union[str, Any] = logging.get_logger(__name__)
A__ : Union[str, Any] = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS}
def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ) -> Union[str, Any]:
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' )
if tokenizer_name is None:
__lowerCamelCase : List[str] = TOKENIZER_CLASSES
else:
__lowerCamelCase : List[Any] = {tokenizer_name: getattr(UpperCAmelCase_ , tokenizer_name + 'Fast' )}
logger.info(F'Loading tokenizer classes: {tokenizer_names}' )
for tokenizer_name in tokenizer_names:
__lowerCamelCase : Dict = TOKENIZER_CLASSES[tokenizer_name]
__lowerCamelCase : Optional[Any] = True
if checkpoint_name is None:
__lowerCamelCase : Dict = list(tokenizer_class.max_model_input_sizes.keys() )
else:
__lowerCamelCase : int = [checkpoint_name]
logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' )
for checkpoint in checkpoint_names:
logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' )
# Load tokenizer
__lowerCamelCase : Any = tokenizer_class.from_pretrained(UpperCAmelCase_ , force_download=UpperCAmelCase_ )
# Save fast tokenizer
logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' )
# For organization names we create sub-directories
if "/" in checkpoint:
__lowerCamelCase , __lowerCamelCase : Dict = checkpoint.split('/' )
__lowerCamelCase : List[Any] = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ )
elif add_prefix:
__lowerCamelCase : int = checkpoint
__lowerCamelCase : Tuple = dump_path
else:
__lowerCamelCase : List[str] = None
__lowerCamelCase : str = dump_path
logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
__lowerCamelCase : Any = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
__lowerCamelCase : List[Any] = file_path.split(UpperCAmelCase_ )[-1][0]
if next_char == "/":
__lowerCamelCase : Tuple = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : str = None
logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' )
__lowerCamelCase : Union[str, Any] = tokenizer.save_pretrained(
UpperCAmelCase_ , legacy_format=UpperCAmelCase_ , filename_prefix=UpperCAmelCase_ )
logger.info(F'=> File names {file_names}' )
for file_name in file_names:
if not file_name.endswith('tokenizer.json' ):
os.remove(UpperCAmelCase_ )
logger.info(F'=> removing {file_name}' )
if __name__ == "__main__":
A__ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files."""
)
parser.add_argument(
"""--tokenizer_name""",
default=None,
type=str,
help=(
f'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will '''
"""download and convert all the checkpoints from AWS."""
),
)
parser.add_argument(
"""--checkpoint_name""",
default=None,
type=str,
help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""",
)
parser.add_argument(
"""--force_download""",
action="""store_true""",
help="""Re-download checkpoints.""",
)
A__ : List[str] = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 13 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Optional[int]:
__lowerCamelCase : Optional[int] = parent
__lowerCamelCase : Dict = batch_size
__lowerCamelCase : int = image_size
__lowerCamelCase : List[str] = patch_size
__lowerCamelCase : Optional[int] = num_channels
__lowerCamelCase : Any = is_training
__lowerCamelCase : Dict = use_labels
__lowerCamelCase : List[Any] = hidden_size
__lowerCamelCase : List[Any] = num_hidden_layers
__lowerCamelCase : Optional[Any] = num_attention_heads
__lowerCamelCase : Dict = intermediate_size
__lowerCamelCase : Union[str, Any] = hidden_act
__lowerCamelCase : Optional[int] = hidden_dropout_prob
__lowerCamelCase : Tuple = attention_probs_dropout_prob
__lowerCamelCase : str = type_sequence_label_size
__lowerCamelCase : List[str] = initializer_range
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__lowerCamelCase : str = (image_size // patch_size) ** 2
__lowerCamelCase : Optional[int] = num_patches + 1
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowerCamelCase : Optional[int] = ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , )
return config, pixel_values
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
__lowerCamelCase : Union[str, Any] = FlaxViTModel(config=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = model(SCREAMING_SNAKE_CASE_ )
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
__lowerCamelCase : str = (self.image_size, self.image_size)
__lowerCamelCase : str = (self.patch_size, self.patch_size)
__lowerCamelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str:
__lowerCamelCase : Tuple = self.type_sequence_label_size
__lowerCamelCase : Any = FlaxViTForImageClassification(config=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__lowerCamelCase : List[str] = 1
__lowerCamelCase : List[Any] = FlaxViTForImageClassification(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : List[Any] = self.prepare_config_and_inputs()
(
(
__lowerCamelCase
) , (
__lowerCamelCase
) ,
) : int = config_and_inputs
__lowerCamelCase : Union[str, Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_flax
class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : str = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()
def lowercase_ ( self ) -> None:
__lowerCamelCase : str = FlaxViTModelTester(self )
__lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 )
def lowercase_ ( self ) -> List[Any]:
self.config_tester.run_common_tests()
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase : List[str] = [*signature.parameters.keys()]
__lowerCamelCase : Optional[int] = ['pixel_values']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowerCamelCase : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ )
@jax.jit
def model_jitted(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return model(pixel_values=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
with self.subTest('JIT Enabled' ):
__lowerCamelCase : Optional[int] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
__lowerCamelCase : Union[str, Any] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) )
for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowercase_ ( self ) -> List[Any]:
for model_class_name in self.all_model_classes:
__lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained('google/vit-base-patch16-224' )
__lowerCamelCase : Union[str, Any] = model(np.ones((1, 3, 2_24, 2_24) ) )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
| 13 | 1 |
'''simple docstring'''
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
A__ : Any = """src/transformers"""
A__ : Union[str, Any] = """docs/source/en/tasks"""
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ) -> List[str]:
with open(UpperCAmelCase_ , 'r' , encoding='utf-8' , newline='\n' ) as f:
__lowerCamelCase : Optional[int] = f.readlines()
# Find the start prompt.
__lowerCamelCase : str = 0
while not lines[start_index].startswith(UpperCAmelCase_ ):
start_index += 1
start_index += 1
__lowerCamelCase : List[str] = start_index
while not lines[end_index].startswith(UpperCAmelCase_ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
A__ : List[Any] = direct_transformers_import(TRANSFORMERS_PATH)
A__ : int = {
"""asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
"""audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
"""language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
"""image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
"""masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
"""multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
"""object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
"""question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
"""semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
"""sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
"""summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
"""token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
"""translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
"""video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
"""document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
"""monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
A__ : List[Any] = {
"""summarization.md""": ("""nllb""",),
"""translation.md""": ("""nllb""",),
}
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> List[str]:
__lowerCamelCase : Dict = TASK_GUIDE_TO_MODELS[task_guide]
__lowerCamelCase : Tuple = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCAmelCase_ , set() )
__lowerCamelCase : str = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([F'[{name}](../model_doc/{code})' for code, name in model_names.items()] ) + "\n"
def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Dict=False ) -> Any:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = _find_text_in_file(
filename=os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , )
__lowerCamelCase : Optional[Any] = get_model_list_for_task(UpperCAmelCase_ )
if current_list != new_list:
if overwrite:
with open(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:] )
else:
raise ValueError(
F'The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`'
' to fix this.' )
if __name__ == "__main__":
A__ : Any = argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
A__ : Optional[Any] = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite)
| 13 |
'''simple docstring'''
import argparse
A__ : Optional[Any] = """docs/source/_static/js/custom.js"""
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> int:
with open(UpperCAmelCase_ , encoding='utf-8' , newline='\n' ) as f:
__lowerCamelCase : Dict = f.readlines()
__lowerCamelCase : Tuple = 0
# First let's put the right version
while not lines[index].startswith('const stableVersion =' ):
index += 1
__lowerCamelCase : Dict = F'const stableVersion = "v{version}"\n'
# Then update the dictionary
while not lines[index].startswith('const versionMapping = {' ):
index += 1
# We go until the end
while not lines[index].startswith('}' ):
index += 1
# We add the new version at the end
lines[index - 1] += F' "v{version}": "v{version}",\n'
with open(UpperCAmelCase_ , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(UpperCAmelCase_ )
if __name__ == "__main__":
A__ : str = argparse.ArgumentParser()
parser.add_argument("""--version""", help="""Release version.""")
A__ : Any = parser.parse_args()
update_custom_js(args.version)
| 13 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A__ : Optional[int] = logging.get_logger(__name__)
A__ : str = {
"""camembert-base""": """https://huggingface.co/camembert-base/resolve/main/config.json""",
"""umberto-commoncrawl-cased-v1""": (
"""https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json"""
),
"""umberto-wikipedia-uncased-v1""": (
"""https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json"""
),
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : str = 'camembert'
def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Any:
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = vocab_size
__lowerCamelCase : Optional[int] = hidden_size
__lowerCamelCase : Tuple = num_hidden_layers
__lowerCamelCase : Any = num_attention_heads
__lowerCamelCase : str = hidden_act
__lowerCamelCase : Dict = intermediate_size
__lowerCamelCase : str = hidden_dropout_prob
__lowerCamelCase : Any = attention_probs_dropout_prob
__lowerCamelCase : Tuple = max_position_embeddings
__lowerCamelCase : Dict = type_vocab_size
__lowerCamelCase : List[str] = initializer_range
__lowerCamelCase : Tuple = layer_norm_eps
__lowerCamelCase : Optional[int] = position_embedding_type
__lowerCamelCase : Optional[Any] = use_cache
__lowerCamelCase : int = classifier_dropout
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
@property
def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
__lowerCamelCase : Dict = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__lowerCamelCase : str = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 13 |
'''simple docstring'''
import flax.linen as nn
import jax
import jax.numpy as jnp
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : Optional[Any] = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> Any:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = hidden_states.shape
__lowerCamelCase : Dict = jax.image.resize(
SCREAMING_SNAKE_CASE_ , shape=(batch, height * 2, width * 2, channels) , method='nearest' , )
__lowerCamelCase : Optional[Any] = self.conv(SCREAMING_SNAKE_CASE_ )
return hidden_states
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : str = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]:
# pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
# hidden_states = jnp.pad(hidden_states, pad_width=pad)
__lowerCamelCase : str = self.conv(SCREAMING_SNAKE_CASE_ )
return hidden_states
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : int = None
lowerCamelCase : float = 0.0
lowerCamelCase : bool = None
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels
__lowerCamelCase : Optional[Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 )
__lowerCamelCase : Tuple = nn.Conv(
SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__lowerCamelCase : List[str] = nn.Dense(SCREAMING_SNAKE_CASE_ , dtype=self.dtype )
__lowerCamelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1E-5 )
__lowerCamelCase : int = nn.Dropout(self.dropout_prob )
__lowerCamelCase : Union[str, Any] = nn.Conv(
SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__lowerCamelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
__lowerCamelCase : List[Any] = None
if use_nin_shortcut:
__lowerCamelCase : Any = nn.Conv(
SCREAMING_SNAKE_CASE_ , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , )
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Tuple:
__lowerCamelCase : List[Any] = hidden_states
__lowerCamelCase : str = self.norma(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = nn.swish(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = self.conva(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = self.time_emb_proj(nn.swish(SCREAMING_SNAKE_CASE_ ) )
__lowerCamelCase : List[str] = jnp.expand_dims(jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , 1 )
__lowerCamelCase : Optional[int] = hidden_states + temb
__lowerCamelCase : List[Any] = self.norma(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = nn.swish(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self.dropout(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self.conva(SCREAMING_SNAKE_CASE_ )
if self.conv_shortcut is not None:
__lowerCamelCase : List[str] = self.conv_shortcut(SCREAMING_SNAKE_CASE_ )
return hidden_states + residual
| 13 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ) -> int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def lowercase_ ( self ) -> Any:
__lowerCamelCase : int = 1
__lowerCamelCase : List[str] = 3
__lowerCamelCase : Optional[int] = (32, 32)
__lowerCamelCase : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
return image
@property
def lowercase_ ( self ) -> str:
torch.manual_seed(0 )
__lowerCamelCase : Tuple = UNetaDConditionModel(
block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=SCREAMING_SNAKE_CASE_ , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , )
return model
@property
def lowercase_ ( self ) -> str:
torch.manual_seed(0 )
__lowerCamelCase : Optional[Any] = AutoencoderKL(
block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
return model
@property
def lowercase_ ( self ) -> List[Any]:
torch.manual_seed(0 )
__lowerCamelCase : List[str] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , )
return CLIPTextModel(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Dict:
__lowerCamelCase : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator
__lowerCamelCase : Optional[Any] = self.dummy_cond_unet_upscale
__lowerCamelCase : Dict = DDPMScheduler()
__lowerCamelCase : List[str] = DDIMScheduler(prediction_type='v_prediction' )
__lowerCamelCase : str = self.dummy_vae
__lowerCamelCase : List[Any] = self.dummy_text_encoder
__lowerCamelCase : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
__lowerCamelCase : List[str] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
__lowerCamelCase : Dict = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_ ) ).convert('RGB' ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
__lowerCamelCase : Any = StableDiffusionUpscalePipeline(
unet=SCREAMING_SNAKE_CASE_ , low_res_scheduler=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , max_noise_level=3_50 , )
__lowerCamelCase : Optional[Any] = sd_pipe.to(SCREAMING_SNAKE_CASE_ )
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[str] = 'A painting of a squirrel eating a burger'
__lowerCamelCase : Union[str, Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 )
__lowerCamelCase : List[Any] = sd_pipe(
[prompt] , image=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , )
__lowerCamelCase : Optional[Any] = output.images
__lowerCamelCase : Union[str, Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 )
__lowerCamelCase : int = sd_pipe(
[prompt] , image=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , return_dict=SCREAMING_SNAKE_CASE_ , )[0]
__lowerCamelCase : Tuple = image[0, -3:, -3:, -1]
__lowerCamelCase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1]
__lowerCamelCase : Dict = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
__lowerCamelCase : Optional[int] = np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def lowercase_ ( self ) -> Dict:
__lowerCamelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator
__lowerCamelCase : List[Any] = self.dummy_cond_unet_upscale
__lowerCamelCase : List[Any] = DDPMScheduler()
__lowerCamelCase : Union[str, Any] = DDIMScheduler(prediction_type='v_prediction' )
__lowerCamelCase : Optional[Any] = self.dummy_vae
__lowerCamelCase : str = self.dummy_text_encoder
__lowerCamelCase : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
__lowerCamelCase : str = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
__lowerCamelCase : Optional[Any] = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_ ) ).convert('RGB' ).resize((64, 64) )
# make sure here that pndm scheduler skips prk
__lowerCamelCase : str = StableDiffusionUpscalePipeline(
unet=SCREAMING_SNAKE_CASE_ , low_res_scheduler=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , max_noise_level=3_50 , )
__lowerCamelCase : str = sd_pipe.to(SCREAMING_SNAKE_CASE_ )
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = 'A painting of a squirrel eating a burger'
__lowerCamelCase : List[Any] = sd_pipe(
2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , )
__lowerCamelCase : Any = output.images
assert image.shape[0] == 2
__lowerCamelCase : List[str] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 )
__lowerCamelCase : List[Any] = sd_pipe(
[prompt] , image=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , )
__lowerCamelCase : Union[str, Any] = output.images
assert image.shape[0] == 2
@unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' )
def lowercase_ ( self ) -> str:
__lowerCamelCase : int = self.dummy_cond_unet_upscale
__lowerCamelCase : Union[str, Any] = DDPMScheduler()
__lowerCamelCase : Union[str, Any] = DDIMScheduler(prediction_type='v_prediction' )
__lowerCamelCase : Any = self.dummy_vae
__lowerCamelCase : str = self.dummy_text_encoder
__lowerCamelCase : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
__lowerCamelCase : Tuple = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0]
__lowerCamelCase : Union[str, Any] = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_ ) ).convert('RGB' ).resize((64, 64) )
# put models in fp16, except vae as it overflows in fp16
__lowerCamelCase : str = unet.half()
__lowerCamelCase : int = text_encoder.half()
# make sure here that pndm scheduler skips prk
__lowerCamelCase : int = StableDiffusionUpscalePipeline(
unet=SCREAMING_SNAKE_CASE_ , low_res_scheduler=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , max_noise_level=3_50 , )
__lowerCamelCase : List[Any] = sd_pipe.to(SCREAMING_SNAKE_CASE_ )
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = 'A painting of a squirrel eating a burger'
__lowerCamelCase : Optional[int] = torch.manual_seed(0 )
__lowerCamelCase : Dict = sd_pipe(
[prompt] , image=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , output_type='np' , ).images
__lowerCamelCase : int = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
@slow
@require_torch_gpu
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ) -> List[str]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase_ ( self ) -> Dict:
__lowerCamelCase : str = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-upscale/low_res_cat.png' )
__lowerCamelCase : Any = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale'
'/upsampled_cat.npy' )
__lowerCamelCase : Optional[Any] = 'stabilityai/stable-diffusion-x4-upscaler'
__lowerCamelCase : List[str] = StableDiffusionUpscalePipeline.from_pretrained(SCREAMING_SNAKE_CASE_ )
pipe.to(SCREAMING_SNAKE_CASE_ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
pipe.enable_attention_slicing()
__lowerCamelCase : Tuple = 'a cat sitting on a park bench'
__lowerCamelCase : Dict = torch.manual_seed(0 )
__lowerCamelCase : Tuple = pipe(
prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , output_type='np' , )
__lowerCamelCase : Union[str, Any] = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 1E-3
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : List[Any] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-upscale/low_res_cat.png' )
__lowerCamelCase : int = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale'
'/upsampled_cat_fp16.npy' )
__lowerCamelCase : Optional[int] = 'stabilityai/stable-diffusion-x4-upscaler'
__lowerCamelCase : Dict = StableDiffusionUpscalePipeline.from_pretrained(
SCREAMING_SNAKE_CASE_ , torch_dtype=torch.floataa , )
pipe.to(SCREAMING_SNAKE_CASE_ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
pipe.enable_attention_slicing()
__lowerCamelCase : str = 'a cat sitting on a park bench'
__lowerCamelCase : Dict = torch.manual_seed(0 )
__lowerCamelCase : int = pipe(
prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , output_type='np' , )
__lowerCamelCase : List[str] = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 5E-1
def lowercase_ ( self ) -> Optional[Any]:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__lowerCamelCase : List[Any] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-upscale/low_res_cat.png' )
__lowerCamelCase : Dict = 'stabilityai/stable-diffusion-x4-upscaler'
__lowerCamelCase : Any = StableDiffusionUpscalePipeline.from_pretrained(
SCREAMING_SNAKE_CASE_ , torch_dtype=torch.floataa , )
pipe.to(SCREAMING_SNAKE_CASE_ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
__lowerCamelCase : Union[str, Any] = 'a cat sitting on a park bench'
__lowerCamelCase : Union[str, Any] = torch.manual_seed(0 )
__lowerCamelCase : List[Any] = pipe(
prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=5 , output_type='np' , )
__lowerCamelCase : List[Any] = torch.cuda.max_memory_allocated()
# make sure that less than 2.9 GB is allocated
assert mem_bytes < 2.9 * 10**9
| 13 |
'''simple docstring'''
from __future__ import annotations
A__ : int = 10
def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] ) -> list[int]:
__lowerCamelCase : List[Any] = 1
__lowerCamelCase : Any = max(UpperCAmelCase_ )
while placement <= max_digit:
# declare and initialize empty buckets
__lowerCamelCase : list[list] = [[] for _ in range(UpperCAmelCase_ )]
# split list_of_ints between the buckets
for i in list_of_ints:
__lowerCamelCase : List[Any] = int((i / placement) % RADIX )
buckets[tmp].append(UpperCAmelCase_ )
# put each buckets' contents into list_of_ints
__lowerCamelCase : Tuple = 0
for b in range(UpperCAmelCase_ ):
for i in buckets[b]:
__lowerCamelCase : List[Any] = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_xlnet import XLNetTokenizer
else:
A__ : Optional[int] = None
A__ : Optional[Any] = logging.get_logger(__name__)
A__ : Optional[Any] = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""}
A__ : List[str] = {
"""vocab_file""": {
"""xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""",
"""xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""",
},
"""tokenizer_file""": {
"""xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json""",
"""xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json""",
},
}
A__ : Optional[int] = {
"""xlnet-base-cased""": None,
"""xlnet-large-cased""": None,
}
A__ : Tuple = """▁"""
# Segments (not really needed)
A__ : Optional[Any] = 0
A__ : Dict = 1
A__ : Any = 2
A__ : Dict = 3
A__ : Union[str, Any] = 4
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES
lowerCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : List[Any] = 'left'
lowerCamelCase : Optional[Any] = XLNetTokenizer
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<sep>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<cls>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=["<eop>", "<eod>"] , **SCREAMING_SNAKE_CASE_ , ) -> int:
# Mask token behave like a normal word, i.e. include the space before it
__lowerCamelCase : int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token
super().__init__(
vocab_file=SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , remove_space=SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
__lowerCamelCase : Tuple = 3
__lowerCamelCase : int = do_lower_case
__lowerCamelCase : Dict = remove_space
__lowerCamelCase : str = keep_accents
__lowerCamelCase : List[Any] = vocab_file
__lowerCamelCase : Optional[int] = False if not self.vocab_file else True
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
__lowerCamelCase : Any = [self.sep_token_id]
__lowerCamelCase : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
__lowerCamelCase : Any = [self.sep_token_id]
__lowerCamelCase : List[Any] = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
__lowerCamelCase : Union[str, Any] = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ )
return (out_vocab_file,)
| 13 |
'''simple docstring'''
from collections import defaultdict
from math import gcd
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_50_00_00 ) -> int:
__lowerCamelCase : defaultdict = defaultdict(UpperCAmelCase_ )
__lowerCamelCase : Any = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , UpperCAmelCase_ , 2 ):
if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) > 1:
continue
__lowerCamelCase : Any = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(UpperCAmelCase_ , limit + 1 , UpperCAmelCase_ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any]=10_24 , UpperCAmelCase_ : List[Any]=10_24 , UpperCAmelCase_ : List[str]=False , **UpperCAmelCase_ : str ) -> Dict:
__lowerCamelCase : str = AutoTokenizer.from_pretrained(UpperCAmelCase_ )
__lowerCamelCase : Union[str, Any] = SeqaSeqDataset(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , type_path='train' , **UpperCAmelCase_ )
__lowerCamelCase : List[str] = tok.pad_token_id
def get_lens(UpperCAmelCase_ : Optional[Any] ):
__lowerCamelCase : Union[str, Any] = tqdm(
DataLoader(UpperCAmelCase_ , batch_size=5_12 , num_workers=8 , shuffle=UpperCAmelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , )
__lowerCamelCase : Optional[Any] = []
for batch in dl:
__lowerCamelCase : int = batch['input_ids'].ne(UpperCAmelCase_ ).sum(1 ).tolist()
__lowerCamelCase : Any = batch['labels'].ne(UpperCAmelCase_ ).sum(1 ).tolist()
if consider_target:
for src, tgt in zip(UpperCAmelCase_ , UpperCAmelCase_ ):
max_lens.append(max(UpperCAmelCase_ , UpperCAmelCase_ ) )
else:
max_lens.extend(UpperCAmelCase_ )
return max_lens
__lowerCamelCase : int = get_lens(UpperCAmelCase_ )
__lowerCamelCase : Any = SeqaSeqDataset(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , type_path='val' , **UpperCAmelCase_ )
__lowerCamelCase : Union[str, Any] = get_lens(UpperCAmelCase_ )
pickle_save(UpperCAmelCase_ , train_ds.len_file )
pickle_save(UpperCAmelCase_ , val_ds.len_file )
if __name__ == "__main__":
fire.Fire(save_len_file)
| 13 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
A__ : str = logging.get_logger(__name__)
A__ : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
A__ : Tuple = {
"""vocab_file""": {
"""junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""",
"""junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""",
"""junnyu/roformer_chinese_char_small""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt"""
),
"""junnyu/roformer_chinese_char_base""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt"""
),
"""junnyu/roformer_small_discriminator""": (
"""https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt"""
),
"""junnyu/roformer_small_generator""": (
"""https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt"""
),
}
}
A__ : str = {
"""junnyu/roformer_chinese_small""": 1536,
"""junnyu/roformer_chinese_base""": 1536,
"""junnyu/roformer_chinese_char_small""": 512,
"""junnyu/roformer_chinese_char_base""": 512,
"""junnyu/roformer_small_discriminator""": 128,
"""junnyu/roformer_small_generator""": 128,
}
A__ : Tuple = {
"""junnyu/roformer_chinese_small""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_base""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True},
"""junnyu/roformer_small_discriminator""": {"""do_lower_case""": True},
"""junnyu/roformer_small_generator""": {"""do_lower_case""": True},
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES
lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION
lowerCamelCase : Dict = RoFormerTokenizer
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]:
super().__init__(
SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
__lowerCamelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case
or pre_tok_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents
):
__lowerCamelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) )
__lowerCamelCase : Union[str, Any] = do_lower_case
__lowerCamelCase : str = strip_accents
__lowerCamelCase : Optional[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = do_lower_case
def __getstate__( self ) -> List[str]:
__lowerCamelCase : Union[str, Any] = self.__dict__.copy()
__lowerCamelCase : Dict = BertPreTokenizer()
return state
def __setstate__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = d
__lowerCamelCase : List[Any] = self.__dict__['_tokenizer'].get_vocab()
__lowerCamelCase : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(SCREAMING_SNAKE_CASE_ ) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str:
__lowerCamelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
__lowerCamelCase : List[str] = [self.sep_token_id]
__lowerCamelCase : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]:
__lowerCamelCase : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ )
return tuple(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Any:
__lowerCamelCase : Tuple = BertPreTokenizer()
return super().save_pretrained(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 13 | 1 |
'''simple docstring'''
import importlib
import torch
import yaml
from omegaconf import OmegaConf
from taming.models.vqgan import VQModel
def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str=False ) -> Tuple:
__lowerCamelCase : Optional[Any] = OmegaConf.load(UpperCAmelCase_ )
if display:
print(yaml.dump(OmegaConf.to_container(UpperCAmelCase_ ) ) )
return config
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : List[Any]=None ) -> Dict:
if conf_path is None:
__lowerCamelCase : Union[str, Any] = './model_checkpoints/vqgan_only.yaml'
__lowerCamelCase : Dict = load_config(UpperCAmelCase_ , display=UpperCAmelCase_ )
__lowerCamelCase : Union[str, Any] = VQModel(**config.model.params )
if ckpt_path is None:
__lowerCamelCase : Optional[int] = './model_checkpoints/vqgan_only.pt'
__lowerCamelCase : Optional[int] = torch.load(UpperCAmelCase_ , map_location=UpperCAmelCase_ )
if ".ckpt" in ckpt_path:
__lowerCamelCase : List[Any] = sd['state_dict']
model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
del sd
return model
def UpperCAmelCase__ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ) -> Optional[int]:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = model.encode(UpperCAmelCase_ )
print(F'VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}' )
__lowerCamelCase : Optional[int] = model.decode(UpperCAmelCase_ )
return xrec
def UpperCAmelCase__ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict=False ) -> Optional[int]:
__lowerCamelCase , __lowerCamelCase : Any = string.rsplit('.' , 1 )
if reload:
__lowerCamelCase : Optional[Any] = importlib.import_module(UpperCAmelCase_ )
importlib.reload(UpperCAmelCase_ )
return getattr(importlib.import_module(UpperCAmelCase_ , package=UpperCAmelCase_ ) , cls )
def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> Optional[int]:
if "target" not in config:
raise KeyError('Expected key `target` to instantiate.' )
return get_obj_from_str(config['target'] )(**config.get('params' , {} ) )
def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : int=True ) -> Dict:
__lowerCamelCase : Optional[Any] = instantiate_from_config(UpperCAmelCase_ )
if sd is not None:
model.load_state_dict(UpperCAmelCase_ )
if gpu:
model.cuda()
if eval_mode:
model.eval()
return {"model": model}
def UpperCAmelCase__ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] ) -> Any:
# load the specified checkpoint
if ckpt:
__lowerCamelCase : int = torch.load(UpperCAmelCase_ , map_location='cpu' )
__lowerCamelCase : Union[str, Any] = pl_sd['global_step']
print(F'loaded model from global step {global_step}.' )
else:
__lowerCamelCase : Any = {'state_dict': None}
__lowerCamelCase : str = None
__lowerCamelCase : str = load_model_from_config(config.model , pl_sd['state_dict'] , gpu=UpperCAmelCase_ , eval_mode=UpperCAmelCase_ )['model']
return model, global_step
| 13 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
A__ : int = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
A__ : Dict = TaTokenizerFast
A__ : Dict = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Any = [
"""MT5EncoderModel""",
"""MT5ForConditionalGeneration""",
"""MT5ForQuestionAnswering""",
"""MT5Model""",
"""MT5PreTrainedModel""",
"""MT5Stack""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : str = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : str = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
A__ : Union[str, Any] = _LazyModule(
__name__,
globals()["""__file__"""],
_import_structure,
extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast},
module_spec=__spec__,
)
| 13 | 1 |
'''simple docstring'''
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
__lowerCamelCase : Dict = hf_hub_download(
repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' )
__lowerCamelCase : Optional[int] = VideoClassificationPipeline(model=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , top_k=2 )
__lowerCamelCase : Tuple = [
example_video_filepath,
'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4',
]
return video_classifier, examples
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str:
for example in examples:
__lowerCamelCase : Optional[int] = video_classifier(SCREAMING_SNAKE_CASE_ )
self.assertEqual(
SCREAMING_SNAKE_CASE_ , [
{'score': ANY(SCREAMING_SNAKE_CASE_ ), 'label': ANY(SCREAMING_SNAKE_CASE_ )},
{'score': ANY(SCREAMING_SNAKE_CASE_ ), 'label': ANY(SCREAMING_SNAKE_CASE_ )},
] , )
@require_torch
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : Union[str, Any] = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification'
__lowerCamelCase : Union[str, Any] = VideoMAEFeatureExtractor(
size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} )
__lowerCamelCase : Tuple = pipeline(
'video-classification' , model=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , frame_sampling_rate=4 )
__lowerCamelCase : int = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' )
__lowerCamelCase : str = video_classifier(SCREAMING_SNAKE_CASE_ , top_k=2 )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [{'score': 0.5_1_9_9, 'label': 'LABEL_0'}, {'score': 0.4_8_0_1, 'label': 'LABEL_1'}] , )
__lowerCamelCase : Dict = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [
[{'score': 0.5_1_9_9, 'label': 'LABEL_0'}, {'score': 0.4_8_0_1, 'label': 'LABEL_1'}],
[{'score': 0.5_1_9_9, 'label': 'LABEL_0'}, {'score': 0.4_8_0_1, 'label': 'LABEL_1'}],
] , )
@require_tf
def lowercase_ ( self ) -> str:
pass
| 13 |
'''simple docstring'''
import re
from typing import Callable, List, Optional, Union
import tensorflow as tf
try:
from tensorflow.keras.optimizers.legacy import Adam
except ImportError:
from tensorflow.keras.optimizers import Adam
class UpperCAmelCase_ (tf.keras.optimizers.schedules.LearningRateSchedule ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = None , ) -> Any:
super().__init__()
__lowerCamelCase : Optional[Any] = initial_learning_rate
__lowerCamelCase : Optional[Any] = warmup_steps
__lowerCamelCase : Union[str, Any] = power
__lowerCamelCase : Optional[int] = decay_schedule_fn
__lowerCamelCase : Any = name
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str:
with tf.name_scope(self.name or 'WarmUp' ) as name:
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
__lowerCamelCase : str = tf.cast(SCREAMING_SNAKE_CASE_ , tf.floataa )
__lowerCamelCase : Optional[int] = tf.cast(self.warmup_steps , tf.floataa )
__lowerCamelCase : List[Any] = global_step_float / warmup_steps_float
__lowerCamelCase : Optional[Any] = self.initial_learning_rate * tf.math.pow(SCREAMING_SNAKE_CASE_ , self.power )
return tf.cond(
global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=SCREAMING_SNAKE_CASE_ , )
def lowercase_ ( self ) -> Optional[Any]:
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_schedule_fn": self.decay_schedule_fn,
"warmup_steps": self.warmup_steps,
"power": self.power,
"name": self.name,
}
def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 0.9 , UpperCAmelCase_ : float = 0.999 , UpperCAmelCase_ : float = 1e-8 , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : Optional[List[str]] = None , ) -> int:
__lowerCamelCase : int = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=UpperCAmelCase_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCAmelCase_ , )
if num_warmup_steps:
__lowerCamelCase : str = WarmUp(
initial_learning_rate=UpperCAmelCase_ , decay_schedule_fn=UpperCAmelCase_ , warmup_steps=UpperCAmelCase_ , )
if weight_decay_rate > 0.0:
__lowerCamelCase : List[Any] = AdamWeightDecay(
learning_rate=UpperCAmelCase_ , weight_decay_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=UpperCAmelCase_ , )
else:
__lowerCamelCase : Tuple = tf.keras.optimizers.Adam(
learning_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , )
# We return the optimizer and the LR scheduler in order to better track the
# evolution of the LR independently of the optimizer.
return optimizer, lr_schedule
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ = 0.0_0_1 , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = 0.9_9_9 , SCREAMING_SNAKE_CASE_ = 1E-7 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "AdamWeightDecay" , **SCREAMING_SNAKE_CASE_ , ) -> int:
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = weight_decay_rate
__lowerCamelCase : str = include_in_weight_decay
__lowerCamelCase : List[Any] = exclude_from_weight_decay
@classmethod
def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> Dict:
__lowerCamelCase : Any = {'WarmUp': WarmUp}
return super(SCREAMING_SNAKE_CASE_ , cls ).from_config(SCREAMING_SNAKE_CASE_ , custom_objects=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
super(SCREAMING_SNAKE_CASE_ , self )._prepare_local(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tf.constant(
self.weight_decay_rate , name='adam_weight_decay_rate' )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
__lowerCamelCase : Tuple = self._do_use_weight_decay(var.name )
if do_decay:
return var.assign_sub(
learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , )
return tf.no_op()
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase , __lowerCamelCase : Optional[Any] = list(zip(*SCREAMING_SNAKE_CASE_ ) )
return super(SCREAMING_SNAKE_CASE_ , self ).apply_gradients(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , name=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str:
if apply_state is None:
return self._decayed_lr_t[var_dtype], {}
__lowerCamelCase : Optional[int] = apply_state or {}
__lowerCamelCase : Dict = apply_state.get((var_device, var_dtype) )
if coefficients is None:
__lowerCamelCase : List[Any] = self._fallback_apply_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = coefficients
return coefficients["lr_t"], {"apply_state": apply_state}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str:
__lowerCamelCase , __lowerCamelCase : Dict = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
with tf.control_dependencies([decay] ):
return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_dense(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Union[str, Any]:
__lowerCamelCase , __lowerCamelCase : Tuple = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
with tf.control_dependencies([decay] ):
return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_sparse(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : Any = super().get_config()
config.update({'weight_decay_rate': self.weight_decay_rate} )
return config
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict:
if self.weight_decay_rate == 0:
return False
if self._include_in_weight_decay:
for r in self._include_in_weight_decay:
if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None:
return True
if self._exclude_from_weight_decay:
for r in self._exclude_from_weight_decay:
if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None:
return False
return True
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self ) -> Tuple:
__lowerCamelCase : Tuple = []
__lowerCamelCase : Optional[Any] = None
@property
def lowercase_ ( self ) -> List[str]:
if self._accum_steps is None:
__lowerCamelCase : Tuple = tf.Variable(
tf.constant(0 , dtype=tf.intaa ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
return self._accum_steps.value()
@property
def lowercase_ ( self ) -> List[str]:
if not self._gradients:
raise ValueError('The accumulator should be called first to initialize the gradients' )
return [gradient.value() if gradient is not None else gradient for gradient in self._gradients]
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str:
if not self._gradients:
__lowerCamelCase : List[str] = self.step # Create the step variable.
self._gradients.extend(
[
tf.Variable(
tf.zeros_like(SCREAMING_SNAKE_CASE_ ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
if gradient is not None
else gradient
for gradient in gradients
] )
if len(SCREAMING_SNAKE_CASE_ ) != len(self._gradients ):
raise ValueError(f'Expected {len(self._gradients )} gradients, but got {len(SCREAMING_SNAKE_CASE_ )}' )
for accum_gradient, gradient in zip(self._gradients , SCREAMING_SNAKE_CASE_ ):
if accum_gradient is not None and gradient is not None:
accum_gradient.assign_add(SCREAMING_SNAKE_CASE_ )
self._accum_steps.assign_add(1 )
def lowercase_ ( self ) -> int:
if not self._gradients:
return
self._accum_steps.assign(0 )
for gradient in self._gradients:
if gradient is not None:
gradient.assign(tf.zeros_like(SCREAMING_SNAKE_CASE_ ) )
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
A__ : Any = (3, 9, -11, 0, 7, 5, 1, -1)
A__ : Any = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : Node | None
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ ) -> None:
__lowerCamelCase : Node | None = None
for i in sorted(SCREAMING_SNAKE_CASE_ , reverse=SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Optional[int] = Node(SCREAMING_SNAKE_CASE_ , self.head )
def __iter__( self ) -> Iterator[int]:
__lowerCamelCase : Optional[Any] = self.head
while node:
yield node.data
__lowerCamelCase : List[Any] = node.next_node
def __len__( self ) -> int:
return sum(1 for _ in self )
def __str__( self ) -> str:
return " -> ".join([str(SCREAMING_SNAKE_CASE_ ) for node in self] )
def UpperCAmelCase__ ( UpperCAmelCase_ : SortedLinkedList , UpperCAmelCase_ : SortedLinkedList ) -> SortedLinkedList:
return SortedLinkedList(list(UpperCAmelCase_ ) + list(UpperCAmelCase_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
A__ : List[str] = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 13 |
'''simple docstring'''
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=[1, 2, 1] , SCREAMING_SNAKE_CASE_=[2, 2, 4] , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=["stage1", "stage2", "stage3"] , SCREAMING_SNAKE_CASE_=[1, 2, 3] , ) -> Any:
__lowerCamelCase : Optional[Any] = parent
__lowerCamelCase : int = batch_size
__lowerCamelCase : Optional[int] = image_size
__lowerCamelCase : Optional[int] = patch_size
__lowerCamelCase : Optional[Any] = num_channels
__lowerCamelCase : Dict = embed_dim
__lowerCamelCase : List[Any] = depths
__lowerCamelCase : int = num_heads
__lowerCamelCase : Optional[Any] = window_size
__lowerCamelCase : Optional[Any] = mlp_ratio
__lowerCamelCase : List[str] = qkv_bias
__lowerCamelCase : List[str] = hidden_dropout_prob
__lowerCamelCase : int = attention_probs_dropout_prob
__lowerCamelCase : List[Any] = drop_path_rate
__lowerCamelCase : Any = hidden_act
__lowerCamelCase : Union[str, Any] = use_absolute_embeddings
__lowerCamelCase : Any = patch_norm
__lowerCamelCase : Optional[Any] = layer_norm_eps
__lowerCamelCase : str = initializer_range
__lowerCamelCase : Dict = is_training
__lowerCamelCase : Optional[Any] = scope
__lowerCamelCase : Dict = use_labels
__lowerCamelCase : List[str] = type_sequence_label_size
__lowerCamelCase : Dict = encoder_stride
__lowerCamelCase : Union[str, Any] = out_features
__lowerCamelCase : str = out_indices
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowerCamelCase : List[str] = None
if self.use_labels:
__lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowerCamelCase : List[str] = self.get_config()
return config, pixel_values, labels
def lowercase_ ( self ) -> Optional[int]:
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
__lowerCamelCase : Dict = MaskFormerSwinModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__lowerCamelCase : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
__lowerCamelCase : Tuple = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , [16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : str = ['stem']
__lowerCamelCase : Optional[Any] = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : Optional[int] = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = config_and_inputs
__lowerCamelCase : Optional[int] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : List[Any] = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase : int = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {}
lowerCamelCase : int = False
lowerCamelCase : int = False
lowerCamelCase : str = False
lowerCamelCase : int = False
lowerCamelCase : Union[str, Any] = False
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : Optional[Any] = MaskFormerSwinModelTester(self )
__lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
'`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with'
' `nn.DataParallel`'
) )
def lowercase_ ( self ) -> int:
pass
def lowercase_ ( self ) -> Union[str, Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase_ ( self ) -> Tuple:
return
def lowercase_ ( self ) -> Dict:
__lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ )
@unittest.skip('Swin does not use inputs_embeds' )
def lowercase_ ( self ) -> Optional[int]:
pass
@unittest.skip('Swin does not support feedforward chunking' )
def lowercase_ ( self ) -> Dict:
pass
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__lowerCamelCase : Optional[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase , __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase : str = [*signature.parameters.keys()]
__lowerCamelCase : Any = ['pixel_values']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ )
@unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' )
def lowercase_ ( self ) -> Any:
pass
@unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' )
def lowercase_ ( self ) -> List[Any]:
pass
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
with torch.no_grad():
__lowerCamelCase : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
__lowerCamelCase : int = outputs.hidden_states
__lowerCamelCase : Tuple = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
# Swin has a different seq_length
__lowerCamelCase : Optional[Any] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase : List[Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
__lowerCamelCase : Dict = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowerCamelCase : Optional[int] = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase : Union[str, Any] = 3
__lowerCamelCase : Dict = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__lowerCamelCase : str = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__lowerCamelCase : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__lowerCamelCase : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
__lowerCamelCase : str = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowerCamelCase : Tuple = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) )
@unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' )
def lowercase_ ( self ) -> Optional[Any]:
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def lowercase_ ( self ) -> Any:
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def lowercase_ ( self ) -> Union[str, Any]:
pass
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Any = 0
return t
def check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_={} ):
with torch.no_grad():
__lowerCamelCase : Optional[int] = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).to_tuple()
def recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if isinstance(SCREAMING_SNAKE_CASE_ , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values() ):
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , atol=1E-5 ) , msg=(
'Tuple and dict output are not equal. Difference:'
f' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:'
f' {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}. Dict has'
f' `nan`: {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}.'
) , )
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
for model_class in self.all_model_classes:
__lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} )
__lowerCamelCase : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} )
@require_torch
class UpperCAmelCase_ (unittest.TestCase , _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else ()
lowerCamelCase : List[str] = MaskFormerSwinConfig
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : List[str] = MaskFormerSwinModelTester(self )
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase : Any = inputs_dict['pixel_values'].shape[0]
for backbone_class in self.all_model_classes:
__lowerCamelCase : Optional[Any] = backbone_class(SCREAMING_SNAKE_CASE_ )
backbone.to(SCREAMING_SNAKE_CASE_ )
backbone.eval()
__lowerCamelCase : int = backbone(**SCREAMING_SNAKE_CASE_ )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , SCREAMING_SNAKE_CASE_ )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
__lowerCamelCase : Union[str, Any] = backbone(**SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
__lowerCamelCase : Optional[int] = backbone(**SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(outputs.attentions )
| 13 | 1 |
'''simple docstring'''
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
A__ : Union[str, Any] = logging.get_logger(__name__)
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = 'linear'
lowerCamelCase : Optional[Any] = 'cosine'
lowerCamelCase : Tuple = 'cosine_with_restarts'
lowerCamelCase : int = 'polynomial'
lowerCamelCase : int = 'constant'
lowerCamelCase : List[str] = 'constant_with_warmup'
lowerCamelCase : Union[str, Any] = 'piecewise_constant'
def UpperCAmelCase__ ( UpperCAmelCase_ : Optimizer , UpperCAmelCase_ : int = -1 ) -> Dict:
return LambdaLR(UpperCAmelCase_ , lambda UpperCAmelCase_ : 1 , last_epoch=UpperCAmelCase_ )
def UpperCAmelCase__ ( UpperCAmelCase_ : Optimizer , UpperCAmelCase_ : int , UpperCAmelCase_ : int = -1 ) -> str:
def lr_lambda(UpperCAmelCase_ : int ):
if current_step < num_warmup_steps:
return float(UpperCAmelCase_ ) / float(max(1.0 , UpperCAmelCase_ ) )
return 1.0
return LambdaLR(UpperCAmelCase_ , UpperCAmelCase_ , last_epoch=UpperCAmelCase_ )
def UpperCAmelCase__ ( UpperCAmelCase_ : Optimizer , UpperCAmelCase_ : str , UpperCAmelCase_ : int = -1 ) -> Tuple:
__lowerCamelCase : Dict = {}
__lowerCamelCase : Optional[int] = step_rules.split(',' )
for rule_str in rule_list[:-1]:
__lowerCamelCase , __lowerCamelCase : Optional[int] = rule_str.split(':' )
__lowerCamelCase : Dict = int(UpperCAmelCase_ )
__lowerCamelCase : Tuple = float(UpperCAmelCase_ )
__lowerCamelCase : int = value
__lowerCamelCase : str = float(rule_list[-1] )
def create_rules_function(UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ):
def rule_func(UpperCAmelCase_ : int ) -> float:
__lowerCamelCase : Dict = sorted(rules_dict.keys() )
for i, sorted_step in enumerate(UpperCAmelCase_ ):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
__lowerCamelCase : Optional[Any] = create_rules_function(UpperCAmelCase_ , UpperCAmelCase_ )
return LambdaLR(UpperCAmelCase_ , UpperCAmelCase_ , last_epoch=UpperCAmelCase_ )
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict=-1 ) -> Optional[int]:
def lr_lambda(UpperCAmelCase_ : int ):
if current_step < num_warmup_steps:
return float(UpperCAmelCase_ ) / float(max(1 , UpperCAmelCase_ ) )
return max(
0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) )
return LambdaLR(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def UpperCAmelCase__ ( UpperCAmelCase_ : Optimizer , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0.5 , UpperCAmelCase_ : int = -1 ) -> Any:
def lr_lambda(UpperCAmelCase_ : Dict ):
if current_step < num_warmup_steps:
return float(UpperCAmelCase_ ) / float(max(1 , UpperCAmelCase_ ) )
__lowerCamelCase : Optional[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(UpperCAmelCase_ ) * 2.0 * progress )) )
return LambdaLR(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def UpperCAmelCase__ ( UpperCAmelCase_ : Optimizer , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = -1 ) -> List[str]:
def lr_lambda(UpperCAmelCase_ : Union[str, Any] ):
if current_step < num_warmup_steps:
return float(UpperCAmelCase_ ) / float(max(1 , UpperCAmelCase_ ) )
__lowerCamelCase : Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
if progress >= 1.0:
return 0.0
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(UpperCAmelCase_ ) * progress) % 1.0) )) )
return LambdaLR(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple=1e-7 , UpperCAmelCase_ : List[Any]=1.0 , UpperCAmelCase_ : Tuple=-1 ) -> List[str]:
__lowerCamelCase : List[Any] = optimizer.defaults['lr']
if not (lr_init > lr_end):
raise ValueError(F'lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})' )
def lr_lambda(UpperCAmelCase_ : int ):
if current_step < num_warmup_steps:
return float(UpperCAmelCase_ ) / float(max(1 , UpperCAmelCase_ ) )
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
__lowerCamelCase : List[Any] = lr_init - lr_end
__lowerCamelCase : List[str] = num_training_steps - num_warmup_steps
__lowerCamelCase : str = 1 - (current_step - num_warmup_steps) / decay_steps
__lowerCamelCase : List[Any] = lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
A__ : Any = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, SchedulerType] , UpperCAmelCase_ : Optimizer , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : int = -1 , ) -> List[Any]:
__lowerCamelCase : List[str] = SchedulerType(UpperCAmelCase_ )
__lowerCamelCase : List[Any] = TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(UpperCAmelCase_ , last_epoch=UpperCAmelCase_ )
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(UpperCAmelCase_ , step_rules=UpperCAmelCase_ , last_epoch=UpperCAmelCase_ )
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(F'{name} requires `num_warmup_steps`, please provide that argument.' )
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(UpperCAmelCase_ , num_warmup_steps=UpperCAmelCase_ , last_epoch=UpperCAmelCase_ )
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(F'{name} requires `num_training_steps`, please provide that argument.' )
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
UpperCAmelCase_ , num_warmup_steps=UpperCAmelCase_ , num_training_steps=UpperCAmelCase_ , num_cycles=UpperCAmelCase_ , last_epoch=UpperCAmelCase_ , )
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
UpperCAmelCase_ , num_warmup_steps=UpperCAmelCase_ , num_training_steps=UpperCAmelCase_ , power=UpperCAmelCase_ , last_epoch=UpperCAmelCase_ , )
return schedule_func(
UpperCAmelCase_ , num_warmup_steps=UpperCAmelCase_ , num_training_steps=UpperCAmelCase_ , last_epoch=UpperCAmelCase_ )
| 13 |
'''simple docstring'''
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
A__ : Dict = [
"""python""",
"""tqdm""",
"""regex""",
"""requests""",
"""packaging""",
"""filelock""",
"""numpy""",
"""tokenizers""",
"""huggingface-hub""",
"""safetensors""",
"""accelerate""",
"""pyyaml""",
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''')
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=None ) -> List[Any]:
require_version(deps[pkg] , UpperCAmelCase_ )
| 13 | 1 |
'''simple docstring'''
import contextlib
import os
import sqlitea
import pytest
from datasets import Dataset, Features, Value
from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int ) -> Optional[int]:
assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@require_sqlalchemy
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ) -> Union[str, Any]:
__lowerCamelCase : List[Any] = tmp_path / 'cache'
__lowerCamelCase : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__lowerCamelCase : str = SqlDatasetReader(
'dataset' , 'sqlite:///' + sqlite_path , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ ).read()
_check_sql_dataset(UpperCAmelCase_ , UpperCAmelCase_ )
@require_sqlalchemy
@pytest.mark.parametrize(
'features' , [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] , )
def UpperCAmelCase__ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] ) -> Optional[Any]:
__lowerCamelCase : Tuple = tmp_path / 'cache'
__lowerCamelCase : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
__lowerCamelCase : str = features.copy() if features else default_expected_features
__lowerCamelCase : List[Any] = (
Features({feature: Value(UpperCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None
)
__lowerCamelCase : Optional[Any] = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read()
_check_sql_dataset(UpperCAmelCase_ , UpperCAmelCase_ )
def UpperCAmelCase__ ( UpperCAmelCase_ : Any ) -> Any:
with contextlib.closing(sqlitea.connect(UpperCAmelCase_ ) ) as con:
__lowerCamelCase : List[str] = con.cursor()
cur.execute('SELECT * FROM dataset' )
for row in cur:
yield row
@require_sqlalchemy
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] ) -> Union[str, Any]:
__lowerCamelCase : Optional[int] = tmp_path / 'cache'
__lowerCamelCase : Any = os.path.join(UpperCAmelCase_ , 'tmp.sql' )
__lowerCamelCase : List[str] = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=UpperCAmelCase_ ).read()
SqlDatasetWriter(UpperCAmelCase_ , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=1 ).write()
__lowerCamelCase : Optional[Any] = iter_sql_file(UpperCAmelCase_ )
__lowerCamelCase : int = iter_sql_file(UpperCAmelCase_ )
for rowa, rowa in zip(UpperCAmelCase_ , UpperCAmelCase_ ):
assert rowa == rowa
@require_sqlalchemy
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict ) -> List[Any]:
__lowerCamelCase : List[str] = tmp_path / 'cache'
__lowerCamelCase : Dict = os.path.join(UpperCAmelCase_ , 'tmp.sql' )
__lowerCamelCase : Union[str, Any] = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=UpperCAmelCase_ ).read()
SqlDatasetWriter(UpperCAmelCase_ , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=2 ).write()
__lowerCamelCase : str = iter_sql_file(UpperCAmelCase_ )
__lowerCamelCase : List[Any] = iter_sql_file(UpperCAmelCase_ )
for rowa, rowa in zip(UpperCAmelCase_ , UpperCAmelCase_ ):
assert rowa == rowa
@require_sqlalchemy
def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] ) -> int:
__lowerCamelCase : str = tmp_path / 'cache'
__lowerCamelCase : Dict = os.path.join(UpperCAmelCase_ , 'tmp.sql' )
__lowerCamelCase : int = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=UpperCAmelCase_ ).read()
with pytest.raises(UpperCAmelCase_ ):
SqlDatasetWriter(UpperCAmelCase_ , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=0 ).write()
| 13 |
'''simple docstring'''
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import platform
import sys
A__ : List[str] = """3"""
print("""Python version:""", sys.version)
print("""OS platform:""", platform.platform())
print("""OS architecture:""", platform.machine())
try:
import torch
print("""Torch version:""", torch.__version__)
print("""Cuda available:""", torch.cuda.is_available())
print("""Cuda version:""", torch.version.cuda)
print("""CuDNN version:""", torch.backends.cudnn.version())
print("""Number of GPUs available:""", torch.cuda.device_count())
except ImportError:
print("""Torch version:""", None)
try:
import transformers
print("""transformers version:""", transformers.__version__)
except ImportError:
print("""transformers version:""", None)
| 13 | 1 |
'''simple docstring'''
from collections import defaultdict
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int:
__lowerCamelCase : Any = 1
__lowerCamelCase : Dict = True
for v in tree[start]:
if v not in visited:
ret += dfs(UpperCAmelCase_ )
if ret % 2 == 0:
cuts.append(UpperCAmelCase_ )
return ret
def UpperCAmelCase__ ( ) -> List[Any]:
dfs(1 )
if __name__ == "__main__":
A__ , A__ : Union[str, Any] = 10, 9
A__ : Union[str, Any] = defaultdict(list)
A__ : dict[int, bool] = {}
A__ : list[int] = []
A__ : List[str] = 0
A__ : Optional[Any] = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)]
for u, v in edges:
tree[u].append(v)
tree[v].append(u)
even_tree()
print(len(cuts) - 1)
| 13 |
'''simple docstring'''
from collections import namedtuple
import requests
from lxml import html # type: ignore
A__ : Tuple = namedtuple("""covid_data""", """cases deaths recovered""")
def UpperCAmelCase__ ( UpperCAmelCase_ : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data:
__lowerCamelCase : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()'
return covid_data(*html.fromstring(requests.get(UpperCAmelCase_ ).content ).xpath(UpperCAmelCase_ ) )
A__ : str = """Total COVID-19 cases in the world: {}
Total deaths due to COVID-19 in the world: {}
Total COVID-19 patients recovered in the world: {}"""
print(fmt.format(*covid_stats()))
| 13 | 1 |
'''simple docstring'''
def UpperCAmelCase__ ( ) -> int:
return 1
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int:
return 0 if x < 0 else two_pence(x - 2 ) + one_pence()
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int:
return 0 if x < 0 else five_pence(x - 5 ) + two_pence(UpperCAmelCase_ )
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int:
return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(UpperCAmelCase_ )
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int:
return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(UpperCAmelCase_ )
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int:
return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(UpperCAmelCase_ )
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int:
return 0 if x < 0 else one_pound(x - 1_00 ) + fifty_pence(UpperCAmelCase_ )
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int:
return 0 if x < 0 else two_pound(x - 2_00 ) + one_pound(UpperCAmelCase_ )
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 2_00 ) -> int:
return two_pound(UpperCAmelCase_ )
if __name__ == "__main__":
print(solution(int(input().strip())))
| 13 |
'''simple docstring'''
from __future__ import annotations
import os
from collections.abc import Mapping
A__ : Optional[Any] = tuple[int, int]
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
__lowerCamelCase : set[int] = vertices
__lowerCamelCase : dict[EdgeT, int] = {
(min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ )): weight for edge, weight in edges.items()
}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
__lowerCamelCase : Union[str, Any] = weight
def lowercase_ ( self ) -> Graph:
__lowerCamelCase : Graph = Graph({min(self.vertices )} , {} )
__lowerCamelCase : EdgeT
__lowerCamelCase : int
__lowerCamelCase : EdgeT
__lowerCamelCase : int
while len(subgraph.vertices ) < len(self.vertices ):
__lowerCamelCase : Any = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
__lowerCamelCase : Optional[int] = edge
__lowerCamelCase : List[str] = weight
subgraph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return subgraph
def UpperCAmelCase__ ( UpperCAmelCase_ : str = "p107_network.txt" ) -> int:
__lowerCamelCase : str = os.path.abspath(os.path.dirname(UpperCAmelCase_ ) )
__lowerCamelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : dict[EdgeT, int] = {}
__lowerCamelCase : list[str]
__lowerCamelCase : int
__lowerCamelCase : int
with open(UpperCAmelCase_ ) as f:
__lowerCamelCase : Any = f.read().strip().split('\n' )
__lowerCamelCase : Any = [line.split(',' ) for line in data]
for edgea in range(1 , len(UpperCAmelCase_ ) ):
for edgea in range(UpperCAmelCase_ ):
if adjaceny_matrix[edgea][edgea] != "-":
__lowerCamelCase : int = int(adjaceny_matrix[edgea][edgea] )
__lowerCamelCase : Graph = Graph(set(range(len(UpperCAmelCase_ ) ) ) , UpperCAmelCase_ )
__lowerCamelCase : Graph = graph.prims_algorithm()
__lowerCamelCase : int = sum(graph.edges.values() )
__lowerCamelCase : int = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
import multiprocessing
import os
from typing import BinaryIO, Optional, Union
import fsspec
from .. import Dataset, Features, NamedSplit, config
from ..formatting import query_table
from ..packaged_modules.json.json import Json
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> Dict:
super().__init__(
SCREAMING_SNAKE_CASE_ , split=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ , streaming=SCREAMING_SNAKE_CASE_ , num_proc=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
__lowerCamelCase : Any = field
__lowerCamelCase : Tuple = path_or_paths if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else {self.split: path_or_paths}
__lowerCamelCase : int = Json(
cache_dir=SCREAMING_SNAKE_CASE_ , data_files=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , field=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
def lowercase_ ( self ) -> List[str]:
# Build iterable dataset
if self.streaming:
__lowerCamelCase : str = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
__lowerCamelCase : List[Any] = None
__lowerCamelCase : Optional[Any] = None
__lowerCamelCase : Union[str, Any] = None
__lowerCamelCase : Dict = None
self.builder.download_and_prepare(
download_config=SCREAMING_SNAKE_CASE_ , download_mode=SCREAMING_SNAKE_CASE_ , verification_mode=SCREAMING_SNAKE_CASE_ , base_path=SCREAMING_SNAKE_CASE_ , num_proc=self.num_proc , )
__lowerCamelCase : List[str] = self.builder.as_dataset(
split=self.split , verification_mode=SCREAMING_SNAKE_CASE_ , in_memory=self.keep_in_memory )
return dataset
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> int:
if num_proc is not None and num_proc <= 0:
raise ValueError(f'num_proc {num_proc} must be an integer > 0.' )
__lowerCamelCase : Tuple = dataset
__lowerCamelCase : Dict = path_or_buf
__lowerCamelCase : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
__lowerCamelCase : str = num_proc
__lowerCamelCase : Union[str, Any] = 'utf-8'
__lowerCamelCase : str = to_json_kwargs
def lowercase_ ( self ) -> int:
__lowerCamelCase : Optional[Any] = self.to_json_kwargs.pop('path_or_buf' , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = self.to_json_kwargs.pop('orient' , 'records' )
__lowerCamelCase : List[Any] = self.to_json_kwargs.pop('lines' , True if orient == 'records' else False )
__lowerCamelCase : List[str] = self.to_json_kwargs.pop('index' , False if orient in ['split', 'table'] else True )
__lowerCamelCase : Tuple = self.to_json_kwargs.pop('compression' , SCREAMING_SNAKE_CASE_ )
if compression not in [None, "infer", "gzip", "bz2", "xz"]:
raise NotImplementedError(f'`datasets` currently does not support {compression} compression' )
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with fsspec.open(self.path_or_buf , 'wb' , compression=SCREAMING_SNAKE_CASE_ ) as buffer:
__lowerCamelCase : List[Any] = self._write(file_obj=SCREAMING_SNAKE_CASE_ , orient=SCREAMING_SNAKE_CASE_ , lines=SCREAMING_SNAKE_CASE_ , index=SCREAMING_SNAKE_CASE_ , **self.to_json_kwargs )
else:
if compression:
raise NotImplementedError(
f'The compression parameter is not supported when writing to a buffer, but compression={compression}'
' was passed. Please provide a local path instead.' )
__lowerCamelCase : Dict = self._write(
file_obj=self.path_or_buf , orient=SCREAMING_SNAKE_CASE_ , lines=SCREAMING_SNAKE_CASE_ , index=SCREAMING_SNAKE_CASE_ , **self.to_json_kwargs )
return written
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = args
__lowerCamelCase : List[str] = query_table(
table=self.dataset.data , key=slice(SCREAMING_SNAKE_CASE_ , offset + self.batch_size ) , indices=self.dataset._indices , )
__lowerCamelCase : Tuple = batch.to_pandas().to_json(
path_or_buf=SCREAMING_SNAKE_CASE_ , orient=SCREAMING_SNAKE_CASE_ , lines=SCREAMING_SNAKE_CASE_ , index=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if not json_str.endswith('\n' ):
json_str += "\n"
return json_str.encode(self.encoding )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) -> int:
__lowerCamelCase : Any = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ):
__lowerCamelCase : Optional[int] = self._batch_json((offset, orient, lines, index, to_json_kwargs) )
written += file_obj.write(SCREAMING_SNAKE_CASE_ )
else:
__lowerCamelCase , __lowerCamelCase : Optional[Any] = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for json_str in logging.tqdm(
pool.imap(
self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ):
written += file_obj.write(SCREAMING_SNAKE_CASE_ )
return written
| 13 |
'''simple docstring'''
from collections.abc import Generator
from math import sin
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
if len(UpperCAmelCase_ ) != 32:
raise ValueError('Input must be of length 32' )
__lowerCamelCase : Dict = B''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bytes:
if i < 0:
raise ValueError('Input must be non-negative' )
__lowerCamelCase : Union[str, Any] = format(UpperCAmelCase_ , '08x' )[-8:]
__lowerCamelCase : str = B''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' )
return little_endian_hex
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
__lowerCamelCase : Optional[Any] = B''
for char in message:
bit_string += format(UpperCAmelCase_ , '08b' ).encode('utf-8' )
__lowerCamelCase : List[str] = format(len(UpperCAmelCase_ ) , '064b' ).encode('utf-8' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(UpperCAmelCase_ ) % 5_12 != 4_48:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> Generator[list[int], None, None]:
if len(UpperCAmelCase_ ) % 5_12 != 0:
raise ValueError('Input must have length that\'s a multiple of 512' )
for pos in range(0 , len(UpperCAmelCase_ ) , 5_12 ):
__lowerCamelCase : Any = bit_string[pos : pos + 5_12]
__lowerCamelCase : Optional[int] = []
for i in range(0 , 5_12 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int:
if i < 0:
raise ValueError('Input must be non-negative' )
__lowerCamelCase : List[Any] = format(UpperCAmelCase_ , '032b' )
__lowerCamelCase : Optional[int] = ''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(UpperCAmelCase_ , 2 )
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
return (a + b) % 2**32
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
if i < 0:
raise ValueError('Input must be non-negative' )
if shift < 0:
raise ValueError('Shift must be non-negative' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
__lowerCamelCase : Optional[Any] = preprocess(UpperCAmelCase_ )
__lowerCamelCase : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
__lowerCamelCase : Dict = 0x67_45_23_01
__lowerCamelCase : Union[str, Any] = 0xef_cd_ab_89
__lowerCamelCase : Optional[Any] = 0x98_ba_dc_fe
__lowerCamelCase : Union[str, Any] = 0x10_32_54_76
__lowerCamelCase : List[str] = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(UpperCAmelCase_ ):
__lowerCamelCase : Dict = aa
__lowerCamelCase : Tuple = ba
__lowerCamelCase : List[Any] = ca
__lowerCamelCase : Dict = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
__lowerCamelCase : List[str] = d ^ (b & (c ^ d))
__lowerCamelCase : Optional[int] = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
__lowerCamelCase : Optional[int] = c ^ (d & (b ^ c))
__lowerCamelCase : Tuple = (5 * i + 1) % 16
elif i <= 47:
__lowerCamelCase : str = b ^ c ^ d
__lowerCamelCase : Any = (3 * i + 5) % 16
else:
__lowerCamelCase : Union[str, Any] = c ^ (b | not_aa(UpperCAmelCase_ ))
__lowerCamelCase : int = (7 * i) % 16
__lowerCamelCase : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**32
__lowerCamelCase : Optional[Any] = d
__lowerCamelCase : Tuple = c
__lowerCamelCase : Optional[int] = b
__lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , left_rotate_aa(UpperCAmelCase_ , shift_amounts[i] ) )
# Add hashed chunk to running total
__lowerCamelCase : int = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : str = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : List[Any] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : Dict = reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 | 1 |
'''simple docstring'''
from argparse import ArgumentParser
from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline
from ..utils import logging
from . import BaseTransformersCLICommand
A__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name
def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> List[str]:
if not path:
return "pipe"
for ext in PipelineDataFormat.SUPPORTED_FORMATS:
if path.endswith(UpperCAmelCase_ ):
return ext
raise Exception(
F'Unable to determine file format from file extension {path}. '
F'Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}' )
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> List[Any]:
__lowerCamelCase : Tuple = pipeline(
task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , )
__lowerCamelCase : Tuple = try_infer_format_from_ext(args.input ) if args.format == 'infer' else args.format
__lowerCamelCase : List[Any] = PipelineDataFormat.from_str(
format=UpperCAmelCase_ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , )
return RunCommand(UpperCAmelCase_ , UpperCAmelCase_ )
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple:
__lowerCamelCase : Tuple = nlp
__lowerCamelCase : Dict = reader
@staticmethod
def lowercase_ ( SCREAMING_SNAKE_CASE_ ) -> Any:
__lowerCamelCase : str = parser.add_parser('run' , help='Run a pipeline through the CLI' )
run_parser.add_argument('--task' , choices=get_supported_tasks() , help='Task to run' )
run_parser.add_argument('--input' , type=SCREAMING_SNAKE_CASE_ , help='Path to the file to use for inference' )
run_parser.add_argument('--output' , type=SCREAMING_SNAKE_CASE_ , help='Path to the file that will be used post to write results.' )
run_parser.add_argument('--model' , type=SCREAMING_SNAKE_CASE_ , help='Name or path to the model to instantiate.' )
run_parser.add_argument('--config' , type=SCREAMING_SNAKE_CASE_ , help='Name or path to the model\'s config to instantiate.' )
run_parser.add_argument(
'--tokenizer' , type=SCREAMING_SNAKE_CASE_ , help='Name of the tokenizer to use. (default: same as the model name)' )
run_parser.add_argument(
'--column' , type=SCREAMING_SNAKE_CASE_ , help='Name of the column to use as input. (For multi columns input as QA use column1,columns2)' , )
run_parser.add_argument(
'--format' , type=SCREAMING_SNAKE_CASE_ , default='infer' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='Input format to read from' , )
run_parser.add_argument(
'--device' , type=SCREAMING_SNAKE_CASE_ , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , )
run_parser.add_argument('--overwrite' , action='store_true' , help='Allow overwriting the output file.' )
run_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> int:
__lowerCamelCase , __lowerCamelCase : Union[str, Any] = self._nlp, []
for entry in self._reader:
__lowerCamelCase : Tuple = nlp(**SCREAMING_SNAKE_CASE_ ) if self._reader.is_multi_columns else nlp(SCREAMING_SNAKE_CASE_ )
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
outputs.append(SCREAMING_SNAKE_CASE_ )
else:
outputs += output
# Saving data
if self._nlp.binary_output:
__lowerCamelCase : List[str] = self._reader.save_binary(SCREAMING_SNAKE_CASE_ )
logger.warning(f'Current pipeline requires output to be in binary format, saving at {binary_path}' )
else:
self._reader.save(SCREAMING_SNAKE_CASE_ )
| 13 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : Tuple = logging.get_logger(__name__)
A__ : Dict = {
"""RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""",
"""RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""",
"""RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""",
"""RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""",
"""RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""",
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : List[Any] = 'rwkv'
lowerCamelCase : Any = {'max_position_embeddings': 'context_length'}
def __init__( self , SCREAMING_SNAKE_CASE_=5_02_77 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = vocab_size
__lowerCamelCase : Tuple = context_length
__lowerCamelCase : str = hidden_size
__lowerCamelCase : List[str] = num_hidden_layers
__lowerCamelCase : Any = attention_hidden_size if attention_hidden_size is not None else hidden_size
__lowerCamelCase : Optional[int] = intermediate_size if intermediate_size is not None else 4 * hidden_size
__lowerCamelCase : Optional[Any] = layer_norm_epsilon
__lowerCamelCase : int = rescale_every
__lowerCamelCase : Tuple = use_cache
__lowerCamelCase : int = bos_token_id
__lowerCamelCase : Optional[Any] = eos_token_id
super().__init__(
tie_word_embeddings=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 13 | 1 |
'''simple docstring'''
A__ : List[Any] = [
"""DownloadConfig""",
"""DownloadManager""",
"""DownloadMode""",
"""StreamingDownloadManager""",
]
from .download_config import DownloadConfig
from .download_manager import DownloadManager, DownloadMode
from .streaming_download_manager import StreamingDownloadManager
| 13 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 10_00 ) -> int:
__lowerCamelCase : Union[str, Any] = 3
__lowerCamelCase : Dict = 0
while a < n:
if a % 3 == 0 or a % 5 == 0:
result += a
elif a % 15 == 0:
result -= a
a += 1
return result
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
import math
from numpy import inf
from scipy.integrate import quad
def UpperCAmelCase__ ( UpperCAmelCase_ : float ) -> float:
if num <= 0:
raise ValueError('math domain error' )
return quad(UpperCAmelCase_ , 0 , UpperCAmelCase_ , args=(UpperCAmelCase_) )[0]
def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float:
return math.pow(UpperCAmelCase_ , z - 1 ) * math.exp(-x )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 13 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Dict = XGLMConfig
lowerCamelCase : List[str] = {}
lowerCamelCase : Union[str, Any] = 'gelu'
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Any:
__lowerCamelCase : int = parent
__lowerCamelCase : Optional[int] = batch_size
__lowerCamelCase : Optional[Any] = seq_length
__lowerCamelCase : Optional[int] = is_training
__lowerCamelCase : str = use_input_mask
__lowerCamelCase : Dict = use_labels
__lowerCamelCase : Union[str, Any] = vocab_size
__lowerCamelCase : List[Any] = d_model
__lowerCamelCase : List[Any] = num_hidden_layers
__lowerCamelCase : List[Any] = num_attention_heads
__lowerCamelCase : Optional[Any] = ffn_dim
__lowerCamelCase : List[Any] = activation_function
__lowerCamelCase : List[Any] = activation_dropout
__lowerCamelCase : List[Any] = attention_dropout
__lowerCamelCase : Union[str, Any] = max_position_embeddings
__lowerCamelCase : Tuple = initializer_range
__lowerCamelCase : int = None
__lowerCamelCase : int = 0
__lowerCamelCase : Tuple = 2
__lowerCamelCase : Tuple = 1
def lowercase_ ( self ) -> Any:
return XGLMConfig.from_pretrained('facebook/xglm-564M' )
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : Optional[Any] = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
__lowerCamelCase : Optional[int] = None
if self.use_input_mask:
__lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCamelCase : str = self.get_config()
__lowerCamelCase : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def lowercase_ ( self ) -> Optional[int]:
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=SCREAMING_SNAKE_CASE_ , )
def lowercase_ ( self ) -> str:
__lowerCamelCase : List[Any] = self.prepare_config_and_inputs()
(
(
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) ,
) : str = config_and_inputs
__lowerCamelCase : Union[str, Any] = {
'input_ids': input_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_tf
class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
lowerCamelCase : List[Any] = (TFXGLMForCausalLM,) if is_tf_available() else ()
lowerCamelCase : Any = (
{'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {}
)
lowerCamelCase : List[Any] = False
lowerCamelCase : Dict = False
lowerCamelCase : Union[str, Any] = False
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : str = TFXGLMModelTester(self )
__lowerCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , n_embd=37 )
def lowercase_ ( self ) -> Dict:
self.config_tester.run_common_tests()
@slow
def lowercase_ ( self ) -> Optional[int]:
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCamelCase : Optional[Any] = TFXGLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' )
def lowercase_ ( self ) -> Any:
super().test_resize_token_embeddings()
@require_tf
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
@slow
def lowercase_ ( self , SCREAMING_SNAKE_CASE_=True ) -> List[str]:
__lowerCamelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : int = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
__lowerCamelCase : Optional[int] = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81]
# fmt: on
__lowerCamelCase : Any = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE_ )
@slow
def lowercase_ ( self ) -> int:
__lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
tf.random.set_seed(0 )
__lowerCamelCase : List[Any] = tokenizer('Today is a nice day and' , return_tensors='tf' )
__lowerCamelCase : int = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(':/CPU:0' ):
__lowerCamelCase : Tuple = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , seed=[7, 0] )
__lowerCamelCase : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = (
'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due'
)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@slow
def lowercase_ ( self ) -> int:
__lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
__lowerCamelCase : Any = 'left'
# use different length sentences to test batching
__lowerCamelCase : Any = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When',
'Hello, my dog is a little',
]
__lowerCamelCase : Any = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='tf' , padding=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = inputs['input_ids']
__lowerCamelCase : str = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 )
__lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids
__lowerCamelCase : int = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 )
__lowerCamelCase : Optional[Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids
__lowerCamelCase : Optional[Any] = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 )
__lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = [
'This is an extremelly long sentence that only exists to test the ability of the model to cope with '
'left-padding, such as in batched generation. The output for the sequence below should be the same '
'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be '
'a single',
'Hello, my dog is a little bit of a shy one, but he is very friendly',
]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , [non_padded_sentence, padded_sentence] )
| 13 | 1 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> str:
return "\n".join(
F'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) )
if __name__ == "__main__":
print(multiplication_table(number=5, number_of_terms=10))
| 13 |
'''simple docstring'''
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : List[str] = logging.get_logger(__name__)
# TODO Update this
A__ : Tuple = {
"""facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""",
# See all ESM models at https://huggingface.co/models?filter=esm
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Tuple = 'esm'
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10_26 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]:
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , mask_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = vocab_size
__lowerCamelCase : List[Any] = hidden_size
__lowerCamelCase : str = num_hidden_layers
__lowerCamelCase : List[str] = num_attention_heads
__lowerCamelCase : Any = intermediate_size
__lowerCamelCase : Optional[Any] = hidden_dropout_prob
__lowerCamelCase : Tuple = attention_probs_dropout_prob
__lowerCamelCase : Optional[int] = max_position_embeddings
__lowerCamelCase : str = initializer_range
__lowerCamelCase : Optional[int] = layer_norm_eps
__lowerCamelCase : List[str] = position_embedding_type
__lowerCamelCase : int = use_cache
__lowerCamelCase : Optional[Any] = emb_layer_norm_before
__lowerCamelCase : Optional[Any] = token_dropout
__lowerCamelCase : str = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info('No esmfold_config supplied for folding model, using default values.' )
__lowerCamelCase : Dict = EsmFoldConfig()
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Optional[int] = EsmFoldConfig(**SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = esmfold_config
if vocab_list is None:
logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' )
__lowerCamelCase : List[str] = get_default_vocab_list()
else:
__lowerCamelCase : Optional[Any] = vocab_list
else:
__lowerCamelCase : Dict = None
__lowerCamelCase : Optional[Any] = None
if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , SCREAMING_SNAKE_CASE_ ):
raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : Any = super().to_dict()
if isinstance(self.esmfold_config , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : int = self.esmfold_config.to_dict()
return output
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : str = None
lowerCamelCase : bool = True
lowerCamelCase : bool = False
lowerCamelCase : bool = False
lowerCamelCase : bool = False
lowerCamelCase : float = 0
lowerCamelCase : bool = True
lowerCamelCase : bool = False
lowerCamelCase : int = 1_2_8
lowerCamelCase : "TrunkConfig" = None
def lowercase_ ( self ) -> Any:
if self.trunk is None:
__lowerCamelCase : List[str] = TrunkConfig()
elif isinstance(self.trunk , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Any = TrunkConfig(**self.trunk )
def lowercase_ ( self ) -> int:
__lowerCamelCase : Optional[int] = asdict(self )
__lowerCamelCase : str = self.trunk.to_dict()
return output
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : int = 4_8
lowerCamelCase : int = 1_0_2_4
lowerCamelCase : int = 1_2_8
lowerCamelCase : int = 3_2
lowerCamelCase : int = 3_2
lowerCamelCase : int = 3_2
lowerCamelCase : float = 0
lowerCamelCase : float = 0
lowerCamelCase : bool = False
lowerCamelCase : int = 4
lowerCamelCase : Optional[int] = 1_2_8
lowerCamelCase : "StructureModuleConfig" = None
def lowercase_ ( self ) -> Optional[int]:
if self.structure_module is None:
__lowerCamelCase : Dict = StructureModuleConfig()
elif isinstance(self.structure_module , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Optional[Any] = StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
'`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got'
f' {self.sequence_state_dim} and {self.sequence_state_dim}.' )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
'`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got'
f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' )
__lowerCamelCase : Tuple = self.sequence_state_dim // self.sequence_head_width
__lowerCamelCase : str = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
'`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got'
f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
'`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got'
f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' )
if self.dropout >= 0.4:
raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' )
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : List[str] = asdict(self )
__lowerCamelCase : int = self.structure_module.to_dict()
return output
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : int = 3_8_4
lowerCamelCase : int = 1_2_8
lowerCamelCase : int = 1_6
lowerCamelCase : int = 1_2_8
lowerCamelCase : int = 1_2
lowerCamelCase : int = 4
lowerCamelCase : int = 8
lowerCamelCase : float = 0.1
lowerCamelCase : int = 8
lowerCamelCase : int = 1
lowerCamelCase : int = 2
lowerCamelCase : int = 7
lowerCamelCase : int = 1_0
lowerCamelCase : float = 1e-8
lowerCamelCase : float = 1e5
def lowercase_ ( self ) -> Any:
return asdict(self )
def UpperCAmelCase__ ( ) -> Optional[Any]:
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 13 | 1 |
'''simple docstring'''
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipaConfig,
BlipaForConditionalGeneration,
BlipaProcessor,
BlipaVisionConfig,
BlipImageProcessor,
OPTConfig,
TaConfig,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def UpperCAmelCase__ ( ) -> Optional[Any]:
__lowerCamelCase : Union[str, Any] = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png'
__lowerCamelCase : Any = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ).convert('RGB' )
return image
def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple ) -> Tuple:
__lowerCamelCase : Optional[Any] = []
# fmt: off
# vision encoder
rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') )
rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') )
rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') )
rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') )
rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') )
rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((F'visual_encoder.blocks.{i}.norm1.weight', F'vision_model.encoder.layers.{i}.layer_norm1.weight') )
rename_keys.append((F'visual_encoder.blocks.{i}.norm1.bias', F'vision_model.encoder.layers.{i}.layer_norm1.bias') )
rename_keys.append((F'visual_encoder.blocks.{i}.norm2.weight', F'vision_model.encoder.layers.{i}.layer_norm2.weight') )
rename_keys.append((F'visual_encoder.blocks.{i}.norm2.bias', F'vision_model.encoder.layers.{i}.layer_norm2.bias') )
rename_keys.append((F'visual_encoder.blocks.{i}.attn.qkv.weight', F'vision_model.encoder.layers.{i}.self_attn.qkv.weight') )
rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.weight', F'vision_model.encoder.layers.{i}.self_attn.projection.weight',) )
rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.bias', F'vision_model.encoder.layers.{i}.self_attn.projection.bias') )
rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.weight', F'vision_model.encoder.layers.{i}.mlp.fc1.weight') )
rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.bias', F'vision_model.encoder.layers.{i}.mlp.fc1.bias') )
rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.weight', F'vision_model.encoder.layers.{i}.mlp.fc2.weight') )
rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.bias', F'vision_model.encoder.layers.{i}.mlp.fc2.bias') )
# QFormer
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') )
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') )
# fmt: on
return rename_keys
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] ) -> int:
__lowerCamelCase : List[Any] = dct.pop(UpperCAmelCase_ )
__lowerCamelCase : Optional[int] = val
def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] ) -> List[Any]:
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
__lowerCamelCase : Tuple = state_dict.pop(F'visual_encoder.blocks.{i}.attn.q_bias' )
__lowerCamelCase : int = state_dict.pop(F'visual_encoder.blocks.{i}.attn.v_bias' )
# next, set bias in the state dict
__lowerCamelCase : List[Any] = torch.cat((q_bias, torch.zeros_like(UpperCAmelCase_ , requires_grad=UpperCAmelCase_ ), v_bias) )
__lowerCamelCase : Any = qkv_bias
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : str ) -> Optional[int]:
__lowerCamelCase : int = 3_64 if 'coco' in model_name else 2_24
__lowerCamelCase : List[Any] = BlipaVisionConfig(image_size=UpperCAmelCase_ ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "opt-2.7b" in model_name:
__lowerCamelCase : Union[str, Any] = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=UpperCAmelCase_ ).to_dict()
elif "opt-6.7b" in model_name:
__lowerCamelCase : List[str] = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=UpperCAmelCase_ ).to_dict()
elif "t5-xl" in model_name:
__lowerCamelCase : Union[str, Any] = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
__lowerCamelCase : List[str] = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
__lowerCamelCase : Tuple = BlipaConfig(vision_config=UpperCAmelCase_ , text_config=UpperCAmelCase_ )
return config, image_size
@torch.no_grad()
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]=False ) -> Dict:
__lowerCamelCase : Tuple = (
AutoTokenizer.from_pretrained('facebook/opt-2.7b' )
if 'opt' in model_name
else AutoTokenizer.from_pretrained('google/flan-t5-xl' )
)
__lowerCamelCase : Union[str, Any] = tokenizer('\n' , add_special_tokens=UpperCAmelCase_ ).input_ids[0]
__lowerCamelCase , __lowerCamelCase : str = get_blipa_config(UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ )
__lowerCamelCase : Tuple = BlipaForConditionalGeneration(UpperCAmelCase_ ).eval()
__lowerCamelCase : int = {
'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'),
'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'),
'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'),
'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'),
'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'),
'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'),
'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'),
}
__lowerCamelCase , __lowerCamelCase : int = model_name_to_original[model_name]
# load original model
print('Loading original model...' )
__lowerCamelCase : Any = 'cuda' if torch.cuda.is_available() else 'cpu'
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = load_model_and_preprocess(
name=UpperCAmelCase_ , model_type=UpperCAmelCase_ , is_eval=UpperCAmelCase_ , device=UpperCAmelCase_ )
original_model.eval()
print('Done!' )
# update state dict keys
__lowerCamelCase : Dict = original_model.state_dict()
__lowerCamelCase : List[Any] = create_rename_keys(UpperCAmelCase_ )
for src, dest in rename_keys:
rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
__lowerCamelCase : Optional[Any] = state_dict.pop(UpperCAmelCase_ )
if key.startswith('Qformer.bert' ):
__lowerCamelCase : Dict = key.replace('Qformer.bert' , 'qformer' )
if "attention.self" in key:
__lowerCamelCase : int = key.replace('self' , 'attention' )
if "opt_proj" in key:
__lowerCamelCase : Any = key.replace('opt_proj' , 'language_projection' )
if "t5_proj" in key:
__lowerCamelCase : Optional[Any] = key.replace('t5_proj' , 'language_projection' )
if key.startswith('opt' ):
__lowerCamelCase : Dict = key.replace('opt' , 'language' )
if key.startswith('t5' ):
__lowerCamelCase : Optional[int] = key.replace('t5' , 'language' )
__lowerCamelCase : str = val
# read in qv biases
read_in_q_v_bias(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase , __lowerCamelCase : List[str] = hf_model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ )
assert len(UpperCAmelCase_ ) == 0
assert unexpected_keys == ["qformer.embeddings.position_ids"]
__lowerCamelCase : Optional[Any] = load_demo_image()
__lowerCamelCase : Any = vis_processors['eval'](UpperCAmelCase_ ).unsqueeze(0 ).to(UpperCAmelCase_ )
__lowerCamelCase : Dict = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(UpperCAmelCase_ )
# create processor
__lowerCamelCase : Tuple = BlipImageProcessor(
size={'height': image_size, 'width': image_size} , image_mean=UpperCAmelCase_ , image_std=UpperCAmelCase_ )
__lowerCamelCase : List[str] = BlipaProcessor(image_processor=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ )
__lowerCamelCase : str = processor(images=UpperCAmelCase_ , return_tensors='pt' ).pixel_values.to(UpperCAmelCase_ )
# make sure processor creates exact same pixel values
assert torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ )
original_model.to(UpperCAmelCase_ )
hf_model.to(UpperCAmelCase_ )
with torch.no_grad():
if "opt" in model_name:
__lowerCamelCase : Optional[Any] = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits
__lowerCamelCase : List[str] = hf_model(UpperCAmelCase_ , UpperCAmelCase_ ).logits
else:
__lowerCamelCase : Tuple = original_model(
{'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits
__lowerCamelCase : List[str] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 )
__lowerCamelCase : Dict = hf_model(UpperCAmelCase_ , UpperCAmelCase_ , labels=UpperCAmelCase_ ).logits
assert original_logits.shape == logits.shape
print('First values of original logits:' , original_logits[0, :3, :3] )
print('First values of HF logits:' , logits[0, :3, :3] )
# assert values
if model_name == "blip2-flan-t5-xl":
__lowerCamelCase : List[Any] = torch.tensor(
[[-41.5_850, -4.4_440, -8.9_922], [-47.4_322, -5.9_143, -1.7_340]] , device=UpperCAmelCase_ )
assert torch.allclose(logits[0, :3, :3] , UpperCAmelCase_ , atol=1e-4 )
elif model_name == "blip2-flan-t5-xl-coco":
__lowerCamelCase : Tuple = torch.tensor(
[[-57.0_109, -9.8_967, -12.6_280], [-68.6_578, -12.7_191, -10.5_065]] , device=UpperCAmelCase_ )
else:
# cast to same type
__lowerCamelCase : Optional[int] = logits.dtype
assert torch.allclose(original_logits.to(UpperCAmelCase_ ) , UpperCAmelCase_ , atol=1e-2 )
print('Looks ok!' )
print('Generating a caption...' )
__lowerCamelCase : str = ''
__lowerCamelCase : str = tokenizer(UpperCAmelCase_ , return_tensors='pt' ).input_ids.to(UpperCAmelCase_ )
__lowerCamelCase : Union[str, Any] = original_model.generate({'image': original_pixel_values} )
__lowerCamelCase : int = hf_model.generate(
UpperCAmelCase_ , UpperCAmelCase_ , do_sample=UpperCAmelCase_ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , )
print('Original generation:' , UpperCAmelCase_ )
__lowerCamelCase : Any = input_ids.shape[1]
__lowerCamelCase : Optional[int] = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=UpperCAmelCase_ )
__lowerCamelCase : Dict = [text.strip() for text in output_text]
print('HF generation:' , UpperCAmelCase_ )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(UpperCAmelCase_ )
hf_model.save_pretrained(UpperCAmelCase_ )
if push_to_hub:
processor.push_to_hub(F'nielsr/{model_name}' )
hf_model.push_to_hub(F'nielsr/{model_name}' )
if __name__ == "__main__":
A__ : int = argparse.ArgumentParser()
A__ : Optional[int] = [
"""blip2-opt-2.7b""",
"""blip2-opt-6.7b""",
"""blip2-opt-2.7b-coco""",
"""blip2-opt-6.7b-coco""",
"""blip2-flan-t5-xl""",
"""blip2-flan-t5-xl-coco""",
"""blip2-flan-t5-xxl""",
]
parser.add_argument(
"""--model_name""",
default="""blip2-opt-2.7b""",
choices=choices,
type=str,
help="""Path to hf config.json of model to convert""",
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub after converting""",
)
A__ : Any = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 13 |
'''simple docstring'''
A__ : dict[tuple[int, int, int], int] = {}
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
# if we are absent twice, or late 3 consecutive days,
# no further prize strings are possible
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
__lowerCamelCase : List[Any] = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
__lowerCamelCase : Tuple = _calculate(days - 1 , UpperCAmelCase_ , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
__lowerCamelCase : int = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
__lowerCamelCase : List[Any] = _calculate(days - 1 , UpperCAmelCase_ , 0 )
__lowerCamelCase : Optional[int] = state_late + state_absent + state_ontime
__lowerCamelCase : Union[str, Any] = prizestrings
return prizestrings
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 30 ) -> int:
return _calculate(UpperCAmelCase_ , absent=0 , late=0 )
if __name__ == "__main__":
print(solution())
| 13 | 1 |
'''simple docstring'''
import random
import unittest
import numpy as np
import transformers
from transformers import is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax
if is_flax_available():
import os
import jax.numpy as jnp
from jax import jit
from transformers import AutoTokenizer, FlaxAutoModelForCausalLM
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
A__ : Dict = """0.12""" # assumed parallelism: 8
if is_torch_available():
import torch
def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str=None ) -> List[Any]:
if rng is None:
__lowerCamelCase : str = random.Random()
__lowerCamelCase : Union[str, Any] = 1
for dim in shape:
total_dims *= dim
__lowerCamelCase : Tuple = []
for _ in range(UpperCAmelCase_ ):
values.append(rng.randint(0 , vocab_size - 1 ) )
__lowerCamelCase : Optional[Any] = np.array(UpperCAmelCase_ , dtype=jnp.intaa ).reshape(UpperCAmelCase_ )
return output
def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]=None ) -> str:
__lowerCamelCase : Tuple = ids_tensor(UpperCAmelCase_ , vocab_size=2 , rng=UpperCAmelCase_ )
# make sure that at least one token is attended to for each batch
__lowerCamelCase : str = 1
return attn_mask
@require_flax
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : Union[str, Any] = None
lowerCamelCase : Optional[Any] = ()
def lowercase_ ( self ) -> Dict:
__lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
# cut to half length & take max batch_size 3
__lowerCamelCase : Tuple = 2
__lowerCamelCase : Tuple = inputs['input_ids'].shape[-1] // 2
__lowerCamelCase : List[Any] = inputs['input_ids'][:max_batch_size, :sequence_length]
__lowerCamelCase : Optional[int] = jnp.ones_like(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = attention_mask[:max_batch_size, :sequence_length]
# generate max 5 tokens
__lowerCamelCase : Tuple = input_ids.shape[-1] + 5
if config.eos_token_id is not None and config.pad_token_id is None:
# hack to allow generate for models such as GPT2 as is done in `generate()`
__lowerCamelCase : List[str] = config.eos_token_id
return config, input_ids, attention_mask, max_length
@is_pt_flax_cross_test
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = self._get_input_ids_and_config()
__lowerCamelCase : Any = False
__lowerCamelCase : Dict = max_length
__lowerCamelCase : Union[str, Any] = 0
for model_class in self.all_generative_model_classes:
__lowerCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning
__lowerCamelCase : List[str] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[str] = pt_model_class(SCREAMING_SNAKE_CASE_ ).eval()
__lowerCamelCase : List[Any] = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , flax_model.params )
__lowerCamelCase : List[Any] = flax_model.generate(SCREAMING_SNAKE_CASE_ ).sequences
__lowerCamelCase : Union[str, Any] = pt_model.generate(torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.long ) )
if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]:
__lowerCamelCase : Dict = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]]
self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() )
def lowercase_ ( self ) -> str:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = self._get_input_ids_and_config()
__lowerCamelCase : Optional[Any] = False
__lowerCamelCase : Optional[int] = max_length
for model_class in self.all_generative_model_classes:
__lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = model.generate(SCREAMING_SNAKE_CASE_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = jit(model.generate )
__lowerCamelCase : Optional[Any] = jit_generate(SCREAMING_SNAKE_CASE_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = self._get_input_ids_and_config()
__lowerCamelCase : List[str] = True
__lowerCamelCase : Dict = max_length
for model_class in self.all_generative_model_classes:
__lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = model.generate(SCREAMING_SNAKE_CASE_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = jit(model.generate )
__lowerCamelCase : Union[str, Any] = jit_generate(SCREAMING_SNAKE_CASE_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = self._get_input_ids_and_config()
__lowerCamelCase : Optional[int] = False
__lowerCamelCase : List[Any] = max_length
__lowerCamelCase : List[str] = 2
for model_class in self.all_generative_model_classes:
__lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = model.generate(SCREAMING_SNAKE_CASE_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = jit(model.generate )
__lowerCamelCase : str = jit_generate(SCREAMING_SNAKE_CASE_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Tuple = self._get_input_ids_and_config()
__lowerCamelCase : List[Any] = False
__lowerCamelCase : Any = max_length
__lowerCamelCase : Tuple = 2
__lowerCamelCase : List[str] = 2
for model_class in self.all_generative_model_classes:
__lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = model.generate(SCREAMING_SNAKE_CASE_ ).sequences
self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences )
def lowercase_ ( self ) -> Dict:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Tuple = self._get_input_ids_and_config()
__lowerCamelCase : List[str] = True
__lowerCamelCase : List[str] = max_length
__lowerCamelCase : Union[str, Any] = 0.8
__lowerCamelCase : Optional[Any] = 10
__lowerCamelCase : Dict = 0.3
__lowerCamelCase : int = 1
__lowerCamelCase : int = 8
__lowerCamelCase : List[str] = 9
for model_class in self.all_generative_model_classes:
__lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = model.generate(SCREAMING_SNAKE_CASE_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = jit(model.generate )
__lowerCamelCase : int = jit_generate(SCREAMING_SNAKE_CASE_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Tuple = self._get_input_ids_and_config()
__lowerCamelCase : Optional[Any] = max_length
__lowerCamelCase : Any = 1
__lowerCamelCase : List[str] = 8
__lowerCamelCase : List[Any] = 9
for model_class in self.all_generative_model_classes:
__lowerCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = model.generate(SCREAMING_SNAKE_CASE_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = jit(model.generate )
__lowerCamelCase : Union[str, Any] = jit_generate(SCREAMING_SNAKE_CASE_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = self._get_input_ids_and_config()
__lowerCamelCase : List[str] = max_length
__lowerCamelCase : Dict = 2
__lowerCamelCase : List[str] = 1
__lowerCamelCase : Any = 8
__lowerCamelCase : Optional[int] = 9
for model_class in self.all_generative_model_classes:
__lowerCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = model.generate(SCREAMING_SNAKE_CASE_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = jit(model.generate )
__lowerCamelCase : Optional[int] = jit_generate(SCREAMING_SNAKE_CASE_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def lowercase_ ( self ) -> str:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = self._get_input_ids_and_config()
# pad attention mask on the left
__lowerCamelCase : Tuple = attention_mask.at[(0, 0)].set(0 )
__lowerCamelCase : Tuple = False
__lowerCamelCase : List[Any] = max_length
for model_class in self.all_generative_model_classes:
__lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = model.generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = jit(model.generate )
__lowerCamelCase : Any = jit_generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = self._get_input_ids_and_config()
# pad attention mask on the left
__lowerCamelCase : Tuple = attention_mask.at[(0, 0)].set(0 )
__lowerCamelCase : int = True
__lowerCamelCase : Dict = max_length
for model_class in self.all_generative_model_classes:
__lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = model.generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = jit(model.generate )
__lowerCamelCase : Union[str, Any] = jit_generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Union[str, Any] = self._get_input_ids_and_config()
# pad attention mask on the left
__lowerCamelCase : List[str] = attention_mask.at[(0, 0)].set(0 )
__lowerCamelCase : Optional[Any] = 2
__lowerCamelCase : Tuple = max_length
for model_class in self.all_generative_model_classes:
__lowerCamelCase : int = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = model.generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).sequences
self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[str] = jit(model.generate )
__lowerCamelCase : int = jit_generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
@require_flax
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' )
__lowerCamelCase : Union[str, Any] = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' )
__lowerCamelCase : Tuple = 'Hello world'
__lowerCamelCase : int = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_ids
# typos are quickly detected (the correct argument is `do_sample`)
with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , 'do_samples' ):
model.generate(SCREAMING_SNAKE_CASE_ , do_samples=SCREAMING_SNAKE_CASE_ )
# arbitrary arguments that will not be used anywhere are also not accepted
with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , 'foo' ):
__lowerCamelCase : Tuple = {'foo': 'bar'}
model.generate(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 13 |
'''simple docstring'''
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
A__ : Any = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""")
@total_ordering
@dataclass
class UpperCAmelCase_ :
"""simple docstring"""
lowerCamelCase : str
lowerCamelCase : Optional[str] = None
lowerCamelCase : Optional[Union[str, int]] = None
lowerCamelCase : Optional[Union[str, int]] = None
lowerCamelCase : Optional[Union[str, int]] = None
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = _str_to_version_tuple(self.version_str )
def __repr__( self ) -> Any:
return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}'
@property
def lowercase_ ( self ) -> int:
return self.major, self.minor, self.patch
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return Version(SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return other
raise TypeError(f'{other} (type {type(SCREAMING_SNAKE_CASE_ )}) cannot be compared to version.' )
def __eq__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
try:
__lowerCamelCase : Union[str, Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
__lowerCamelCase : List[Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ )
return self.tuple < other.tuple
def __hash__( self ) -> List[str]:
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase : str = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def lowercase_ ( self ) -> str:
return self.version_str
def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> str:
__lowerCamelCase : str = _VERSION_REG.match(UpperCAmelCase_ )
if not res:
raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' )
return tuple(int(UpperCAmelCase_ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] )
def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] ) -> Dict:
return ".".join(str(UpperCAmelCase_ ) for v in version_tuple )
| 13 | 1 |
'''simple docstring'''
import os
import string
import sys
A__ : Tuple = 1 << 8
A__ : Dict = {
"""tab""": ord("""\t"""),
"""newline""": ord("""\r"""),
"""esc""": 27,
"""up""": 65 + ARROW_KEY_FLAG,
"""down""": 66 + ARROW_KEY_FLAG,
"""right""": 67 + ARROW_KEY_FLAG,
"""left""": 68 + ARROW_KEY_FLAG,
"""mod_int""": 91,
"""undefined""": sys.maxsize,
"""interrupt""": 3,
"""insert""": 50,
"""delete""": 51,
"""pg_up""": 53,
"""pg_down""": 54,
}
A__ : Optional[int] = KEYMAP["""up"""]
A__ : Optional[int] = KEYMAP["""left"""]
if sys.platform == "win32":
A__ : str = []
A__ : str = {
B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG,
B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG,
B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG,
B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG,
B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG,
B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG,
B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG,
B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG,
}
for i in range(10):
A__ : Optional[Any] = ord(str(i))
def UpperCAmelCase__ ( ) -> int:
if os.name == "nt":
import msvcrt
__lowerCamelCase : Any = 'mbcs'
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(UpperCAmelCase_ ) == 0:
# Read the keystroke
__lowerCamelCase : List[Any] = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
__lowerCamelCase : List[Any] = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
__lowerCamelCase : str = chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) )
WIN_CH_BUFFER.append(UpperCAmelCase_ )
if ord(UpperCAmelCase_ ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(1_26 ) )
__lowerCamelCase : List[Any] = chr(KEYMAP['esc'] )
except KeyError:
__lowerCamelCase : Optional[int] = cha[1]
else:
__lowerCamelCase : List[str] = ch.decode(UpperCAmelCase_ )
else:
__lowerCamelCase : Dict = WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
__lowerCamelCase : str = sys.stdin.fileno()
__lowerCamelCase : Union[str, Any] = termios.tcgetattr(UpperCAmelCase_ )
try:
tty.setraw(UpperCAmelCase_ )
__lowerCamelCase : Union[str, Any] = sys.stdin.read(1 )
finally:
termios.tcsetattr(UpperCAmelCase_ , termios.TCSADRAIN , UpperCAmelCase_ )
return ch
def UpperCAmelCase__ ( ) -> List[str]:
__lowerCamelCase : Tuple = get_raw_chars()
if ord(UpperCAmelCase_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(UpperCAmelCase_ ) == KEYMAP["esc"]:
__lowerCamelCase : List[str] = get_raw_chars()
if ord(UpperCAmelCase_ ) == KEYMAP["mod_int"]:
__lowerCamelCase : Optional[Any] = get_raw_chars()
if ord(UpperCAmelCase_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(UpperCAmelCase_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(UpperCAmelCase_ ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"]
| 13 |
'''simple docstring'''
import sys
from collections import defaultdict
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self ) -> int:
__lowerCamelCase : Any = []
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Any:
return self.node_position[vertex]
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple:
__lowerCamelCase : Optional[int] = pos
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
__lowerCamelCase : str = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
__lowerCamelCase : Optional[Any] = 2 * start + 1
else:
__lowerCamelCase : int = 2 * start + 2
if heap[smallest_child] < heap[start]:
__lowerCamelCase , __lowerCamelCase : Optional[Any] = heap[smallest_child], positions[smallest_child]
__lowerCamelCase , __lowerCamelCase : int = (
heap[start],
positions[start],
)
__lowerCamelCase , __lowerCamelCase : str = temp, tempa
__lowerCamelCase : Dict = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , SCREAMING_SNAKE_CASE_ )
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any:
__lowerCamelCase : Any = position[index]
while index != 0:
__lowerCamelCase : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
__lowerCamelCase : Union[str, Any] = heap[parent]
__lowerCamelCase : Any = position[parent]
self.set_position(position[parent] , SCREAMING_SNAKE_CASE_ )
else:
__lowerCamelCase : Tuple = val
__lowerCamelCase : List[str] = temp
self.set_position(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
break
__lowerCamelCase : Tuple = parent
else:
__lowerCamelCase : Union[str, Any] = val
__lowerCamelCase : Tuple = temp
self.set_position(SCREAMING_SNAKE_CASE_ , 0 )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
__lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) // 2 - 1
for i in range(SCREAMING_SNAKE_CASE_ , -1 , -1 ):
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
__lowerCamelCase : Any = positions[0]
__lowerCamelCase : Union[str, Any] = sys.maxsize
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
return temp
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> str:
__lowerCamelCase : List[Any] = Heap()
__lowerCamelCase : Optional[int] = [0] * len(UpperCAmelCase_ )
__lowerCamelCase : str = [-1] * len(UpperCAmelCase_ ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
__lowerCamelCase : List[str] = [] # Heap of Distance of vertices from their neighboring vertex
__lowerCamelCase : Tuple = []
for vertex in range(len(UpperCAmelCase_ ) ):
distance_tv.append(sys.maxsize )
positions.append(UpperCAmelCase_ )
heap.node_position.append(UpperCAmelCase_ )
__lowerCamelCase : Tuple = []
__lowerCamelCase : Dict = 1
__lowerCamelCase : str = sys.maxsize
for neighbor, distance in adjacency_list[0]:
__lowerCamelCase : Any = 0
__lowerCamelCase : Any = distance
heap.heapify(UpperCAmelCase_ , UpperCAmelCase_ )
for _ in range(1 , len(UpperCAmelCase_ ) ):
__lowerCamelCase : List[Any] = heap.delete_minimum(UpperCAmelCase_ , UpperCAmelCase_ )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
__lowerCamelCase : Union[str, Any] = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(UpperCAmelCase_ )]
):
__lowerCamelCase : Dict = distance
heap.bottom_to_top(
UpperCAmelCase_ , heap.get_position(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : str = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
A__ : Tuple = int(input("""Enter number of edges: """).strip())
A__ : str = defaultdict(list)
for _ in range(edges_number):
A__ : Optional[int] = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 13 | 1 |
'''simple docstring'''
from ....utils import logging
A__ : Tuple = logging.get_logger(__name__)
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=20_48 ) -> Tuple:
__lowerCamelCase : int = config.__dict__
__lowerCamelCase : Any = modal_hidden_size
if num_labels:
__lowerCamelCase : Dict = num_labels
| 13 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00 ) -> int:
__lowerCamelCase : Union[str, Any] = n * (n + 1) * (2 * n + 1) / 6
__lowerCamelCase : Union[str, Any] = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
import bisect
def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = -1 ) -> int:
if hi < 0:
__lowerCamelCase : List[str] = len(UpperCAmelCase_ )
while lo < hi:
__lowerCamelCase : List[str] = lo + (hi - lo) // 2
if sorted_collection[mid] < item:
__lowerCamelCase : Optional[Any] = mid + 1
else:
__lowerCamelCase : Optional[int] = mid
return lo
def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = -1 ) -> int:
if hi < 0:
__lowerCamelCase : Optional[int] = len(UpperCAmelCase_ )
while lo < hi:
__lowerCamelCase : Tuple = lo + (hi - lo) // 2
if sorted_collection[mid] <= item:
__lowerCamelCase : Optional[int] = mid + 1
else:
__lowerCamelCase : List[str] = mid
return lo
def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = -1 ) -> None:
sorted_collection.insert(bisect_left(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ )
def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = -1 ) -> None:
sorted_collection.insert(bisect_right(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ )
def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int ) -> int | None:
__lowerCamelCase : List[str] = 0
__lowerCamelCase : Any = len(UpperCAmelCase_ ) - 1
while left <= right:
__lowerCamelCase : int = left + (right - left) // 2
__lowerCamelCase : Dict = sorted_collection[midpoint]
if current_item == item:
return midpoint
elif item < current_item:
__lowerCamelCase : List[str] = midpoint - 1
else:
__lowerCamelCase : Tuple = midpoint + 1
return None
def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int ) -> int | None:
__lowerCamelCase : List[str] = bisect.bisect_left(UpperCAmelCase_ , UpperCAmelCase_ )
if index != len(UpperCAmelCase_ ) and sorted_collection[index] == item:
return index
return None
def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int | None:
if right < left:
return None
__lowerCamelCase : Union[str, Any] = left + (right - left) // 2
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
return binary_search_by_recursion(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , midpoint - 1 )
else:
return binary_search_by_recursion(UpperCAmelCase_ , UpperCAmelCase_ , midpoint + 1 , UpperCAmelCase_ )
if __name__ == "__main__":
A__ : List[str] = input("""Enter numbers separated by comma:\n""").strip()
A__ : Optional[int] = sorted(int(item) for item in user_input.split(""","""))
A__ : str = int(input("""Enter a single number to be found in the list:\n"""))
A__ : List[Any] = binary_search(collection, target)
if result is None:
print(f'''{target} was not found in {collection}.''')
else:
print(f'''{target} was found at position {result} in {collection}.''')
| 13 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Optional[int]:
__lowerCamelCase : Optional[int] = parent
__lowerCamelCase : Dict = batch_size
__lowerCamelCase : int = image_size
__lowerCamelCase : List[str] = patch_size
__lowerCamelCase : Optional[int] = num_channels
__lowerCamelCase : Any = is_training
__lowerCamelCase : Dict = use_labels
__lowerCamelCase : List[Any] = hidden_size
__lowerCamelCase : List[Any] = num_hidden_layers
__lowerCamelCase : Optional[Any] = num_attention_heads
__lowerCamelCase : Dict = intermediate_size
__lowerCamelCase : Union[str, Any] = hidden_act
__lowerCamelCase : Optional[int] = hidden_dropout_prob
__lowerCamelCase : Tuple = attention_probs_dropout_prob
__lowerCamelCase : str = type_sequence_label_size
__lowerCamelCase : List[str] = initializer_range
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__lowerCamelCase : str = (image_size // patch_size) ** 2
__lowerCamelCase : Optional[int] = num_patches + 1
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowerCamelCase : Optional[int] = ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , )
return config, pixel_values
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
__lowerCamelCase : Union[str, Any] = FlaxViTModel(config=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = model(SCREAMING_SNAKE_CASE_ )
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
__lowerCamelCase : str = (self.image_size, self.image_size)
__lowerCamelCase : str = (self.patch_size, self.patch_size)
__lowerCamelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str:
__lowerCamelCase : Tuple = self.type_sequence_label_size
__lowerCamelCase : Any = FlaxViTForImageClassification(config=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__lowerCamelCase : List[str] = 1
__lowerCamelCase : List[Any] = FlaxViTForImageClassification(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : List[Any] = self.prepare_config_and_inputs()
(
(
__lowerCamelCase
) , (
__lowerCamelCase
) ,
) : int = config_and_inputs
__lowerCamelCase : Union[str, Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_flax
class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : str = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()
def lowercase_ ( self ) -> None:
__lowerCamelCase : str = FlaxViTModelTester(self )
__lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 )
def lowercase_ ( self ) -> List[Any]:
self.config_tester.run_common_tests()
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase : List[str] = [*signature.parameters.keys()]
__lowerCamelCase : Optional[int] = ['pixel_values']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowerCamelCase : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ )
@jax.jit
def model_jitted(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return model(pixel_values=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
with self.subTest('JIT Enabled' ):
__lowerCamelCase : Optional[int] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
__lowerCamelCase : Union[str, Any] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) )
for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowercase_ ( self ) -> List[Any]:
for model_class_name in self.all_model_classes:
__lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained('google/vit-base-patch16-224' )
__lowerCamelCase : Union[str, Any] = model(np.ones((1, 3, 2_24, 2_24) ) )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
| 13 | 1 |
'''simple docstring'''
import argparse
import os
import re
A__ : Any = """src/diffusers"""
# Pattern that looks at the indentation in a line.
A__ : Optional[int] = re.compile(R"""^(\s*)\S""")
# Pattern that matches `"key":" and puts `key` in group 0.
A__ : List[Any] = re.compile(R"""^\s*\"([^\"]+)\":""")
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
A__ : Union[str, Any] = re.compile(R"""^\s*_import_structure\[\"([^\"]+)\"\]""")
# Pattern that matches `"key",` and puts `key` in group 0.
A__ : Optional[int] = re.compile(R"""^\s*\"([^\"]+)\",\s*$""")
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
A__ : str = re.compile(R"""\[([^\]]+)\]""")
def UpperCAmelCase__ ( UpperCAmelCase_ : Dict ) -> Optional[Any]:
__lowerCamelCase : Dict = _re_indent.search(UpperCAmelCase_ )
return "" if search is None else search.groups()[0]
def UpperCAmelCase__ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]="" , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Any]=None ) -> Optional[int]:
__lowerCamelCase : Dict = 0
__lowerCamelCase : Tuple = code.split('\n' )
if start_prompt is not None:
while not lines[index].startswith(UpperCAmelCase_ ):
index += 1
__lowerCamelCase : Union[str, Any] = ['\n'.join(lines[:index] )]
else:
__lowerCamelCase : Optional[int] = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
__lowerCamelCase : Any = [lines[index]]
index += 1
while index < len(UpperCAmelCase_ ) and (end_prompt is None or not lines[index].startswith(UpperCAmelCase_ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(UpperCAmelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ):
current_block.append(lines[index] )
blocks.append('\n'.join(UpperCAmelCase_ ) )
if index < len(UpperCAmelCase_ ) - 1:
__lowerCamelCase : Optional[int] = [lines[index + 1]]
index += 1
else:
__lowerCamelCase : List[Any] = []
else:
blocks.append('\n'.join(UpperCAmelCase_ ) )
__lowerCamelCase : Any = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(UpperCAmelCase_ ) > 0:
blocks.append('\n'.join(UpperCAmelCase_ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(UpperCAmelCase_ ):
blocks.append('\n'.join(lines[index:] ) )
return blocks
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> Union[str, Any]:
def _inner(UpperCAmelCase_ : List[str] ):
return key(UpperCAmelCase_ ).lower().replace('_' , '' )
return _inner
def UpperCAmelCase__ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : str=None ) -> List[str]:
# If no key is provided, we use a noop.
def noop(UpperCAmelCase_ : Optional[Any] ):
return x
if key is None:
__lowerCamelCase : str = noop
# Constants are all uppercase, they go first.
__lowerCamelCase : List[str] = [obj for obj in objects if key(UpperCAmelCase_ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
__lowerCamelCase : Union[str, Any] = [obj for obj in objects if key(UpperCAmelCase_ )[0].isupper() and not key(UpperCAmelCase_ ).isupper()]
# Functions begin with a lowercase, they go last.
__lowerCamelCase : List[Any] = [obj for obj in objects if not key(UpperCAmelCase_ )[0].isupper()]
__lowerCamelCase : Optional[Any] = ignore_underscore(UpperCAmelCase_ )
return sorted(UpperCAmelCase_ , key=UpperCAmelCase_ ) + sorted(UpperCAmelCase_ , key=UpperCAmelCase_ ) + sorted(UpperCAmelCase_ , key=UpperCAmelCase_ )
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> Dict:
# This inner function sort imports between [ ].
def _replace(UpperCAmelCase_ : List[str] ):
__lowerCamelCase : Dict = match.groups()[0]
if "," not in imports:
return F'[{imports}]'
__lowerCamelCase : List[str] = [part.strip().replace('"' , '' ) for part in imports.split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
__lowerCamelCase : Optional[int] = keys[:-1]
return "[" + ", ".join([F'"{k}"' for k in sort_objects(UpperCAmelCase_ )] ) + "]"
__lowerCamelCase : List[Any] = import_statement.split('\n' )
if len(UpperCAmelCase_ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
__lowerCamelCase : Tuple = 2 if lines[1].strip() == '[' else 1
__lowerCamelCase : int = [(i, _re_strip_line.search(UpperCAmelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
__lowerCamelCase : Dict = sort_objects(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : x[1] )
__lowerCamelCase : Union[str, Any] = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(UpperCAmelCase_ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
__lowerCamelCase : Dict = _re_bracket_content.sub(_replace , lines[1] )
else:
__lowerCamelCase : str = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
__lowerCamelCase : Any = keys[:-1]
__lowerCamelCase : Tuple = get_indent(lines[1] ) + ', '.join([F'"{k}"' for k in sort_objects(UpperCAmelCase_ )] )
return "\n".join(UpperCAmelCase_ )
else:
# Finally we have to deal with imports fitting on one line
__lowerCamelCase : Tuple = _re_bracket_content.sub(_replace , UpperCAmelCase_ )
return import_statement
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=True ) -> Optional[Any]:
with open(UpperCAmelCase_ , 'r' ) as f:
__lowerCamelCase : int = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
__lowerCamelCase : Dict = split_code_in_indented_blocks(
UpperCAmelCase_ , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(UpperCAmelCase_ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
__lowerCamelCase : int = main_blocks[block_idx]
__lowerCamelCase : List[str] = block.split('\n' )
# Get to the start of the imports.
__lowerCamelCase : Optional[Any] = 0
while line_idx < len(UpperCAmelCase_ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
__lowerCamelCase : Dict = len(UpperCAmelCase_ )
else:
line_idx += 1
if line_idx >= len(UpperCAmelCase_ ):
continue
# Ignore beginning and last line: they don't contain anything.
__lowerCamelCase : int = '\n'.join(block_lines[line_idx:-1] )
__lowerCamelCase : List[Any] = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
__lowerCamelCase : int = split_code_in_indented_blocks(UpperCAmelCase_ , indent_level=UpperCAmelCase_ )
# We have two categories of import key: list or _import_structure[key].append/extend
__lowerCamelCase : Dict = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
__lowerCamelCase : str = [(pattern.search(UpperCAmelCase_ ).groups()[0] if pattern.search(UpperCAmelCase_ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
__lowerCamelCase : Optional[Any] = [(i, key) for i, key in enumerate(UpperCAmelCase_ ) if key is not None]
__lowerCamelCase : Dict = [x[0] for x in sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
__lowerCamelCase : Optional[int] = 0
__lowerCamelCase : Optional[Any] = []
for i in range(len(UpperCAmelCase_ ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
__lowerCamelCase : Dict = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(UpperCAmelCase_ )
count += 1
# And we put our main block back together with its first and last line.
__lowerCamelCase : Dict = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(UpperCAmelCase_ ):
if check_only:
return True
else:
print(F'Overwriting {file}.' )
with open(UpperCAmelCase_ , 'w' ) as f:
f.write('\n'.join(UpperCAmelCase_ ) )
def UpperCAmelCase__ ( UpperCAmelCase_ : Any=True ) -> int:
__lowerCamelCase : str = []
for root, _, files in os.walk(UpperCAmelCase_ ):
if "__init__.py" in files:
__lowerCamelCase : Dict = sort_imports(os.path.join(UpperCAmelCase_ , '__init__.py' ) , check_only=UpperCAmelCase_ )
if result:
__lowerCamelCase : Dict = [os.path.join(UpperCAmelCase_ , '__init__.py' )]
if len(UpperCAmelCase_ ) > 0:
raise ValueError(F'Would overwrite {len(UpperCAmelCase_ )} files, run `make style`.' )
if __name__ == "__main__":
A__ : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""")
A__ : Dict = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 13 |
'''simple docstring'''
import argparse
A__ : Optional[Any] = """docs/source/_static/js/custom.js"""
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> int:
with open(UpperCAmelCase_ , encoding='utf-8' , newline='\n' ) as f:
__lowerCamelCase : Dict = f.readlines()
__lowerCamelCase : Tuple = 0
# First let's put the right version
while not lines[index].startswith('const stableVersion =' ):
index += 1
__lowerCamelCase : Dict = F'const stableVersion = "v{version}"\n'
# Then update the dictionary
while not lines[index].startswith('const versionMapping = {' ):
index += 1
# We go until the end
while not lines[index].startswith('}' ):
index += 1
# We add the new version at the end
lines[index - 1] += F' "v{version}": "v{version}",\n'
with open(UpperCAmelCase_ , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(UpperCAmelCase_ )
if __name__ == "__main__":
A__ : str = argparse.ArgumentParser()
parser.add_argument("""--version""", help="""Release version.""")
A__ : Any = parser.parse_args()
update_custom_js(args.version)
| 13 | 1 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> str:
return "".join(chr(ord(UpperCAmelCase_ ) - 32 ) if 'a' <= char <= 'z' else char for char in word )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 13 |
'''simple docstring'''
import flax.linen as nn
import jax
import jax.numpy as jnp
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : Optional[Any] = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> Any:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = hidden_states.shape
__lowerCamelCase : Dict = jax.image.resize(
SCREAMING_SNAKE_CASE_ , shape=(batch, height * 2, width * 2, channels) , method='nearest' , )
__lowerCamelCase : Optional[Any] = self.conv(SCREAMING_SNAKE_CASE_ )
return hidden_states
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : str = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]:
# pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
# hidden_states = jnp.pad(hidden_states, pad_width=pad)
__lowerCamelCase : str = self.conv(SCREAMING_SNAKE_CASE_ )
return hidden_states
class UpperCAmelCase_ (nn.Module ):
"""simple docstring"""
lowerCamelCase : int
lowerCamelCase : int = None
lowerCamelCase : float = 0.0
lowerCamelCase : bool = None
lowerCamelCase : jnp.dtype = jnp.floataa
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels
__lowerCamelCase : Optional[Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 )
__lowerCamelCase : Tuple = nn.Conv(
SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__lowerCamelCase : List[str] = nn.Dense(SCREAMING_SNAKE_CASE_ , dtype=self.dtype )
__lowerCamelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1E-5 )
__lowerCamelCase : int = nn.Dropout(self.dropout_prob )
__lowerCamelCase : Union[str, Any] = nn.Conv(
SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__lowerCamelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
__lowerCamelCase : List[Any] = None
if use_nin_shortcut:
__lowerCamelCase : Any = nn.Conv(
SCREAMING_SNAKE_CASE_ , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , )
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Tuple:
__lowerCamelCase : List[Any] = hidden_states
__lowerCamelCase : str = self.norma(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = nn.swish(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = self.conva(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = self.time_emb_proj(nn.swish(SCREAMING_SNAKE_CASE_ ) )
__lowerCamelCase : List[str] = jnp.expand_dims(jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , 1 )
__lowerCamelCase : Optional[int] = hidden_states + temb
__lowerCamelCase : List[Any] = self.norma(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Any = nn.swish(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self.dropout(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self.conva(SCREAMING_SNAKE_CASE_ )
if self.conv_shortcut is not None:
__lowerCamelCase : List[str] = self.conv_shortcut(SCREAMING_SNAKE_CASE_ )
return hidden_states + residual
| 13 | 1 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase : Any = tempfile.mkdtemp()
# fmt: off
__lowerCamelCase : Optional[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>']
# fmt: on
__lowerCamelCase : str = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
__lowerCamelCase : Tuple = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', '']
__lowerCamelCase : str = {'unk_token': '<unk>'}
__lowerCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
__lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(SCREAMING_SNAKE_CASE_ ) )
__lowerCamelCase : Union[str, Any] = {
'do_resize': True,
'size': 20,
'do_center_crop': True,
'crop_size': 18,
'do_normalize': True,
'image_mean': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
'image_std': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
}
__lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ )
with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp:
json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Tuple:
return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> int:
shutil.rmtree(self.tmpdirname )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : Optional[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowerCamelCase : Optional[Any] = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : str = self.get_tokenizer()
__lowerCamelCase : Any = self.get_rust_tokenizer()
__lowerCamelCase : int = self.get_image_processor()
__lowerCamelCase : Tuple = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
processor_slow.save_pretrained(self.tmpdirname )
__lowerCamelCase : Optional[Any] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
processor_fast.save_pretrained(self.tmpdirname )
__lowerCamelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE_ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Dict:
__lowerCamelCase : Tuple = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCamelCase : Any = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
__lowerCamelCase : Any = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 )
__lowerCamelCase : Optional[Any] = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> str:
__lowerCamelCase : Union[str, Any] = self.get_image_processor()
__lowerCamelCase : Dict = self.get_tokenizer()
__lowerCamelCase : Optional[Any] = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = self.prepare_image_inputs()
__lowerCamelCase : List[Any] = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' )
__lowerCamelCase : Tuple = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='np' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : Dict = self.get_image_processor()
__lowerCamelCase : Any = self.get_tokenizer()
__lowerCamelCase : str = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = 'lower newer'
__lowerCamelCase : Optional[int] = processor(text=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = tokenizer(SCREAMING_SNAKE_CASE_ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : Dict = self.get_image_processor()
__lowerCamelCase : Optional[int] = self.get_tokenizer()
__lowerCamelCase : List[Any] = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Dict = 'lower newer'
__lowerCamelCase : Optional[Any] = self.prepare_image_inputs()
__lowerCamelCase : Any = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE_ ):
processor()
def lowercase_ ( self ) -> int:
__lowerCamelCase : Tuple = self.get_image_processor()
__lowerCamelCase : Any = self.get_tokenizer()
__lowerCamelCase : Tuple = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCamelCase : Tuple = processor.batch_decode(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> str:
__lowerCamelCase : int = self.get_image_processor()
__lowerCamelCase : Union[str, Any] = self.get_tokenizer()
__lowerCamelCase : int = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = 'lower newer'
__lowerCamelCase : List[str] = self.prepare_image_inputs()
__lowerCamelCase : List[str] = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 13 |
'''simple docstring'''
from __future__ import annotations
A__ : int = 10
def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] ) -> list[int]:
__lowerCamelCase : List[Any] = 1
__lowerCamelCase : Any = max(UpperCAmelCase_ )
while placement <= max_digit:
# declare and initialize empty buckets
__lowerCamelCase : list[list] = [[] for _ in range(UpperCAmelCase_ )]
# split list_of_ints between the buckets
for i in list_of_ints:
__lowerCamelCase : List[Any] = int((i / placement) % RADIX )
buckets[tmp].append(UpperCAmelCase_ )
# put each buckets' contents into list_of_ints
__lowerCamelCase : Tuple = 0
for b in range(UpperCAmelCase_ ):
for i in buckets[b]:
__lowerCamelCase : List[Any] = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
from random import random
from typing import Generic, TypeVar
A__ : int = TypeVar("""KT""")
A__ : Optional[int] = TypeVar("""VT""")
class UpperCAmelCase_ (Generic[KT, VT] ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ = "root" , SCREAMING_SNAKE_CASE_ = None ) -> Union[str, Any]:
__lowerCamelCase : int = key
__lowerCamelCase : Union[str, Any] = value
__lowerCamelCase : list[Node[KT, VT]] = []
def __repr__( self ) -> str:
return f'Node({self.key}: {self.value})'
@property
def lowercase_ ( self ) -> int:
return len(self.forward )
class UpperCAmelCase_ (Generic[KT, VT] ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ = 0.5 , SCREAMING_SNAKE_CASE_ = 16 ) -> Optional[int]:
__lowerCamelCase : Node[KT, VT] = Node[KT, VT]()
__lowerCamelCase : Tuple = 0
__lowerCamelCase : List[str] = p
__lowerCamelCase : Optional[int] = max_level
def __str__( self ) -> str:
__lowerCamelCase : int = list(self )
if len(SCREAMING_SNAKE_CASE_ ) == 0:
return f'SkipList(level={self.level})'
__lowerCamelCase : List[str] = max((len(str(SCREAMING_SNAKE_CASE_ ) ) for item in items) , default=4 )
__lowerCamelCase : Tuple = max(SCREAMING_SNAKE_CASE_ , 4 ) + 4
__lowerCamelCase : Optional[Any] = self.head
__lowerCamelCase : Optional[Any] = []
__lowerCamelCase : int = node.forward.copy()
lines.append(f'[{node.key}]'.ljust(SCREAMING_SNAKE_CASE_ , '-' ) + '* ' * len(SCREAMING_SNAKE_CASE_ ) )
lines.append(' ' * label_size + '| ' * len(SCREAMING_SNAKE_CASE_ ) )
while len(node.forward ) != 0:
__lowerCamelCase : Dict = node.forward[0]
lines.append(
f'[{node.key}]'.ljust(SCREAMING_SNAKE_CASE_ , '-' )
+ ' '.join(str(n.key ) if n.key == node.key else '|' for n in forwards ) )
lines.append(' ' * label_size + '| ' * len(SCREAMING_SNAKE_CASE_ ) )
__lowerCamelCase : Tuple = node.forward
lines.append('None'.ljust(SCREAMING_SNAKE_CASE_ ) + '* ' * len(SCREAMING_SNAKE_CASE_ ) )
return f'SkipList(level={self.level})\n' + "\n".join(SCREAMING_SNAKE_CASE_ )
def __iter__( self ) -> int:
__lowerCamelCase : Tuple = self.head
while len(node.forward ) != 0:
yield node.forward[0].key
__lowerCamelCase : str = node.forward[0]
def lowercase_ ( self ) -> int:
__lowerCamelCase : Optional[Any] = 1
while random() < self.p and level < self.max_level:
level += 1
return level
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]:
__lowerCamelCase : List[Any] = []
__lowerCamelCase : Any = self.head
for i in reversed(range(self.level ) ):
# i < node.level - When node level is lesser than `i` decrement `i`.
# node.forward[i].key < key - Jumping to node with key value higher
# or equal to searched key would result
# in skipping searched key.
while i < node.level and node.forward[i].key < key:
__lowerCamelCase : Any = node.forward[i]
# Each leftmost node (relative to searched node) will potentially have to
# be updated.
update_vector.append(SCREAMING_SNAKE_CASE_ )
update_vector.reverse() # Note that we were inserting values in reverse order.
# len(node.forward) != 0 - If current node doesn't contain any further
# references then searched key is not present.
# node.forward[0].key == key - Next node key should be equal to search key
# if key is present.
if len(node.forward ) != 0 and node.forward[0].key == key:
return node.forward[0], update_vector
else:
return None, update_vector
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict:
__lowerCamelCase , __lowerCamelCase : Any = self._locate_node(SCREAMING_SNAKE_CASE_ )
if node is not None:
for i, update_node in enumerate(SCREAMING_SNAKE_CASE_ ):
# Remove or replace all references to removed node.
if update_node.level > i and update_node.forward[i].key == key:
if node.level > i:
__lowerCamelCase : List[str] = node.forward[i]
else:
__lowerCamelCase : Dict = update_node.forward[:i]
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
__lowerCamelCase , __lowerCamelCase : Optional[Any] = self._locate_node(SCREAMING_SNAKE_CASE_ )
if node is not None:
__lowerCamelCase : Tuple = value
else:
__lowerCamelCase : str = self.random_level()
if level > self.level:
# After level increase we have to add additional nodes to head.
for _ in range(self.level - 1 , SCREAMING_SNAKE_CASE_ ):
update_vector.append(self.head )
__lowerCamelCase : List[str] = level
__lowerCamelCase : Optional[int] = Node(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
for i, update_node in enumerate(update_vector[:level] ):
# Change references to pass through new node.
if update_node.level > i:
new_node.forward.append(update_node.forward[i] )
if update_node.level < i + 1:
update_node.forward.append(SCREAMING_SNAKE_CASE_ )
else:
__lowerCamelCase : List[str] = new_node
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> VT | None:
__lowerCamelCase , __lowerCamelCase : Optional[Any] = self._locate_node(SCREAMING_SNAKE_CASE_ )
if node is not None:
return node.value
return None
def UpperCAmelCase__ ( ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = SkipList()
skip_list.insert('Key1' , 3 )
skip_list.insert('Key2' , 12 )
skip_list.insert('Key3' , 41 )
skip_list.insert('Key4' , -19 )
__lowerCamelCase : str = skip_list.head
__lowerCamelCase : str = {}
while node.level != 0:
__lowerCamelCase : str = node.forward[0]
__lowerCamelCase : Tuple = node.value
assert len(UpperCAmelCase_ ) == 4
assert all_values["Key1"] == 3
assert all_values["Key2"] == 12
assert all_values["Key3"] == 41
assert all_values["Key4"] == -19
def UpperCAmelCase__ ( ) -> Optional[Any]:
__lowerCamelCase : List[Any] = SkipList()
skip_list.insert('Key1' , 10 )
skip_list.insert('Key1' , 12 )
skip_list.insert('Key5' , 7 )
skip_list.insert('Key7' , 10 )
skip_list.insert('Key10' , 5 )
skip_list.insert('Key7' , 7 )
skip_list.insert('Key5' , 5 )
skip_list.insert('Key10' , 10 )
__lowerCamelCase : Dict = skip_list.head
__lowerCamelCase : Optional[Any] = {}
while node.level != 0:
__lowerCamelCase : Tuple = node.forward[0]
__lowerCamelCase : List[str] = node.value
if len(UpperCAmelCase_ ) != 4:
print()
assert len(UpperCAmelCase_ ) == 4
assert all_values["Key1"] == 12
assert all_values["Key7"] == 7
assert all_values["Key5"] == 5
assert all_values["Key10"] == 10
def UpperCAmelCase__ ( ) -> Optional[Any]:
__lowerCamelCase : str = SkipList()
assert skip_list.find('Some key' ) is None
def UpperCAmelCase__ ( ) -> List[Any]:
__lowerCamelCase : List[Any] = SkipList()
skip_list.insert('Key2' , 20 )
assert skip_list.find('Key2' ) == 20
skip_list.insert('Some Key' , 10 )
skip_list.insert('Key2' , 8 )
skip_list.insert('V' , 13 )
assert skip_list.find('Y' ) is None
assert skip_list.find('Key2' ) == 8
assert skip_list.find('Some Key' ) == 10
assert skip_list.find('V' ) == 13
def UpperCAmelCase__ ( ) -> Optional[int]:
__lowerCamelCase : Dict = SkipList()
skip_list.delete('Some key' )
assert len(skip_list.head.forward ) == 0
def UpperCAmelCase__ ( ) -> int:
__lowerCamelCase : Optional[int] = SkipList()
skip_list.insert('Key1' , 12 )
skip_list.insert('V' , 13 )
skip_list.insert('X' , 14 )
skip_list.insert('Key2' , 15 )
skip_list.delete('V' )
skip_list.delete('Key2' )
assert skip_list.find('V' ) is None
assert skip_list.find('Key2' ) is None
def UpperCAmelCase__ ( ) -> Tuple:
__lowerCamelCase : Optional[Any] = SkipList()
skip_list.insert('Key1' , 12 )
skip_list.insert('V' , 13 )
skip_list.insert('X' , 14 )
skip_list.insert('Key2' , 15 )
skip_list.delete('V' )
assert skip_list.find('V' ) is None
assert skip_list.find('X' ) == 14
assert skip_list.find('Key1' ) == 12
assert skip_list.find('Key2' ) == 15
skip_list.delete('X' )
assert skip_list.find('V' ) is None
assert skip_list.find('X' ) is None
assert skip_list.find('Key1' ) == 12
assert skip_list.find('Key2' ) == 15
skip_list.delete('Key1' )
assert skip_list.find('V' ) is None
assert skip_list.find('X' ) is None
assert skip_list.find('Key1' ) is None
assert skip_list.find('Key2' ) == 15
skip_list.delete('Key2' )
assert skip_list.find('V' ) is None
assert skip_list.find('X' ) is None
assert skip_list.find('Key1' ) is None
assert skip_list.find('Key2' ) is None
def UpperCAmelCase__ ( ) -> int:
__lowerCamelCase : Optional[int] = SkipList()
skip_list.insert('Key1' , 12 )
skip_list.insert('V' , 13 )
skip_list.insert('X' , 1_42 )
skip_list.insert('Key2' , 15 )
skip_list.delete('X' )
def traverse_keys(UpperCAmelCase_ : Union[str, Any] ):
yield node.key
for forward_node in node.forward:
yield from traverse_keys(UpperCAmelCase_ )
assert len(set(traverse_keys(skip_list.head ) ) ) == 4
def UpperCAmelCase__ ( ) -> int:
def is_sorted(UpperCAmelCase_ : Optional[int] ):
return all(next_item >= item for item, next_item in zip(UpperCAmelCase_ , lst[1:] ) )
__lowerCamelCase : Optional[Any] = SkipList()
for i in range(10 ):
skip_list.insert(UpperCAmelCase_ , UpperCAmelCase_ )
assert is_sorted(list(UpperCAmelCase_ ) )
skip_list.delete(5 )
skip_list.delete(8 )
skip_list.delete(2 )
assert is_sorted(list(UpperCAmelCase_ ) )
skip_list.insert(-12 , -12 )
skip_list.insert(77 , 77 )
assert is_sorted(list(UpperCAmelCase_ ) )
def UpperCAmelCase__ ( ) -> Optional[Any]:
for _ in range(1_00 ):
# Repeat test 100 times due to the probabilistic nature of skip list
# random values == random bugs
test_insert()
test_insert_overrides_existing_value()
test_searching_empty_list_returns_none()
test_search()
test_deleting_item_from_empty_list_do_nothing()
test_deleted_items_are_not_founded_by_find_method()
test_delete_removes_only_given_key()
test_delete_doesnt_leave_dead_nodes()
test_iter_always_yields_sorted_values()
def UpperCAmelCase__ ( ) -> List[Any]:
__lowerCamelCase : Tuple = SkipList()
skip_list.insert(2 , '2' )
skip_list.insert(4 , '4' )
skip_list.insert(6 , '4' )
skip_list.insert(4 , '5' )
skip_list.insert(8 , '4' )
skip_list.insert(9 , '4' )
skip_list.delete(4 )
print(UpperCAmelCase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 13 |
'''simple docstring'''
from collections import defaultdict
from math import gcd
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_50_00_00 ) -> int:
__lowerCamelCase : defaultdict = defaultdict(UpperCAmelCase_ )
__lowerCamelCase : Any = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , UpperCAmelCase_ , 2 ):
if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) > 1:
continue
__lowerCamelCase : Any = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(UpperCAmelCase_ , limit + 1 , UpperCAmelCase_ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
from collections.abc import Sequence
def UpperCAmelCase__ ( UpperCAmelCase_ : Sequence[float] , UpperCAmelCase_ : bool = False ) -> float:
if not arr:
return 0
__lowerCamelCase : str = 0 if allow_empty_subarrays else float('-inf' )
__lowerCamelCase : Optional[Any] = 0.0
for num in arr:
__lowerCamelCase : Optional[Any] = max(0 if allow_empty_subarrays else num , curr_sum + num )
__lowerCamelCase : str = max(UpperCAmelCase_ , UpperCAmelCase_ )
return max_sum
if __name__ == "__main__":
from doctest import testmod
testmod()
A__ : Tuple = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print(f'''{max_subarray_sum(nums) = }''')
| 13 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
A__ : str = logging.get_logger(__name__)
A__ : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
A__ : Tuple = {
"""vocab_file""": {
"""junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""",
"""junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""",
"""junnyu/roformer_chinese_char_small""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt"""
),
"""junnyu/roformer_chinese_char_base""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt"""
),
"""junnyu/roformer_small_discriminator""": (
"""https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt"""
),
"""junnyu/roformer_small_generator""": (
"""https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt"""
),
}
}
A__ : str = {
"""junnyu/roformer_chinese_small""": 1536,
"""junnyu/roformer_chinese_base""": 1536,
"""junnyu/roformer_chinese_char_small""": 512,
"""junnyu/roformer_chinese_char_base""": 512,
"""junnyu/roformer_small_discriminator""": 128,
"""junnyu/roformer_small_generator""": 128,
}
A__ : Tuple = {
"""junnyu/roformer_chinese_small""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_base""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True},
"""junnyu/roformer_small_discriminator""": {"""do_lower_case""": True},
"""junnyu/roformer_small_generator""": {"""do_lower_case""": True},
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES
lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION
lowerCamelCase : Dict = RoFormerTokenizer
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]:
super().__init__(
SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
__lowerCamelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case
or pre_tok_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents
):
__lowerCamelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) )
__lowerCamelCase : Union[str, Any] = do_lower_case
__lowerCamelCase : str = strip_accents
__lowerCamelCase : Optional[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = do_lower_case
def __getstate__( self ) -> List[str]:
__lowerCamelCase : Union[str, Any] = self.__dict__.copy()
__lowerCamelCase : Dict = BertPreTokenizer()
return state
def __setstate__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = d
__lowerCamelCase : List[Any] = self.__dict__['_tokenizer'].get_vocab()
__lowerCamelCase : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(SCREAMING_SNAKE_CASE_ ) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str:
__lowerCamelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
__lowerCamelCase : List[str] = [self.sep_token_id]
__lowerCamelCase : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]:
__lowerCamelCase : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ )
return tuple(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Any:
__lowerCamelCase : Tuple = BertPreTokenizer()
return super().save_pretrained(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 13 | 1 |
'''simple docstring'''
import sys
A__ : Tuple = (
"""73167176531330624919225119674426574742355349194934"""
"""96983520312774506326239578318016984801869478851843"""
"""85861560789112949495459501737958331952853208805511"""
"""12540698747158523863050715693290963295227443043557"""
"""66896648950445244523161731856403098711121722383113"""
"""62229893423380308135336276614282806444486645238749"""
"""30358907296290491560440772390713810515859307960866"""
"""70172427121883998797908792274921901699720888093776"""
"""65727333001053367881220235421809751254540594752243"""
"""52584907711670556013604839586446706324415722155397"""
"""53697817977846174064955149290862569321978468622482"""
"""83972241375657056057490261407972968652414535100474"""
"""82166370484403199890008895243450658541227588666881"""
"""16427171479924442928230863465674813919123162824586"""
"""17866458359124566529476545682848912883142607690042"""
"""24219022671055626321111109370544217506941658960408"""
"""07198403850962455444362981230987879927244284909188"""
"""84580156166097919133875499200524063689912560717606"""
"""05886116467109405077541002256983155200055935729725"""
"""71636269561882670428252483600823257530420752963450"""
)
def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> int:
__lowerCamelCase : Any = 1
for digit in s:
product *= int(UpperCAmelCase_ )
return product
def UpperCAmelCase__ ( UpperCAmelCase_ : str = N ) -> int:
__lowerCamelCase : Dict = -sys.maxsize - 1
__lowerCamelCase : str = n[:13]
__lowerCamelCase : List[Any] = 13
while cur_index < len(UpperCAmelCase_ ) - 13:
if int(n[cur_index] ) >= int(substr[0] ):
__lowerCamelCase : int = substr[1:] + n[cur_index]
cur_index += 1
else:
__lowerCamelCase : str = max(UpperCAmelCase_ , str_eval(UpperCAmelCase_ ) )
__lowerCamelCase : List[Any] = n[cur_index : cur_index + 13]
cur_index += 13
return largest_product
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
A__ : int = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
A__ : Dict = TaTokenizerFast
A__ : Dict = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Any = [
"""MT5EncoderModel""",
"""MT5ForConditionalGeneration""",
"""MT5ForQuestionAnswering""",
"""MT5Model""",
"""MT5PreTrainedModel""",
"""MT5Stack""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : str = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : str = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
A__ : Union[str, Any] = _LazyModule(
__name__,
globals()["""__file__"""],
_import_structure,
extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast},
module_spec=__spec__,
)
| 13 | 1 |
'''simple docstring'''
import os
import unittest
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir
from ...test_tokenization_common import TokenizerTesterMixin
A__ : Any = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""")
class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : Any = BartphoTokenizer
lowerCamelCase : Union[str, Any] = False
lowerCamelCase : Optional[int] = True
def lowercase_ ( self ) -> Optional[Any]:
super().setUp()
__lowerCamelCase : Any = ['▁This', '▁is', '▁a', '▁t', 'est']
__lowerCamelCase : List[Any] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
__lowerCamelCase : Tuple = {'unk_token': '<unk>'}
__lowerCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['monolingual_vocab_file'] )
with open(self.monolingual_vocab_file , 'w' , encoding='utf-8' ) as fp:
for token in vocab_tokens:
fp.write(f'{token} {vocab_tokens[token]}\n' )
__lowerCamelCase : List[Any] = BartphoTokenizer(SCREAMING_SNAKE_CASE_ , self.monolingual_vocab_file , **self.special_tokens_map )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> List[Any]:
kwargs.update(self.special_tokens_map )
return BartphoTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Any:
__lowerCamelCase : Any = 'This is a là test'
__lowerCamelCase : str = 'This is a<unk><unk> test'
return input_text, output_text
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : Any = BartphoTokenizer(SCREAMING_SNAKE_CASE_ , self.monolingual_vocab_file , **self.special_tokens_map )
__lowerCamelCase : Any = 'This is a là test'
__lowerCamelCase : Tuple = '▁This ▁is ▁a ▁l à ▁t est'.split()
__lowerCamelCase : Optional[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = tokens + [tokenizer.unk_token]
__lowerCamelCase : Tuple = [4, 5, 6, 3, 3, 7, 8, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
| 13 |
'''simple docstring'''
import re
from typing import Callable, List, Optional, Union
import tensorflow as tf
try:
from tensorflow.keras.optimizers.legacy import Adam
except ImportError:
from tensorflow.keras.optimizers import Adam
class UpperCAmelCase_ (tf.keras.optimizers.schedules.LearningRateSchedule ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = None , ) -> Any:
super().__init__()
__lowerCamelCase : Optional[Any] = initial_learning_rate
__lowerCamelCase : Optional[Any] = warmup_steps
__lowerCamelCase : Union[str, Any] = power
__lowerCamelCase : Optional[int] = decay_schedule_fn
__lowerCamelCase : Any = name
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str:
with tf.name_scope(self.name or 'WarmUp' ) as name:
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
__lowerCamelCase : str = tf.cast(SCREAMING_SNAKE_CASE_ , tf.floataa )
__lowerCamelCase : Optional[int] = tf.cast(self.warmup_steps , tf.floataa )
__lowerCamelCase : List[Any] = global_step_float / warmup_steps_float
__lowerCamelCase : Optional[Any] = self.initial_learning_rate * tf.math.pow(SCREAMING_SNAKE_CASE_ , self.power )
return tf.cond(
global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=SCREAMING_SNAKE_CASE_ , )
def lowercase_ ( self ) -> Optional[Any]:
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_schedule_fn": self.decay_schedule_fn,
"warmup_steps": self.warmup_steps,
"power": self.power,
"name": self.name,
}
def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 0.9 , UpperCAmelCase_ : float = 0.999 , UpperCAmelCase_ : float = 1e-8 , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : Optional[List[str]] = None , ) -> int:
__lowerCamelCase : int = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=UpperCAmelCase_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCAmelCase_ , )
if num_warmup_steps:
__lowerCamelCase : str = WarmUp(
initial_learning_rate=UpperCAmelCase_ , decay_schedule_fn=UpperCAmelCase_ , warmup_steps=UpperCAmelCase_ , )
if weight_decay_rate > 0.0:
__lowerCamelCase : List[Any] = AdamWeightDecay(
learning_rate=UpperCAmelCase_ , weight_decay_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=UpperCAmelCase_ , )
else:
__lowerCamelCase : Tuple = tf.keras.optimizers.Adam(
learning_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , )
# We return the optimizer and the LR scheduler in order to better track the
# evolution of the LR independently of the optimizer.
return optimizer, lr_schedule
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ = 0.0_0_1 , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = 0.9_9_9 , SCREAMING_SNAKE_CASE_ = 1E-7 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "AdamWeightDecay" , **SCREAMING_SNAKE_CASE_ , ) -> int:
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = weight_decay_rate
__lowerCamelCase : str = include_in_weight_decay
__lowerCamelCase : List[Any] = exclude_from_weight_decay
@classmethod
def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> Dict:
__lowerCamelCase : Any = {'WarmUp': WarmUp}
return super(SCREAMING_SNAKE_CASE_ , cls ).from_config(SCREAMING_SNAKE_CASE_ , custom_objects=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
super(SCREAMING_SNAKE_CASE_ , self )._prepare_local(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = tf.constant(
self.weight_decay_rate , name='adam_weight_decay_rate' )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
__lowerCamelCase : Tuple = self._do_use_weight_decay(var.name )
if do_decay:
return var.assign_sub(
learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , )
return tf.no_op()
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase , __lowerCamelCase : Optional[Any] = list(zip(*SCREAMING_SNAKE_CASE_ ) )
return super(SCREAMING_SNAKE_CASE_ , self ).apply_gradients(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , name=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str:
if apply_state is None:
return self._decayed_lr_t[var_dtype], {}
__lowerCamelCase : Optional[int] = apply_state or {}
__lowerCamelCase : Dict = apply_state.get((var_device, var_dtype) )
if coefficients is None:
__lowerCamelCase : List[Any] = self._fallback_apply_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = coefficients
return coefficients["lr_t"], {"apply_state": apply_state}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str:
__lowerCamelCase , __lowerCamelCase : Dict = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
with tf.control_dependencies([decay] ):
return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_dense(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Union[str, Any]:
__lowerCamelCase , __lowerCamelCase : Tuple = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
with tf.control_dependencies([decay] ):
return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_sparse(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> List[Any]:
__lowerCamelCase : Any = super().get_config()
config.update({'weight_decay_rate': self.weight_decay_rate} )
return config
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict:
if self.weight_decay_rate == 0:
return False
if self._include_in_weight_decay:
for r in self._include_in_weight_decay:
if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None:
return True
if self._exclude_from_weight_decay:
for r in self._exclude_from_weight_decay:
if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None:
return False
return True
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self ) -> Tuple:
__lowerCamelCase : Tuple = []
__lowerCamelCase : Optional[Any] = None
@property
def lowercase_ ( self ) -> List[str]:
if self._accum_steps is None:
__lowerCamelCase : Tuple = tf.Variable(
tf.constant(0 , dtype=tf.intaa ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
return self._accum_steps.value()
@property
def lowercase_ ( self ) -> List[str]:
if not self._gradients:
raise ValueError('The accumulator should be called first to initialize the gradients' )
return [gradient.value() if gradient is not None else gradient for gradient in self._gradients]
def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str:
if not self._gradients:
__lowerCamelCase : List[str] = self.step # Create the step variable.
self._gradients.extend(
[
tf.Variable(
tf.zeros_like(SCREAMING_SNAKE_CASE_ ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
if gradient is not None
else gradient
for gradient in gradients
] )
if len(SCREAMING_SNAKE_CASE_ ) != len(self._gradients ):
raise ValueError(f'Expected {len(self._gradients )} gradients, but got {len(SCREAMING_SNAKE_CASE_ )}' )
for accum_gradient, gradient in zip(self._gradients , SCREAMING_SNAKE_CASE_ ):
if accum_gradient is not None and gradient is not None:
accum_gradient.assign_add(SCREAMING_SNAKE_CASE_ )
self._accum_steps.assign_add(1 )
def lowercase_ ( self ) -> int:
if not self._gradients:
return
self._accum_steps.assign(0 )
for gradient in self._gradients:
if gradient is not None:
gradient.assign(tf.zeros_like(SCREAMING_SNAKE_CASE_ ) )
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
import math
def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int ) -> float:
__lowerCamelCase : Union[str, Any] = u
for i in range(1 , UpperCAmelCase_ ):
__lowerCamelCase : Any = temp * (u - i)
return temp
def UpperCAmelCase__ ( ) -> None:
__lowerCamelCase : List[Any] = int(input('enter the numbers of values: ' ) )
__lowerCamelCase : list[list[float]] = []
for _ in range(UpperCAmelCase_ ):
y.append([] )
for i in range(UpperCAmelCase_ ):
for j in range(UpperCAmelCase_ ):
y[i].append(UpperCAmelCase_ )
__lowerCamelCase : Tuple = 0
print('enter the values of parameters in a list: ' )
__lowerCamelCase : int = list(map(UpperCAmelCase_ , input().split() ) )
print('enter the values of corresponding parameters: ' )
for i in range(UpperCAmelCase_ ):
__lowerCamelCase : Union[str, Any] = float(input() )
__lowerCamelCase : str = int(input('enter the value to interpolate: ' ) )
__lowerCamelCase : Tuple = (value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 , UpperCAmelCase_ ):
for j in range(n - i ):
__lowerCamelCase : Union[str, Any] = y[j + 1][i - 1] - y[j][i - 1]
__lowerCamelCase : List[str] = y[0][0]
for i in range(1 , UpperCAmelCase_ ):
summ += (ucal(UpperCAmelCase_ , UpperCAmelCase_ ) * y[0][i]) / math.factorial(UpperCAmelCase_ )
print(F'the value at {value} is {summ}' )
if __name__ == "__main__":
main()
| 13 |
'''simple docstring'''
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=[1, 2, 1] , SCREAMING_SNAKE_CASE_=[2, 2, 4] , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=["stage1", "stage2", "stage3"] , SCREAMING_SNAKE_CASE_=[1, 2, 3] , ) -> Any:
__lowerCamelCase : Optional[Any] = parent
__lowerCamelCase : int = batch_size
__lowerCamelCase : Optional[int] = image_size
__lowerCamelCase : Optional[int] = patch_size
__lowerCamelCase : Optional[Any] = num_channels
__lowerCamelCase : Dict = embed_dim
__lowerCamelCase : List[Any] = depths
__lowerCamelCase : int = num_heads
__lowerCamelCase : Optional[Any] = window_size
__lowerCamelCase : Optional[Any] = mlp_ratio
__lowerCamelCase : List[str] = qkv_bias
__lowerCamelCase : List[str] = hidden_dropout_prob
__lowerCamelCase : int = attention_probs_dropout_prob
__lowerCamelCase : List[Any] = drop_path_rate
__lowerCamelCase : Any = hidden_act
__lowerCamelCase : Union[str, Any] = use_absolute_embeddings
__lowerCamelCase : Any = patch_norm
__lowerCamelCase : Optional[Any] = layer_norm_eps
__lowerCamelCase : str = initializer_range
__lowerCamelCase : Dict = is_training
__lowerCamelCase : Optional[Any] = scope
__lowerCamelCase : Dict = use_labels
__lowerCamelCase : List[str] = type_sequence_label_size
__lowerCamelCase : Dict = encoder_stride
__lowerCamelCase : Union[str, Any] = out_features
__lowerCamelCase : str = out_indices
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowerCamelCase : List[str] = None
if self.use_labels:
__lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowerCamelCase : List[str] = self.get_config()
return config, pixel_values, labels
def lowercase_ ( self ) -> Optional[int]:
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
__lowerCamelCase : Dict = MaskFormerSwinModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__lowerCamelCase : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
__lowerCamelCase : Tuple = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , [16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : str = ['stem']
__lowerCamelCase : Optional[Any] = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : Optional[int] = self.prepare_config_and_inputs()
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = config_and_inputs
__lowerCamelCase : Optional[int] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : List[Any] = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase : int = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {}
lowerCamelCase : int = False
lowerCamelCase : int = False
lowerCamelCase : str = False
lowerCamelCase : int = False
lowerCamelCase : Union[str, Any] = False
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : Optional[Any] = MaskFormerSwinModelTester(self )
__lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
'`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with'
' `nn.DataParallel`'
) )
def lowercase_ ( self ) -> int:
pass
def lowercase_ ( self ) -> Union[str, Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase_ ( self ) -> Tuple:
return
def lowercase_ ( self ) -> Dict:
__lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> List[str]:
__lowerCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ )
@unittest.skip('Swin does not use inputs_embeds' )
def lowercase_ ( self ) -> Optional[int]:
pass
@unittest.skip('Swin does not support feedforward chunking' )
def lowercase_ ( self ) -> Dict:
pass
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__lowerCamelCase : Optional[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) )
def lowercase_ ( self ) -> Optional[int]:
__lowerCamelCase , __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowerCamelCase : str = [*signature.parameters.keys()]
__lowerCamelCase : Any = ['pixel_values']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ )
@unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' )
def lowercase_ ( self ) -> Any:
pass
@unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' )
def lowercase_ ( self ) -> List[Any]:
pass
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]:
__lowerCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
with torch.no_grad():
__lowerCamelCase : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
__lowerCamelCase : int = outputs.hidden_states
__lowerCamelCase : Tuple = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
# Swin has a different seq_length
__lowerCamelCase : Optional[Any] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase : List[Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
__lowerCamelCase : Dict = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowerCamelCase : Optional[int] = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase : Union[str, Any] = 3
__lowerCamelCase : Dict = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__lowerCamelCase : str = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__lowerCamelCase : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__lowerCamelCase : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
__lowerCamelCase : str = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowerCamelCase : Tuple = True
self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) )
@unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' )
def lowercase_ ( self ) -> Optional[Any]:
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def lowercase_ ( self ) -> Any:
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def lowercase_ ( self ) -> Union[str, Any]:
pass
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : Any = 0
return t
def check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_={} ):
with torch.no_grad():
__lowerCamelCase : Optional[int] = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).to_tuple()
def recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if isinstance(SCREAMING_SNAKE_CASE_ , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values() ):
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , atol=1E-5 ) , msg=(
'Tuple and dict output are not equal. Difference:'
f' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:'
f' {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}. Dict has'
f' `nan`: {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}.'
) , )
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
for model_class in self.all_model_classes:
__lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} )
__lowerCamelCase : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} )
@require_torch
class UpperCAmelCase_ (unittest.TestCase , _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else ()
lowerCamelCase : List[str] = MaskFormerSwinConfig
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : List[str] = MaskFormerSwinModelTester(self )
def lowercase_ ( self ) -> Optional[Any]:
__lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__lowerCamelCase : Any = inputs_dict['pixel_values'].shape[0]
for backbone_class in self.all_model_classes:
__lowerCamelCase : Optional[Any] = backbone_class(SCREAMING_SNAKE_CASE_ )
backbone.to(SCREAMING_SNAKE_CASE_ )
backbone.eval()
__lowerCamelCase : int = backbone(**SCREAMING_SNAKE_CASE_ )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , SCREAMING_SNAKE_CASE_ )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
__lowerCamelCase : Union[str, Any] = backbone(**SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
__lowerCamelCase : Optional[int] = backbone(**SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(outputs.attentions )
| 13 | 1 |
'''simple docstring'''
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
A__ : str = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
A__ : list[int] = [ord(letter) for letter in string.ascii_lowercase]
A__ : set[int] = {ord(char) for char in VALID_CHARS}
A__ : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"]
def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : tuple[int, ...] ) -> str | None:
__lowerCamelCase : str = ""
__lowerCamelCase : int
__lowerCamelCase : int
__lowerCamelCase : int
for keychar, cipherchar in zip(cycle(UpperCAmelCase_ ) , UpperCAmelCase_ ):
__lowerCamelCase : Union[str, Any] = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(UpperCAmelCase_ )
return decoded
def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] ) -> list[str]:
__lowerCamelCase : list[str] = []
for key in product(UpperCAmelCase_ , repeat=3 ):
__lowerCamelCase : int = try_key(UpperCAmelCase_ , UpperCAmelCase_ )
if encoded is not None:
possibles.append(UpperCAmelCase_ )
return possibles
def UpperCAmelCase__ ( UpperCAmelCase_ : list[str] , UpperCAmelCase_ : str ) -> list[str]:
return [possible for possible in possibles if common_word in possible.lower()]
def UpperCAmelCase__ ( UpperCAmelCase_ : str = "p059_cipher.txt" ) -> int:
__lowerCamelCase : list[int]
__lowerCamelCase : list[str]
__lowerCamelCase : str
__lowerCamelCase : str
__lowerCamelCase : str = Path(UpperCAmelCase_ ).parent.joinpath(UpperCAmelCase_ ).read_text(encoding='utf-8' )
__lowerCamelCase : Tuple = [int(UpperCAmelCase_ ) for number in data.strip().split(',' )]
__lowerCamelCase : Union[str, Any] = filter_valid_chars(UpperCAmelCase_ )
for common_word in COMMON_WORDS:
__lowerCamelCase : Any = filter_common_word(UpperCAmelCase_ , UpperCAmelCase_ )
if len(UpperCAmelCase_ ) == 1:
break
__lowerCamelCase : int = possibles[0]
return sum(ord(UpperCAmelCase_ ) for char in decoded_text )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 |
'''simple docstring'''
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
A__ : Dict = [
"""python""",
"""tqdm""",
"""regex""",
"""requests""",
"""packaging""",
"""filelock""",
"""numpy""",
"""tokenizers""",
"""huggingface-hub""",
"""safetensors""",
"""accelerate""",
"""pyyaml""",
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''')
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=None ) -> List[Any]:
require_version(deps[pkg] , UpperCAmelCase_ )
| 13 | 1 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
A__ : str = logging.get_logger(__name__)
A__ : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
A__ : Tuple = {
"""vocab_file""": {
"""junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""",
"""junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""",
"""junnyu/roformer_chinese_char_small""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt"""
),
"""junnyu/roformer_chinese_char_base""": (
"""https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt"""
),
"""junnyu/roformer_small_discriminator""": (
"""https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt"""
),
"""junnyu/roformer_small_generator""": (
"""https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt"""
),
}
}
A__ : str = {
"""junnyu/roformer_chinese_small""": 1536,
"""junnyu/roformer_chinese_base""": 1536,
"""junnyu/roformer_chinese_char_small""": 512,
"""junnyu/roformer_chinese_char_base""": 512,
"""junnyu/roformer_small_discriminator""": 128,
"""junnyu/roformer_small_generator""": 128,
}
A__ : Tuple = {
"""junnyu/roformer_chinese_small""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_base""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True},
"""junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True},
"""junnyu/roformer_small_discriminator""": {"""do_lower_case""": True},
"""junnyu/roformer_small_generator""": {"""do_lower_case""": True},
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES
lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION
lowerCamelCase : Dict = RoFormerTokenizer
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]:
super().__init__(
SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
__lowerCamelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case
or pre_tok_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents
):
__lowerCamelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) )
__lowerCamelCase : Union[str, Any] = do_lower_case
__lowerCamelCase : str = strip_accents
__lowerCamelCase : Optional[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : Tuple = do_lower_case
def __getstate__( self ) -> List[str]:
__lowerCamelCase : Union[str, Any] = self.__dict__.copy()
__lowerCamelCase : Dict = BertPreTokenizer()
return state
def __setstate__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = d
__lowerCamelCase : List[Any] = self.__dict__['_tokenizer'].get_vocab()
__lowerCamelCase : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(SCREAMING_SNAKE_CASE_ ) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str:
__lowerCamelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]:
__lowerCamelCase : List[str] = [self.sep_token_id]
__lowerCamelCase : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]:
__lowerCamelCase : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ )
return tuple(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Any:
__lowerCamelCase : Tuple = BertPreTokenizer()
return super().save_pretrained(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 13 |
'''simple docstring'''
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import platform
import sys
A__ : List[str] = """3"""
print("""Python version:""", sys.version)
print("""OS platform:""", platform.platform())
print("""OS architecture:""", platform.machine())
try:
import torch
print("""Torch version:""", torch.__version__)
print("""Cuda available:""", torch.cuda.is_available())
print("""Cuda version:""", torch.version.cuda)
print("""CuDNN version:""", torch.backends.cudnn.version())
print("""Number of GPUs available:""", torch.cuda.device_count())
except ImportError:
print("""Torch version:""", None)
try:
import transformers
print("""transformers version:""", transformers.__version__)
except ImportError:
print("""transformers version:""", None)
| 13 | 1 |
'''simple docstring'''
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing the experiment tracking capability,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
A__ : Union[str, Any] = 16
A__ : Dict = 32
def UpperCAmelCase__ ( UpperCAmelCase_ : Accelerator , UpperCAmelCase_ : int = 16 ) -> str:
__lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('bert-base-cased' )
__lowerCamelCase : Any = load_dataset('glue' , 'mrpc' )
def tokenize_function(UpperCAmelCase_ : Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
__lowerCamelCase : Optional[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
__lowerCamelCase : Union[str, Any] = datasets.map(
UpperCAmelCase_ , batched=UpperCAmelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__lowerCamelCase : Tuple = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(UpperCAmelCase_ : Union[str, Any] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
__lowerCamelCase : Dict = 1_28 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
__lowerCamelCase : List[Any] = 16
elif accelerator.mixed_precision != "no":
__lowerCamelCase : Optional[int] = 8
else:
__lowerCamelCase : Any = None
return tokenizer.pad(
UpperCAmelCase_ , padding='longest' , max_length=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_tensors='pt' , )
# Instantiate dataloaders.
__lowerCamelCase : Optional[int] = DataLoader(
tokenized_datasets['train'] , shuffle=UpperCAmelCase_ , collate_fn=UpperCAmelCase_ , batch_size=UpperCAmelCase_ )
__lowerCamelCase : List[str] = DataLoader(
tokenized_datasets['validation'] , shuffle=UpperCAmelCase_ , collate_fn=UpperCAmelCase_ , batch_size=UpperCAmelCase_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
A__ : Union[str, Any] = mocked_dataloaders # noqa: F811
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] ) -> Union[str, Any]:
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS' , UpperCAmelCase_ ) == "1":
__lowerCamelCase : Tuple = 2
# Initialize Accelerator
# New Code #
# We pass in "all" to `log_with` to grab all available trackers in the environment
# Note: If using a custom `Tracker` class, should be passed in here such as:
# >>> log_with = ["all", MyCustomTrackerClassInstance()]
if args.with_tracking:
__lowerCamelCase : str = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir )
else:
__lowerCamelCase : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__lowerCamelCase : Optional[Any] = config['lr']
__lowerCamelCase : int = int(config['num_epochs'] )
__lowerCamelCase : Union[str, Any] = int(config['seed'] )
__lowerCamelCase : List[str] = int(config['batch_size'] )
set_seed(UpperCAmelCase_ )
__lowerCamelCase , __lowerCamelCase : Optional[Any] = get_dataloaders(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : int = evaluate.load('glue' , 'mrpc' )
# If the batch size is too big we use gradient accumulation
__lowerCamelCase : Optional[int] = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
__lowerCamelCase : Union[str, Any] = batch_size // MAX_GPU_BATCH_SIZE
__lowerCamelCase : Optional[int] = MAX_GPU_BATCH_SIZE
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__lowerCamelCase : Optional[int] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=UpperCAmelCase_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
__lowerCamelCase : Dict = model.to(accelerator.device )
# Instantiate optimizer
__lowerCamelCase : int = AdamW(params=model.parameters() , lr=UpperCAmelCase_ )
# Instantiate scheduler
__lowerCamelCase : str = get_linear_schedule_with_warmup(
optimizer=UpperCAmelCase_ , num_warmup_steps=1_00 , num_training_steps=(len(UpperCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = accelerator.prepare(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# New Code #
# We need to initialize the trackers we use. Overall configurations can also be stored
if args.with_tracking:
__lowerCamelCase : List[str] = os.path.split(UpperCAmelCase_ )[-1].split('.' )[0]
accelerator.init_trackers(UpperCAmelCase_ , UpperCAmelCase_ )
# Now we train the model
for epoch in range(UpperCAmelCase_ ):
model.train()
# New Code #
# For our tracking example, we will log the total loss of each epoch
if args.with_tracking:
__lowerCamelCase : Dict = 0
for step, batch in enumerate(UpperCAmelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
__lowerCamelCase : Union[str, Any] = model(**UpperCAmelCase_ )
__lowerCamelCase : Dict = outputs.loss
# New Code #
if args.with_tracking:
total_loss += loss.detach().float()
__lowerCamelCase : Union[str, Any] = loss / gradient_accumulation_steps
accelerator.backward(UpperCAmelCase_ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(UpperCAmelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True` (the default).
batch.to(accelerator.device )
with torch.no_grad():
__lowerCamelCase : Any = model(**UpperCAmelCase_ )
__lowerCamelCase : List[Any] = outputs.logits.argmax(dim=-1 )
__lowerCamelCase , __lowerCamelCase : Any = accelerator.gather_for_metrics((predictions, batch['labels']) )
metric.add_batch(
predictions=UpperCAmelCase_ , references=UpperCAmelCase_ , )
__lowerCamelCase : Optional[Any] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'epoch {epoch}:' , UpperCAmelCase_ )
# New Code #
# To actually log, we call `Accelerator.log`
# The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int`
if args.with_tracking:
accelerator.log(
{
'accuracy': eval_metric['accuracy'],
'f1': eval_metric['f1'],
'train_loss': total_loss.item() / len(UpperCAmelCase_ ),
'epoch': epoch,
} , step=UpperCAmelCase_ , )
# New Code #
# When a run is finished, you should call `accelerator.end_training()`
# to close all of the open trackers
if args.with_tracking:
accelerator.end_training()
def UpperCAmelCase__ ( ) -> int:
__lowerCamelCase : Union[str, Any] = argparse.ArgumentParser(description='Simple example of training script.' )
parser.add_argument(
'--mixed_precision' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose'
'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'
'and an Nvidia Ampere GPU.' , )
parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' )
parser.add_argument(
'--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , )
parser.add_argument(
'--project_dir' , type=UpperCAmelCase_ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , )
__lowerCamelCase : Union[str, Any] = parser.parse_args()
__lowerCamelCase : Optional[Any] = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16}
training_function(UpperCAmelCase_ , UpperCAmelCase_ )
if __name__ == "__main__":
main()
| 13 |
'''simple docstring'''
from collections import namedtuple
import requests
from lxml import html # type: ignore
A__ : Tuple = namedtuple("""covid_data""", """cases deaths recovered""")
def UpperCAmelCase__ ( UpperCAmelCase_ : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data:
__lowerCamelCase : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()'
return covid_data(*html.fromstring(requests.get(UpperCAmelCase_ ).content ).xpath(UpperCAmelCase_ ) )
A__ : str = """Total COVID-19 cases in the world: {}
Total deaths due to COVID-19 in the world: {}
Total COVID-19 patients recovered in the world: {}"""
print(fmt.format(*covid_stats()))
| 13 | 1 |
'''simple docstring'''
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
A__ : Optional[int] = logging.get_logger(__name__)
@add_end_docstrings(_UpperCAmelCase )
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self , **SCREAMING_SNAKE_CASE_ ) -> int:
super().__init__(**SCREAMING_SNAKE_CASE_ )
requires_backends(self , 'vision' )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == 'tf'
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
return super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
__lowerCamelCase : Dict = {}
if "candidate_labels" in kwargs:
__lowerCamelCase : List[str] = kwargs['candidate_labels']
if "hypothesis_template" in kwargs:
__lowerCamelCase : Tuple = kwargs['hypothesis_template']
return preprocess_params, {}, {}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="This is a photo of {}." ) -> Tuple:
__lowerCamelCase : Union[str, Any] = load_image(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = self.image_processor(images=[image] , return_tensors=self.framework )
__lowerCamelCase : Optional[Any] = candidate_labels
__lowerCamelCase : int = [hypothesis_template.format(SCREAMING_SNAKE_CASE_ ) for x in candidate_labels]
__lowerCamelCase : Union[str, Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : List[str] = [text_inputs]
return inputs
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict:
__lowerCamelCase : Dict = model_inputs.pop('candidate_labels' )
__lowerCamelCase : int = model_inputs.pop('text_inputs' )
if isinstance(text_inputs[0] , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : List[Any] = text_inputs[0]
else:
# Batching case.
__lowerCamelCase : Optional[Any] = text_inputs[0][0]
__lowerCamelCase : Optional[int] = self.model(**SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : int = {
'candidate_labels': candidate_labels,
'logits': outputs.logits_per_image,
}
return model_outputs
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
__lowerCamelCase : str = model_outputs.pop('candidate_labels' )
__lowerCamelCase : Union[str, Any] = model_outputs['logits'][0]
if self.framework == "pt":
__lowerCamelCase : List[Any] = logits.softmax(dim=-1 ).squeeze(-1 )
__lowerCamelCase : Dict = probs.tolist()
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__lowerCamelCase : List[Any] = [scores]
elif self.framework == "tf":
__lowerCamelCase : Union[str, Any] = stable_softmax(SCREAMING_SNAKE_CASE_ , axis=-1 )
__lowerCamelCase : Optional[Any] = probs.numpy().tolist()
else:
raise ValueError(f'Unsupported framework: {self.framework}' )
__lowerCamelCase : Optional[Any] = [
{'score': score, 'label': candidate_label}
for score, candidate_label in sorted(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , key=lambda SCREAMING_SNAKE_CASE_ : -x[0] )
]
return result
| 13 |
'''simple docstring'''
from __future__ import annotations
import os
from collections.abc import Mapping
A__ : Optional[Any] = tuple[int, int]
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
__lowerCamelCase : set[int] = vertices
__lowerCamelCase : dict[EdgeT, int] = {
(min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ )): weight for edge, weight in edges.items()
}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
__lowerCamelCase : Union[str, Any] = weight
def lowercase_ ( self ) -> Graph:
__lowerCamelCase : Graph = Graph({min(self.vertices )} , {} )
__lowerCamelCase : EdgeT
__lowerCamelCase : int
__lowerCamelCase : EdgeT
__lowerCamelCase : int
while len(subgraph.vertices ) < len(self.vertices ):
__lowerCamelCase : Any = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
__lowerCamelCase : Optional[int] = edge
__lowerCamelCase : List[str] = weight
subgraph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return subgraph
def UpperCAmelCase__ ( UpperCAmelCase_ : str = "p107_network.txt" ) -> int:
__lowerCamelCase : str = os.path.abspath(os.path.dirname(UpperCAmelCase_ ) )
__lowerCamelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : dict[EdgeT, int] = {}
__lowerCamelCase : list[str]
__lowerCamelCase : int
__lowerCamelCase : int
with open(UpperCAmelCase_ ) as f:
__lowerCamelCase : Any = f.read().strip().split('\n' )
__lowerCamelCase : Any = [line.split(',' ) for line in data]
for edgea in range(1 , len(UpperCAmelCase_ ) ):
for edgea in range(UpperCAmelCase_ ):
if adjaceny_matrix[edgea][edgea] != "-":
__lowerCamelCase : int = int(adjaceny_matrix[edgea][edgea] )
__lowerCamelCase : Graph = Graph(set(range(len(UpperCAmelCase_ ) ) ) , UpperCAmelCase_ )
__lowerCamelCase : Graph = graph.prims_algorithm()
__lowerCamelCase : int = sum(graph.edges.values() )
__lowerCamelCase : int = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> str:
__lowerCamelCase : int = len(UpperCAmelCase_ )
__lowerCamelCase : int = len(UpperCAmelCase_ )
__lowerCamelCase : int = (
first_str_length if first_str_length > second_str_length else second_str_length
)
__lowerCamelCase : list = []
for char_count in range(UpperCAmelCase_ ):
if char_count < first_str_length:
output_list.append(first_str[char_count] )
if char_count < second_str_length:
output_list.append(second_str[char_count] )
return "".join(UpperCAmelCase_ )
if __name__ == "__main__":
print(alternative_string_arrange("""AB""", """XYZ"""), end=""" """)
| 13 |
'''simple docstring'''
from collections.abc import Generator
from math import sin
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
if len(UpperCAmelCase_ ) != 32:
raise ValueError('Input must be of length 32' )
__lowerCamelCase : Dict = B''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bytes:
if i < 0:
raise ValueError('Input must be non-negative' )
__lowerCamelCase : Union[str, Any] = format(UpperCAmelCase_ , '08x' )[-8:]
__lowerCamelCase : str = B''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' )
return little_endian_hex
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
__lowerCamelCase : Optional[Any] = B''
for char in message:
bit_string += format(UpperCAmelCase_ , '08b' ).encode('utf-8' )
__lowerCamelCase : List[str] = format(len(UpperCAmelCase_ ) , '064b' ).encode('utf-8' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(UpperCAmelCase_ ) % 5_12 != 4_48:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> Generator[list[int], None, None]:
if len(UpperCAmelCase_ ) % 5_12 != 0:
raise ValueError('Input must have length that\'s a multiple of 512' )
for pos in range(0 , len(UpperCAmelCase_ ) , 5_12 ):
__lowerCamelCase : Any = bit_string[pos : pos + 5_12]
__lowerCamelCase : Optional[int] = []
for i in range(0 , 5_12 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int:
if i < 0:
raise ValueError('Input must be non-negative' )
__lowerCamelCase : List[Any] = format(UpperCAmelCase_ , '032b' )
__lowerCamelCase : Optional[int] = ''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(UpperCAmelCase_ , 2 )
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
return (a + b) % 2**32
def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int:
if i < 0:
raise ValueError('Input must be non-negative' )
if shift < 0:
raise ValueError('Shift must be non-negative' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes:
__lowerCamelCase : Optional[Any] = preprocess(UpperCAmelCase_ )
__lowerCamelCase : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
__lowerCamelCase : Dict = 0x67_45_23_01
__lowerCamelCase : Union[str, Any] = 0xef_cd_ab_89
__lowerCamelCase : Optional[Any] = 0x98_ba_dc_fe
__lowerCamelCase : Union[str, Any] = 0x10_32_54_76
__lowerCamelCase : List[str] = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(UpperCAmelCase_ ):
__lowerCamelCase : Dict = aa
__lowerCamelCase : Tuple = ba
__lowerCamelCase : List[Any] = ca
__lowerCamelCase : Dict = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
__lowerCamelCase : List[str] = d ^ (b & (c ^ d))
__lowerCamelCase : Optional[int] = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
__lowerCamelCase : Optional[int] = c ^ (d & (b ^ c))
__lowerCamelCase : Tuple = (5 * i + 1) % 16
elif i <= 47:
__lowerCamelCase : str = b ^ c ^ d
__lowerCamelCase : Any = (3 * i + 5) % 16
else:
__lowerCamelCase : Union[str, Any] = c ^ (b | not_aa(UpperCAmelCase_ ))
__lowerCamelCase : int = (7 * i) % 16
__lowerCamelCase : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**32
__lowerCamelCase : Optional[Any] = d
__lowerCamelCase : Tuple = c
__lowerCamelCase : Optional[int] = b
__lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , left_rotate_aa(UpperCAmelCase_ , shift_amounts[i] ) )
# Add hashed chunk to running total
__lowerCamelCase : int = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : str = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : List[Any] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : Dict = reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import (
UniSpeechSatConfig,
UniSpeechSatForAudioFrameClassification,
UniSpeechSatForSequenceClassification,
UniSpeechSatForXVector,
WavaVecaFeatureExtractor,
logging,
)
logging.set_verbosity_info()
A__ : Optional[Any] = logging.get_logger(__name__)
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] ) -> List[Any]:
__lowerCamelCase : Optional[int] = UniSpeechSatForSequenceClassification.from_pretrained(UpperCAmelCase_ , config=UpperCAmelCase_ )
__lowerCamelCase : Union[str, Any] = downstream_dict['projector.weight']
__lowerCamelCase : List[str] = downstream_dict['projector.bias']
__lowerCamelCase : List[str] = downstream_dict['model.post_net.linear.weight']
__lowerCamelCase : List[Any] = downstream_dict['model.post_net.linear.bias']
return model
def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] ) -> List[str]:
__lowerCamelCase : Optional[Any] = UniSpeechSatForAudioFrameClassification.from_pretrained(UpperCAmelCase_ , config=UpperCAmelCase_ )
__lowerCamelCase : str = downstream_dict['model.linear.weight']
__lowerCamelCase : List[str] = downstream_dict['model.linear.bias']
return model
def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str ) -> Optional[int]:
__lowerCamelCase : Any = UniSpeechSatForXVector.from_pretrained(UpperCAmelCase_ , config=UpperCAmelCase_ )
__lowerCamelCase : Dict = downstream_dict['connector.weight']
__lowerCamelCase : Dict = downstream_dict['connector.bias']
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
__lowerCamelCase : Optional[int] = downstream_dict[
F'model.framelevel_feature_extractor.module.{i}.kernel.weight'
]
__lowerCamelCase : Optional[int] = downstream_dict[F'model.framelevel_feature_extractor.module.{i}.kernel.bias']
__lowerCamelCase : Union[str, Any] = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight']
__lowerCamelCase : Tuple = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias']
__lowerCamelCase : Any = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight']
__lowerCamelCase : Tuple = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias']
__lowerCamelCase : Dict = downstream_dict['objective.W']
return model
@torch.no_grad()
def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ) -> Dict:
__lowerCamelCase : str = torch.load(UpperCAmelCase_ , map_location='cpu' )
__lowerCamelCase : Optional[int] = checkpoint['Downstream']
__lowerCamelCase : str = UniSpeechSatConfig.from_pretrained(UpperCAmelCase_ )
__lowerCamelCase : str = WavaVecaFeatureExtractor.from_pretrained(
UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , do_normalize=UpperCAmelCase_ )
__lowerCamelCase : Optional[Any] = hf_config.architectures[0]
if arch.endswith('ForSequenceClassification' ):
__lowerCamelCase : Optional[Any] = convert_classification(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
elif arch.endswith('ForAudioFrameClassification' ):
__lowerCamelCase : str = convert_diarization(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
elif arch.endswith('ForXVector' ):
__lowerCamelCase : Any = convert_xvector(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
else:
raise NotImplementedError(F'S3PRL weights conversion is not supported for {arch}' )
if hf_config.use_weighted_layer_sum:
__lowerCamelCase : Optional[Any] = checkpoint['Featurizer']['weights']
hf_feature_extractor.save_pretrained(UpperCAmelCase_ )
hf_model.save_pretrained(UpperCAmelCase_ )
if __name__ == "__main__":
A__ : str = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model."""
)
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""")
parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""")
A__ : Optional[int] = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 13 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ : Tuple = logging.get_logger(__name__)
A__ : Dict = {
"""RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""",
"""RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""",
"""RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""",
"""RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""",
"""RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""",
"""RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""",
}
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : List[Any] = 'rwkv'
lowerCamelCase : Any = {'max_position_embeddings': 'context_length'}
def __init__( self , SCREAMING_SNAKE_CASE_=5_02_77 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]:
__lowerCamelCase : Optional[int] = vocab_size
__lowerCamelCase : Tuple = context_length
__lowerCamelCase : str = hidden_size
__lowerCamelCase : List[str] = num_hidden_layers
__lowerCamelCase : Any = attention_hidden_size if attention_hidden_size is not None else hidden_size
__lowerCamelCase : Optional[int] = intermediate_size if intermediate_size is not None else 4 * hidden_size
__lowerCamelCase : Optional[Any] = layer_norm_epsilon
__lowerCamelCase : int = rescale_every
__lowerCamelCase : Tuple = use_cache
__lowerCamelCase : int = bos_token_id
__lowerCamelCase : Optional[Any] = eos_token_id
super().__init__(
tie_word_embeddings=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 13 | 1 |
'''simple docstring'''
import unittest
from transformers import DebertaVaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DebertaVaForMaskedLM,
DebertaVaForMultipleChoice,
DebertaVaForQuestionAnswering,
DebertaVaForSequenceClassification,
DebertaVaForTokenClassification,
DebertaVaModel,
)
from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="None" , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , ) -> Optional[int]:
__lowerCamelCase : List[str] = parent
__lowerCamelCase : List[Any] = batch_size
__lowerCamelCase : Dict = seq_length
__lowerCamelCase : int = is_training
__lowerCamelCase : Any = use_input_mask
__lowerCamelCase : int = use_token_type_ids
__lowerCamelCase : Optional[int] = use_labels
__lowerCamelCase : str = vocab_size
__lowerCamelCase : List[str] = hidden_size
__lowerCamelCase : Any = num_hidden_layers
__lowerCamelCase : Dict = num_attention_heads
__lowerCamelCase : int = intermediate_size
__lowerCamelCase : int = hidden_act
__lowerCamelCase : List[Any] = hidden_dropout_prob
__lowerCamelCase : Optional[Any] = attention_probs_dropout_prob
__lowerCamelCase : int = max_position_embeddings
__lowerCamelCase : Dict = type_vocab_size
__lowerCamelCase : str = type_sequence_label_size
__lowerCamelCase : Any = initializer_range
__lowerCamelCase : List[Any] = num_labels
__lowerCamelCase : int = num_choices
__lowerCamelCase : Union[str, Any] = relative_attention
__lowerCamelCase : Optional[int] = position_biased_input
__lowerCamelCase : Union[str, Any] = pos_att_type
__lowerCamelCase : Optional[int] = scope
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCamelCase : List[str] = None
if self.use_input_mask:
__lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
__lowerCamelCase : Union[str, Any] = None
if self.use_token_type_ids:
__lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowerCamelCase : List[Any] = None
__lowerCamelCase : Union[str, Any] = None
__lowerCamelCase : List[str] = None
if self.use_labels:
__lowerCamelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowerCamelCase : Any = ids_tensor([self.batch_size] , self.num_choices )
__lowerCamelCase : List[str] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowercase_ ( self ) -> Optional[int]:
return DebertaVaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Any:
self.parent.assertListEqual(list(result.loss.size() ) , [] )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any:
__lowerCamelCase : Union[str, Any] = DebertaVaModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ )[0]
__lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ )[0]
__lowerCamelCase : str = model(SCREAMING_SNAKE_CASE_ )[0]
self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple:
__lowerCamelCase : Tuple = DebertaVaForMaskedLM(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple:
__lowerCamelCase : Union[str, Any] = self.num_labels
__lowerCamelCase : Dict = DebertaVaForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : int = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] )
self.check_loss_output(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
__lowerCamelCase : Dict = self.num_labels
__lowerCamelCase : int = DebertaVaForTokenClassification(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict:
__lowerCamelCase : Tuple = DebertaVaForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : List[str] = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str:
__lowerCamelCase : List[str] = DebertaVaForMultipleChoice(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__lowerCamelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowerCamelCase : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowerCamelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowerCamelCase : Optional[Any] = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowercase_ ( self ) -> Tuple:
__lowerCamelCase : Tuple = self.prepare_config_and_inputs()
(
(
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) ,
) : Optional[Any] = config_and_inputs
__lowerCamelCase : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase : List[Any] = (
(
DebertaVaModel,
DebertaVaForMaskedLM,
DebertaVaForSequenceClassification,
DebertaVaForTokenClassification,
DebertaVaForQuestionAnswering,
DebertaVaForMultipleChoice,
)
if is_torch_available()
else ()
)
lowerCamelCase : Any = (
{
'feature-extraction': DebertaVaModel,
'fill-mask': DebertaVaForMaskedLM,
'question-answering': DebertaVaForQuestionAnswering,
'text-classification': DebertaVaForSequenceClassification,
'token-classification': DebertaVaForTokenClassification,
'zero-shot': DebertaVaForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase : Any = True
lowerCamelCase : List[Any] = False
lowerCamelCase : Union[str, Any] = False
lowerCamelCase : Optional[int] = False
lowerCamelCase : Dict = False
def lowercase_ ( self ) -> str:
__lowerCamelCase : Optional[int] = DebertaVaModelTester(self )
__lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 )
def lowercase_ ( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
def lowercase_ ( self ) -> Any:
__lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_model(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> str:
__lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_sequence_classification(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_masked_lm(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_question_answering(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> int:
__lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_token_classification(*SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self ) -> Any:
__lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_multiple_choice(*SCREAMING_SNAKE_CASE_ )
@slow
def lowercase_ ( self ) -> Dict:
for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCamelCase : str = DebertaVaModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@require_torch
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
@unittest.skip(reason='Model not available yet' )
def lowercase_ ( self ) -> int:
pass
@slow
def lowercase_ ( self ) -> Union[str, Any]:
__lowerCamelCase : Dict = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' )
__lowerCamelCase : Optional[Any] = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] )
__lowerCamelCase : Tuple = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__lowerCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0]
# compare the actual values for a slice.
__lowerCamelCase : Any = torch.tensor(
[[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) , f'{output[:, 1:4, 1:4]}' )
| 13 |
'''simple docstring'''
def UpperCAmelCase__ ( UpperCAmelCase_ : int = 10_00 ) -> int:
__lowerCamelCase : Union[str, Any] = 3
__lowerCamelCase : Dict = 0
while a < n:
if a % 3 == 0 or a % 5 == 0:
result += a
elif a % 15 == 0:
result -= a
a += 1
return result
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.